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ABSTRACT
Background: Gene-diet interactions have been reported to contrib-
ute to the development of type 2 diabetes (T2D). However, to our
knowledge, few examples have been consistently replicated to date.
Objective: We aimed to identify existing evidence for gene-
macronutrient interactions and T2D and to examine the reported
interactions in a large-scale study.
Design: We systematically reviewed studies reporting gene-
macronutrient interactions and T2D. We searched the MEDLINE, Hu-
man Genome Epidemiology Network, and WHO International Clinical
Trials Registry Platform electronic databases to identify studies pub-
lished up to October 2015. Eligibility criteria included assessment of
macronutrient quantity (e.g., total carbohydrate) or indicators of quality
(e.g., dietary fiber) by use of self-report or objective biomarkers of
intake. Interactions identified in the review were subsequently examined
in the EPIC (European Prospective Investigation into Cancer)-InterAct
case-cohort study (n = 21,148, with 9403 T2D cases; 8 European coun-
tries). Prentice-weighted Cox regression was used to estimate country-
specific HRs, 95% CIs, and P-interaction values, which were then
pooled by random-effects meta-analysis. A primary model was fitted
by using the same covariates as reported in the published studies, and a

second model adjusted for additional covariates and estimated the ef-
fects of isocaloric macronutrient substitution.
Results: Thirteen observational studies met the eligibility criteria
(n , 1700 cases). Eight unique interactions were reported to be signif-
icant between macronutrients [carbohydrate, fat, saturated fat, dietary
fiber, and glycemic load derived from self-report of dietary intake and
circulating n–3 (v-3) polyunsaturated fatty acids] and genetic variants
in or near transcription factor 7–like 2 (TCF7L2), gastric inhibitory poly-
peptide receptor (GIPR), caveolin 2 (CAV2), and peptidase D (PEPD)
(P-interaction , 0.05). We found no evidence of interaction when we
tried to replicate previously reported interactions. In addition, no in-
teractions were detected in models with additional covariates.
Conclusions: Eight gene-macronutrient interactions were identified
for the risk of T2D from the literature. These interactions were not
replicated in the EPIC-InterAct study, which mirrored the analyses
undertaken in the original reports. Our findings highlight the impor-
tance of independent replication of reported interactions. Am J
Clin Nutr 2017;106:263–75.

Keywords: macronutrient, diet, gene, diabetes, interaction, effect
modification, systematic review, replication

Am J Clin Nutr 2017;106:263–75. Printed in USA. 263

 at Im
perial C

ollege London Library on July 13, 2017
ajcn.nutrition.org

D
ow

nloaded from
 

50094.DCSupplemental.html 
http://ajcn.nutrition.org/content/suppl/2017/06/07/ajcn.116.1
Supplemental Material can be found at:

http://ajcn.nutrition.org/
http://ajcn.nutrition.org/content/suppl/2017/06/07/ajcn.116.150094.DCSupplemental.html 
http://ajcn.nutrition.org/content/suppl/2017/06/07/ajcn.116.150094.DCSupplemental.html 


INTRODUCTION

Diabetes prevention is a global public health priority (1). Type 2
diabetes (T2D) arises after insulin secretory function fails to
maintain normoglycemia in the face of insulin resistance, often
secondary to obesity (2). Several large randomized controlled trials
demonstrated that physical activity and dietary interventions can
minimize the risk of or delay the onset of T2D (3–5). Beyond these
lifestyle factors, genetic variation also plays a role in the risk of
T2D, and .70 genomic loci have been implicated in its etiology
(6). Some investigators speculate that the identification of gene-
environment interactions (particularly gene-diet interactions)
might enable “personalized diets” aimed at stratifying dietary in-
terventions by genetic factors (7), as recently implemented based
on other biological variables such as the gut microbiome (8).

Among dietary factors, intake of macronutrients (carbohy-
drate, fat, protein) has been a major focus of public health dietary
guidelines worldwide. However, there is sparse confirmatory
evidence for gene-macronutrient interactions for T2D. The most
widely reported example is the interaction between genetic
variants in or near the transcription factor 7–like 2 gene
(TCF7L2) and dietary fiber and related dietary factors
(i.e., whole-grain intake) as markers of carbohydrate quality on
T2D risk (9–13). In addition to several narrative reviews (7, 14,
15), a systematic review examined lifestyle-gene interactions for
T2D and highlighted the poor quality of evidence available in
2007, owing to factors such as small sample size and the use of
cross-sectional designs (16). Larger prospective studies have
since been published, and far more genetic loci associated with
T2D risk have been identified. Furthermore, there are several
important gaps in knowledge about gene-macronutrient in-
teractions. First, past studies did not adequately control for
confounding, such as by population stratification and total
energy intake (17–19), or consider effects of isocaloric mac-
ronutrient substitution. Second, to our knowledge, objective
biomarkers of macronutrient intake (e.g., circulating levels of
PUFAs) have not yet been investigated systematically. Finally,
replication is limited to date and there is potential publication
bias (14).

