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Obesity increases pre-eclampsia (PE) risk. Adipose tissue inflammation may contribute to
the clinical syndrome of PE. We compared adipose tissue macrophage infiltration and re-
lease of pro-inflammatory adipokines in PE and healthy pregnancy. Subcutaneous and vis-
ceral adipose tissue biopsies were collected from healthy (n=13) and PE (n=13) mothers.
Basal and lipopolysaccharide (LPS) stimulated adipocyte TNFα, IL-6, CCL-2, and CRP re-
lease was measured. Adipose tissue cell densities of activated (cfms+) and total (CD68+)
macrophages were determined. In PE only, visceral adipose tissue TNFα release was in-
creased after LPS stimulation (57 [76] versus 81 [97] pg/ml/μg DNA, P=0.030). Basal
TNFα release was negatively correlated insulin sensitivity of visceral adipocytes (r = −0.61,
P=0.030) in PE. Visceral adipocyte IL-6 release was increased after LPS stimulation in
PE only (566 [696] versus 852 [914] pg/ml/μg DNA, P=0.019). Visceral adipocyte CCL-2
basal (67 [61] versus 187 [219] pg/ml/μgDNA, P=0.049) and stimulated (46 [46] versus 224
[271] pg/ml/μg DNA, P=0.003) release was greater than in subcutaneous adipocytes in PE
only. In PE, median TNF mRNA expression in visceral adipose tissue was higher than con-
trols (1.94 [1.13–4.14] versus 0.8 [0.00–1.27] TNF/PPIA ratio, P=0.006). In visceral adipose
tissue, CSF1R (a marker of activated macrophages) mRNA expression (24.8[11.0] versus
51.0[29.9] CSF1R/PPIA ratio, P=0.011) and activated (cfms+) macrophage count (6.7[2.6]
versus 15.2[8.8] % cfms+/adipocyte, P=0.031) were higher in PE than in controls. In con-
clusion, our study demonstrates dysregulation of inflammatory pathways predominantly in
visceral adipose tissue in PE. Inflammation of visceral adipose tissue may mediate many of
the adverse metabolic effects associated with PE.

Introduction
Pre-eclampsia (PE) occurs in 2–4% of all pregnancies and is a leading cause of maternal and neonatal
morbidity and mortality. There is considerable evidence that maternal obesity, increased insulin resis-
tance, inflammation, and aberrant fatty acid metabolism are involved in the pathogenesis of PE [1,2].
The link between adiposity, inflammation, and insulin resistance has been increasingly acknowledged
since Hotamisligil et al. [3] first demonstrated this relationship in 1993, and there has been extensive
research into elucidating the mechanisms which link these conditions. White adipose tissue secretes
a number of pro-inflammatory mediators which contribute significantly to the chronic inflammatory
state and metabolic complications of obesity [4]. It is plausible that similar disturbances in adipocyte
function could contribute to the development of the clinical syndrome of PE, a state of inflammation
and insulin resistance. Indeed we have previously shown that third trimester subcutaneous adipocyte
lipolysis is more resistant to insulin suppression in PE compared with healthy pregnancy [5]. Visceral
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adiposity also correlates with metabolic risk factors [6] and adverse metabolic outcomes in pregnancy including ges-
tational diabetes mellitus, and PE [7-9].

It is now well recognized that macrophages are one of the key mediators of adipose inflammation and promoters
of insulin resistance in white adipose tissue [10]. Analogous to the Th1/Th2 concept of T-cell activation, M1/M2
polarization has been described for macrophages. M1 are pro-inflammatory ‘classical’ macrophages, in contrast with
M2 or ‘alternatively activated’ macrophages which have an anti-inflammatory phenotype [11]. In obesity, there is
increased macrophage recruitment and retention with a shift toward the more pro-inflammatory M1 phenotype [12].
Macrophage phenotype also plays a role in the stability of atherosclerotic plaques [13]. The alteration in the cellularity
of adipose tissue contributes to adipose inflammation and altered production of adipokines. It also promotes insulin
resistance through dysregulation of glucose and lipid metabolism and inhibition of insulin signaling, via paracrine
and endocrine effects [14]. The action of inflammatory macrophages may represent one of the key links between
adiposity and its metabolic complications including those occurring in pregnancy.

Recently soluble fms-like tyrosine kinase-1 (sFlt-1), a soluble form of the vascular endothelial growth factor
(VEGF) receptor has been shown to be secreted by adipocytes in the non-pregnant [15]. VEGF is a key cytokine that
regulates angiogenesis, is produced by the placenta and other tissues, and is critical for placental development. Plasma
sFlt-1 levels are significantly higher in PE compared with controls [16]. Excessive sFlt-1 can bind VEGF thus neutral-
izing its effects, inhibiting angiogenesis and contributing to the development of PE [17]. Plasma sFlt-1, expressed as
a ratio to placental growth factor, is proposed as a prognostic test for PE [18]. sFlt-1 production by adipocytes in PE
has not been studied.

We hypothesized that adipocyte release of pro-inflammatory adipokines is exaggerated under both basal and
stressed conditions in PE compared controls. We also hypothesized that adipose tissue macrophage infiltration is
increased in women with PE, thereby implicating adipocyte function in its pathophysiology. This pathological re-
sponse may be more apparent in one particular adipose depot i.e. visceral adipose tissue rather than subcutaneous
adipose tissue. The aims of the study were to determine the release of IL-6, TNFα, CRP, CCL-2, and sFlt-1 from
subcutaneous and visceral adipocytes under basal conditions and when stimulated by lipopolysaccharide (LPS). In
addition, macrophage counts of both total (CD68+) and activated (cfms+) macrophages in subcutaneous and visceral
adipose tissue were compared. The gene expression of relevant adipokines was also measured in adipose biopsies.

