
University of Huddersfield Repository

Khan, Saad and Parkinson, Simon

Towards Automated Vulnerability Assessment

Original Citation

Khan, Saad and Parkinson, Simon (2017) Towards Automated Vulnerability Assessment. In: 11th
Scheduling and Planning Applications woRKshop (SPARK), 19th June 2017, Carnegie Mellon
University, Pittsburgh, USA. (Unpublished)

This version is available at http://eprints.hud.ac.uk/32333/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not­for­profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/84149223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards Automated Vulnerability Assessment

Saad Khan and Simon Parkinson
Department for Informatics, School of Computing and Engineering, University of Huddersfield, UK

Email: firstname.surname@hud.ac.uk

Abstract

Vulnerability assessment (VA) is a well established method
for determining security weaknesses within a system. The
VA process is heavily reliant on expert knowledge, something
that is attributed to being in short supply. This paper explores
the possibility of automating VA and demonstrates an initial
proof-of-concept involving decision-making skills compara-
ble with a human-expert. This is achieved through encoding a
domain model to represent expert-like capabilities, and then
using model-based VA planning to determine VA tasks. Al-
though security evaluation is a complex task, through the help
of such models, we can determine the ways to find potential
vulnerabilities without an expert present. This technique al-
lows time constrained assessments, where a ‘risk factor’ is
also encoded to represent the significance of each security
flaw. The ultimate goal of this work-in-progress is to real-
istically simulate a human vulnerability auditor. This paper
demonstrates the first step towards that goal; a systematic
transformation of the VA knowledge into a PDDL represen-
tation, accommodating a broad range of time constrained in-
vestigative actions. The output plan and its analysis evidently
evinces many potential benefits such as increased feasibility
and productivity.

Introduction
Security vulnerabilities exist in IT infrastructures within
most organisations, and given the increasing size and im-
portance of the infrastructure on a organisation’s daily busi-
ness, there is a pressing need to identify and mitigate secu-
rity vulnerabilities. The organisation itself is responsible for
protecting their IT resources against potential attacks, and
this will often be performed through conducting periodic se-
curity assessments. However, an organisation may not al-
ways have the necessary expertise in-house and they will be
required to pay for external consultancy. If an organisation
does have in-house expertise to maintain their security, they
are also required to maintain such expertise in this rapidly
changing discipline. Both approaches incur a large financial
cost and there is wide-scale motivation to decrease costs,
as well as make an organisation more agile in that they are
quicker to respond to detecting vulnerabilities as new threats
develop. The general principle behind vulnerability assess-
ment process can be summarised as (Kamongi et al. 2013):

1. Identify and taxonomise available system resources such
as network and operating systems;

2. Prioritise resources or assets based on their importance
level such as data sensitivity;

3. Determine threats to each resource and create potential
point of vulnerabilities;

4. Based on the importance level, remove the most serious
potential problems first and so on; and

5. Create a policy or guideline, that can minimise the conse-
quences if an attack occurs in future.

A major bottleneck behind security assessments is the
lack of knowledge and understanding of the latest potential
threats. The adversaries are continuously becoming increas-
ingly sophisticated in their attack mechanisms, and anyone
who is not improving their security accordingly can become
the victim of a damaging attack. Another important factor
to consider is the inevitable human error during system con-
figuration and use. In our previous work (Khan and Parkin-
son 2016), we created an expert system based on If-Then
rules but the system produced mutually exclusive actions,
was difficult to maintain and had very limited intelligence.
A potential solution to these problems is through the use
of computational intelligence to generate security evaluation
plans in an automated manner. In general terms, the intelli-
gent technique should consider all known evaluation tech-
niques and determine their applicability to the system, and
to identify mitigation plans for a complex system. The sys-
tem should imitate and support the human expert’s decision-
making ability.

In this paper, we propose a system that applies Automated
Planning (AP) to generate vulnerability assessment strate-
gies for manual checking. It uses the Planning Domain Def-
inition Language (PDDL) (McDermott et al. 1998) for de-
veloping domain models and encoding problem instances.
We use PDDL 2.2 for its support of durative actions, nu-
meric fluents (Fox and Long 2003), and timed initial lit-
erals (Edelkamp and Hoffmann 2004). The domain model
is essentially the description of knowledge, gathered from
expert experience and published work detailing vulnerabil-
ity assessment techniques. Each vulnerability is transformed
into one or more actions. To demonstrate the suitability of
the approach, we have also created a simple post-processor

that can automatically translate the output plan file to a hu-
man understandable format.

