
Open Research Online
The Open University’s repository of research publications
and other research outputs

Managing Conflicting Requirements in Systems of
Systems
Conference or Workshop Item

How to cite:

de Melo Novaes Viana, Thiago Affonso (2017). Managing Conflicting Requirements in Systems of Systems.
In: Proceedings of the 2017 CRC PhD student Conference, 6-7 Jul 2017.

For guidance on citations see FAQs.

c© [not recorded]

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Managing Conflicting Requirements in Systems of
Systems

Thiago Affonso de Melo Novaes Viana
thiago.viana@open.ac.uk

School of Computing and Communications/ Faculty of Science, Technology, Engineering and Mathematics

Supervisors name/s: Prof. Andrea Zisman and Dr. Arosha Bandara
Starting date: 01/02/2016 (Full-Time)

I. INTRODUCTION
Software systems have evolved from being stand-alone
systems to being composed into Systems of Systems. A System
of Systems (SoS) is defined as an arrangement of
independently created, discovered, and selected systems, which
are integrated into a single system in order to deliver unique
capabilities [1]. In this context, each participating system can
operate and support different goals in its own environment (viz.
local goals), as well as support new goals of the SoS as a
whole (viz. global goals), that could not be achieved separately
by the participating systems. An SoS presents many features
including operational and managerial independence,
geographic distribution of participating systems, and emergent
behaviors [2]. Examples of SoSs are found in several different
domains including, but not limited to, transport network
systems, household energy management systems, personal
nutrition management systems, smart homes, smart cities and
intelligent healthcare systems.

However, as the SoS is formed by the integration of
independent complex systems, this will increase the
complexity of the SoS to at least one more order than its
component systems [3]. This means that problems in the SoS
environment are harder to handle than in the component
system environment. Therefore, this will bring a number of
software engineering challenges regarding their specification,
design, construction, and operation. Among these, one
important challenge is concerned with managing emerging
conflicting behavior that leads to inconsistency. In an SoS, the
various participating systems are often from different
domains; are developed by different teams of people under
different circumstances and time; have distinct functionalities;
and are used by different stakeholders. All of these factors
contribute to the existence of inconsistent and conflicting
requirements.

This research presents an overview of a framework called
MaCoRe_SoS (Managing Conflicting Requirements in
Systems of Systems) that supports conflict management in
SoSs. The management of conflicting requirements in the
proposed framework involves three main steps, namely (a)
conflict identification, (b) conflict diagnosis, and (c) resolution
based on the use of a utility function. In order to support the
main steps, the framework uses a Monitor-Analyze-Plan-
Execute-Knowledge (MAPE-K) architectural pattern[4].

II. MOTIVATING EXAMPLE
In order to illustrate and evaluate the proposed framework, this
research uses FeedMe FeedMe [5], an exemplar of an SoS
scenario composed of different systems to address food
security problems at different levels of granularity, namely
individuals, groups, cities and nations. At the individual level
(viz. AnalyseMe), FeedMe FeedMe presents smart devices to
monitor, analyse and provide suggestions about the nutritional
and health status of a person. At the group level (viz.
HomeHub), FeedMe FeedMe uses smart home appliances that
interoperate to create a more precise family meal plan, based
on the family resources and budget. At the city level (viz.
SmartCity), local markets collect data from multiples families
to manage their stock and to reduce food wastage. At the
national level (viz. SmartNation), food producers and
manufacturers collect data from different markets to forecast
food needs and provide alternatives in case of food crisis.
Figure 1 shows an overview of the FeedMe FeedMe SoS with
its various participating systems and devices.

Fig. 1. Overview of the FeedMe FeedMe SoS

III. THE MACORE_SOS FRAMEWORK
The main goal of the MaCoRe_SoS framework is to manage
conflicting requirements in SoSs. In the framework, the
requirements represent both local goals of the participating
components and global goals of the SoS environment as a
whole. We distinguish these as local and global requirements.
 Figure 2 shows an overview of the MaCoRe_SoS
framework. As shown in the figure, the framework uses a
conflict manager component to supports requirements conflict
management based on three main steps, as described in the

work from Spanoudakis and Zisman [6], namely, (i) conflict
identification (ii) conflict diagnosis, and (iii) conflict
resolution. It supports SoS environments composed of other
stand-alone component sub-systems (CS), services, or even
other systems of systems. For simplicity, we will refer to a
participating component sub-system, service, or SoS, as an
entity.