We aimed to systematically review the literature relating to
gene-macronutrient interactions and T2D, including both self-
reported and objective markers of macronutrient intake and di-
etary fiber. In synthesizing summary evidence on interactions, our
group previously demonstrated that high heterogeneity between
studies prevents meaningful meta-analyses, so a narrative ap-
proach was undertaken for this review (20). We also aimed to
investigate the interactions identified from a literature-based
systematic review in a large prospective study, EPIC (Euro-
pean Prospective Investigation into Cancer)-InterAct (21), to
address research gaps relating to replication, confounding, and
isocaloric macronutrient substitution.

METHODS

Systematic review

This systematic review conformed to Meta-analysis of Ob-
servational Studies in Epidemiology guidelines proposed by
Stroup et al. (22) and to Human Genome Epidemiology Network
(HuGENet) guidelines (23, 24).

Studies were eligible if they reported incident or prevalent T2D
as an outcome and a statistical interaction between any genetic
exposure [single nucleotide polymorphisms (SNPs), genetic risk
score] and macronutrient intake. Macronutrient intake included
both quantity (total carbohydrate, fat, and protein intake) and
indicators of quality [dietary fiber, glycemic index, glycemic load
(GL), free sugars, SFAs, MUFAs, trans fatty acids (FAs), PUFAs,
dietary cholesterol, ratio of SFAs to PUFAs, linoleic acid,
a-linolenic acid, and animal and plant protein]. Whole-grain
intake was not included (see Supplemental Table 1 for details
on eligibility). In this study, “macronutrient” refers to both in-
dicators of intake (quantity and quality) and methods used to
assess intake (self-report and biomarkers such as circulating n–3
PUFAs or urinary nitrogen), unless otherwise specified. Ethanol
intake was not considered a macronutrient of interest in this
review because we focused on essential macronutrients for
physiologic function, as included in population dietary recom-
mendations. Studies that assessed other forms of diabetes
(e.g., type 1, gestational), examined nutrigenomics or quantita-
tive glycemic traits, or investigated the interaction between
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gene-lifestyle interventions without macronutrient assessment
were excluded.

Following a predefined protocol, electronic searches were
performed using MEDLINE, EMBASE, HuGENet, and the
Cochrane Library to identify studies published on or before 31
October 2015 (an example is available in Supplemental Table
2). To minimize publication bias, we searched the WHO In-
ternational Clinical Trials Registry Platform, gray literature
(e.g., GreyNet), and names of key authors and diabetes trials
and we also hand-searched relevant reviews. Medical Subject
Headings and specific terms (i.e., title, abstract, and key
words) were also used wherever possible to ensure sensitivity
within respective databases. No restrictions were placed on
language, age, publication date, or study design. Authors of
3 published studies (13, 25, 26) and 1 unpublished study
(clinicaltrials.gov NCT01168297) were contacted to either
assess eligibility or collect further data to conduct the review.
Two studies, 1 published (26) and 1 unpublished, were sub-
sequently determined to be ineligible. Studies were screened
by title and abstract for eligibility for full-text review. We
extracted information from each publication meeting the
eligibility criteria through the use of an agreed-upon data
extraction form on cohort characteristics (e.g., study design,
sample size, ethnicity, etc), covariates, statistical analyses,
and estimates of associations between 1) macronutrient
intake and T2D, 2) genetic variant and T2D, and 3) gene-
macronutrient interactions and T2D. Narrative synthesis was
undertaken.

An assessment for confounding, bias (selection, measurement,
attrition, outcome, and reporting), and genetic-specific issues
(genotyping quality, population stratification, multiple testing)
was undertaken through the use of a modified version of the
Cochrane guidelines for nonrandomized studies of interventions
to incorporate genetic issues highlighted by HuGENet (23, 27).
This broadly classified studies as being of low, moderate, serious,
or critical risk of bias.

