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1 Introduction

Gyrodactylids are parasites which attach themselves to theskin and fins of fresh water fish. A
scanning-electron microscope image of a gyrodactylid is given in Fig.1 (left). Each gyrodactylid
has an attachment organ by means of which it anchors itself onto its host. This attachment organ
contains three distinct sclerite structures, namely, the hamuli , the ventral bars and the marginal
hooks as illustrated in Fig. 1 (right).

Figure 1: Left: a gyrodactylid attached to a fin. Right: a phase-contrast image of the attach-
ment organ ofGyrodactylus. The central complex comprises two large hamuli linked by two
connecting bars, the dorsal and ventral bars, but the principal force of attachment is realised by
the sixteen peripherally-positioned marginal hooks.

There are many different species of the genusGyrodactylus. One particular form,Gyro-
dactylus salaris, is known to be highly pathogenic to stocks of Atlantic salmon, whereas other
species that infect salmonids have a generally low pathogenicity. Gyrodactylus salaris is re-
sponsible for the catastrophic decline in salmon stocks in Norway and has been demonstrated
to be widespread in Norwegian rivers. It has also caused problems in Portugal and France. In
order to prevent its entry into the UK, G.salaris was made a notifiable disease in 1988 under
the 1937 and 1983 Diseases of Fish Acts of the UK. While the UK is thought to be free of G.
salaris there is another species, G.thymalli which has been found in the UK and some think is
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a variant of G.salaris. It is important to find a means of identification of G.salaris via routine
microscopic monitoring of samples of parasites. Hence the main motivation for this work is the
development of a statistical method which could be used to discriminate G.salaris from other
species ofGyrodactylus, while a secondary aim is the discrimination of the other species of
Gyrodactylus from each other.

In earlier work, morphometric measurements were painstakingly recorded from each of the
three sclerite structures of samples of specimens ofGyrodactylus and recent work (Kay et al.,
1999, Shinn et al., 2000, McHugh et al., 2000) has shown that the application of nonlinear statis-
tical classifiers with data from such morphometric measurements have promising potential for
discriminating G.salaris from other other species ofGyrodactylus and also, to some extent, dis-
tinguishing some other species ofGyrodactylus from each other. Current work on this problem
centres on the development of a microscopy-based semi-automatic system which could be used
routinely for species identification. This work will involve various techniques including image
analysis, object recognition and statistical size-and-shape analysis. The work described herein
makes use of landmark data of the hamulus which have been extracted from images obtained by
bright-field microscopy. Two main approaches to the discrimination of seven different species
of Gyrodactylus that are built on standard methods (see, for example, McLachlan, 1992) will be
discussed. The first is based on the EDMA approach to statistical shape analysis approach and
the second is an adaptation of the standard k nearest neighbours algorithm in which reflection
size-and-shape Procrustes distance is used to measure distance between pairs of landmark con-
figurations. See Bookstein (1991), Dryden and Mardia (1998)and Lele and Richtsmeier (2001)
for the background on statistical shape analysis.

2 The Data

In this initial study we consider landmark data obtained from the hamuli of a set of 88 spec-
imens, each of which is known (by expert opinion) to belong toone and only one of seven
species. This set contains 20 specimens of G.salaris, 20 of G. thymalli, 10 each of G.cole-
manensis, G. derjavini, G. gasterostei and G.truttae and 8 specimens of G.arcuatus. Some
examples of the hamuli of some of the species are given in Fig.2. It is clear that these speci-
mens differ in size and shape with the G.thymalli and G.salaris hamuli being larger than those
of the other two hamuli.

Figure 2: Light microscope images of the hamulus from four species ofGyrodactylus. From
left to right: G.derjavini, G. salaris, G. thymalli and G.truttae.



The single hamuli in the images considered in this study can be presented at different trans-
lations, rotations as well as being reflected, as illustrated in Fig. 3. Hence any data analysis
performed on extracted landmark co-ordinates must be invariant to reflections, rotations and
translations and thus would constitute a reflection size-and-shape analysis (Dryden and Mardia,
1998; p. 57).

Figure 3: Light microscope images of hamuli of G.thymalli specimens in different orientations
with different reflections of individual hamuli.

Six landmarks have been identified on the hamulus and these are defined in Fig. 4. So for
each specimen we have available a 6� 2 matrix of landmark co-ordinates, termed a landmark
configuration. The co-ordinates were extracted manually from light microscope images of the
specimens.

Figure 4: A schematic diagram of a hamulus in J position indicating the positions of the six
landmarks.