Each participating entity registers in an SoS and provides
its respective requirement specifications and an ontology that is
used by the framework to represent concepts of the domain
associated with the entity. The ontologies are integrated into a
shared ontology in order to assist with the identification of
elements that are shared by the various participating entities
during the overlap detection and conflict detection activities.

Moreover, as SoSs operate in dynamic environments where
the satisfaction of requirements depends on runtime states that
are uncertain at design time. The MaCoRe_SoS framework
assumes requirements specified using fuzzy branching
temporal logic (FBTL) [7] under a structured representation of
the RELAX language [8], which has specific support for
uncertain in the relationship between requirements and the
environment.

 The conflict identification, diagnosis, and resolution steps
in the framework are executed based on the Monitor-Analyze-
Plan-Execute-Knowledge (MAPE-K) architectural pattern [4].
The overlap detection is executed using ontologies and
identifies requirements that share common elements, such as
resources. The identification of conflicts is assisted by a
monitor component that detects violations in the requirements
at runtime. The diagnosis of the conflicts is performed by an
analyzer component using requirements interaction features
[9]. The resolution of conflicts is based on the use of a
configurable utility function and supports eight resolution
methods: relaxation, refinement, abandonment, compromise,
restructuring, reinforcement, re-planning, and postponement
[9].

Fig. 2. Overview of MaCoRe_SoS framework

The framework also includes a database that stores necessary
knowledge used during conflict management (e.g., historical
data about resolution strategies used in previous conflict
resolutions and information about requirements violations).

IV. CONCLUSION
The growth in the complexity and heterogeneity of modern
software systems has led to systems that compose themselves
into bigger systems to achieve more sophisticated
functionalities. These systems are often System of Systems
(SoS) where the management of emerging conflicting
behaviors, expressed as requirements is a challenge. As a new
and emergent application, the management of inconsistencies
is an important task inside the SoS environment.

Therefore, as different systems are composed together,
emergent and undesirable behaviors arise, leading to
conflicting requirement. To address this problem, we present
the MaCoRe_SoS framework, with three steps: (a) conflict
identification, (b) conflict diagnosis, and (c) resolution.

We have built a prototype version of the framework and
demonstrated its efficacy for scenarios based on FeedMe
FeedMe, an example SoS ecosystem designed to support food
security at different levels of granularity (individuals, families,
cities, and nations). The initial results demonstrate that it is
possible to identify and manage conflicts and that the
application of a resolution method is able to support the SoS to
satisfying local and global requirements.

REFERENCES
[1] Office of the Deputy Under Secretary of Defense for Acquisition and

Technology, Systems and Software Engineering, Systems Engineering
Guide for Systems of Systems, vol. 1. Washington, DC:
ODUSD(A&T)SSE, 2008.

[2] M. W. Maier, ‘Architecting principles for systems-of-systems’, in
INCOSE International Symposium, 1996, vol. 6, pp. 565–573.

[3] A. P. Sage and C. D. Cuppan, ‘On the systems engineering and
management of systems of systems and federations of systems’, Inf.
Knowl. Syst. Manag., vol. 2, no. 4, pp. 325–345, 2001.

[4] J. O. Kephart and D. M. Chess, ‘The vision of autonomic computing’,
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[5] A. Bennaceur, C. Mccormick, J. Garc__a Gal_an, C. Perera, A. Smith,
et and al, ‘Feed me, Feed me: An Exemplar for Engineering Adaptive
Software’, presented at the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Austin, United
States, 2016.

[6] G. Spanoudakis and A. Zisman, ‘Inconsistency management in software
engineering: Survey and open research issues’, Handb. Softw. Eng.
Knowl. Eng., vol. 1, pp. 329–380, 2001.

[7] S. Moon, K. H. Lee, and D. Lee, ‘Fuzzy branching temporal logic’,
IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 34, no. 2, pp.
1045–1055, 2004.

[8] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
‘RELAX: a language to address uncertainty in self-adaptive systems
requirement’, Requir. Eng., vol. 15, no. 2, pp. 177–196, 2010.

[9] W. N. Robinson, S. D. Pawlowski, and V. Volkov, ‘Requirements
interaction management’, ACM Comput. Surv. CSUR, vol. 35, no. 2, pp.
132–190, 2003.