Materials and methods
Recruitment and tissue collection
Healthy singleton non-laboring women at term (n=13) and non-laboring women with PE undergoing caesarean
section (n=13) were recruited from the Princess Royal Maternity Hospital, Glasgow. Controls were age- and body
mass index (BMI)-matched with women with PE. The study was approved by the Local Research Ethics Committee
and all women gave written informed consent. PE was defined according to the International Society for the Study
of Hypertension in Pregnancy criteria. None of the women had a medical history of cardiovascular or metabolic
disease. Subject characteristics, including age, booking (at first antenatal visit) BMI, were recorded at time of sampling
and smoking status recorded as current smoker or non-smoker. Details of maternal blood pressure around time of
delivery, gestation of delivery, mode of delivery, fetal sex, birth weight, and placental weight were recorded from the
patients’ notes. Early onset PE was defined as onset prior to 34 completed weeks of gestation. Severe PE was defined
by criteria outlined in the Hypertension in Pregnancy NICE clinical guideline 107. Customized birth weight centiles
were calculated using the Gestation Network Centile Calculator 5.4 http://www.gestation.net/birthweight centiles/
centile online.htm). Fasting venous blood was collected and harvested at 5◦C by low speed centrifugation within 30
min of collection and plasma was stored at −80◦C until analysis. Adipose tissue biopsies (subcutaneous and visceral)
were collected by the surgeon and a small section of each sample was ‘flash-frozen’ in liquid nitrogen and then placed
in pre-cooled metal containers to be stored at −80◦C until analysis. The remaining fresh sample was used to prepare
adipocytes.

Plasma metabolites
Plasma total cholesterol, triglyceride, and HDL cholesterol, glucose, and high sensitivity CRP assays were per-
formed by the Department of Clinical Biochemistry, Glasgow Royal Infirmary as previously described [19]. Plasma
non-esterified fatty acids (NEFA) were quantitated by commercial colorimetric assay (Wako, Alpha Laboratories,
Eastleigh, U.K.). Insulin (Mercodia, Sweden) was performed by commercial ELISA according to the manufacturer’s
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instructions. HOMA was calculated as follows: [fasting insulin (mU/l) × fasting glucose (mmol/l)]/22.5. Plasma lep-
tin, adiponectin, IL-6, TNFα, and VEGF R1/sFlt1 were carried out using commercial ELISA kits (all R&D Systems,
Abingdon, U.K.).

Adipose tissue lipolysis assay
Adipocyte preparation was by a modification of the method described by Rodbell [20], with temperature maintained
as near to 37◦C throughout. The method is described in detail in Huda et al. [5]. Fat cell number was measured indi-
rectly by quantitating the DNA content in a known volume of adipocyte suspension. The number of adipocytes are
directly proportional to the amount of adipocyte DNA content and lipolysis rates are expressed per μg of DNA. The
DNA was isolated from a known quantity of adipocyte suspension that was previously frozen at −70◦C and thawed
at room temperature using the Blood Prep DNA Purification protocol on the ABI PrismTM 6100 Nucleic Acid Prep-
Station (Applied Biosystems). The concentration of DNA was quantitated using Nanodrop R© ND 100. The diameters
of 100 adipocytes were manually measured using a stage micrometer and a mean calculated for each preparation
(Supplementary Figure S1). For information on the adipocyte profile from control and PE biopsies please refer to the
Supplementary Results (Supplementary Figure S1) of Huda et al. [5]. The fat cell insulin sensitivity index (FCISI) was
calculated as the percentage inhibition of isoproterenol-stimulated lipolysis by insulin.

Adipokine analysis
Paired samples of both basal (no reagent added to adipocyte cell suspension and buffer) and LPS (LPS concentration
of 1 μM to adipocyte cell suspension) were incubated. An aliquot of the buffer layer below the adipocyte suspension
at time 120 min was frozen at −80◦C for later analysis of cytokines. Adipokine quantitation, apart from sFlt-1, was
carried out with Bio-Plex (BIO-RAD R©) system and suspension array technology. The assay was customized to detect
and measure multiple adipokines (PAI-1 LOB1786, CCL-2 LUH279, CRP LOB1707, IL-6 LUH206, Leptin LUB398,
TNFα LUH210, Adiponectin LOB1065, IL-110 LUH217 R&D Systems) using the R&D Systems Obesity Base Kit
(LOB000). VEGF R1/sFlt1 was quantitated using a commercial ELISA kit (R&D Systems, Abingdon, U.K.).

Tissue mRNA expression quantitation
Total RNA was isolated from adipose tissue using the ABI PRISM 6100 Nucleic Acid Prepstation following man-
ufacturer’s instructions (Applied Biosystems, Warrington, U.K.). cDNA was reverse transcribed from RNA using
a High Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems, Warrington, U.K.) according to manufac-
turer’s instructions. Target gene expression was quantitated relative to a control gene [5,21] (PPIA Hs99999904 m1)
using commercial primer probe sets (CD68 Hs00154355-m1, CSF1R Hs99999197-m1, IL6 HS00174131-ms, TNF
Hs00174128-m1, CCL2 Hs00234140 m1, FLT1 Hs01052961 m1) Applied Biosystems, Warrington, U.K.) in a final
volume of 25μl on an 7900HT Sequence Detection System (Applied Biosystems, Warrington, U.K.) according to man-
ufacturer’s instructions. Quantitation analysis was carried out using SDS Version 2.3 software (Applied Biosystems),
which calculated the threshold cycle (CT) values. The expression of target assays were normalized by subtracting the
CT value of the endogenous control from the CT value of the target assay. The fold increase relative to the control
was calculated using the 2−�C