Two authors (SXL and ZY) independently undertook every
stage of screening, selection, data extraction, and quality as-
sessment in duplicate and resolved any disagreements by dis-
cussion with 2 other authors (NGF and RAS).

EPIC-InterAct study

To investigate the reproducibility of the statistically signif-
icant interactions identified by our systematic review, we examined
them in a large-scale study (EPIC-InterAct). EPIC-InterAct par-
ticipants provided informed consent and an ethics committee
approved the study (21). EPIC-InterAct is a case-cohort study
nested within the EPIC study (28) composed of 12,403 individuals
with T2D and a randomly assigned subcohort of 16,154 in-
dividuals, as previously described (21). Data on lifestyle variables
were collected from questionnaires that participants completed at
baseline (from 1991). Follow-up was censored at the date of T2D
diagnosis, 31 December 2007, or the date of death, whichever
occurred earlier. Our current analyses were based on a smaller
subset of EPIC-InterAct with available macronutrient and genome-
wide genotyping data, representing 8 European countries (n = 9403
cases and 11,745 noncases for analyses on macronutrient intake;
n = 9937 cases and 12,336 noncases for analyses on circulating
FAs).

DNA extraction, genotyping, and SNP selection

Methods for DNA extraction from blood samples and geno-
typing were previously described (21). Briefly, participant
samples were genotyped on Illumina 660W-Quad BeadChip or
Illumina HumanCore Exome Chip arrays (12v1 and 24v1) and
were imputed to the Haplotype Reference Consortium using
IMPUTE software (version 2.3.2; http://mathgen.stats.ox.ac.
uk/impute/impute_v2.html). SNPs that were identified in the
systematic review to significantly interact with macronutrients
were carried forward for analysis in EPIC-InterAct. All SNPs
met quality control criteria for the genotyping call rate ($95%)
or were well imputed (imputation accuracy information metric
$0.99). Genotypes were in Hardy-Weinberg equilibrium.

Self-reported and objective biomarkers of macronutrient
intake

Habitual self-reported macronutrient intake data were derived
from the validated self- or interviewer-administered country-
specific food-frequency questionnaire (FFQ) or dietary histo-
ries taken at baseline (29, 30), with nutrient composition derived
from the EPIC Nutrient DataBase (31). Baseline circulating
plasma phospholipid FAs were profiled using a high-throughput
automated gas chromatography method (32).

Statistical analyses

Macronutrients were evaluated either as the percentage of total
energy intake, dietary fiber as density of energy intake (1 g/1000 kcal),
grams of carbohydrate for GL (previously described) (33), or the
percentage of total circulating plasma phospholipid FAs. Total
energy includes energy from carbohydrate, fat, protein, and al-
cohol intake. We assumed additive models for all genetic variants
unless previously published studies demonstrated a more ap-
propriate alternative. Multiplicative interactions between SNPs
and macronutrient intake on incident T2D were analyzed using
Prentice-weighted Cox regression (34) by including a product
term between the SNP and macronutrient intake. Crude and
multivariable-adjusted models were analyzed within countries
and HRs were combined using random-effects meta-analysis to
account for variation between countries. Between-country het-
erogeneity was assessed with Cochran’s Q test and I2. Each
macronutrient was categorized based on the distribution of the
macronutrient intake within the subcohort sample, excluding
outliers (63 SD from the mean). To account for between-
country variations in dietary intake, categorization was per-
formed per country and country-specific Cox regression was
then conducted. Because categorization was performed in each
country, the pooled category-specific ranges may appear to
overlap. However, individuals were mutually exclusive within
each category by country. Two approaches to modeling were
taken: a replication model adopted the same covariates as those
reported in the published study identified in the systematic re-
view, and a modified model accounted for isocaloric macronu-
trient substitution and additional confounders that may bias
interaction results (19) (the Supplemental Methods provide
further rationale and description). For 2 replication analyses, we
excluded EPIC-InterAct centers (Potsdam and Malmö) that
contributed to previous analyses (10, 35). For example, the in-
teraction between caveolin 2 (CAV2) and total fat and SFAs
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identified by Fisher et al. was examined in the EPIC-Potsdam
study, so Potsdam was excluded from our EPIC-InterAct analysis.

We undertook complete case analyses so that those with
missing macronutrient intake, genetic data, or covariates were
excluded. Stata software (version 14; StataCorp LP) was used for
all analyses, with a P-interaction , 0.05 judged as statistically
significant on the basis that each interaction was considered an
independent replication attempt.