The paper is organised as follows: the first section pro-
vides a brief summary of vulnerability assessment and the
applications of planning in cyber security systems. The next
section is devoted to the detailed explanation and example
results of the proposed solution. This leads to the experi-
mental analysis section, whereby solutions are tested under
different circumstances. This section also discusses the ad-
vantages of the proposed solution. Following this, the paper
concludes and the direction of further work is provided.

Related work

Vulnerability assessment

Vulnerability assessment is the process of determining the
security gaps of a system, which can be exploited by the at-
tacker from inside or outside of organisation, to gain con-
fidential data, financial benefits, amongst others (Umrao,
Kaur, and Gupta 2012). Many generic vulnerability assess-
ment tools are available that can identify known security
flaws such as OpenVAS, Burp Suite, Nikto, Vega, App-
Scan, AVDS and Grabber (Owsap 2017). The purpose of
these tools is to determine a system’s security issues and
stay ahead of attackers by constantly patching and mitigat-
ing identified vulnerabilities. Apart from the generic tools
and approaches, some vulnerability detection techniques tar-
get specific applications. For example, (Benton, Camp, and
Small 2013) performed a detailed security assessment for
OpenFlow protocol, (Ristov, Gusev, and Donevski 2014) as-
sessed the vulnerabilities of OpenStack’s architectural com-
ponents, (Zhao and Zhao 2015) analysed privacy and se-
curity issues of social media sites, (Barrere, Badonnel, and
Festor 2014) identified and explained the vulnerabilities of
autonomic systems and (Rahman, Ahmad, and Ramli 2014)
discussed potential Wireless Body Area Network security
vulnerabilities. Many patents also present different vulner-
ability assessment techniques, e.g. (Webb, Boscolo, and
Gilde 2016) created a network appliance that can evaluate
security of multiple networks concurrently. These specific
evaluations are limited in use but provide deep insight into a
particular product.

One of the major shortcomings of aforementioned ap-
proaches is that they require extensive knowledge for run-
ning and understanding the results. It is very difficult for a
non-expert to conduct the security evaluation without first
spending significant time to acquire the necessary expertise.
Furthermore, most of the approaches do not consider time
limits, prioritisation and real-time damages associated with
the vulnerabilities. The damages might cause exposure of
sensitive data, unavailability of crucial services and many
others. These factors motivate the requirement for an auto-
mated system, which can decide and prioritise vulnerabili-
ties based on time constraints and the potential for damage,
and outputs the most feasible solution without relying on a
human expert.

Applications of Planning in Cyber-Security
There have been successful exploration of the use of Auto-
mated Planning (AP) in different cyber security domains,
mainly for generating attack plans for penetration test-
ing (Riabov et al. 2016). In this work, courses of actions
are generated based upon a system configuration; however,
the goal is adversarial in that the aim is to compromise the
system in efficient shortest path, albeit by a trusted secu-
rity professional (widely termed white-hat hacking). Recent
work by Sohrabi et. al pursues the use of hypothesis explo-
ration for identifying potential attack plans in network secu-
rity (Sohrabi, Udrea, and Riabov 2013; Sohrabi et al. 2016).
Furthermore, recent research presents continued develop-
ment of AP for penetration testing (pen testing) (Shmaryahu
2016a; Hoffmann 2015) discussing the need to overcome
scalability limitations. The fundamental difference between
pen testing and vulnerability assessment (VA) is that VA is
searching for vulnerabilities that exist and mitigate them,
where as pen testing is searching to exploit a series of vul-
nerabilities for adversarial gain.

Penetration testing frameworks are available, both com-
mercial and open-source, which can perform expert-like se-
curity assessment through simulated attacks on different sys-
tems. One such example is Metasploit that can launch ex-
ploits and drop payloads to damage remote systems (Maynor
2011). The problem with such frameworks is that expert
knowledge is required to manually select and launch the
attacks. Although, some security weaknesses such as un-
patched software and insecure ports can be identified by
vulnerability scanning tools, but their results might not be
comprehensive (Holm et al. 2011). Studies suggests that, if
the attack plans are generated by a computer, there is po-
tential to discover more plans than human expert, mean-
while helping the non-expert to avoid the complexity and
save time, effort and resources. One such commercial tool
(Core Impact) and uses AP to generate possible attack
plans and performs real-time penetration testing (Sarraute,
Richarte, and Lucángeli Obes 2011). It uses Probabilis-
tic PDDL (PPDDL), which is capable of extending attack
graphs models and handling probabilistic and numerical ef-
fects. The system also constructs AND-OR trees to deter-
mine candidate attacks paths towards a particular asset. The
tool is also efficient in terms of execution time and in the
generated network traffic. It’s computational complexity is
O(n log n), where n is the total number of actions in domain
file. Similar work has been done by (Shmaryahu 2016b),
where contingent plan trees are constructed for simulated
pen testing.