It is necessary to consider size as well as shape in this discrimination problem. This is
illustrated in Fig. 5 which shows that G.salaris and G.thymalli tend to be larger in terms of



centroid size (Dryden and Mardia, 1998; p. 24) than the otherspecies but similar to each other,
on average, while G.arcuatus is smaller than the other species.
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Figure 5: Centroid size distributions of the seven different species.

3 Discrimination using Inter-Landmark Distances

The first approach to discrimination is based on the Euclidean Distance Matrix Analysis (EDMA)
approach to statistical shape analysis (Lele and Richtsmeier, 2001). For each landmark config-
uration, the Euclidean distance between each pair of thek landmarks is computed and these
may be presented as a (symmetric)k � k distance matrix. There are12k(k � 1) distances and
they are invariant with respect to translations, reflections and rotations of the underlying hamuli
(as required). Lele and Richtsmeier (2001) do provide a method for the classification of objects
based on landmark data; this is essentially a closest-mean classifier in which each landmark
configuration is classified as belonging to that class whose mean form it is closest to in terms of
shape or size-and-shape.

Here we consider an alternative approach and view the inter-landmark distances obtained
for each specimen as the data to which statistical classifiers will be applied. In this application
there are 15 inter-landmark distances and so a 15-dimensional ’observation’ vector is available
for each specimen, along with its true class identifier. As one might expect, the inter-landmark
distances are highly correlated and so not all of the distances are necessary in the discriminant
analysis. Indeed, performing a canonical variate analysisresults in the first two eigenvalues ac-
counting for 96.3% of the possible linear discriminability. Hence the plot of the inter-landmark
distances with respect to the first two canonical variates provides a very good representation of
the linear separation among the classes. In Fig. 6 we see thatthe G.arcuatus and G.colema-
nensis specimens are well separated from the other species. The G.derjavini and G.truttae
specimens are quite separate from the remaining species, but quite close to each other. The G.
salaris separate out from those of G.truttae and G.gasterostei but are close to these groups.

Forward stepwise linear discriminant analysis was appliedusing the fifteen inter-landmark
distances as the potential discriminating variables. Onlysix of the distances were used in the
final linear classifier, namely the distances between landmarks 1&2, 1&5, 2&5, 2&6, 4&5 and
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Figure 6: Projection of the inter-landmark distances onto the first two canonical axes, with
specimens labelled by the first letter of their species name,apart from G.truttae which was
labelled as r.

4&6, and so landmark number 3 was not used. When all 88 specimens were used as the training
data only seven misclassifications resulted. Using leave-one-out cross-validation resulted in 11
errors out of 88 and an overall estimate of 12.5% as the likelygeneralisation error were this
linear method to be applied to new, similar specimens.

The data were also analysed using a combination canonical variates and k nearest neigh-
bours. Using the scores on the first two canonical variates asinput data, and using 5 nearest
neighbours, resulted in 4 misclassifications out of 88 for the training data; the leave-one-out
cross-validation estimate of generalisation error was 7/88 = 7.95%. In order to obtain more
realistic estimates of the likely classification/misclassification rates to be expected with similar
new specimens (based admittedly on small sample sizes) stratified three-fold cross-validation
was applied, using this combined method. The results were averaged over 100 random samples
and are given in Table 1. The overall estimate of misclassification rate is 9.7%. The contribution
to this estimate of misclassifications involving G.salaris is 2.0%.

thy sal der arc col tru gas
thy 95.8 4.5 0 0 0 0 0
sal 4.2 95.2 0 0 0 0.1 0
der 0 0 91.2 0 0 29.8 0
arc 0 0 0 98.8 0 0 0.1
col 0 0 0 1.2 100 0 0
tru 0 0.3 8.8 0 0 59.8 4.1
gas 0 0 0 0 0 10.3 89.8

Table 1: Estimated confusion matrix obtained by stratified three-fold cross-validation averaged
over 100 random samples using a combination of canonical variates and knn. The entry in the
ith row and jth column is the mean percentage of specimens of the species in the jth column
that are classified as belonging to the species in the ith row.



Estimates of correct classification are high for G.thymalli, G. salaris, G. arcuatus and G.
colemanensis, not so high for G.derjavini and G.gastersotei and poor for G.truttae. Apart from
some likely confusion with G.thymalli, and very slight confusion with G.truttae, G. salaris is
well separated from the other species. There is fairly largeamount of confusion between G.
derjavini and G.truttae and between G.truttae and G.gasterostei.