RESULTS

Systematic review

Of 4003 records screened, 13 publications were included in
this review (Figure 1). Four were cross-sectional studies (25,
36–38), 2 were case-control studies (13, 39), 1 was a family-
based association study (40) and 6 were prospective (cohort or
case-cohort) studies (10, 11, 35, 41–43). Study populations
ranged from 805 (38) to 24,840 (41) participants (n = 165–1649
cases). Participants had a mean age of 50 y and were overweight
on average [mean BMI (in kg/m2): 27]. All studies examined a
self-reported diet (n = 12) except one, which measured eryth-
rocyte phospholipid n–3 PUFAs (39). Across the studies ex-
amined, all macronutrients were represented except for protein
quality (animal or plant protein). We examined interactions
between macronutrients and SNPs from 9 candidate genetic loci
[TCF7L2, gastric inhibitory polypeptide receptor (GIPR), insu-
lin receptor substrate 1 (IRS1), peroxisome proliferator–activated
receptor g (PPARg), apolipoprotein A2 (APOA2), CAV2, fatty acid
binding protein 1/2/3/4 (FABP1/2/3/4), PPARg coactivator-1a
(PGC-1a), and peptidase D (PEPD)] and a genetic risk score
comprising variants in 15 T2D-associated loci (36). High het-
erogeneity in macronutrient categorization, genetic model, sta-
tistical interaction method, and reporting was evident.

Gene-macronutrient interactions from the systematic
review

The following 8 interactions between SNPs and macronutri-
ents were reported to be significant: 2 SNPs in the TCF7L2 gene
with dietary fiber (10, 11), another TCF7L2 variant with GL
(13), 1 SNP in GIPR with total fat and carbohydrate intake
(41), 1 SNP in CAV2 with total fat and SFAs (35), and 1 SNP in
PEPD with erythrocyte phospholipid n–3 PUFAs (39). These
interactions are summarized in Table 1 (magnitude of effects in
Supplemental Table 3) and are described next.

Several studies examined variants in or near TCF7L2, the
common variant with the strongest association with T2D (6). In
particular, the interaction with dietary fiber was the most widely
examined (n = 4 studies), although it was inconsistently repli-
cated. One study reported that the effect of the T allele of
rs7903146 (within TCF7L2) on T2D risk was significantly in-
creased with higher intakes of total dietary fiber (10), which was
corroborated by another study investigating cereal fiber (11).
However, the results of 2 other studies were discordant (13, 36).
In addition, Cornelis et al. (13) observed another interaction
among US women, in which T allele carriers demonstrated in-
creased odds of T2D with diets higher in GL.

One study reported that carriers of the A allele for an SNP
(rs10423928) within GIPR, a candidate gene chosen based on

the hypothesis that it encodes the receptor for the incretin hor-
mone gastric inhibitory polypeptide (41), had a lower 12-y in-
cidence of T2D only if they also consumed a diet higher in fat or
lower in carbohydrate (41).

Another study followed up CAV2 (rs2270188) for interaction
with fat intake after exploratory analysis. This gene encodes a
protein found on the surface of caveolae (small invaginations of
cellular plasma membranes) and may be involved in lipid me-
tabolism. CAV2 has not previously been associated with T2D
(OR for rs2270188: 0.99; 95% CI: 0.97, 1.01; P ¼ 0.49; Sup-
plemental Table 4) (44). The authors found that compared with
individuals with the GG genotype, those with the TT genotype
had a higher risk of T2D when they consumed diets higher in
total fat and SFAs (35).

In a Chinese case-control study, Zheng et al. (39) reported an
interaction between circulating n–3 PUFAs and PEPD, which
encodes a peptidase involved in proline recycling and collagen
production. Within the gene PEPD, rs3786897 has been asso-
ciated with T2D in Asians (45). Compared with those with a GG
genotype, individuals with a GA or AA genotype were found to
be at higher risk of T2D only among adults possessing lower
levels of n–3 PUFAs (#5.33% of total circulating phospholipid
PUFAs).

Four studies investigated the interaction between FA intake
and SNPs in or near PPARg on T2D risk but identified no sta-
tistically significant interactions. This was also the case for
studies examining interactions with IRS1, APOA2, FABP1/2/3/4,
PGC-1a and a T2D-associated genetic risk score.