One initial piece of work involved the use of classical
planning to generate hypothetical attack scenarios to exploit
the system (Boddy et al. 2005). The study simulates realis-
tic adversary courses of action and mainly focuses on ma-
licious insider’s threat. The domain model includes 25 dif-
ferent objects (basic elements of computing), 124 predicates
(information about system) and 56 actions (adversarys ob-
jectives), whereas each problem contains between 200 to
300 facts. Classical and forward heuristic planners, specifi-
cally FF-Metric (Hoffmann 2003) are used to generate attack
plans. As writing domain models manually can be labour in-

tensive and prone to errors, M4 macros have been used to
design large scale PDDL files, hence avoiding the need for
representing actions and facts directly. Their tool also trans-
lates the planner output into human-readable format (post-
processing) by using a Perl script.

Another paper (Obes, Sarraute, and Richarte 2013) uses
planning to assess network security. First, a transformation
algorithm is used to convert attack models into PDDL repre-
sentation. Attack information containing requirements and
exploits are encoded into a domain file, while the infor-
mation about system such as networks, machines, operat-
ing systems, ports and running services are stored in prob-
lem files. The object types are the system properties such as
privileges and operating systems, while predicates are es-
sentially depicts the relationship among objects. This pa-
per analyses the whole network, has up-to 1800 actions and
hosts 700 exploits. However, as classical planning is used,
the system cannot handle incomplete knowledge.

Partially Observable Markov Decision Processes
(POMDP), can be used to overcome the limitation on
incomplete knowledge by generating attack plans even if
the planner is given incomplete knowledge and uncertain-
ties (Sarraute, Buffet, and Hoffmann 2013a). POMDPs are
capable of prioritising actions based on expected reward that
is composed of asset value, time and risk of detection, to
find the optimal terminal state. Further research (Sarraute,
Buffet, and Hoffmann 2013b) investigates how to produce
better attack plans for a particular machine within short
period of time. Their solution employs intelligent vulner-
ability scanning actions through using POMDPs to find
feasible attacks for each individual machine and inquires
targeted network structure approximations on-demand.
Despite all the advantages of POMDPs, they are complex
and require large computational resources. It is also difficult
to design the ’initial belief’ for every real-world problem.
As a solution, (Hoffmann 2015) presents a middle ground
between classical planning and POMDPs called MDPs.
The actions work same as before, but they do not perform
scanning. Every outcome of action (effect) is assigned
a probability regardless of host configuration predicates.
The probability value depends on the level of attackers
uncertainty in launching that particular action. As PDDL is
not equipped to tackle these uncertainties, the paper also
suggests a PDDL-like language that can allow probability
values inside action.

Literature review shows that planning has been applied
to automate pen testing, but to best of our knowledge, there
is no such work in automating VA. According to the sur-
vey (Shah and Mehtre 2015), VA and pen testing are differ-
ent in term of motivations and objectives. VA is applied to a
system which is likely to have vulnerabilities, unlike pene-
tration testing where system defences are tested. The pene-
tration testing has specific goals and requires particular ex-
pertise, whereas VA finds and prioritises the assessment of
system vulnerabilities. As the VA is first step towards ma-
turing the security state of the entire system and focuses on
both breadth over depth of analysis, we recognise the need
for automation and we provide a feasible and resourceful
solution.

Figure 1: Architecture of proposed system

Automated Planning as a Solution
The purpose of our solution is to help the non-expert users to
determine efficient and time-constrained VA checks and per-
form them manually. The solution is not aimed at replacing
the human-expert, but rather in providing decision support
aid to users of all technical abilities. The following sections
contain a detailed description of the system design, domain
modelling, problem description and a sample plan output.

