
Citation: Kimak, Stefan and Ellman, Jeremy (2015) HTML5 IndexedDB Encryption:
Prevention against Potential Attacks. International Journal of Intelligent Computing
Research, 6 (4). pp. 621-630. ISSN 2042-4655

Published by: Infonomics Society

URL: http://infonomics-society.org <http://infonomics-society.org>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/31264/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/84149878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html

HTML5 IndexedDB Encryption: Prevention against Potential Attacks

Stefan Kimak, Jeremy Ellman

Faculty of Engineering and Environment

Northumbria University

Newcastle Upon Tyne, UK

Abstract

Over the past 20 years web browsers have

changed considerably from being a simple text

display to now supporting complex multimedia

applications. The client can now enjoy chatting,

playing games and Internet banking. All these

applications have something in common, they can be

run on multiple platforms and in some cases they will

run offline. With the introduction of HTML5 this

evolution will continue, with browsers offering

greater levels of functionality. This paper outlines the

background study and the importance of new

technologies, such as HTML5’s new browser based

storage called IndexedDB. We will show how the

technology of storing data on the client side has

changed over the time and how the technologies for

storing data on the client will be used in future when

considering known security issues. Further, we

propose a solution to IndexedDB’s known security

issues in form of a security model, which will extend

the current model.

1. Introduction

This paper attempts to answer several questions.

Firstly, what is HTML5 IndexedDb; where did the

technology come from, and what motivated its

development; what is its current status and what is

inhibiting its take up, and finally, what is the future

for HTML5 IndexedDb.

HTML5 is the latest W3C standard for the

language in which web pages are written. It also

defines Application Programming Interfaces (APIs)

that are expected to be provided by a web browser

that supports HTML5. The motivation for the

changes and enhancements coming with HTML5 is

that the web browser should be capable of running

browser based applications in the same way that it

supports desktop applications. That is, client side

processes will be able to avoid the ineffectiveness and

network connectivity issues found in server side

applications and the inherent visual instability caused

by their required web page refreshes. Consequently,

major browsers now support the majority of the new

HTML5 components and APIs. Therefore, HTML5

browser based storage may well contain stored data

from online services that makes use of the new

HTML5 functionality [1]. The process of accessing

this data might in some cases be slow, due to network

latency or database query process [2]. It is suggested

that this new level of browser based storage will

ensure that such HTML5 enabled browsers are going

to be a significant target for cyber-attacks [3].

Web browsers store history, and other data using

cookies on client computers, which is attractive for

those marketing products or services. Being browser

based is critical for developers, because modern

browser based web applications are able to store large

amount of data and access that data much faster than

any server side database. Consequently, HTML5

opens up entirely new security challenges and issues

[4]. As is well known, user information is tracked on

every move on the Internet. eCommerce sites store

customer details, orders and saved products, sites

store cookies on user computers to track returning

customers. The data can be later used for marketing

purposes and to target new customers. Sometimes

consumers and the general public do not realize the

quantity of personal data that is shared over the

Internet and how that data can be used or misused.

Data privacy and information leakage is then a

serious concern.

2. Importance of IndexedDB

In this section we consider the drivers behind

HTML5 IndexedDB. That is, why the technology was

considered at all, and what motivates current

standard. We proceed as follows, firstly we overview

the status of eCommerce, with particular attention to

its mobile variant mCommerce. Then we consider

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 621

browser based cookies that are IndexedDB’s

intellectual antecedents.

2.1. eCommerce

The term eCommerce began to be widely used in

early 2000, and it is defined as commercial

transactions conducted electronically on the Internet,

such as purchasing goods and services online.

eCommerce has a significant and positive impact on

businesses everywhere [5,6]. The eCommerce market

grew slowly until 2007 when its proportion of GDP

was about 3%, but the biggest expansion happened in

the last decade when the retails sales increased to 40

%. In 2012, eCommerce accounted for 18% (£492

billion) of UK business turnover. 21% of UK

businesses in 2012 made eCommerce sales to their

own country; 9% of UK businesses made

eCommerce sales to EU countries and 7% to non-EU

countries based on the Office of National statistics

(ONS) [7]. Of the United Kingdom's total £1.45

trillion GDP, the Internet value chain represented

2.6% of GDP, and the eCommerce conducted over it

a further 3.1%. The UK boasts 54.6 million Internet

users and has a penetration rate of 86%, with a typical

user spending 42 minutes per week browsing virtual

stores and buying on the web. The use of

eCommerce, by both organizations and individual

consumers continues to grow, as more people are

connected to the Internet and with the increased

availability of fibre broadband.