Assessment of risk of bias and quality of evidence

All studies included in the review were observational and rated
either at moderate (n = 8) or serious risk of bias (n = 5) (see
Supplemental Table 3 for more information). Of the 6 studies
reporting interactions, 3 did not account for multiple testing
correction (a , 0.05) when examining several macronutrients
and/or SNPs (e.g., an exploratory study examining 64 SNPs with
4 FAs; a total of 256 tests) (10, 35, 41). Two studies that
published a statistically significant interaction included accom-
panying replication results (35, 37). Many studies did not adjust
for known confounders. Confounders such as total energy
intake, physical activity, and population stratification were
frequently ignored (39, 43, 46). Population stratification, in
particular, was considered in only one study (25). Other con-
cerns included the validity and reliability of the dietary mea-
surement tool (11, 36, 38, 43) and possible selective analysis and
reporting (25, 38).

Findings in EPIC-InterAct

The EPIC-InterAct population used for this analysis was
broadly similar to the average population characteristics of the
cohorts from the systematic review. The mean age at baseline was
52.3 y and 55.7 y for noncases and cases, respectively. Partici-
pants were overweight, with a mean BMI of 25.8 and 29.7 for
noncases and cases, respectively (Supplemental Table 5). As-
sociations between SNPs and T2D were comparable with the
previously published genome-wide meta-analysis of genetic
variants for T2D (Supplemental Table 4) (44).
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We found no significant interactions for any of the replication
analyses in EPIC-InterAct that were comparable to the model
specifications in the published literature. Figure 2A shows that
compared with the original report (P-interaction = 0.049) (1649
cases of T2D/24,799 total) (10), we failed to replicate the sig-
nificant interaction between TCF7L2 rs7903146 and dietary fiber

intakes for incident T2D in EPIC-InterAct (P-interaction = 0.97)
(8012 cases of incident T2D/18,292 total). The covariates in-
cluded in each model are detailed in the figure legend. We also
did not observe any interaction in EPIC-InterAct by subtypes of
dietary fiber (cereal, vegetable, or fruit fiber) (P-interaction$ 0.27)
(Supplemental Figure 1). Figure 2B shows no replication of the

FIGURE 1 Flow diagram of the systematic review for gene-macronutrient interactions and the risk of T2D. Numbers are not mutually exclusive. aThis
does not include exploratory studies that examined many candidate genes. GI, glycemic index; GL, glycemic load; T2D, type 2 diabetes.
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interaction between TCF7L2 and GL for the risk of developing
T2D (P-interaction = 0.58) as previously detected by Cornelis et al.
(13). Similarly, we did not detect a significant interaction reported
between rs10423928 (in GIPR) and carbohydrate or fat intake for
incident T2D (P-interaction = 0.79 and 0.25, respectively) (41)
(Figure 3). At CAV2, where an interaction was reported between
both total fat and SFA intake with rs2270188 (35), we found no
evidence to support this in EPIC-InterAct (P-interaction = 0.76 and
0.95, respectively) (Figure 4). In additional analysis, however, we
detected a significant interaction when Potsdam, the center origi-
nally analyzed in the previous publication (35), was analyzed in-
dependently (P-interaction ¼ 1.01 3 1026 and 0.001 for total FAs
and SFAs, respectively). The interaction between rs3786897 (within
PEPD) and circulating n–3 PUFAs reported by Zheng et al. (39)
was also not observed in EPIC-InterAct (P-interaction = 0.58)
(Figure 5).

There was also no evidence of any significant interaction in our
more detailed analysis that accounted for additional potential

confounders and isocaloric macronutrient substitution (Supple-
mental Figures 1–4).

DISCUSSION

We identified 13 articles reporting gene-macronutrient in-
teractions on T2D from our systematic review, but we did not find
any consistently replicated evidence for gene-macronutrient in-
teraction in the etiology of T2D.

Challenges in identifying and replicating gene-
macronutrient interactions

Differences observed between findings from the published studies
and EPIC-InterAct re-emphasize the challenges in studying gene-
diet interactions. Selective reporting through limited consideration
for multiple testing in studies examining multiple SNPs and/or
macronutrients, without a justified predefined hypothesis and lack of

