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Gold is a standard surface for attachment of thiol-based self-assembled monolayers (SAMs). To achieve 

uniform defect free SAM coatings, which are essential for bio/chemical sensing applications, the gold surface 

must have low roughness, and be highly orientated. These requirements are normally achieved by either 

heating during Au deposition or post deposition Au surface annealing. This paper shows that room 

temperature deposited gold, can afford equivalent gold surfaces, if the gold deposition parameters are 

carefully controlled. This observation is an important result as heating (or annealing) of the deposited gold can 

have a detrimental effect on the mechanical properties of the silicon on which the gold is deposited used in 

microsensors. The paper presents the investigation of the morphology and crystalline structure of Au film 

prepared by thermal evaporation at room temperature on silicon. The effect of gold deposition rate is studied, 

and it is shown that by increasing the deposition rate from 0.02 nm s-1 to 0.14 nm s-1 the gold surface RMS 

roughness decreases, whereas the grain size of the deposited gold is seen to follow a step function decreasing 

suddenly between 0.06 and 0.10 nm s-1. The XRD intensity of the preferentially [111] orientated gold 

crystallites is also seen to increase as the deposition rate increases up to a deposition rate of 0.14 nm s-1. 

Formation and characterization of 1-dodecanethiol on these Au coated samples is also studied using contact 

angle. It is shown that by increasing the Au deposition rate the contact angle hysteresis (CAH) decreases until 

it plateaus, for a deposition rate greater than 0.14 nm s-1, where the CAH is smaller than 9 degrees which is an 

indication of homogeneous SAM formation, on a smooth surface.  
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I. INTRODUCTION 

Thin gold films are commonly deposited on MEMS/NEMS devices 1-3. The gold is relatively inert, can be 

patterned easily and provides a desirable substrate for alkanethiol self-assembled monolayers (SAMs) due to 

the high affinity between the sulphur of the thiol group and the gold 4, 5. SAMs are extensively used in a wide 

range of scientific areas including biosensors and molecular electronics 6-8. Atomically flat gold substrates are 

ideal for highly ordered alkanethiol SAMs to minimize the defects in the organic monolayer 5. Thus, one of the 

crucial steps in MEMS/NEMS devices utilizing gold/thiol SAMs is to produce a sufficiently flat gold surface. 

The properties of the coated gold film have a significant effect on the response of static MEMS/NEMS 

sensors, such as using cantilever deflection to monitor adsorption of molecules on its surface 9. Grain 

boundaries formed as a result of the coalescence of individual gold surface nuclei may cause residual stress 10. 

Subsequent molecular adsorption may be affected by this residual stress 9 and the presence of discontinuities 

in the surface gold structure. The molecular arrangement of a SAM is strongly affected by the morphology of 

the underlying gold layer 11, therefore, it is crucial to develop a methodology for manufacturing smooth and 

low stress gold films on silicon substrates for subsequent SAM functionalisation to afford MEMS/NEMS 

sensors. 

One of the common methods to obtain a thin gold film is the thermal evaporation of gold on to a 

substrate 12-14. The effect of different parameters such as deposition rate, thickness, pressure, substrate 

heating and film annealing on the morphology of the deposited gold film on different substrate materials, 

including silicon, mica and glass, has been investigated previously 12-20. Studies showed that a deposition rate 

of less than 1 nm s-1 gives a smoother surface 14, the chamber pressure (<10-5 Torr) is insignificant compared to 

other factors 14, 15, the thickness of evaporated gold film has an effect on the size of the island, and [111] 

plateaus, with lateral dimensions in the range of 200 to 300 nm, occur for film thicknesses greater than 100 

nm 17. Moreover, studies reveal that the substrate temperature during deposition has a great influence on 

flatness and size of deposited gold grains 12, 14, 15, 18, 19. By increasing the substrate temperature during 

deposition, adatoms and surface atoms are in a higher energy state compared to unheated substrate 18. 