T. The expression of the target assay was then expressed as a percentage relative to the
endogenous control assay.

Macrophage cell densities
Immunocytochemistry was performed on 7 μM sections of paraffin-embedded adipose tissue biopsies using the
avidin: biotinylated enzyme complex method (see Supplementary Methods). The sample size was smaller (n=9) as
there was insufficient stored adipose tissue in four of the PE cases. The antibodies used were polyclonal anti-human
cfms (CBL776 Chemicon) and monoclonal anti-human macrophage CD68 (Dako-CD68, PG-M1 M876) which iden-
tify activated and total macrophages respectively. Macrophages were identified using histological analysis in ten ran-
domly selected high powered fields (×400 objective magnification) and were counted by two independent observers
who were blinded to the specimen details. The area for each high-powered field was 0.23 mm2. Macrophages within
the blood vessels were not included in the counts. Tissue macrophage densities were expressed as cell count per
adipocyte.
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Table 1 Characteristics of women with pre-eclampsia and age- and body mass index-matched controls

Characteristics Controls (n=13) PE (n=13) P-value PE versus controls

Demographic data

Age (years) 30.0 (5.9) 31.1 (6.3) 0.66

BMI (kg/m2)† 29.6 (6.4) 31.1 (8.3) 0.70

Smokers, number (%)§ 1 (7.6) 2 (15.4) 0.54

DEPCAT* 4 (4–6) 6 (4–7) 0.12

Gestation at delivery (weeks) 38.9 (1.4) 35.6 (3.2) 0.001

Primigravidae, number (%)§ 4 (30.8) 7 (53.8) 0.23

First antenatal visit systolic pressure
(mmHg)

116 (13) 127 (14) 0.054

First antenatal visit diastolic pressure
(mmHg)

71 (9) 78 (9) 0.060

Systolic Pressure at delivery (mmHg) 118 (14) 152 (29) 0.006

Diastolic Pressure at delivery (mmHg) 71 (8) 98 (7) <0.0001

Birthweight (g) 3414 (547) 2330 (926) 0.002

Birthweight centile 53 (32) 26 (33) 0.045

Biochemical data

Total cholesterol (mmol/l) 6.45 (0.90) 6.41 (1.45) 0.93

Triglyceride (mmol/l)† 2.57 (0.65) 3.73 (2.36) 0.044

HDL cholesterol (mmol/l) 1.84 (0.41) 1.71 (0.42) 0.43

NEFA (mmol/l)‡ 0.39 (0.20) 0.58 (0.24) 0.037

Glucose (mmol/l) 4.88 (0.52) 5.31 (1.24) 0.26

Insulin (mU/l)† 12 (9) 17 (13) 0.33

HOMA† 2.7(1.9) 4.3 (3.8) 0.29

Leptin (mg/ml)† 50 (23) 85 (42) 0.078

Adiponectin (μg/ml) 9.9 (4.5) 9.0 (4.8) 0.62

IL-6 (pg/ml)† 2.7 (1.0) 3.8 (3.2) 0.91

TNFα (pg/ml)† 0.94 (0.4) 1.54 (0.7) 0.024

CRP (mg/l)† 5.6 (4.3) 23.5 (55.5) 0.90

sFlt-1 (ng/ml)† 3.4 (1.8) 18.6 (14.7) <0.001

SAT cell size (μm) 110 (10) 110 (11) 0.94

VAT cell size (μm) 86 (11.4) 87.4 (16) 0.80

Continuous values are expressed as mean and standard deviation (*median and interquartile range) and categorical variables as number (percent).
Comparisons between women with PE and controls were carried out by two sample t-test, on †log or ‡square root transformed data if necessary, or by
*Mann–Whitney or §chi-squared test.
(SAT: subcutaneous adipose tissue, VAT: visceral adipose tissue, DEPCAT: Carstairs and Morris index of deprivation 1-most affluent, 7-most deprived)

Statistical analysis
Data were assessed for normal distribution using a Ryan-Joiner test and transformed to achieve a normal distribu-
tion where necessary. Means with SD are presented for normalized data. Median and interquartile range are pre-
sented for non-parametric data. Comparison within individuals was by paired t-test (subcutaneous adipose tissue
versus visceral adipose tissue and basal versus LPS stimulated) and between PE and control groups by two sample
t-test or Mann–Whitney test as appropriate. Mann–Whitney and χ2 tests were used to test between differences in
semi-categorical and categorical variables respectively. For adipocyte sFlt-1 secretion, which included many zero val-
ues, the Wilcoxon rank sum test was used to test differences between groups. Pearson’s correlation coefficients and
regression analysis were calculated to assess associations between variables, and results were expressed as r value, R2

and P-value. A P-value of <0.05 was considered significant. The data were adjusted for potential cofounders using
the General Linear Model. All statistical analysis was carried out in Minitab (version 17).

Results
Maternal antenatal booking characteristics and third trimester plasma
metabolic and inflammatory profile
Maternal antenatal booking characteristics (11–14 weeks) for women with PE and controls matched for age, BMI, and
smoking are shown in Table 1. Women with PE had a tendency for a higher booking systolic and diastolic blood pres-
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Figure 1. Adipocyte TNFα release

Basal and lipopolysaccahride (LPS) stimulated TNFα (pg/ml/μgDNA) secreted by maternal subcutaneous adipose tissue (SAT) adipocytes

and visceral adipose tissue (VAT) adipocytes in control pregnancy (n=13) and in pregnancies complicated by PE (n=13) is shown. Means and

standard deviations are presented. *P<0.05 basal versus LPS stimulated TNFα release analyzed by paired t-test on square root transformed

data.

sure, were delivered at an earlier gestation and offspring were of lower birth weight centile than controls. Pre-delivery
diagnostic blood pressure was higher in PE (Table 1). Twelve out of thirteen had late onset PE (onset after 35 weeks
of gestation) and eight out of thirteen had severe PE as defined in NICE guideline 107. Plasma sFlt-1 levels were sig-
nificantly higher in PE than control women (P<0.001). In addition, mothers with PE had higher plasma triglyceride
and NEFA than controls. Maternal serum TNFα was also 64% higher in PE than controls (P=0.024).