FIGURE 2 Interaction between genetic variants within TCF7L2 and dietary fiber or GL: comparison between studies by Hindy et al. (10) and Cornelis et al. (13)
with EPIC-InterAct. (A) ORs from Hindy et al. (10) (top) and pooled HRs from EPIC-InterAct (bottom) for T2D per T allele of rs7903146 (TCF7L2) and quintiles of
dietary fiber (expressed in g/1000 kcal). Hindy et al. (10) adjusted for age, sex, BMI, total energy intake, season, and method (dietary intake assessment method). The
EPIC-InterAct replication model adjusted for age (equal to the underlying time scale), sex, study center, BMI, total energy intake, and season, excluding the Malmo
EPIC-InterAct center. (B) ORs from Cornelis et al. (13) and HRs from EPIC-InterAct for T2D per T allele of rs12255372 (TCF7L2) by tertiles of GL (in grams).
Cornelis et al. (13) adjusted for age, BMI, smoking status, alcohol intake, coffee consumption, menopausal status, physical activity, energy-adjusted ratio of PUFAs to
SFAs, and trans fat and cereal fiber intake for women only. EPIC-InterAct adjusted for age (equal to the underlying time scale), study center, BMI, smoking status,
alcohol intake, coffee consumption, menopausal status, physical activity, energy-adjusted ratio of PUFAs to SFAs, and cereal fiber intake. Given that Cornelis et al. (13)
evaluated this interaction in a female cohort (Nurses’ Health Study), the EPIC-InterAct analysis was conducted for women only. P-interaction values for EPIC-InterAct
were estimated by treating macronutrients and SNPs as continuous variables. Heterogeneity between countries was not significant in the EPIC-InterAct study (I2 = 0%
and 1% in panels A and B, respectively). Two SNPs (rs7903146 and rs12255372) were in moderate linkage disequilibrium (CEU, r2 = 0.7). The sample size for the EPIC-
InterAct analysis of the interaction between dietary fiber and TCF7L2 interaction was 18,292, whereas the sample size was 11,992 (women only) for the interaction
between GL and TCF7L2. Multiplicative interaction analysis was performed with Prentice-weighted Cox regression. CEU, Northern Europeans from Utah; EPIC,
European Prospective Investigation into Cancer; GL, glycemic load; SNP, single nucleotide polymorphism; T2D, type 2 diabetes; TCF7L2, transcription factor 7–like 2.
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replication, is one of several possible methodologic explanations for
this inconsistency. As discussed in previous reviews, other factors
that may explain why we find different results from those of the
published studiesmay include heterogeneity in dietarymeasurement,
study population, study design, or analysis and reporting (14, 47–49).

Given the large number of variants tested on a genome-wide
scale, stringent correction for multiple testing in hypothesis-free
genetic epidemiologic analyses has attempted to minimize the
false-positive rate (50). However, approaches for interaction
studies have been less consistent. We found in our review that
studies often used a nominal P , 0.05 as the threshold for re-
jecting the null, even when performing many tests (10, 11, 13, 35,
41). For example, 1 study performed an exploratory analysis of
256 gene-macronutrient interactions and used P , 0.05 for re-
jecting the null (35). Two of the 6 studies that reported significant
interactions would have passed multiple testing corrections
after Bonferroni correction (11, 41), whereas 1 study adopted
Bonferroni-corrected P values (39). Therefore, we consider false-
positive reports as a potential explanation for the discordant

findings between EPIC-InterAct and published reports. Although
debate continues about whether an optimal P value threshold
should exist for interaction studies (51), researchers should ac-
count for potential inflation of a false-positive rate when con-
ducting multiple-interaction analyses in the future (e.g., by using
methods such as the “effective number of independent tests”)
(52), preferably with independent replication in additional studies.
As evidenced by genome-wide association studies, the design of
genetic studies allows for relatively straightforward in silico
replication, yet few gene-macronutrient interaction studies have
been followed with independent replication (10, 11, 13, 39, 41).
Arguably, variations in dietary assessment methods introduce
more difficulty in identifying suitable replication sources. For
instance, although 4 independent studies included in our review
examined the interaction between TCF7L2 and dietary fiber or
related fiber subtypes (10, 11, 13, 36), it is arguable how com-
parable their methods are. For example, in relation to dietary
assessment and degree of measurement error: 2 studies used an
FFQ (11, 13), 1 used a 24-h recall (36), and 1 used a combined