System Design
This section discusses the overall system design and its com-
ponents. Our proposed solution is inspired by (Sarraute,
Richarte, and Lucángeli Obes 2011) as is shown in Figure 1.
The explanation of each module is in the following:

Pre Vulnerability Assessment (VA) process – The purpose
of VA is to systematically evaluate the security of any given

Figure 2: Pre-Vulnerability-Assessment process

system. The VA process should comply to well-established
criteria and standards. For now, our solutions is mainly fo-
cused on Authentication, Authorisation and Permission con-
trol along with few data security assessment techniques. To
develop a system that advises on relevant VA procedures,
we need to manually collect authentic, expert and verified
knowledge on existing VA techniques, e.g. using acquisi-
tion software such as (Parkinson and Crampton 2016). The
formal preprocess of VA is described in figure 2. It shows
the tasks that were conducted before creating the solution.
The VA procedures consists of strict steps, which should
be followed in the same manner and sequence, hence the
need for systematic knowledge acquisition. The first step is
to identify the domain whose vulnerabilities are going to be
assessed. Then, with the help of expert knowledge and pub-
lished work, relevant, applicable and useful VA techniques
should be extracted manually, along with their preconditions
and effects. These conditions and effects are modelled into
PDDL later on.

Representing domain knowledge – After information is
gathered regarding VA procedures, it is manually converted
into predicates and objects, which signify the properties
and relationships of individual VA procedures. The group
of inter-related predicates form an action, whereas each VA
process is defined by one or more actions. For each action,
we are also estimating and modelling their durations of iden-
tification and potential damage level in case that vulnerabil-
ity is exploited. The quantification of impact and duration
values are then used to provide the most feasible results in
accordance with given user-requirements. The user can in-
put deadline value and output plans will inform about the
most crucial VA procedures that should be conducted within

Figure 3: Plan’s Post Processor

that limited time.
Problem description – The initial state is a collection of

all preconditions from domain file which describe the un-
derlying system. The goal state is empty except from the
time duration limit. This is because the solutions aims to
find the most feasible plan for VA within given a deadline,
whilst maximising the overall impact. The system has static
knowledge, which means it will always output the same set
of actions. The only variation in plans is brought by impos-
ing time constraints in each action, where the planner will
choose actions based on their impact on the optimisation
metric.

Planner – LPG-td (Local search for Planning Graphs)
planner (Gerevini et al. 2004) is used to extract plans from
domain and problem description files. LPG-td, an improved
version of LPG, supports durative-actions and plan adapta-
tion (as the goal state is not explicitly described) problems.
We used LPG in this initial work due to its general good
performance and handling of PDDL features.

Plan – Consists of actions, which represent the actual
vulnerability. For example, (SYSTEM-VULNERABLE-TO-
DENIAL-OF-SERVICE-ATTACK SYSTEM) is a single ac-
tion of certain plan. It describes that the system is susceptible
to denial of service attack. The plan would continue to have
a sequence of actions, used to describe mitigation actions to
pro-actively eradicate vulnerabilities, minimise threats and
prevent future attacks.

Post-processing – The post processor is a Java-based ap-
plication, whose only purpose is to elaborate the plan in a
more human understandable format (shown in figure 3). It
contains a simple mapping of actions to their respective de-
scriptions. In future, we aim to enhance the preprocessor in
a way, that can convert the actions into appropriate and com-
plete shell commands, which can be executed to perform
real-time automated VA operations.

Domain modelling
The domain file consists of 23 durative-actions. Each action
contains parameters, duration, conditions and effects. The
parameters define objects required for the action to work.

(: d u r a t i v e−a c t i o n Minimum−password−r e q u i r e m e n t s−unmet
: p a r a m e t e r s (? password)
: d u r a t i o n (= ? d u r a t i o n 5)
: c o n d i t i o n (and

(ove r a l l (No−Uppercase−L e t t e r s ? password))
(ove r a l l (No−Lowercase−L e t t e r s ? password))
(ove r a l l (No−Numbers ? password))
(ove r a l l (No−Symbols ? password))
(ove r a l l (n o t
(Minimum−password−r e q u i r e m e n t s−unmet−found ? password)))
(ove r a l l (a c t i o n−d u r a t i o n s))
(a t s t a r t (n o t (o p e r a t o r−busy)))

)
: e f f e c t (and

(a t end
(Minimum−password−r e q u i r e m e n t s−unmet−found ? password))
(a t end (i n c r e a s e (t o t a l −i m p a c t) 8))
(a t end (i n c r e a s e (t o t a l −d u r a t i o n) 5))
(a t s t a r t (o p e r a t o r−busy))
(a t end (n o t (o p e r a t o r−busy)))

)
)

Figure 4: Example PDDL action

The duration is the approximate time required to assess a
particular vulnerability and depends on its complexity level.
The conditions are composed of issues that needs to be true
for the vulnerability to exist. There are also fixed predi-
cates in each durative-action, called action-durations and
operator-busy, which are used to sum up the duration of
each action and to ensure they execute sequentially. The ef-
fect explains the damage of a particular vulnerability. It also
defines the level of damage in terms of impact value, which
is between 1 and 10, where 1 being minimal and 10 being
the largest damage.