Adipocyte TNFα release
There were no differences in either basal or stimulated TNFα release between subcutaneous and visceral adipocytes.
Basal subcutaneous adipocyte TNFα release in in PE was higher than in controls (control mean [SD] 31 [27] versus
PE 62 [57] pg/ml/μg DNA) but this was not significant (P=0.09) (Figure 1). In controls there was a trend for sub-
cutaneous adipocyte TNFα release to increase after stimulation with LPS (31 [27] versus 54 [55] pg/ml/μgDNA,
P=0.051), reaching similar levels to that released by unstimulated PE subcutaneous adipocytes. In PE, subcuta-
neous adipocyte TNFα release was high under both unstimulated and stimulated conditions (54 [55] versuss 51
[43]) pg/ml/μgDNA, P=0.86). In visceral adipocytes from women with PE, there was a significant increase in TNFα
release in response to LPS stimulation (57 [76] versus 81 [97] pg/ml/μg DNA, P=0.030) which did not occur in
controls (42 [36] versus 55 [47] pg/ml/μgDNA, P=0.19) (Figure 1).

In controls, both basal and stimulated TNFα release from subcutaneous adipocytes correlated with maternal BMI
(r=0.73, P=0.005, and r=0.69, P=0.009 respectively) (Supplementary Figure S2). This was independent of subcuta-
neous adipocyte size (P=0.002 and P=0.006 respectively). This association with BMI was not seen in subcutaneous
adipocytes in PE (Supplementary Figure S1). In PE but not controls, both basal and stimulated TNFα release from vis-
ceral adipocytes negatively correlated with visceral adipocyte size (r = −0.65, R2 = 41.8%, P=0.017, and r = −0.65,
R2 = 42.2%, P=0.016). Basal release of TNFα negatively correlated with a direct measure of visceral adipocyte in-
sulin sensitivity (FCISI) in this depot (r = −0.60, R2 = 30.3, P=0.030). This relationship was independent of BMI
(P=0.023), but not of cell size, (P=0.060).
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Figure 2. Adipocyte IL-6 release

Basal and LPS stimulated IL-6 (pg/ml/μgDNA) secreted by maternal SAT and visceral VAT adipocytes in control pregnancy (n=13) and in

pregnancies complicated by PE (n=13) is shown. Means and standard deviations are presented. *P<0.05, **P<0.010, ***P<0.001. Analysis

by two sample (PE versus controls) or paired (SAT versus VAT) t-test on log transformed data.

Adipocyte IL-6 release
Basal and stimulated release of IL-6 was greater in adipocytes from visceral adipose tissue than from subcutaneous
adipose tissue in both the control group (basal P=0.001, LPS-stimulated P=0.002) and the PE group (P=0.005 and
P<0.001 respectively) (Figure 2). Basal subcutaneous adipocyte IL-6 release was similar in PE and controls and was
unaffected by LPS exposure. In visceral adipocytes, IL-6 release was significantly increased after stimulation with
LPS in PE (566 [696] versus 852 [914] pg/ml/μgDNA, P=0.019) but not in controls (389 [334] versus 526 [443]
pg/ml/μgDNA, P=0.092) (Figure 2). In control subcutaneous adipocytes, both basal and LPS-stimulated release of
IL-6 was correlated with maternal BMI (r=0.75, R2 49.5%, P=0.003, and r=0.88, R2 55.3%, P<0.001 respectively),
an effect not seen in PE (Supplementary Figure S3). This correlation was independent of cell size.

Adipocyte CCL-2 release
Basal and stimulated CCL-2 from visceral adipocytes was higher than that from subcutaneous adipocytes in PE (basal;
subcutaneous 67 [61] versus visceral 187 [219] pg/ml/μgDNA, P=0.049; and stimulated (46 [46] versus 224 [271])
pg/ml/μgDNA, P=0.003) (Figure 3). There were no differences between basal and LPS stimulated release of CCL-2
from either subcutaneous adipocytes or visceral adipocytes in either the controls or the PE group. Basal and stimulated
release of CCL-2 from subcutaneous adipocytes was correlated with maternal BMI (r=0.79, R2 = 59.1%, P=0.01
basal, and r=0.82, R2 64.9%, P=0.001 stimulated) in controls only (Supplementary Figure S4). This relationship was
independent of cell size.

Adipocyte CRP release
There was no difference between subcutaneous adipocyte and visceral adipocyte CRP release in either pregnancy
group. Nor was there any difference between basal and stimulated release of CRP from either subcutaneous adipocytes
or visceral adipocytes in control and PE group (Supplementary Figure S5). Basal and stimulated CRP release from
subcutaneous adipocytes were correlated with circulating maternal plasma levels of CRP in controls (basal r=0.69,
P=0.010, and stimulated r=0.70, P=0.008). In PE this association appeared to be stronger (basal P=0.91, P<0.001,
and stimulated r=0.91, P<0.001). CRP release from subcutaneous adipocytes in PE was correlated with maternal
plasma IL-6 concentrations (basal r=0.72, P=0.006, and stimulated r=0.70, P=0.008). Basal and stimulated CRP
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Figure 3. Adipocyte CCL-2 release

Basal and LPS stimulated CCL-2 secreted from maternal SAT and VAT adipocytes in control pregnancy (n=13) and in pregnancies compli-

cated by PE (n=13) is shown. Means and standard deviations are presented. *P<0.05 and **P<0.01 SAT versus VAT using paired t-test on

log transformed data.

release from visceral adipocytes correlated with basal net lipolysis in visceral adipocytes in both control (basal r=0.76,
P=0.004, and stimulated r=0.81, P=0.001) and PE (basal r=0.76, P=0.004 and stimulated r=0.81, P=0.001) groups.