Therefore, at elevated temperatures sufficient activation energy for adatoms is provided and this enables 

them to travel longer distances to form a large smooth and continuous plateau, and hence, epitaxy can be 

enhanced. Reichelt and Lutz showed that for higher deposition rates, higher substrate temperatures are 

required in order to obtain a well oriented surface and crystal-like film quality 21. Alternatively, thermal 

annealing can enhance the flatness of the substrate and can markedly improve the grain size, reduce surface 

contamination, and afford highly oriented single crystal-like films 16, without the need for heating during 

deposition. Annealing temperature and time seems not to contribute significantly to surface roughness when 

compared to other deposition factors 12, 16, 18. However, annealing or heating of the substrate is not always 

feasible as it can lead to the generation of undesired stresses in the MEMS/NEMS device. Hence, for MEMS 

functionalisation high quality gold films deposited at room temperature are highly desirable, therefore, 

understanding the deposition conditions required to achieve highly crystalline, low roughness gold films is of 

utmost importance.  

In this paper we present the topography (AFM) and structure (XRD) of thermally evaporated gold films 

deposited at room temperature, as a function of the gold deposition rate. In addition, utilising contact angle 

hysteresis measurements on SAMS formed from 1-dodecanethiol, we present the study of the effect of gold 

deposition rate on the quality of the SAM that is subsequently formed on the gold surface. The thin gold film 

was deposited using deposition rates in the range 0.02-0.18 nm s-1. Si substrates were employed without using 

any thermal treatment, to avoid unwanted thermally induced stress. Ti was used as an intermediate adhesive 
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layer between the Au film and Si substrate, as it yields improved crystallinity when compared with chromium 
12. Chromium has also been reported to penetrate though the gold film over time, which leads to concerns 

over the long-term toxicity of the metal film to biological organisms 5.  
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II. EXPERIMENTAL 

Evaporation was performed using a HHV Auto 306 (HHV Ltd., West Sussex, UK) thermal evaporator. 

Diced polished 525 μm p-type single crystal Si (100) (IDB Technologies Ltd., Wiltshire, UK) chips (1 cm   1 cm) 

were mounted in the chamber, which was then pumped down to ≈1 μTorr (1.33   10-4 Pa). The thickness and 

deposition rate were monitored using a quartz crystal microbalance (QCM). Ti was used as an adhesive layer 

between the Au and Si. The deposition materials were placed on the W dimple boat WC1 (HHV Ltd., West 

Sussex, UK). Following that, the W boat was heated resistively, 5 minutes was allowed for outgassing and after 

achieving a stable deposition rate the shutter was opened. Ti and Au were sequentially deposited without 

breaking the vacuum. Ti (99.99%, Kurt J. Lesker) was deposited using a deposition rate of 0.01  0.01 nm s-1 to 

a thickness of 4.0 0.1 nm, following which the Au (99.99%, Kurt J. Lesker) was evaporated using a deposition 

rate in the range 0.02-0.18 0.01 nm s-1 to a thickness of 25.0 0.1 nm.  

The morphology of the deposited film surface was studied using a NanoWizard II AFM (JPK 

Instruments, UK) under ambient conditions. Five different areas were measured on each sample to study the 

uniformity of the Au coated surface. To investigate the repeatability, three samples with the same deposition 

rate from different batches were studied. The scan size (500 nm × 500 nm) was kept constant for all the 

measurements, employing a pixel density of 256×256. Measurements were performed using intermittent 

mode using a Si cantilever (PPP-NCL, Windsor Scientific, UK) with nominal length, width and thickness 225 10 

μm, 38 7.5 μm and 7 1 μm, respectively; tip height and radius were 10-15 μm and <10 nm, respectively. 

XRD measurements were conducted using a PANalytical Empyrean Powder X-ray diffractometer, using 

Cu Kα (λ=1.542 Å) X-ray source. Data were collected over the 2-Theta range 30˚ and 100˚ using a 0.02˚ step 

size.  

Exposure of Au coated samples to ambient air results in contamination by volatile organic species in 

the atmosphere. The procedure to remove this layer from the samples is as follows. Si-chips coated with the 

adhesion layer of Ti followed by Au were sonicated in HPLC ethanol (Fisher Scientific, UK) for 15 minutes, 

followed by a 1 h exposure to an oxygen plasma in a UV cleaner (Jelight Company Inc, USA), followed by 

thorough rinsing with HPLC ethanol. For SAM formation, the Au coated samples were immersed in a 0.1 mM 

ethanolic solution of dodecanethiol (HS(CH2)11CH3) (Sigma Aldrich, 98%, UK) for 24 h. Following that the 

samples were rinsed with HPLC ethanol to remove unbound thiol, then dried using a stream of nitrogen gas.   