eCommerce has several advantages over offline

stores and mail catalogues. Online stores eliminate

the 3rd party middleman costs required by wholesalers

and distributors. It also removes the overheads of

physical shops, both of which lower operational

costs. eCommerce stores also provide search

functionality so that a customer is looking exactly the

item for which they are looking. Additionally,

customers can easily browse through large amounts

of products and services eCommerce has been

expanded to the business to business (B2B) and

business to consumer (B2C) [8] markets. Many

retailers have moved to invest in online sales that

target more online customers in categories such as

electronics, books, and transport. eCommerce gives

retailers an opportunity to expand outside their

domestic markets with minimum upfront investment

[9]. Consumers can also see prices, allowing simple

price comparison and can then place orders quickly.

eCommerce stores allow the customer to add

products to a wish list, which can then be sent to

friends or family to be paid for.

Consumers can also check existing online product

reviews and compare prices before buying any goods

or services. Some of the eCommerce stores provide

video product reviews where the customer can see the

product in action without the need to leave the house.

One of the most important advantages of eCommerce

stores is access to the global market and the creation

of new business opportunities Online stores can be

available to everyone everywhere. For most

businesses the eCommerce is an excellent alternative

supply channel that is cost effective but continuously

can reach consumers directly and extensively. The

Internet helps companies to engage in eCommerce by

collecting, storing, and exchanging personal

information obtained from visitors to their websites

[10]. eCommerce stores can target customers in

many ways, most widely used is by email and online

ads. This way has a cost advantage over offline

stores, where print flyers must be produced.

eCommerce can target a greater number of customer

in a shorter space of time, as everything is done

electronically. eCommerce retailers have also

advantage of through popular social media to attract

new customers. Additionally, online retailers use

customer buying habits to target new and existing

customers with social media advertisements and

special offers. Since the late 90’s it was predicted that

every step on the Internet could be traced and that this

information might be stored [11]. Information from

web browsing is stored in the browser history,

eCommerce sites store user preferences and shop

orders to better understand the customer with the aim

of targeting advertising at them for related products

or services. [12].

2.2. The importance of mobile commerce

(mCommerce)

HTML was first focused on the desktop computer,

since when the web started in 1993 mobile (cell)

telephones did not have Internet connectivity. Tablet

computers (e.g. the Grid Compass) were a rarity and

limited to specialised applications. In 2015,

combined, mobile phones and tablets now account for

38% of all web pages served globally (StatCounter).

Smartphone user penetration in 2011 was 9.6%,

whilst by 2015 it is 28%. Here in UK the mobile

penetration rate is 72%.

The U.K. Internet ecosystem is worth £82 billion a

year, with mobile connections accounting for 16% of

this. mCommerce sales will continue to grow at a

double-digit rate until 2017 when it is expected to

reach £17.2 billion and drive over 26% of online

retail sales. Since 2007 mCommerce sales have

rapidly grown from less than 5% to 21% of sales in

2015, which opened a new market for online stores.

Online stores needed to change their strategy and

embrace the mobile market.

Businesses operating over the Internet need to

maintain relations with their customers to ensure

continuity, recognize previous customers, and

simplify the eCommerce process. This is done using

cookies.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 622

2.3. Cookies

Cookies are small quantities of data that are stored

by websites in the client browser, and sent to that web

site with each http request. Cookies were introduced

by Netscape Communications in 1994 in their

Netscape Navigator Browser. Cookies allow users to

store their sessions and state with websites.

eCommerce applications use cookies to store

customers’ preferences. This both makes the online

buying experience more convenient and focused as

cookies allow the tracking of customer preferences.

Cookies support functionality such as customer

shopping carts and the recognition of returning

customers who are then recommended appropriate

products and made offers using individually tailored

marketing.

The problem with cookies is privacy since third

party applications could potentially steal information

from cookies. There are also several security issues

with cookies such as cookie poisoning [13], and

cookie injection. Cookie poisoning attacks involves

the modification of the cookie contents (user IDs,

passwords, account numbers, time stamps) in order to

bypass security mechanisms. Using cookie-poisoning

attacks, attackers can gain unauthorized information

about another user and steal their identity. Cookie

injection attacks inject a cookie string or code into the

HTTP header to modify server page execution, which

may lead to SQL injection attacks [14].

The Cookie Law is the result of a EU directive in

2011 and enacted into law across the majority of the

European Union. It requires websites to obtain

visitors’ agreement to store or retrieve any

information on a computer, smartphone or tablet [15].

It was designed to protect online privacy, by

making consumers aware of how information about

them is collected and used online, and give them a

choice to allow it or not.