Adipocyte sFlt-1 release
Data were available for n=7 control and n=11 PE samples. Median sFlt-1 release under all conditions was 0 pg/ml.
There was no sFlt-1 release into medium from either subcutaneous of visceral adipocytes under basal conditions
in controls. After exposure to LPS there was no sFlt-1 release from subcutaneous adipocyte and only one visceral
adipocyte sample had measureable sFlt-1 release (median [interquartile range (IQR)] 0.0 [0.0–0.0] pg/ml). In PE,
there was no sflt-1 release from subcutaneous adipocytes under basal or stimulated conditions, however sFlt-1 was
released under both basal and stimulated conditions from visceral adipocytes only in three samples (median [IQR]
basal 0.0 [0.0–40.4] versus stimulated 0.0 [00 – 36.0] pg/ml, P=0.58).

Adipokine gene expression
There was no difference in subcutaneous adipose tissue TNF mRNA expression between PE and controls. Median
TNF mRNA expression in visceral adipose tissue was higher in PE compared with controls (1.94 [1.13–4.14] versus
0.8 [0.00–1.27] TNF/PPIA ratio, P=0.006) (Supplementary Figure S6). Median FLT1 mRNA expression in subcuta-
neous adipose tissue was higher in PE compared with controls (6.77 [5.0–13.3] versus 3.5 [1.9–4.8] FLT1/PPIA ratio,
P=0.023) (Supplementary Figure S7). Median FLT1 mRNA expression in visceral adipose tissue was higher in PE
compared with controls (8.6 [2.7–11.9] versus 2.1 [1.7–3.0] FLT1/PPIA ratio, P=0.005) (Supplementary Figure S7).
Median CCL2 mRNA expression was higher in visceral adipose tissue relative to subcutaneous adipose tissue in PE
(15.1 [7.3–32.1] versus 45.0 [27.7–118.5] CCL2/PPIA ratio, P=0.04). This difference is not seen in controls. Median
IL6 expression was greater in visceral adipose tissue in controls relative to subcutaneous adipose tissue (0.0 [0.0–11.1]
versus 9.51[2.2416.8] IL6/PPIA ratio, P=0.04) an effect also seen in PE (0.0 [0.0–2.6] versus 11.1 [4.5–26.9] IL6/PPIA
ratio, P=0.004). No other differences in gene expression were found.
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Figure 4. Adipose tissue macrophage marker messenger RNA expression

Messenger RNA expression of CD68 (n=13) and CSF1R (n=13) relative to PPIA expression in control and PE SAT and VAT is shown. Means

and standard deviations are presented. *P<0.05 CSF1R mRNA expression in PE VAT compared with control VAT by two sample t-test on

log transformed data.

Adipose tissue macrophage densities and mRNA expression in
pre-eclampsia and controls
The mean CSF1R mRNA expression in visceral adipose tissue, but not subcutaneous adipose tissue, was higher in
PE relative to controls matched for BMI (24.8[11.0] versus 51.0[29.9] CSF1R/PPIA ratio, P=0.011) (Figure 4). CD68
expression was not significantly different in subcutaneous adipose tissue or visceral adipose tissue between PE and
controls. Similarly the mean percentage of cfms+ macrophages in visceral adipose tissue, but not subcutaneous adi-
pose tissue, was higher in PE relative to controls (P=0.032) (Figure 5). There were no differences in tissue densities
of CD68+ macrophages between PE and controls in either subcutaneous adipose tissue or visceral adipose tissue.

Discussion
The key observations of our study were that, in PE, visceral adipose tissue had a higher activated macrophage content
and higher mRNA expression of TNFα than in controls and that adipocytes from visceral adipose tissue in PE were
more responsive to LPS stimulation in terms of releasing higher levels of TNFα and IL-6. This suggests that inflam-
mation in visceral adipose tissue may be a hallmark of PE. Human fat compartments can be classified into lower body
subcutaneous adipose tissue, upper body subcutaneous adipose tissue and visceral adipose tissue and each depot has
different characteristics. Upper body subcutaneous adipose tissue (from which our biopsy of subcutaneous adipose
tissue was taken) is relatively resistant to insulin suppression of lipolysis and is estimated to be the source of 60% of
circulating NEFA. Visceral adipose tissue can be regarded as an ‘ectopic’ site of fat accumulation and high levels of
visceral adipose tissue are related to metabolic obesity even at a low BMI [22]. We have previously shown that in preg-
nancy visceral adipose tissue adipocytes are more insulin resistant than subcutaneous adipose tissue adipocytes and
that in PE subcutaneous adipose tissue adipocytes become as insulin resistant as their visceral adipose tissue counter-
parts [5]. Together with the data presented here, this focuses attention on adipocyte dysfunction as a key pathogenic
pathway in PE.

TNFα appears to play a central role in the adipocyte inflammatory response in pregnancies complicated by PE.
TNFα transcription was higher in PE adipose biopsies compared with controls and adipocytes exposed to LPS were
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Figure 5. Adipose tissue macrophage content

SAT and VAT macrophage densities expressed as mean cell count per adipocyte in controls (n=9) and PE (n=9) matched for BMI are shown.