FIGURE 3 HRs of incident T2D per A allele of rs10423928 (GIPR) by tertiles of macronutrient intake: comparison between Sonestedt et al. (41) and
EPIC-InterAct. (A and B) HRs from Sonestedt et al. (41) (top) and pooled HRs from EPIC-InterAct (bottom) for both total carbohydrate intake (A) and total
fat intake (B). Sonestedt et al. (41) adjusted for age, sex, physical activity, education, smoking status, sex-specific alcohol categories, season, TEI, method, and
BMI. EPIC-InterAct replication adjusted for age (equal to the underlying time scale), sex, center, physical activity, education, smoking status, sex-specific
alcohol categories, season, TEI, and BMI. P-interaction values for EPIC-InterAct were estimated by treating macronutrients and rs10423928 as continuous
variables. Heterogeneity between countries was not significant in the EPIC-InterAct study (I2 = 17% and 19% in panels A and B, respectively). The total
sample size for the EPIC-InterAct analysis was 21,148. Multiplicative interaction analysis was performed with Prentice-weighted Cox regression. EPIC,
European Prospective Investigation into Cancer; GIPR, gastric inhibitory polypeptide receptor; TEI, total energy intake; T2D, type 2 diabetes.
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FFQ, diet history, and 7-d diary (10). There were also differences in
study design: 2 studies were prospective (10, 11) and 2 were cross-
sectional (13, 36), which may be subject to differing levels of bias
and ability to determine the direction of effect. Finally, analytic
methods varied by whether variables were treated as continuous or
categorical and what covariates were controlled for. However, in-
ternally conducted replication would reduce variation in analysis.
Researchers may consider both observational or intervention set-
tings, in which genotype-driven recruitment methods may aid in
maximizing statistical power (53).

We tried to mirror the population and analyses conducted in
EPIC-InterAct with those of the published studies reporting an
interaction, and we showed comparable characteristics except with
one study in which ethnicity was different (an Asian population was
examined) (39). However, we cannot exclude possible heterogeneity
between studies. This may include differences in study design (only
one published study used a case-cohort study design similar to

EPIC-InterAct) and unmeasurable inconsistencies in dietary ex-
posures (e.g., food composition, preparation methods, measurement
tool used, coding of exposures) between countries within EPIC-
InterAct and between EPIC-InterAct and the published studies.
Indeed, this was evident for the interaction between CAV2with total
fat and SFAs, which showed center specificity. Within the German
centers, an interaction was detected for the Potsdam EPIC-InterAct
center but not Heidelberg, resulting in an overall lack of interaction
for Germany. However, the percentage of total variation attribut-
able to heterogeneity across the countries within EPIC-InterAct
was low to moderate for interactions under the replication model
(I2: 14–30%). The consistently null findings across different coun-
tries of EPIC-InterAct strengthen the inference from this overall
null finding. Another possible contributor to the disparity between
results (e.g., relating to TCF7L2 and dietary fiber) may be over-
estimation by certain estimation parameters (e.g., ORs), which
could lead to an inflated difference between fiber categories (54).

FIGURE 4 HRs of incident T2D per 1% TEI increase in macronutrient intake, stratified by CAV2 rs2270188 genotype: comparison between Fisher et al.
(35) and EPIC-InterAct. HRs from Fisher et al. (35) (top) and pooled HRs from EPIC-InterAct (bottom) for both total fat intake (A) and saturated fat intake
(B). Fisher et al. (35) adjusted for sex, age, TEI, and BMI (P-interaction values were obtained using results from the confirmatory case-cohort study under the
additive genetic model). The EPIC-Interact replication model was adjusted for age (equal to the underlying time scale), sex, center, TEI, and BMI, excluding
the EPIC-InterAct Potsdam center. To note, the classical interaction model was adopted, not the genotype-specific model reported in Fisher et al. (35), because
of the stated equivalence of the 2. P-interaction values were estimated by treating macronutrients and rs2270188 as continuous variables. In the EPIC-InterAct
study, heterogeneity between countries was moderate (I2 = 41% and 34% in panels A and B, respectively). The total sample size for the EPIC-InterAct analysis
was 19,477. Multiplicative interaction analysis was performed using Prentice-weighted Cox regression. CAV2, caveolin 2; EPIC, European Prospective
Investigation into Cancer; TEI, total energy intake; T2D, type 2 diabetes.
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The methodologic issues described above highlight difficulties
in discerning whether type I error or true heterogeneity un-
derlies the inconsistencies we observed and are similar to those
faced in the broader gene-environmental literature (51, 55).
For gene-environment interactions, recommendations have
been made for improving standards in design, analysis, and
reporting, which are also relevant for gene-diet studies (14,
24). For example, Cornelis suggested minimizing publication
bias by publishing both positive and negative interaction
findings and reporting them in supplemental materials if nec-
essary (14).