Cookies are limited in size to 4KB, and therefore

are rarely used to directly store site-specific

information. Rather, a typical cookie will store a

unique database key. That key will usually point into

the web server’s customer database that is not

accessible publicly. That database may contain any

amount of information about the customer including

their personal details, transaction and purchase

history, preferences and so on. Cookies, and their

limitations in size and flexibility, have lead to the

specification and development of HTML IndexdDB.

3. Current state of IndexedDB

Browser storage has been proposed in HTML5 to

extend the cookies functionality to provide web

developers and web applications with better

alternatives to store data locally. With browser based

storage eCommerce companies can store user

preferences, shopping cart and product images

locally. This can help eCommerce applications to

speed up the process of loading products and

displaying them to end-users.

By using browser-based storage, eCommerce sites

can also be used offline. The user will have the ability

to add products to a shopping cart, even if the

network connection is down. The greatest advantage

of using offline storage is with mobile devices, where

network connectivity and data caps are a concern.

If a Web service allows only a certain number of

calls per hour but the data does not change that often,

web applications could store the information in local

storage and so help prevent mobile users breaching

data limits [16]. Online stores could save new images

every six hours, rather than every minute, which

would improve the bandwidth utilization.

Local caching keeps users from being banned

from services, and it also means that when a call to

the Application program interface (API) fails, user

will still have information to display. For example,

shopping cart data could be stored locally and

synchronized with the eCommerce site when network

connectivity is restored.

The main problem with HTTP as the main

transport layer of the Web is that it is stateless. This

means that when an application is closed, its state will

be reset the next time is opened. If an application on

the desktop is closed and then re-opened, its most

recent state is restored. Local storage is better than

cookies since it allows for storage across multiple

windows. It also has better security and performance

and data will persist even after the browser is closed

[17]. Therefore, local storage provides functionality

similar to that of desktop applications, where

application state is persistent.

In 1995 Netscape Corp’s vision of the future was

to run multimedia application, spreadsheets and word

processing programs from the web browser.

Netscape’s main product was a browser (Naviagator),

which was written to run across multiple operating

systems (Windows, Unix, and Macintosh). The vision

was that application would run on the top of any

operating system with their sets of APIs, so that third

party applications developers would not need to

worry about the underlying operating system and

hardware. These days, Netscape’s vision is a reality,

where applications like YouTube and Facebook can

be run from any web browser.

As the HTML5 standard evolved, new browser

based storage concepts were introduced. These are

targeted at storing larger data volumes. Additionally

they have satisfied the key non-functional

requirement of speed, since stored data was not

transmitted with every HTTP request, whilst cookies

are. HTML5 provides two new features to store data

locally. The first browser based storage feature is

called ‘local storage’. It allows the storage of

information locally within a web browser in object

stores, which are persistent and stored on disk. The

storage is limited to 5MB and the stored data is in

name/value pairs.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 623

IndexedDB is another HTML5 browser based

storage technology. It is a NoSQL (Not only SQL)

[18], asynchronous, key-value browser-based data

store, where NoSQL is an approach to databases that

is not relational or object oriented. Rather, NoSQL

stores data in key/value format. The database can

handle a large amount of data. IndexedDB supports

an API that offers fast access to unlimited amount of

structured data. IndexedDB may be considered to be

insecure, since security was not considered in its

specification. In a previous paper [19] we have

described how standard forensic tools may be used to

identify data stored, and then deleted from

IndexedDB data stores.

IndexedDB, which was previously known as

WebSimpleDB came from the W3C specification of

implementing web storage into web browser in 2009.

IndexedDB is a persistent client-side database

implemented into browser and is an alternative to

WebSQL, which has been deprecated. Mozilla and

Microsoft supported the introduction of IndexdDB,

which was most influenced by Oracle's Berkley DB.

The application uses local data stored on a client

system [20]. It caches large data from server to the

web browser client using JavaScript Object Stores,

which may be considered to be equivalent to tables in

relational databases.

Files and data stored by the browser are retained

on the user file storage system, on the user's computer

hard drive. The client-side database, IndexedDB,

stores the data, even when the browser terminates.

IndexedDB is then a persistent client-side database,

which means that the data can be retrieved even the

browser is offline. Therefore, the files reside on the

user file system and can be recovered until other files

overwrite them. IndexedDB treats file data just like

any other type of data. An application can write a File

or a Blob into IndexedDB, as well as storing strings,

numbers and JavaScript objects. This is detailed in

the IndexedDB specifications and, so far,

implemented in both the Firefox and Chrome

applications of IndexedDB. Using this, storing all

information in one place and a single query to

IndexedDB can return all the data.