Means and standard deviations are presented. *P<0.05 between the mean percentage of VAT cfms+/adipocyte in PE compared to controls

by two sample t-test on log transformed data.

stimulated to secrete significantly higher levels of TNFα. TNFα is known to be an important determinant of in-
sulin sensitivity in pregnancy and can lead directly to insulin resistance by inhibiting insulin signaling through sev-
eral mechanisms including inducing serine phosphorylation of the insulin receptor substrate 1 (IRS1) [23]. TNFα
is also a potent stimulator of lipolysis through down-regulation of perilipin and suppression of the anti-lipolytic
GTP-binding membrane proteins Gαi [24]. In our study, TNFα release from visceral adipose tissue was negatively
correlated with adipocyte insulin sensitivity (as assessed by the ability of insulin to suppress lipolysis) of visceral adi-
pose tissue adipocytes in PE thus linking inflammation, insulin resistance and lipolysis in PE. Furthermore, TNFα
release was negatively correlated with fat cell size in visceral adipose tissue in PE in this cohort. We have previously
shown that in PE visceral adipose tissue has a significantly larger proportion of small adipocytes than controls and our
current data are consistent with observations in the non-pregnant that insulin resistance is associated with a greater
proportion of small adipose cells. Higher visceral adipose tissue TNFα release in smaller adipocytes may contribute
to their insulin resistance in PE.

We showed for the first time that FLT1 expression was higher in both subcutaneous and visceral adipose tissue
in PE compared with control women although there was little evidence for secretion of sFlt-1 from adipocytes in
culture. This would suggest the adipocyte does not act as a source additional to the placenta for circulating sFlt-1 in
PE. Other stromal cells located in adipose tissue may express FLT1 and a potential paracrine role for adipose tissue
VEGF receptor in angiogenesis related to gestational adipose tissue expansion is possible.

In addition to the higher production of TNFα in visceral adipose tissue, the mRNA expression of other adipokines
in visceral adipose tissue biopsies, namely IL-6 and CCL-2, was also higher in PE than controls. Furthermore, secre-
tion of both adipokines from visceral adipocytes was higher than in subcutaneous adipocytes regardless of whether
from PE or control women. In PE, IL-6 release from visceral adipose tissue adipocytes was more responsive to stim-
ulation with LPS. IL-6 is a stimulator of whole body lipolysis with anti-insulin effects [25,26] and has also been re-
lated to pregnancy-associated insulin resistance. Unlike with TNFα, we did not observe a relationship between IL-6
and direct measures of insulin sensitivity in adipose tissue in our cohort. In vivo, the CCL2 signal is important for
macrophage infiltration of white adipose tissue. Indeed knockout of the receptor for CCL2 in mice protects against
obesity induced inflammation and insulin resistance [27]. The higher expression of CCL2 in visceral adipose tissue
may have important implications for macrophage recruitment.
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We observed higher mRNA expression of CSF1R and a higher density of cfms positive macrophages in the visceral
adipose tissue of women with PE, while the total number of macrophages both in terms of CD68 gene expression, and
of tissue CD68 positive macrophage content, did not differ. These data suggest that there is no additional recruitment
of macrophages to visceral fat in PE, despite the increased CCL2 expression, but that macrophages become acti-
vated to a more pro-inflammatory macrophage phenotype. Women with PE have more pro-inflammatory/activated
macrophages in visceral adipose tissue than controls and these cells are another source of cytokines, including TNFα
and IL-6, in PE. We observed higher maternal plasma concentrations of TNFα in this small cohort and previously we
and others have found plasma levels of both TNFα and IL-6 to be elevated in PE [28,29]. In addition to the potential
paracrine and endocrine effects on lipid and glucose metabolism discussed above, TNFα and IL-6 are also impli-
cated in endothelial dysfunction, leukocyte activation, and alterations in coagulation—all features of PE [30-32]. The
chronic infusion of TNFα or IL-6 into normal pregnant rodents significantly increases arterial pressure and impairs
renal haemodynamics [33]. Previously, the placenta has been suggested as a source of maternal plasma TNFα and IL-6
with its overproduction being secondary to placental hypoxia. However, expression has not consistently been seen to
be higher in the placentae of women with PE thereby implicating another tissue source for the elevated concentra-
tions found in peripheral blood [34,35]. Visceral adipose tissue could be an alternative source for these cytokines in
PE although it is yet to be determined whether adipocytes or infiltrating macrophages, or both, produce the cytokines.

While the adipose tissue inflammatory changes associated with PE appear to be located predominantly at visceral
adipose tissue, there were also some important observations regarding subcutaneous adipose tissue. Basal levels of
adipokine release were generally lower in subcutaneous adipose tissue compared to visceral adipose tissue and were
refractory to stimulation by LPS, apart from TNFα. Interestingly subcutaneous adipose tissue adipocyte TNFα, IL-6,
and CCL-2 release was strongly correlated with maternal BMI possibly reflective of the link between obesity and
chronic low-grade inflammation. This association with maternal BMI was lost in PE suggesting that visceral adipose
tissue located inflammatory mechanisms override the background chronic inflammation of obesity. This is consis-
tent with the concept of ‘benign’ and ‘metabolic’ obesity where the amount of visceral adipose tissue is associated
with the metabolic consequences of obesity rather than obesity per se [22]. The higher basal release of TNFα from
subcutaneous adipose tissue in PE (equivalent to the amounts released from visceral adipose tissue), due to the large
size of the subcutaneous adipose tissue depot, could potentially impact significantly on circulating NEFA and may
be a mechanism through which early exaggerated rise of NEFA in PE occurs. We observed that in PE, TNFα release
from visceral adipose tissue does relate to the insulin sensitivity of lipolysis in this adipose depot. The association
between subcutaneous adipose tissue adipocyte CRP release and maternal plasma CRP concentrations suggests that
subcutaneous adipose tissue is an important determinant of circulating CRP in the third trimester of pregnancy in
both healthy and PE pregnancies. It is interesting to note that in PE this association also extends to maternal plasma
IL-6 levels perhaps reflecting the wider metabolic disturbances associated with PE.