Table 1 shows the list of all actions, durations and impact
levels, extracted from the expert knowledge. The duration
of vulnerability assessment action might vary for different
systems. The impact level too depends on the sensitivity of
data, services and resources of the underlying system.

An example of durative-action is shown in Figure 4,
where the purpose is to check if the system has weak pass-
word and might be vulnerable to password-cracking attacks.
The complete explanation is in the following:

Predicates – The predicates are extracted and derived
from the requirements of the vulnerability assessment. The
information regarding vulnerabilities is collected from var-
ious sources such as books, papers, web articles and expert
knowledge. A single vulnerability is represented by one or
more predicates. In addition, there are two more predicates,
action-durations and operator-busy. The action-durations is
used to define a deadline for all actions in the output plan,
where the time-limit is given by the user. The operator-busy
is used to ensure actions are performed sequentially. The
total-time of a plan should be less than or equal to action-
durations, which is used as a timed initial literal to restrict
the makespan.

Functions – There are two functions in the domain de-
scription: total-impact and total-duration. The total-impact
is used to determine the accumulative impact value of all ac-
tions in the output. Its value is increased by the impact value
of each action. Similarly, total-duration is the accumulation
of each individual action’s duration. By using these func-
tions, the planned is able to select actions that have the great-

Table 1: Transformation of knowledge into Actions, their
duration and impact level

Action name Duration Impact
(total 10)

1 Insufficient-password-
length

2 8

2 Minimum-password-
requirements-unmet

5 8

3 Password-is-guessable 7 5
4 Insecure-password-

storage
15 6

5 Password-brute-force-
attack

10 4

6 Insecure-forgot-
password-option

20 4

7 Insecure-single-factor-
authentication

8 5

8 Infeasible-
authentication-scheme

20 8

9 Access-vulnerability-
File-system

25 7

10 Access-Control-
Authorisation-
vulnerability

30 5

11 Unmanaged-
permission-of-
application

10 7

12 Applications-might-be-
outdated

15 9

13 Lack-of-network-
firewalls

10 8

14 Lack-of-maintenance-
in-network-firewalls

7 6

15 Default-Configuration-
network-firewall-
might-be-useless

10 5

16 Each-Node-Should-
Have-Personal-firewall

9 4

17 System-Vulnerable-
to-Denial-of-service-
attack

5 8

18 Network-connection-
events-logging-are-not-
enabled

8 5

19 Access-control-events-
are-not-auditable

10 6

20 Security-events-are-
not-auditing

5 7

21 Data-at-rest-should-be-
Encrypted-Privacy-in-
danger

5 9

22 Data-at-motion-should-
be-Encrypted-Privacy-
in-danger

5 9

23 Feasible-encryption-
algorithm-not-used

8 7

Total 249 150

(: i n i t
(No−Uppercase−L e t t e r s password)
(No−Lowercase−L e t t e r s password)
(No−Numbers password)
(No−Symbols password)
< . . .>
(= (t o t a l −im p a c t) 0)
(= (t o t a l −d u r a t i o n) 0)
(a t 0 (a c t i o n−d u r a t i o n s))
(a t 10 (n o t (a c t i o n−d u r a t i o n s)))

)
(: g o a l (and

(<= (t o t a l −d u r a t i o n) 10)
))
(: m e t r i c

maximise (t o t a l −im pa c t)
)

Figure 5: Example PDDL problem definition

est impact within the available time frame specified through
the Timed Initial Literal.

Durative-action – The purpose of using temporal actions
is to model the time needed to execute a vulnerability as-
sessment action. The action presented in Figure 4 illustrates
that a vulnerable password would lack upper and lower-case
letters, numbers or symbols. The condition also contains the
negation of effect because our problem file does not have any
explicit goal. Without this, we would have duplicate actions
in the plan. The action-durations and operator-busy are used
to limit the number of actions and remove their concurrency
respectively.