4 Discrimination using Nearest Neighbours in Procrustes Dis-
tance

In this second approach to the discrimination we develop a version of the standard k nearest
neighbours algorithm (see, for example, Devivjer and Kittler, 1982) in which the neighbour-
hoods are defined in terms of a Procrustes reflection size-and-shape distance; clearly any other
shape or size-and-shape measure of distance could be employed, as required. A clear account
of Procrustes methods is given by Dryden and Mardia (1998). The Procrustes distance used
here is invariant with respect to reflections, rotations andtranslations of the specimens and is
defined as follows (Mardia et al., 1979, p. 416).

LetX andY denote twok�m landmark configurations and letX andY be zero-centered
versions of them, obtained by pre-multiplication by a suitable centering matrix such as the
Helmert sub-matrix (Dryden and Mardia, 1998, p. 34). Suppose that the singular-value decom-
position of the matrixY T X is given byV DUT . Then the reflection size-and-shape Procrustes
distance between the landmark configurationsX andY is defined byrsspd(X; Y ) = tr(XXT ) + tr(YY T )� 2tr(D):

While the Procrustes rotation that takesX towardsY is not the same as the rotation which
takesY towardsX, the distance rsspd(X; Y ) is symmetric inX andY . We now describe a
k nearest neighbours algorithm in which distances between the specimens are obtained via the
reflection size-and-shape Procrustes distance.

Suppose that we have available two sets of specimens – atraining set and atest set – and a
landmark configuration for each specimen. The algorithm consists of the following steps. For
each landmark configuration in thetest set, the reflection size-and-shape Procrustes distances
between the test specimen and each of the specimens in the training set are computed. Then the
k members of the training set that are closest to the test specimen in reflection size-and-shape
space are determined. Then the classes of these k nearest neighbours are found and the the
test specimen is allocated to that class which occurs most frequently among the classes of the k
nearest neighbours; ties are broken at random if two or more classes have the maximum number
of votes. The algorithm was applied to all 88 specimens usingfirst nearest neighbours. This
resulted in 11 misclassifications. Using the leave-one-outcross-validation option also resulted
in 11 errors and an estimate of the likely generalisation error of 12.5%. More realistic estimates
of likely classification/misclassification error rates were obtain using stratified three-fold cross-
validation. The results given in Table 2 are based on means taken over 100 random samples.
The overall estimate of misclassification rate is 15.9%. Thecontribution to this estimate of mis-
classifications involving G.salaris is 4.3%. The pattern of results are similar to those of Table
1 but the estimates suggest greater confusion between the pairs of classes that were confused
in Table 1. Clearly the results obtained using this method ofdiscrimination are less good that
those obtained in Section 3.



thy sal der arc col tru gas
thy 86.8 10.8 0 0 0 0 0
sal 8.2 89.3 0 0 0 0.1 0
der 0 0 60.9 0 0 21.6 3.4
arc 0 0 0 100 0 0 0
col 0 0 0 0 100 0 0
tru 4.1 0 39.0 0 0 54.6 11.3
gas 1.0 0 0.1 0 0 23.8 85.3

Table 2: Estimated confusion matrix obtained by stratified three-fold cross-validation averaged
over 100 random samples with the Procrustes knn method. The entry in the ith row and jth
column is the mean percentage of specimens of the species in the jth column that are classified
as belonging to the species in the ith row.

The algorithms used in the analyses reported in Sections 3 & 4were coded in S-Plus and
use was made of theknn, lda andpredict.lda functions provided by Venables and Ripley (1997)
as well as thedefh andcentroid.size functions provided in Ian Dryden’s R/S-Plus routines.

5 Conclusions

The results of these initial experiments using landmark data from small sample sizes of seven
species ofGyrodactylus are quite promising. The discrimination method consideredin Section
3 gave better overall results than the Procrustes knn approach, in terms of estimated misclassifi-
cation rates, with the rate involving G.salaris being one-half of that obtained using Procrustes-
based knn. Given new, similar specimens it seems that G.salaris could be identified with a
small chance of error, with the main risk of confusion being between G.salaris and G.thymalli.
Clearly there is quite serious confusion between the pairs G.derjavini & G.truttae and G.truttae
& G.gasterostei, and the discrimination of the individual species within these pairs of species
would not be very reliable. Clearly the cross-validation results and these conclusions are based
on small sample sizes and it is necessary to repeat this work with larger, more representative
sets of specimens. In addition, landmark data are being collected from light microscope im-
ages of the marginal hooks of a variety of specimens; here there are twelve landmarks and so
better results might be possible. Work will also be pursued on outline data, using for example
Fourier and Wavelet descriptors, and the more-detailed nature of such data may be necessary to
discriminate between the most confused species.
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