In Firefox and Chrome’s IndexedDB

implementation, the files are stored transparently

external to the actual database; in other words, the

performance of storing some data in IndexedDB is

just as efficient as storing it directly in the OS

filesystem. Storing files does not extend the database

size and slow down other operations. Moreover,

reading from the file means that the implementation

reads from an OS file. The Firefox IndexedDB

implementation is even smart enough to recognize if

is storing the same Blob in multiple files. If this

happens it creates only one copy. Writing further

references to the same Blob just adds to an internal

reference counter. This is completely transparent to

the web page, so it writes data faster while using

fewer resources.

Browser based storage such as IndexedDB can be

used on multiple browsers and is cross platform

compatible. Web applications can take advantage of

using IndexedDB on desktop, mobile and tablet,

without additional programming. Web applications

can use browser-based storage without the need for

network connections. The HTML5 standard provides

the functionality where data can be stored on client

machine, and can be accessed anytime without the

need of network connection.

An important aspect of HTML5 is that the web

applications can run offline using local storage. The

advantage of HTML5 compared to desktop programs

is that web applications do not require any installation

or start-up configuration and will also run on any

device that supports HTML5, such as laptops, phones

or tablets. In an eCommerce scenario, this reduces the

entry barrier to new customers since customers can

begin taking advantage of web applications just by

visiting the relevant web site.

IndexedDB extends local storage by providing

web applications with offline storage. This may be

used by eCommerce stores to store customer

preferences without sending these with every HTTP

request. Consequently, HTTP request and response

traffic will decrease and customer preferences or

other information will be accessed only when

requested. An important aspect of HTML5 is that the

web applications can run offline using local storage.

This means that client data will be stored on user’s

browser and accessed anytime that the application

requires. Offline storage and cached pages provide a

better user experience, since network latency is

minimal.

The new HTML5 IndexedDB functionalities bring

new security issues, since there is increased access to

the client computer’s resources. One of the biggest

disadvantages or disappointments is that the new

standard does not provide any additional security.

HTML5 video and audio are replacing third party

application as Adobe and closing a common attack

vector with FLASH applications or plug-ins.

Additionally HTML5 provides greater access to

computer resources, which includes local storage, and

therefore opens new opportunities for attacks.

The problem with the current browser based

storage, such as IndexedDB is that there is concern

that another application on the client computer may

also access that offline data. To prevent web

applications from reading each other’s data, a

mechanism known as the same origin policy (SOP)

applies to all of the web storage technologies. By

implementing the same origin policy, browsers check

and record the origin of all the data they store based

on the hostname of the web application

(www.example.com), the port number on which the

web application runs (80) and the protocol through

which the data was delivered (typically http or https).

When a web application wants to access data stored

locally, the browser will check the current origin and

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 624

the origin of the data and only allow access if these

match. Data is protected through the use of the same

origin policy.

The SOP is the only form of browser protection

against potential security threats. SOP works by not

allowing access to client data from sources that could

be deemed to be the original source, perhaps by the

use of cross-site scripting (XSS) for example. That is,

if applications in multiple windows or frames are

downloaded from different servers, they should not

be able to access each other’s data and scripts

(Takesue, 2008). The prevention of data or attacks

coming from a different domain is possible. Web

browsers are using this prevention technique against

untrusted site attacks. Attackers use multiple

techniques that can easily inspect the browser history

or get data of another domain.

From the experiments performed, we have

confirmed IndexedDB stores data as received, so that

it is not encrypted. However, this is not the only

problem. Browser based storage faces another issue,

where the deleted data is not fully deleted from the

hard drive. With the help of standard forensic tools

we were able to restore current and deleted

IndexedDB data from both desktop and mobile

drives.

The issue of restoring deleted data just extends the

security concern of storing data in unencrypted state,

where the attacker could get multiple versions of

browser based local storage. The deleted data persists

on the hard drive and when delete data request is

executed, the data is just marked as deleted but still

occupies the associated space. A further data storage

request just assigns additional disk space but the old

data will persist on the hard drive and it will be not

overwritten.

We have than a complex scenario with

IndexedDB. It has the advantages of persistence,

storage size, and better network utilization, but the

disadvantages of security weakness.

4. Potential attacks

4.1. CORS

Cross origin resource sharing (CORS) is a

mechanism that allows JavaScript on a web page to

make XMLHttpRequests (XHR) to another domain,

not the domain the JavaScript originated from. XHR

is an API available to web browser scripting

languages such as JavaScript. It is used to send HTTP

or HTTPS requests to a web server and load the

server response data back into the script.