The strengths of the present study were the direct ex vivo assessment of adipocyte inflammatory function in subcu-
taneous adipose tissue and visceral adipose tissue derived from the same women. This could be related to the lipolytic
function of the same adipose tissue and to plasma concentrations of inflammatory markers. Both total and activated
macrophage content was assessed by two independent methods (immunohistochemistry and gene expression) and
the data were consistent. We did not establish the M1/M2 phenotype of the infiltrating macrophages and this would
be a useful future analysis to carry out. Although the sample size was small, BMI, smoking and age-matching with
controls reduced confounding and there was sufficient power to detect consistent statistically significant differences.
The gestational age was different between the two groups and this is a limitation of our study that is difficult to avoid
due to the characteristics of the condition under study. If we had used preterm matched controls, this also raises issues
as to whether these control can be considered as ‘healthy’. However, the majority of women were late onset PE and
near to term. The present study is a cross-sectional comparison therefore it is difficult to draw conclusions regarding
which pathways are causal in PE and which are consequences of the condition and our data should be interpreted
accordingly.

Conclusion
Our study demonstrates that in PE, dysregulation of inflammatory pathways is located predominately in visceral adi-
pose tissue and not subcutaneous adipose tissue. In PE, visceral adipose tissue has a higher activated macrophage
content, higher mRNA expression of TNFα and is more responsive to LPS stimulation in terms of releasing higher
levels of TNFα and IL-6 than in control pregnancy. Inflammation at visceral adipose tissue may be a hallmark of
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PE and TNFα may mediate many of the adverse metabolic effects associated with PE. This understanding of patho-
physiology of the disease may facilitate better models of prediction of PE and provide the basis for pharmacological
intervention in the prevention or attenuation of the disease.

Clinical persepectives
• Pre-eclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality. There is

considerable evidence that maternal obesity, increased insulin resistance, inflammation, and aberrant
fatty acid metabolism are involved in the pathogenesis of PE. We hypothesized that adipocyte release
of pro-inflammatory adipokines is exaggerated under both basal and stressed conditions and that
adipose tissue macrophage infiltration is increased in women with PE, thereby implicating adipocyte
function in its pathophysiology.

• We found that in PE compared with controls, visceral adipose tissue has higher activated macrophage
content and higher mRNA expression of TNF α, and is more responsive to lipopolysaccharide stim-
ulation in terms of releasing higher levels of TNF α and IL-6.

• Inflammation of visceral adipose tissue may provide one of the key mechanisms in the pathogenesis
of PE. This may facilitate better models of prediction of PE and provide the basis for pharmacological
intervention in the prevention or attenuation of the disease.

Funding
This research was supported by a project grant from the British Heart Foundation [grant number PG/03/147]; and Wellcome Trust
Vacation Scholarship [grant number 086656/Z/08/Z (to J.B.)].

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Author Contribution
None.S.S.H. recruited patients, collected tissue samples, performed all laboratory work not attributed elsewhere (except immuno-
cytochemistry), analysed data and wrote manuscript; J.B. performed macrophage counts, F.J. carried out real time PCR and bio-
plex work of adipokines except that undertaken by R.B. and G.L.; R.B. and G.L. real time PCR of FLT 1 and ELISA of sFlt-1 and
summarised that data; D.F. and N.S. obtained original BHF grant which funded much of this work, supervised S.S.H. and revised
paper.

Abbreviations
BMI, body mass index; ELISA, enzyme linked immunosorbent assay; HOMA, homeostasis model assessment; NICE, National
Institue for Health and Care Excellence; CCL, chemokine ligand; FCISI, fat cell insulin sensitivity index; IQR, interquartile range;
IRS1, insulin receptor substrate 1; LPS , lipopolysaccharide; NEFA, non-esterified fatty acids; PE, pre-eclampsia; SAT , sub-
cutaneous adipose tissue; sFlt-1, fms-like tyrosine kinase-1; VAT, visceral adipose tissue; VEGF, vascular endothelial growth
factor.

References
1 Freeman, D.J., McManus, F., Brown, E.A., Cherry, L., Norrie, J., Ramsay, J.E. et al. (2004) Short- and long-term changes in plasma inflammatory

markers associated with preeclampsia. Hypertension 44, 708–714
2 von Versen-Hoeynck, F.M. and Powers, R.W. (2007) Maternal-fetal metabolism in normal pregnancy and preeclampsia. Front. Biosci. 12, 2457–2470
3 Hotamisligil, G.S., Shargill, N.S. and Spiegelman, B.M. (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin

resistance. Science 259, 87–91
4 Shah, A., Mehta, N. and Reilly, M.P. (2008) Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J. Parenter Enteral Nutr. 32,

638–644
5 Huda, S.S., Forrest, R., Paterson, N., Jordan, F., Sattar, N., Freeman, D.J. et al. (2014) In preeclampsia, maternal third trimester subcutaneous adipocyte

lipolysis is more resistant to suppression by insulin than in healthy pregnancy. Hypertension 63, 1094–1101

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

1539



Clinical Science (2017) 131 1529–1540
DOI: 10.1042/CS20160832

6 Bartha, J.L., Marin-Segura, P., Gonzalez-Gonzalez, N.L., Wagner, F., Aguilar-Diosdado, M. and Hervias-Vivancos, B. (2007) Ultrasound evaluation of
visceral fat and metabolic risk factors during early pregnancy. Obesity (Silver Spring, Md.) 15, 2233–2239

7 Taebi, M., Sadat, Z., Saberi, F. and Kalahroudi, M.A. (2015) Early pregnancy waist-to-hip ratio and risk of preeclampsia: a prospective cohort study.
Hypertens Res. 38, 80–83