The composition of SAM-modified surfaces was investigated using X-ray photoelectron spectroscopy 

(XPS). Analysis was performed using an Escalab 250 XPS (Thermo Scientific, UK), operating a microfused, 

monochromated Al Kα X-ray source with a spot diameter of approximately 400 µm. The vacuum pressure in 

the analysis chamber was < 10-7 Pa. Low resolution survey spectra were obtained using a pass energy of 150 

eV over a binding energy range of −10 eV to 1200 eV, obtained using 1 eV increments. Recorded low 

resolution spectra would typically be an average of 5 scans. All high resolution spectra were obtained using a 

pass energy of 20 eV over a binding energy range of 20–30 eV, centred around a chosen photoelectron binding 

energy, obtained using 0.1 eV increments. A dwell time of 20 ms was employed when collecting data from 

each binding energy increment for all measurements. Recorded high resolution spectra would typically be an 

average of at least 10 scans. CasaXPS software was used for data processing. 

The dynamic contact angle measurement was performed using a Theta Lite instrument (KSV Ltd., 

Helsinki, Finland), equipped with automatic dispensing system. The advancing and receding contact angle of 

the SAMs were measured using deionized water at 15˚C using the sessile drop technique 22. The left-hand and 

right-hand side contact angle was determined using the Young-Laplace equation 23 around the water droplet, 

and the average value was used for comparison between different samples. 
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III. RESULTS AND DISCUSSION 

The surface topography (AFM) of 25 0.1 nm thickness Au films deposited at different Au deposition 

rates on Si substrates with an intermediate Ti adhesion layer (4  0.1 nm thickness) are shown in Figure 1. The 

root-mean-square (RMS) roughness value, Rq, over five different points for each sample were averaged and 

are reported in Figure 1.  

Generally, at all deposition rates the surface consisted of a ‘rolling hills’ topography which is in-keeping 

with the studies of Chidsey and Putnam 12, 14. The Au film is also continuous since the trench depths are small 

compared to the film thickness, typically no more than 20% of the film thickness. 

 

 
FIG. 1. (Color online) AFM topography images as a function of deposition rate; (a) 0.02 (b) 0.06 (c) 0.10 (d) 0.14 

(e) 0.18 nm s-1, and resulting Rq values. Scan size 500 nm × 500 nm and dimension of scale bars are in nm 

range). 

 

Figure1 (a) shows the topography measurements of the Au film with deposition rate of 0.02 nm s-1 and 

the resulting Rq (1.13nm) is comparable with that reported by Mertens et al., whose surfaces exhibited an Rq 

of 1.60 nm for a deposition rate of 0.02 nm s-1 9. However, in the Mertens’ study a thin Cr film was used as an 

adhesive layer, relative to this study in which Ti is used. Mertens et al. showed that the RMS roughness was 

dependent on the Au deposition rate decreasing from Rq = 1.60 nm (0.02 nm s-1) to Rq = 1.20 (0.20 nm s-1). 

Thus, it can be concluded that Ti as an adhesive layer appears to enhance the smoothness of the surface, over 

Cr. Moreover, other studies have shown that the Cr used as an adhesive layer will diffuse over time into the 

Au layer, and can change the morphology of the surface 24, 25.  

Figure 2 shows that the dimensions of the analysis window chosen for AFM measurements were not 

found to significantly affect the root-mean-square roughness obtained for the Au film surface topography.  
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FIG. 2. RMS roughness versus AFM image dimensions. 

 

To check the reproducibility of the deposited Au film, the RMS roughness over three independent 

preparations using the same deposition conditions were measured. These results are summarized in Figure 3. 

 

 
FIG. 3. (Color online) RMS roughness as a function of deposition rate 0.02-0.18 nm/s (each point is a mean 

value and the error bars represent one standard deviation) 

 

Figure 3 reveals that as deposition rates increase, the RMS roughness Rq value decreases between 

deposition rates of 0.02-0.14 nm s-1, at which point the decrease has bottomed out.  