Normally, web browsers would otherwise forbid

such ‘cross-domain’ requests. CORS defines a way in

which the browser and the server can interact to

determine whether or not to allow the cross-origin

request. By letting third party applications accessing

the data created with other domains application can

lead to security issues, such as information leakage.

Therefore user agents must implement Cross-origin

resource sharing with IndexedDB in greater security

details. Also, CORS expands on the design of the

Same Origin Policy. Each resource declares a set of

origins, which are able to issue various kinds of

requests (such as DELETE, INSERT, UPDATE) to,

and read the contents of, the resource. CORS is a

“blind response” technique controlled by an extra

HTTP header (origin), which, when added, allows the

request to reach the target. This means, that an

application creates an IndexedDB database, which is

saved with the domain name. Another application can

not access the database files, as the access is

restricted for the particular domain. This attack is

based on bypassing the Same Origin Policy and

establishing cross-domain connections to allow the

deployment of a Cross-site Request Forgery attack

vector. We mention a CORS attack, which can be

used to bypass the restriction and read data from

other domains.

4.2. XSS

Cross-site scripting is one of the most popular web

application attack, third on the OWASP list.

WhiteHat security has provided a statistic report

where XSS regains the number one vulnerability in

web applications. XSS is popular attack, because

even the web application is secured the attack rely on

the end user, which can be tricked to click a link and

therefore authorize the attack.

XSS is taking advantage of web applications,

where the user input is not filtered properly. Cross

site scripting filtering is a process of filtering out

parameter values that look suspicious, this includes

special characters. Attackers may also manipulate

indirect inputs such as session variables and database

records. This can be prevented with sanitizing or

validation of user input. XSS is an attack technique

that forces a Web site to display malicious code,

which then executes in a user’s Web browser.

New client side database provide the functionality

to store data on user machine. Stored data might

contain information, which is considered sensitive,

such as user personal information. If a web

application is vulnerable to XSS attack, then an

attacker could get access to client side storage. The

client side storage data can be accessed through the

browser, so the execution of XSS attack might output

the stored data.

4.3. Social engineering attacks

Social engineering is the art of manipulating

people so they give up confidential information. The

attackers usually trick people into giving them

passwords or bank information, or access to computer

to secretly install malicious software with the purpose

access information or control. Attackers use social

engineering tactics because it is usually easier to

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 625

exploit human nature to trust than it is to discover

ways to hack web applications or software. For

example, it is much easier to fool someone into

giving the attacker their password than it is trying to

hack their password.

Example of social engineering can be a email from

a friend. If attacker manages hack or socially

engineer one person’s email password, then the

attacker would have access to the victim contact list.

The attacker can send email or leave message to

victim’s contacts list with a link, which could be

result that the victims computer will be infected by

malware or the victim is redirected to attackers site.

The link could also contain a download, such as

picture, movie, document, or audio file that has

malicious code embed in. When the victim

downloads the file, the victim’s computer will be

infected and the attacker could have access to victims

machine, emails, accounts and contacts.

4.4. Physical Access

Physical access is possible when the attacker has

the physical contact to user machine. When the

device or stored data is unencrypted, the attacker

might get access to all data. Physical access controls

to the location where the computers are kept.

Employees who are authorized to work in that

location can use either a RFID card or some magnetic

stripe or barcode on their ID badge to gain access

through a locked door. This allows the accesses to the

location to be assessed on a per employee basis.

When considering physical access, the attacker or any

person with access to the filesystem could potentially

get the file and the data, which will mean that it could

be transferred to an external drive and used with the

appropriate application.

Possible solution to prevent an unauthorized

person to gain access to filesystem is to lock the

screen, where a password would need to be entered

before any of the files could be viewed.

5. Encryption for IndexedDB

The future of IndexedDB is to support secure of

browser-based offline usage. Existing browser-based

storage has not become popular with web developers,

because they face several problems. The first

problem is the complexity of code required, where

the developers need extra time to understand the

structure. Saying that, there are many online tutorial

examples, which can help developers to start

implementing browser, based storage into their web

applications.

The second problem with IndexedDB is security.

Currently IndexedDB stores data in an unencrypted

state so that is neither protected, nor securely deleted.

Therefore IndexedDB storage cannot be

recommended for the storage of personal information.

This makes it limited in functionality. As with data

stored on desktop, mobile or tablet in an unencrypted

state, an attacker can get the data without bypassing

any protection. For example, with a Cross-site

scripting attack (XSS), such as hidden in email link

an attacker could find the stored data. IndexedDB is

inherently vulnerable to such attacks.