Effect – Figure 4 shows that any password having the
aforementioned issues does not meet the minimum require-
ments of a strong password, hence it is viable to password-
cracking attacks. It states the impact level of the vulnerabil-
ity as well as identifying the possible amount of damage it
can cause, which is 8 out of 10 in this particular case. It also
increases the accumulative impact and duration value (total-
impact and total-duration). In adition, the effect starts by
stating the operator-busy predicate, so that no other action
can be executed at that instance. Once the action is com-
pleted (at end), operator-busy is reverted to its original state,
freeing the lock and the planner proceeds to next action.

Problem Description
A sample part of problem file is also shown in figure 5. It
contains the initial state, goal state and metric descriptions.
The complete explanation on the construction of problem
file is in the following:

Init – Describes the complete initial state of system in
terms of properties such as the password has no lower or
upper case letters and many others. The initial state is a col-
lection of all predicates the represent the system under ex-
amination that can subsequently be used for vulnerability
assessment. The objects represent the constant names of as-
sets under assessment. For example, password is an object,
whose strength level is rated in the aforementioned domain
description.

0 . 0 0 0 3 : (FEASIBLE−ENCRYPTION−ALGORITHM−NOT−USED
ENCRYPTIONALGORITHM)

8 . 0 0 0 5 : (DATA−IN−MOTION−SHOULD−BE−ENCRYPTED−PRIVACY−IN−DANGER
DATAINMOTION)

1 3 . 0 0 0 7 : (DATA−AT−REST−SHOULD−BE−ENCRYPTED−PRIVACY−IN−DANGER
DATAATREST)

1 8 . 0 0 1 0 : (SYSTEM−VULNERABLE−TO−DENIAL−OF−SERVICE−ATTACK
SYSTEM)

2 3 . 0 0 1 2 : (MINIMUM−PASSWORD−REQUIREMENTS−UNMET
PASSWORD)

Figure 6: Example PDDL plan output

Goal – Notice there is no explicit goal to reach as we want
all of those actions, which should be completed within the
given deadline. Thus, we only check whether the accumu-
lative value of duration, total-duration, is less or equal to
deadline-value (which is 10 in this case). Once the condition
is satisfied, the planner should stop generating the plan, even
if there can be more actions.

Metric – The requirement for our system is to output
those actions, which have the maximum impact and can be
completed within deadline. For maximising the impact, we
have used maximize feature on total-impact function. It will
enable the planner to only select the most feasible action
with respect to their impact value, if various options become
available within limited time.

Planer output
A sample plan is shown in figure 6. It took 1 second to search
this plan on Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz of
processor with 16GB RAM. The operating system was 32-bit
Ubuntu Kylin. The deadline was specified as 30 minutes and
the planner output provides a plan with the total duration of
28 minutes. The plan shows VA tasks that should be con-
ducted to evaluate the security. The planner was executed
several times (-n 10) to reach a plan better quality. If the
plan output file is provided to the post processor (figure 3),
it can elaborate the plan in further details. The post processor
is a primitive application which matches the actions against
pre-determined sentences to provide more detail instructions
with context for the user.

Experimental Results and Analysis
This section presents the results of proposed solution and
evaluate them to demonstrate the advantages in terms of us-
ability and applicability of this technique. Using the same
domain file, we provided the planner with various problem
files, all of them having different time constrained deadlines,
ranging from 10 to 250 minutes in duration. For each dead-
line, the planner was executed more than once, i.e. until it
could not find any better plan within the specified 5 min-
utes of cut-off time. The results of various plans are shown
in Figure 7. The x-axis shows the total number of actions,
while the y-axis shows the deadlines and accumulated im-
pact value of each plan. Furthermore, planner is displaying
the correct results as the output matched our expected output
that was derived manually.

The number and impact value of the actions are directly
proportional to the deadline. This feature significantly max-
imises the efficiency of VA process, as more important vul-
nerabilities can be identified within specific amount of time.
Furthermore, the total value of duration in domain file is 249
and the total number of actions are 23 (shown in Table 1).
With the deadline of 250 minutes, which is more amount
than the sum of all durations of actions, the planner outputs
all 23 actions as expected. It means that the full potential
of solution can be used if user has enough time. It is also
observed that some different deadlines (e.g. of 60 and 70
minutes) present the same amount of actions (10), but with
the different impact values (72 and 76 respectively). This
proves that our resultant plan will try to maximise the overall
impact, while choosing only crucial and minimum number
of actions. Hence, the user will be able to detect important
vulnerabilities in a shorter time span and protect the system
against common, yet harmful attacks.