Figure 1 shows by increasing the deposition rate from 0.02 to 0.06 nm s-1, the grain boundaries 

become less defined, necking formations occur between adjacent grains and they become more connected 

(Figure 1(a) and (b)). Upon increasing the deposition rate to 0.10 nm s-1 and 0.14 nm s-1 (Figure 1(c) and (d)), 

the lateral dimensions of the grains decrease, as do the peak-to-valley heights. Upon further increasing the 

deposition rate to 0.18 nm s-1 (Figure 1(e)), the grains are more uniformly connected and form isotropic 

elliptical island.  The 3D AFM topographies for deposition rates of 0.02 and 0.18 nm s-1 are shown in Figure 4 

and the difference between grain size for these deposition rates can be observed; as well as the formation of 

multigrain islands at the higher 0.18 nm s-1 deposition rate. 
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FIG. 4. (Color online) 3D AFM topography for deposition rate (a) 0.02 and (b) 0.18 nm s-1. 

 

Gwyddion open-source software 26 was used for analyzing the grain sizes using AFM images. The 

Watershed algorithm was implemented to specify the grain boundaries, positions and area. The equivalent 

average diameters (Dg) based on grain area was calculated for each sample; these results are summarized in 

Table 1.  

 

TABLE 1. Average lateral grain size (Dg) for different Au deposition rates 

Deposition 

rate (nm s-1) 

Average grain 

diameter (Dg, nm) 

0.02 85.2 13  

0.06 86.7 15.1 

0.10 56.2 11.6 

0.14 55.4 12.8 

0.18 56.1 12.3 

 

The images in Figure 1 and data in Table 1 reveal that a step reduction in the grain size occurs between 

the deposition rates of 0.06 nm s-1 and 0.10 nm s-1. The grain size then remains constant for deposition rates 

of 0.10-0.18 nm s-1. These results are in agreement with other studies 14, 17, 19. According to Walton’s theory, 

higher deposition rates lead to an increase in the nucleation rate 27. Adatoms at lower deposition rates have 

more time to settle down before other atoms impact on the surface, when compared to a higher deposition 

rate. At lower deposition rates, the surface diffusion distance also increases and atoms can nucleate and bind 

to adjacent islands forming larger grains. At higher deposition rates, adatoms agglomerate at binding sites due 

to arrival of new atoms and so produce smaller grain sizes 28. These effects are clearly seen in the images of 

Figure 4, where for the lower deposition rates there are large grains, and for the higher deposition rate, 

multigrain islands are observed. 

XRD was used to study the crystallinity of the Au layer. Figure 5 shows the XRD spectra obtained for 

Au-coated Si substrates, prepared using Au deposition rates in the range 0.02-0.18 nm s-1; the Au film 

thickness measured using QCM is 25  0.1 nm for all spectra. For the gold layer the [111] crystal orientation 

dominated the XRD and the intensity of the diffraction line has a direct relation with the deposition rate. At 

low deposition rates (0.02 and 0.06 nm s-1) the intensity of the Au[111] diffraction peak is  very low, being 

almost indiscernible for 0.02 nm s-1. It then emerges at deposition rate of 0.10 nm s-1, reaching a maximum at 

0.14 nm s-1, and plateauing to 0.18 nm s-1, mirroring the trend in roughness data in Figure 3.  Thus, the film 
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crystallinity increases with higher deposition rates. It is worth noting that the X-ray diffraction was collected 

using a Cu Kα source with two wavelengths; CuKα1 and CuKα2 with almost identical wavelength of 1.5406 and 

1.5444 Å, respectively. Based on Bragg’s law, d=nλ/(2sin(θ)), two peaks can be generated within the same 

reflection at these wavelengths. This effect is enhanced at higher reflection angles and explains the two peaks 

for Si (100) 27. The XRD measurements were also performed on uncoated Si samples and it was confirmed that 

the peaks at ~38º and 82º were only due to the substrate’s coatings and so could be attributed to the Au [111] 

and [222] orientations.  

 

 
FIG. 5. (Color online) X-ray diffraction of Au coated samples produced using deposition rates in the range 0.02-

0.18 nm/s. 