Security flaws are inevitable when considering

web applications and storage of information. This is

due not only to the sophistication of the attacks, but

also to the fact the many attacks, such as cross-site

scripting, are based on social engineering and exploit

human error, so are extremely difficult to protect

against. Browser based storage security design is a

concern, but that can be corrected. The correction is

to use JavaScript client side encryption, which would

mean that browser based storage is at least as secure

as that on the server.

With the implementation of the encryption library

in the browser (Firefox v. 29) we are hoping to

address the ineffectiveness of the insecure storing of

data. We are going to propose and develop an

algorithm, which will be implemented into the

Mozilla Firefox browser in an extension format. Also,

our algorithm will ensure that the database

transaction for storing or retrieving data will only be

possible when a secure and valid authentication is

completed. This also relies upon providing the private

key to encrypt/decrypt data.

We have proposed a security model, which will be

implemented as a browser extension. The proposed

security model extends that of the current web

browser. Furthermore, we have implemented a

browser extension with a client side encryption

library, which will help to secure the data on a

client’s machine. When an application requests a new

transaction for IndexedDB to open the database and

save data, the proposed library extension will encrypt

the data. This data will then be as safe as the

encryption scheme even should an attacker get

physical access to the device, which would happen if

a laptop were lost, or a mobile handset stolen.

Steps to encrypt the data are:

a)Get a secure Login

The first step is to provide a secure login

functionality, which can be provided by the web

application. The web application will use the login

process to authenticate a user and securely log the

user into system.

b)Encrypt data

When an application requests a new transaction for

IndexedDB to open the database and save data, the

designed encryption library extension will encrypt the

data. This way the data will be stored in an encrypted

state and will not be readable to others.

c)Store public and private key

When the data is encrypted a key will be generated

and stored with the user information on the server.

Client-side encrypts sensitive data using the public

key, which will be generated and stored on the server

side. This public key is used when encrypting

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 626

information using the JavaScript library. When

Client-side encryption is enabled, an RSA keypair is

generated and the user will be given a specially

formatted version of the public key. RSA is the

algorithm that is used to encrypt data with a private

key to produce a digital signature. The private key,

however, is never revealed to the user or anyone else.

The data is decrypted using the keypair’s private key.

Public and private keys are created simultaneously

using the same algorithm (RSA- Rivest-Shamir-

Adleman). Private keys are used to decrypt text that

has been encrypted with a public key.

d)Decryption of data

When the user requests to read the data from the

database, the web application will check user’s

credentials (if the session is active) and get the key

from the server to allow decryption of data.

e)User Authentication

Upon successful authentication, the user will be given

a public key, which will be used for the

encryption/decryption of the data. This private key

will be stored on the server side, with all the user

information which is used for decrypt the data. We

are going to use OAuth 2, which is an open standard

for authorization. This will be used to securely

transfer the private key from the server to the

encryption library.

f)Deletion of data

Secure deletion of data will be required to overwrite

the space of data with zeros. This means that the data

cannot be read again, as all of the values are set to

zero.

If running over HTTPS, then things are more secure

as the browser will detect a modified JavaScript file.

The SSL layer of HTTPS protocol handles this.

5.1. Proposal

Hashing and encryption can be done within

browsers through the JavaScript encryption library.

Algorithm will use a JavaScript encryption library

(proposed Stanford JS Encryption Library), where the

library will be implemented into the browser

(Firefox) as an extension. This extension will be

based on the top of IndexedDB API and therefore

every time during the reading or writing of data, the

data will be encrypted. The library consists of

encryption with private and public keys. The private

key will be saved on the server. The public key will

be given to the user and stored on the user’s machine,

the same way as a cookie. The extension will provide

encryption/decryption of data on the user’s machine,

which will resolve the issue of storing data in an

unencrypted state.

5.2. Algorithm Used

It differs from typical AES implementations

(different approach that keeps the code small and

speeds up encryption/decryption). The source code

for the AES algorithm, also called Advanced

Encryption Standard or the Rijndael algorithm. The

benchmarking tests have shown that the Stanford JS

Encryption library performs faster than other client

side encryption libraries. The benchmark has been

achieved in multiple browsers on Windows, Mac and

Linux Operating Systems. One of the reasons we

proposed to use and implement the library into

algorithm was the speed and multiplatform usage.

The algorithm is going to contain the JavaScript

encryption library, which will be implemented into

the browser. The algorithm will consist of a few

steps, with the higher security. This will allow the

end user to save and retrieve data from IndexedDB.

The data will be encrypted with the JavaScript library

and a private and public key will be used to

encrypt/decrypt this data.