Potential advantages
Our solution is beneficial for both experts and non-experts. It
should be noticed that the solution is not supposed to replace
human experts, but assist them in a useful, resourceful and
practical way. Following are the benefits that our solution
can provide in terms of vulnerability assessment.

Cost – One company charge 1495-USD for single vul-
nerability assessment of an IT infrastructure with up-to 100
individual internal Internet Protocol (IP) addresses or nodes
and takes minimum of two-weeks. But with our solution,
any company or individual can get the vulnerability assess-
ment free of charge, within a significantly lower timeframe.

Less effort and more productivity – As the planner auto-
matically outputs the VA tasks, there is no effort required to
conduct tiresome searching to find suitable techniques and
results in reduction of time, without compromising the qual-
ity. Also, the plan itself allocates an appropriate amount of
time for each assessment task, hence the whole VA process
becomes systematic, precise and efficient.

Quality and effectiveness – The quality of solution de-
pends on the quality of knowledge in domain model. The
knowledge of our solution is collected from renowned re-
search outlets and experts. So, the solution is capable of
mimicking human expert abilities, hence making it some-
what equally effective.

Feasibility – There are some cases where a company does
not want to utilise 3rd party contractors or outsourced vulner-
ability assessment operations. It is possibly that due to lack
of access to experts, the company are paranoid of exposing
their private data and system configuration. Using this solu-
tion, one can perform in-house VA processes on-demand.

Decide custom time frame – Generally, the VA process is
performed on monthly, quarterly, semi-annually or annually
basis. But, with our solution at hand, there is no restriction
of predefined schedule. Furthermore, one can decide their
own custom time-frame and obtain the list of VA tasks in a
specified time window.

Scope of domain model – The domain models are man-
ually defined and based on human knowledge. Although
this paper focuses on a specific aspect of cyber security,

Figure 7: Relationship between different deadlines, and their
impact and number of actions. It shows that (deadline dura-
tions ∝ number of actions & accumulative impact).

the domain model can describe any number of techniques
and methodologies from multiple areas simultaneously. It is
just a matter of modelling the knowledge into domain file.
Hence, it would not be wrong to state that our proposed sys-
tem can comprehend the knowledge of multiple human ex-
perts inside a single domain model and provide a better and
holistic plan, as well as strategy by considering various areas
of cyber security.

Conclusion and Future work
We have shown in this paper that vulnerability assessment
techniques can be modelled into planning problem, where
they are solved more efficiently along with integrating new
functionality such as time constraints. The proposed solu-
tion, though currently work-in-progress, has shown signif-
icant initial results in aiding the non-expert users to con-
duct vulnerability assessment tasks own their own. This pa-
per discussed the complete design of proposed solution and
the details on how to transform the expert knowledge to the
planning domain. The results successfully depicts that it is
not necessary for a non-expert to rely on others. The plan it-
self can inform the user in manually performing comprehen-
sive VA process. The domain model is created from expert
knowledge and hence the VA procedures mimic the abili-
ties of an expert as well. By using our domain model, plan-
ners such as LPG-td and user deadline requirements, optimal
plans can be generated based on their threat level and time
duration.

As our final goal is to produce a real-time automated
VA solution, the following important questions remains as
regards to future work. First, how to increase the quality
and quantity of knowledge in domain models? It essentially
leads towards incorporating better knowledge acquisition
techniques from the experts. Second, how to deal with in-
complete knowledge? One possible solution would be using
probabilistic planning techniques that can generate discrete
actions. Last but not least, how this solution can become
more beneficial and usable? It can be done by transform-
ing the plan into executable commands in accordance with
the underlying system.