 

The mean crystal size, DP, was determined from XRD data using the Scherrer formula 29:  

0.9

cos
P

P

D


 
   (1) 

Where βp is the full width at half maximum (FWHM) due to particle size, θ is the diffraction angle, and 

λ is the X-ray wavelength.  

Figure 6 presents the mean grain size (Dg) from AFM data and crystal size normal to [111] plane from 

XRD data using Scherrer formula.  

By increasing the deposition rate the diffraction peak intensity enhanced, while βp and hence Dp 

remain almost identical, which is an indication of improving film crystallinity. It can be concluded that higher 

deposition rates lead to a larger proportion of the film with a preferred [111] orientation. The Dg and Dp from 

AFM and XRD, respectively, confirm that the lateral grain size and crystal size normal to [111] plane remain 

almost constant for deposition rates 0.1-0.18 nm s-1. The number of grains is almost constant for these 

deposition rates and higher XRD intensity means the film crystallinity has been promoted and more grains 

become [111] crystalline. 
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FIG. 6. (Color online) (a) Dp and Dg versus deposition rate. 

 

Figure 7 shows the S 2p photoelectron spectrum obtained from XPS measurements, indicating that the 

SAM has chemisorbed successfully on the Au surface.30  

 

 
FIG. 7. XPS spectra of the S 2p photoelectrons from 1-dodecanethiol monolayer on gold.  

 

Contact angle measurements were used to assess the homogeneity and organization of the SAMs. The 

advancing and receding contact angle, Φa and Φr, respectively, of a SAM formed from 1-dodecanethiol on Au 

coated samples with different Au deposition rates in the range 0.02-0.18 nm s-1 were measured on three 

different places of each sample.  

The contact angle hysteresis (CAH), which is a difference between the advancing and receding contact 

angles, is an indication of homogeneity of SAM. It is useful to have an accurate measure of the actual influence 

of surface roughness on the CAH for a given SAM system (Figure 8). For the samples investigated here the CAH 

is larger for Au films produced at lower deposition rates (0.02, 0.06 and 0.10 nm s-1, whilst the two faster 

deposition rates have a lower CAH, which is in-keeping with the accepted convention that CAH increases with 

surface roughness. For deposition rates greater than 0.14 nm s-1 the CAH is smaller than 9 degrees which is an 

indication of homogenous SAM formation. The measured Φa and Φr values were also consistent with the 

results of Evans et al. (Φa =110˚) and Laibinis et al. (Φa =116˚ and Φr =102˚) 31, 32.  
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FIG. 8. (Color online) CAH versus RMS roughness.  
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IV. SUMMARY AND CONCLUSIONS 

This paper presents a study of the quality of Au films manufactured using thermal evaporation onto Si 

substrates at room temperature. The Au films were then assessed for their suitability as substrates for the 

deposition of self-assembled monolayers. Firstly, the morphology of the deposited Au film on a Si substrate 

with Ti as an adhesive layer as a function of deposition rate was studied using AFM, which yielded lower 

roughness at higher deposition rates. The average grain size remains constant for deposition rates 0.02-0.06 

nm s-1, a step in grain size occurs at 0.06 nm s-1 and remains almost identical for deposition rate 0.1-0.18 nm s-

1. The effect of deposition rate on Au film crystallinity was then studied using XRD, the data revealing a Au film 

with the preferential [111] orientation with respect to the substrate surface. The highest crystallinity was 

observed for films manufactured using a deposition rate of 0.14 nm/s. 

The effect of Au deposition rate, i.e. surface morphology, on the properties of 1-dodecanethiol SAMs 

was investigated. It was observed that by increasing the deposition rate, SAMs become more homogenous 

and well-ordered, and the hysteresis between advancing and receding contact angle decreases. 

In general, at higher deposition rates, the RMS roughness decreases, [111] crystal quality is enhanced, 

and alkanethiol SAMs become more well-ordered. The applications of thin Au films on Si substrates for various 

types of MEMS/NEMS structures, biosensors, electronics - to name but a few - attracts significant interest, and 

it is clear that suitable Au films deposited on unheated substrates can be obtained for these applications by 

varying the deposition conditions. 
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