8 De Souza, L.R., Kogan, E., Berger, H., Alves, J.G., Lebovic, G., Retnakaran, R. et al. (2014) Abdominal adiposity and insulin resistance in early
pregnancy. J. Obstet. Gynaecol. Can. 36, 969–975

9 Zhang, S., Folsom, A.R., Flack, J.M. and Liu, K. (1995) Body fat distribution before pregnancy and gestational diabetes: findings from coronary artery
risk development in young adults (CARDIA) study. BMJ (Clinical research ed.) 311, 1139–1140

10 McNelis, J.C. and Olefsky, J.M. (2014) Macrophages, immunity, and metabolic disease. Immunity 41, 36–48
11 Olefsky, J.M. and Glass, C.K. (2010) Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246
12 Lumeng, C.N., DelProposto, J.B., Westcott, D.J. and Saltiel, A.R. (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated

by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246
13 Santos-Gallego, 1, C.G., Picatoste, B. and Badimón, J.J. (2014) Pathophysiology of acute coronary syndrome. Curr. Atheroscler Rep. 16, 401,

doi:10.1007/s11883-014-0401-9
14 Trayhurn, P. (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol. Scand. 184, 285–293
15 Herse, F., Fain, J.N., Janke, J., Engeli, S., Kuhn, C., Frey, N. et al. (2011) Adipose tissue-derived soluble fms-like tyrosine kinase 1 is an obesity-relevant

endogenous paracrine adipokine. Hypertension 58, 37–42
16 Maynard, S.E., Min, J.Y., Merchan, J., Lim, K.H., Li, J., Mondal, S. et al. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may

contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658
17 Levine, R.J., Maynard, S.E., Qian, C., Lim, K.H., England, L.J., Yu, K.F. et al. (2004) Circulating angiogenic factors and the risk of preeclampsia. N. Engl.

J. Med. 350, 672–683
18 Zeisler, H., Llurba, E., Chantraine, F., Vatish, M., Staff, A.C., Sennström, M. et al. (2016) Predictive value of the sFlt-1:PlGF ratio in women with

suspected preeclampsia. N. Engl. J. Med. 374, 13–22
19 Packard, C.J., O Reilly, D.S., Caslake, M.J., McMahon, A.D., Ford, I., Cooney, J. et al. (2000) Lipoprotein-associated phospholipase a2 as an

independent predictor of coronary heart disease. West of scotland coronary prevention study group. N. Engl. J. Med. 343, 1148–1155
20 Rodbell, M. (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375–380
21 Neville, M.J., Collins, J.M., Gloyn, A.L., McCarthy, M.I. and Karpe, F. (2011) Comprehensive human adipose tissue mRNA and microRNA endogenous

control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 19, 888–892
22 Mathew, H., Farr, II, O.M. and Mantzoros, C.S. (2016) Metabolic health and weight: understanding metabolically unhealthy normal weight or

metabolically healthy obese patients. Metabolism 65, 73–80
23 Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F. and Spiegelman, B.M. (1996) IRS-1-mediated inhibition of insulin receptor tyrosine

kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668
24 Ryden, M. and Arner, P. (2007) Tumour necrosis factor-alpha in human adipose tissue – from signalling mechanisms to clinical implications. J. Intern.

Med. 262, 431–438
25 Senn, J.J., Klover, P.J., Nowak, I.A. and Mooney, R.A. (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391–3399
26 Petersen, E.W., Carey, A.L., Sacchetti, M., Steinberg, G.R., Macaulay, S.L., Febbraio, M.A. et al. (2005) Acute IL-6 treatment increases fatty acid

turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Physiol. Endocrinol Metab. 288, E155–E162
27 Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117,

175–184
28 Freeman, D.J., McManus, F., Brown, E.A., Cherry, L., Norrie, J., Ramsay, J.E. et al. (2004) Short- and long-term changes in plasma inflammatory

markers associated with preeclampsia. Hypertension 44, 708–714
29 Lau, S.Y., Guild, S.J., Barrett, C.J., Chen, Q., McCowan, L., Jordan, V. et al. (2013) Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels

are altered in preeclampsia: a systematic review and meta-analysis. Am. J. Reprod. Immunol. 70, 412–427
30 Zhang, H., Park, Y., Wu, J., Chen, X., Lee, S., Yang, J. et al. (2009) Role of TNF-alpha in vascular dysfunction. Clin. Sci. (Lond.) 116, 219–230
31 Bhagat, K. and Vallance, P. (1997) Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 96, 3042–3047
32 Kirchhofer, D., Tschopp, T.B., Hadvary, P. and Baumgartner, H.R. (1994) Endothelial cells stimulated with tumor necrosis factor-alpha express varying

amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system. Effects of thrombin inhibitors. J. Clin. Invest. 93,
2073–2083

33 LaMarca, B.D., Ryan, M.J., Gilbert, J.S., Murphy, S.R. and Granger, J.P. (2007) Inflammatory cytokines in the pathophysiology of hypertension during
preeclampsia. Curr. Hypertens Rep. 9, 480–485

34 Benyo, D.F., Smarason, A., Redman, C.W., Sims, C. and Conrad, K.P. (2001) Expression of inflammatory cytokines in placentas from women with
preeclampsia. J. Clin. Endocrinol. Metab. 86, 2505–2512

35 Hayashi, M., Ueda, Y., Yamaguchi, T., Sohma, R., Shibazaki, M., Ohkura, T. et al. (2005) Tumor necrosis factor-alpha in the placenta is not elevated in
pre-eclamptic patients despite its elevation in peripheral blood. Am. J. Reprod. Immunol. 53, 113–119

1540 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).