Strengths and limitations

A potential limitation of our systematic review is that the
heterogeneity between the published studies (i.e., in study design,
statistical analysis, and reporting) did not enable a quantitative
synthesis (e.g., meta-analysis) or formal statistical evaluation of
publication bias, as previously demonstrated by Palla et al. (20).
We did, however, use a comprehensive search strategy and
attempted to minimize publication bias by contacting authors of
studies possibly examining interactions (n = 4).

As the largest study of incident T2D cases (.5 times that of
previous studies) with both genetic data as well as measures of
self-reported macronutrient intake and objective circulating FAs
to date, EPIC-InterAct is well positioned to examine these

reported interactions (power calculations available in Supple-
mental Table 6). The prospective design minimizes the potential
bias owing to reverse causality for dietary exposures. In addition,
to our knowledge, this is the first study of gene-macronutrient
interactions that has investigated the effect of isocaloric macro-
nutrient substitution in the observational setting. This is important
for public health interpretation of macronutrient density if total
daily energy intake is fixed, because the benefit of decreasing one
macronutrient may be dependent on which macronutrient replaces
it. Several limitations must be considered while interpreting
these results. Our analyses only investigated a select number of
interactions that have been reported in the literature. Hence,
this does not preclude the possibility that there may be in-
teractions between other dietary factors (including foods and
dietary patterns) and other genes or combined gene scores.
Moreover, our focus was on examining possible type I error.
Given that we did not examine interactions that did not reach
statistical significance in published studies (possible type II
error), we cannot preclude the presence of genuine interactions
among those loci we did not test. Alternative study designs
may be better suited to investigate the presence of these in-
teractions (56). Variations in dietary assessment between
EPIC-InterAct centers may contribute to potential variation in
measurement error for macronutrients. The current literature
consists of studies primarily from European populations, which
limits the generalizability of our findings.

FIGURE 5 Interaction between genotypes for rs3786897 (PEPD: GA vs. GG) and the percentage of TPFAs that are circulating n–3 PUFAs: comparison
between Zheng et al. (39) and EPIC-InterAct. ORs from Zheng et al. (39) (top) and pooled HRs from EPIC-InterAct (bottom) for T2D. Zheng et al. (39) adjusted for
age and sex. The EPIC-InterAct replication model adjusted for age (equal to the underlying time scale), sex, and center. P-interaction values were estimated by
treating circulating n–3 PUFAs as dichotomous and PEPD rs3786897 as continuous variables. In EPIC-InterAct, heterogeneity between countries was not significant
(I2 =15%). The total sample size for the EPIC-InterAct analysis was 22,273. Multiplicative interaction analysis was performed with Prentice-weighted Cox regression.
EPIC, European Prospective Investigation into Cancer; PEPD, peptidase D; TEI, total energy intake; TPFA, total phospholipid fatty acid; T2D, type 2 diabetes.
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Implications for public health and research

Our study highlights the importance of independent replication
in studying interactions and the need to improve standards in
conducting and reporting future interactions. Moreover, our review
reveals a gap in noncandidate gene approaches to examining gene-
macronutrient interactions. This includes genetic risk scores and
genome-environment–wide interaction studies. Given that we
found no promising gene-macronutrient interactions and that
genetic variants most relevant for interactions may be those with
weak or no marginal effects (7, 57), genome environment–wide
interaction studies may aid in discovering novel interactions at
potentially unexpected genetic loci. Furthermore, we highlight that
on the basis of the interactions examined here, there is currently no
evidence to support genetic personalization of macronutrient in-
take recommendations as a strategy to prevent T2D.

Based on the issues highlighted in our review, we recommend
that investigators consider the following in future research ex-
amining gene-macronutrient interactions. Within-study consid-
erations include 1) specifying the hypothesis of the study and
accounting for multiple testing, as appropriate; 2) reporting all
interaction results and whether they were analyzed as pre-
planned or post hoc, regardless of whether findings are positive,
negative, or null; and 3) ensuring that notable interaction find-
ings are accompanied by independent replication where possible
(if this is not feasible, the reasons for and validity of non-
replicated findings should be discussed). General considerations
for studies within the field include 1) improving consistency and
standards in examining and reporting interactions (14, 24, 58),
2) conducting studies examining non-European populations, and
3) applying isocaloric macronutrient substitution.

In conclusion, although there is growing interest in personalized
diets tomore effectively combat T2D, none of the gene-macronutrient
interactions currently reported in the literature could be replicated
in a large-scale EPIC-InterAct study. Improving standards in ex-
amining and reporting interactions, including independent repli-
cation, will be vital to making progress in this area.
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