5.3. Implementation

The model will add an extra layer between the

web browser and IndexedDB API. The security

model consists of an algorithm framework, which

adds extra protection against issues identified, by

reading each other’s data through XSS

vulnerabilities.

Algorithm is using JavaScript encryption library

(proposed Stanford JS Encryption Library), where the

library is implemented into the browser (Firefox) as

an extension. This extension is placed on the top of

IndexedDB API and therefore every time during the

reading or writing of data, the data will be encrypted.

The library consists of encryption with private and

public keys. As expected, the private key will be

saved on the server. The public key will be given to

the user and stored on the user’s machine, the same

way as a cookie. The extension will provide

encryption/decryption of data on the user’s machine,

which will resolve the issue of storing data in an

unencrypted state. It will also provide better security

for possible attacks, where the attacker can

manipulate with user data.

The browser based local storage security model

(BBLS) is relying on the web browser security model

(WBSM), which is using Same origin policy. The

security mechanism is not enough to preserve the

security confidence among the end user.

The BBLS security model differs from WBSM in

few ways, which includes the security mechanism.

The main difference is that BBLS security model is

trying to secure the data between browser and the end

user file system, where comparing to WBSM, which

is securing the data between web applications and

user browser.

The goal of BBLS security model is to secure the

data, which is stored in client side database. User

should be able to visits other websites, without they

databases to be compromised.

The current WBSM is not sufficient protection for

complex web application and stored data on client

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 627

side is becoming more important.

The security model consists of an encryption

framework, which will help to secure the data. The

encryption framework cannot though provide full

security protection. We argue that such protection is

not achievable in a single machine, since any single

browser could be the target of an XSS attack.

Therefore, functionality external to be browser needs

to be implemented. For implementation to existing

encryption library we will use Multifactor

authentication (MFA). MFA is used to make the

authentication process more secure by adding an

extra layer of security. The extra authentication will

need to be passed to make sure the encryption library

decrypts the data. Mobile two-factor authentication

use phones to replace fobs or software-based tokens

that were commonly used for remote authentication.

When a person tries to log into an online service, a

security pin is sent to his or her mobile phone via

voice or SMS message, rather than to the token.

5.4. Evaluation

To evaluate the security model, we will run tests to

conclude the effectiveness of the model. This will

include attacks, which will be bypassing the SOP

trough XSS attacks. First we will perform and attack

with existing security, without applying the security

model.

Then we will add the security model, and perform

the attack again. We suggest that the model will

prevent an attacker to read data from other source, by

adding the authentication process to place. Also the

data stored will be encrypted, which means that even

the authentication process is compromised, the data

will not be available to read in unencrypted state.

Based on our findings, we can state that there is a

case for browser-based databases. We have

implemented a JavaScript encryption framework,

which is a part of the security model implemented into

the browser in a form of an extension. The proposed

security model extension addresses the security issue

that IndexedDB has as a product of its design. Also,

the implemented security model fulfils the security

requirements.

6. Conclusion and Future Work

Based on these findings, we can state, that there is

a case for browser-based databases. Browser based

databases though face security problems over and

above those on the server, and this has inhibited their

uptake. Nevertheless, despite the existing issues faced

by browser-based storage, there is a future for the

technology due to its convenience, performance,

reduced reliance on continuously available network

connection.

Considering the issues and concerns of storing

data locally, browser based storage has the potential

to be widely used, where the main advantage is the

performance speed, cross platform (desktop, mobile,

tablet) and browser availability. The advantages of

local storage outweighs the disadvantages, keeping in

mind that the issues identified can be corrected and

browser-based storage can be widely used by

developers without any concerns of security issues

introduced as by design limitations.

Although the proposed security framework has

been successfully applied to browser based local

storage, further improvements can be made in

extending the security and performance model. These

could be addressed by extending the current model to

use further security factors such as biometrics.

7. References

[1] Naseem, S.Z. Majeed, F. (2013) Extending HTML5
local storage to save more data; efficiently and in more
structured way. Eighth International Digital Information
Management (ICDIM).

[2] Zhanikeev, M. (2013) A Practical Software Model for
Content Aggregation in Browsers Using Recent Advances
in HTML5. 37th Annual Computer Software and
Applications Conference Workshops (COMPSACW).
pp.151-156, Japan 22-26 July 2013

[3] Ryck, P. Desmet, L. Philippaerts, P. Piessens, F. (2011)
A Security Analysis of Next Generation Web Standards,
(European Union Agency for Network and Information
Security - ENISA). Tech. Rep.