References
Barrere, M.; Badonnel, R.; and Festor, O. 2014. Vulnerabil-
ity assessment in autonomic networks and services: a survey.
IEEE communications surveys & tutorials 16(2):988–1004.
Benton, K.; Camp, L. J.; and Small, C. 2013. Openflow vul-
nerability assessment. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined net-
working, 151–152. ACM.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In ICAPS, 12–21.
Edelkamp, S., and Hoffmann, J. 2004. Pddl2. 2: The lan-
guage for the classical part of the 4th international plan-
ning competition. 4th International Planning Competition
(IPC04), at ICAPS04.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to pddl
for expressing temporal planning domains. J. Artif. Intell.
Res.(JAIR) 20:61–124.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Lpg-td: a fully automated planner for pddl2. 2 domains. In
In Proc. of the 14th Int. Conference on Automated Planning
and Scheduling (ICAPS-04) International Planning Compe-
tition abstracts. Citeseer.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal
of Artificial Intelligence Research 20:291–341.
Hoffmann, J. 2015. Simulated penetration testing: From”
dijkstra” to” turing test++”. In ICAPS, 364–372.
Holm, H.; Sommestad, T.; Almroth, J.; and Persson, M.
2011. A quantitative evaluation of vulnerability scanning.
Information Management & Computer Security 19(4):231–
247.
Kamongi, P.; Kotikela, S.; Kavi, K.; Gomathisankaran, M.;
and Singhal, A. 2013. Vulcan: Vulnerability assessment
framework for cloud computing. In Software Security and
Reliability (SERE), 2013 IEEE 7th International Conference
on, 218–226. IEEE.
Khan, S., and Parkinson, S. 2016. Towards a multi-tiered
knowledge-based system for autonomous cloud security au-
diting. In Proceedings of the AAAI-17 Workshop on Artifi-
cial Intelligence for Cyber Security (AICS). AAAI.
Maynor, D. 2011. Metasploit toolkit for penetration testing,
exploit development, and vulnerability research. Elsevier.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.
Obes, J. L.; Sarraute, C.; and Richarte, G. 2013. Attack
planning in the real world. arXiv preprint arXiv:1306.4044.
Owsap. 2017. Vulnerability scanning tools.
Parkinson, S., and Crampton, A. 2016. Identification of ir-
regularities and allocation suggestion of relative file system
permissions. Journal of Information Security and Applica-
tions 30:27–39.
Rahman, A. F. A.; Ahmad, R.; and Ramli, S. N. 2014.
Forensics readiness for wireless body area network (wban)

system. In Advanced Communication Technology (ICACT),
2014 16th International Conference on, 177–180. IEEE.
Riabov, A.; Sohrabi, S.; Udrea, O.; and Hassanzadeh, O.
2016. Efficient high quality plan exploration for network
security. In International Scheduling and Planning Applica-
tions woRKshop (SPARK).
Ristov, S.; Gusev, M.; and Donevski, A. 2014. Security
vulnerability assessment of openstack cloud. In Computa-
tional Intelligence, Communication Systems and Networks
(CICSyN), 2014 Sixth International Conference on, 95–100.
IEEE.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2013a.
Penetration testing== pomdp solving? arXiv preprint
arXiv:1306.4714.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2013b. Pomdps
make better hackers: Accounting for uncertainty in penetra-
tion testing. arXiv preprint arXiv:1307.8182.
Sarraute, C.; Richarte, G.; and Lucángeli Obes, J. 2011. An
algorithm to find optimal attack paths in nondeterministic
scenarios. In Proceedings of the 4th ACM workshop on Se-
curity and artificial intelligence, 71–80. ACM.
Shah, S., and Mehtre, B. M. 2015. An overview of vul-
nerability assessment and penetration testing techniques.
Journal of Computer Virology and Hacking Techniques
11(1):27–49.
Shmaryahu, D. 2016a. Constructing plan trees for simulated
penetration testing. In The 26th International Conference on
Automated Planning and Scheduling, 121.
Shmaryahu, D. 2016b. Constructing plan trees for simulated
penetration testing. In The 26th International Conference on
Automated Planning and Scheduling, 121.
Sohrabi, S.; Riabov, A.; Udrea, O.; and Hassanzadeh, O.
2016. Finding diverse high-quality plans for hypothesis gen-
eration. In Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI).
Sohrabi, S.; Udrea, O.; and Riabov, A. V. 2013. Hypothesis
exploration for malware detection using planning. Edited
By: Nicola Policella and Nilufer Onder 29.
Umrao, S.; Kaur, M.; and Gupta, G. K. 2012. Vulnerability
assessment and penetration testing. International Journal of
Computer & Communication Technology 3(6–8):71–74.
Webb, E. M.; Boscolo, C. D.; and Gilde, R. G. 2016. Net-
work appliance for vulnerability assessment auditing over
multiple networks. US Patent App. 15/079,224.
Zhao, J., and Zhao, S. Y. 2015. Security and vulnerabil-
ity assessment of social media sites: An exploratory study.
Journal of Education for Business 90(8):458–466.