[4] Anttonen, M. Salminen, A. Mikkonen, T. Taivalsaari, A
(2011) Transforming the web into a real application
platform: new technologies, emerging trends and missing
pieces. ACM Symposium on Applied Computing. New
York, NY, USA. Pp. 800-807.

[5] Chuang, T. T., Nakatani, K, Chen, J. C. H. and Huang,
I. L. (2007). Examining the Impact of Organisational and
Owner's Characteristics on the Extent of E-commerce
Adoption in SMEs,

[6] Pool, P. W., Parnell, J. A., Spillan, J. E., Carraher, S.
and Lester, D. L. (2006). Are SMEs Meetings the
Challenge of Integrating E-commerce into Their
Businesses? A Review of the Development, Challenges and
Opportunities, International Journal Information
Technology and Management, 5(2/3), pp.97-113.

[7] Jones, J. (2014) E-commerce: measuring, monitoring
and gross domestic product. ONS. Available at:
http://www.ons.gov.uk/ons/rel/gva/national-accounts-
articles/e-commerce--measuring--monitoring-and-gross-
domestic-product/index.html (Accessed: 20 September
2015).

[8] Ta, H., Esper, T., & Hofer, A. R. (2015).
Business‐to‐Consumer (B2C) Collaboration: Rethinking
the Role of Consumers in Supply Chain Management.
Journal of Business Logistics, 36(1), 133-134.

[9] Xiaojing, L., Liwei, Z., & Weiqing, W. (2012). The
mechanism analysis of the impact of eCommerce to the
changing of economic growth mode. In Robotics and
Applications (ISRA), 2012 IEEE Symposium on (pp. 698-
700). IEEE.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 628

[10] Boritz, E., Gyun, W., and Sundarraj, P. 2008. Internet
privacy in E-commerce: Framework, review and
opportunities for future research. In: Proceedings of the
41st Hawaii International Conference on System Sciences.
Hawaii, January 7-10 2008, pp.204-256.

[11] Gehling, B., & Stankard, D. (2005). eCommerce
security. In Proceedings of the 2nd annual conference on
Information security curriculum development (pp. 32-37).
ACM.

[12] Gómez, J. M., & Lichtenberg, J. (2007). Intrusion
Detection Management System for ECommerce Security.
Journal of Information Privacy and Security, 3(4), 19-31.

[13] Buja, G., Jalil, K. B. A., Ali, F. B., Mohd, H., &
Rahman, T. F. A. (2014). Detection model for SQL
injection attack: An approach for preventing a web
application from the SQL injection attack. In Computer
Applications and Industrial Electronics (ISCAIE), 2014
IEEE Symposium on (pp. 60-64). IEEE.

[14] Appelt, D., Nguyen, C. D., Briand, L. C., &
Alshahwan, N. (2014). Automated testing for SQL injection
vulnerabilities: An input mutation approach. In Proceedings
of the 2014 International Symposium on Software Testing
and Analysis (pp. 259-269). ACM.

[15] Summers, S., Schwarzenegger, C., Ege, G., & Young,
F. (2014). The emergence of EU criminal law: cyber crime
and the regulation of the information society. Bloomsbury
Publishing.

[16] Karthik, R., Patlolla, D. R., Sorokine, A., White, D. A.,
& Myers, A. T. (2014). Building a secure and feature-rich
mobile mapping service app using HTML5: challenges and
best practices. In Proceedings of the 12th ACM
international symposium on Mobility management and
wireless access (pp. 115-118). ACM.

[17] Ayenson, M. Wambach, D. J. Soltani, A. Good, N.
Hoofnagle, C. J. (2011) Flash cookies and privacy II: Now
with HTML5 and ETag respawning. Computer and
Information Systems Abstracts. [Online]. Available at:
http://dx.doi.org/10.2139/ssrn.1898390 (Accessed: 10
February 2015).

[18] Strozzi, C. (1998) NoSQL A Relational Database
Management System. Available at: http://www. strozzi.
it/cgi-bin/CSA/tw7/I/en_US/nosql/Home% 20Page
(Accessed: 20 September 2015).

[19] Kimak, S. Ellman, J. Laing, C. (2014) Some Potential
Issues with the Security of HTML5 IndexedDB. In: System
Safety and Cyber Security 2014 (IET Conference), 14-16th
October 2014, The Midland Hotel, Manchester, UK.

[20] Casario, M. Elst, P. Brown, Ch. Wormser, N.
Hanguez,C. (2011) HTML5 Solutions: Essential
Techniques for HTML5 Developers. Publisher: FRIENDS
OF ED; 1 edition ISBN: 1430233869.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 629

