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Abstract This paper explores two questions: (1) Which bigraded groups arise as the
knot Floer homology of a knot in the three-sphere? (2)Given a knot, howmany distinct
knots share its Floer homology? Regarding the first, we show there exist bigraded
groups satisfying all previously known constraints of knot Floer homology which do
not arise as the invariant of a knot. This leads to a new constraint for knots admitting
lens space surgeries, as well as a proof that the rank of knot Floer homology detects
the trefoil knot. For the second, we show that any non-trivial band sum of two unknots
gives rise to an infinite family of distinct knots with isomorphic knot Floer homology.
We also prove that the fibered knot with identity monodromy is strongly detected by
its knot Floer homology, implying that Floer homology solves the word problem for
mapping class groups of surfaces with non-empty boundary. Finally, we survey some
conjectures and questions and, based on the results described above, formulate some
new ones.
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1 Introduction

The Alexander polynomial is a classical invariant of knots [1]. For a knot K ⊂ S3, it
is a Laurent polynomial �K (t) ∈ Z[t, t−1] satisfying the conditions

�K (t) = �K (t−1) (1)

�K (1) = 1. (2)

It is well-known that these conditions characterize Alexander polynomials completely.

Proposition 1 (see, for example, [13, Theorem 8.13]) For any p(t) ∈ Z[t, t−1]
satisfying (1) and (2), there is a knot K with �K (t) = p(t).

Unfortunately, the Alexander polynomial does not separate knots very effectively.

Proposition 2 For any p(t) ∈ Z[t, t−1] satisfying (1) and (2), there exist infinitely
many distinct K , each with �K (t) = p(t).

Indeed, given a knot with �K (t) = p(t), we can find infinitely many distinct knots
by the connected sum of K with distinct knots having Alexander polynomial 1, for
example, Whitehead doubles of torus knots (see Rolfsen [84]). With more work one
can produce infinitely many distinct hyperbolic (in particular, prime) knots with any
possible Alexander polynomial [90, Theorem 8.1].

Ozsváth and Szabó’s Floer homology theory gives rise to a categorification of the
Alexander polynomial [67,79] in that it provides a collection of bigraded abelian
groups

Ĥ FK (K ) =
⊕

m,a∈Z
Ĥ FKm(K , a)

whose graded Euler characteristic is the Alexander polynomial:

�K (t) =
∑

a∈Z

( ∑

m∈Z
(−1)mdimĤ FKm(K , a)

)
· ta (3)

These groups are the knot Floer homology groups of K (over the field F = Z/2Z)
and, taken together, they provide an example of a knot homology theory (in the sense
suggested by Rasmussen [81]). They were originally defined using ideas from sym-
plectic geometry—specifically, the theory of pseudo-holomorphic curves— but have
since been shown to admit a combinatorial definition [53,54].

It is natural to ask how properties (1) and (2)manifest in knot Floer homology and,
more generally, how any property of the Alexander polynomial can be homologically
interpreted (see Sect. 2 for more details in this direction). Property (1) is reflected by
a symmetry among the knot Floer homology groups:

Symmetry ([67, Proposition 3.10]) The knot Floer homology groups satisfy

Ĥ FKm(K , a) ∼= Ĥ FKm−2a(K ,−a) (4)
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where m ∈ Z is the Maslov grading and a ∈ Z is the Alexander grading.

We say a bigraded collection of groups is symmetric if it satisfies (4). Property (2)
is somewhat more subtle, and arises from the definition of the knot Floer homology
groups as the associated graded groups of a filtered chain complex which computes
the Heegaard Floer homology of S3. It is expressed as follows.

Canceling differential There is an endomorphism

∂K : Ĥ FKm(K , a) → ⊕
a′<a

Ĥ FKm−1(K , a′)

which satisfies ∂2K = 0. The homology of the resulting chain complex is given by:

H∗(Ĥ FK (K ), ∂K ) ∼=
{

F if m = 0

0 otherwise.

If a collection of groups can be endowed with such an endomorphism, we say that
it is equipped with a canceling differential; compare Rasmussen [81, Section 2], and
see Sect. 2.1 for more discussion.

Given these homological lifts of (1) and (2), one can ask about the analogues of
Propositions 1 and 2. The purpose of this note is to address these questions.1

Geography question Given a symmetric, bigraded collection of abelian groups
G equipped with a canceling differential ∂G, does there exist a knot K with
(Ĥ FK (K ), ∂K ) 	 (G, ∂G)?

Botany question For a knot K , how many J exist with (Ĥ FK (K ), ∂K ) 	
(Ĥ FK (J ), ∂J )?

1.1 Botany

Of the two questions, botany seems more tractable. Indeed, a few notable results indi-
cate that the knot Floer invariants are far more faithful than the Alexander polynomial.
The first, proved by Ozsváth and Szabó is that if Ĥ FK (K ) ∼= F then K must be
the unknot [74]. Ghiggini later extended this detection to the trefoil and figure eight
knots [22]. Presently, these are the only knots in the 3-sphere known to be detected by
Floer homology. Finding knots for which the botany problem has a finite answer has
interesting topological ramifications. For example, the results of Ozsváth and Szabó
combined with Ghiggini’s work had as corollary Dehn surgery characterizations of
the unknot, trefoils, and figure eight. The Berge conjecture on which knots admit lens
space surgeries has been translated into a finiteness conjecture for the botany problem
of simple knots in lens spaces [3,29,78], and recent work of Li and Ni [48] similarly
reformulate finite filling questions in terms of botany conjectures.

1 This terminology is borrowed from complex surface theory.
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Fig. 1 The knot Ki is a band
sum of two unknots with i full
twists placed in the band. The
template knot K = K0 in this
example is the knot 61 in
Rolfsen’s table [84]. The
shading indicates a ribbon
immersed disk bounded by knots
in the family. This disk can be
resolved to an embedded disk in
the 4-ball with two radial local
minima and no local maxima

i

+1 =

In the opposite direction, it is easily seen that knot Floer homology does not distin-
guish all knots. For instance, the Floer homology of an alternating knot is determined
by its Alexander polynomial and signature [66] and one can easily produce distinct
alternating knots sharing these invariants. Bankwitz’s theorem [9], however, states
that the number of crossings in a reduced alternating diagram is bounded above by
|�K (−1)|, which implies there are only finitely many distinct alternating knots with
a common Alexander polynomial (c.f. [55, Proposition 47]). Thus these examples do
not preclude the possibility that the answer to the botany question is always finite.
Our first result indicates that knot Floer homology, like the Alexander polynomial, is
quite far from a complete knot invariant. Indeed, it says that any non-trivial band sum
of two unknots gives rise to an infinite family of distinct knots with identical Floer
homology. See Fig. 1 for an example.

Theorem 1 Let K be a non-trivial knot obtained as a band sum of two unknots, and
let Ki be the knot obtained by adding i full twists to the band, so that K0 = K. Then
we have

(i) H FK (Ki ) ∼= HFK (K j ) for all i, j ∈ Z; and
(ii) Ki 
	 K j if i 
= j .

By HFK , we mean the statement holds for both Ĥ FK and HFK−. We have the
following topological corollary of Theorem 1:

Corollary 2 Let K be a non-trivial band sum of two unknots. Then the knots obtained
by adding i full twists to the band are all non-trivial and mutually distinct. Moreover,
the genus of every member in the family is the same, and if one member is fibered then
they all are. ��

Non-triviality of the knots in the family follows, alternatively, from [86, Main
Theorem] or [87, Theorem 1.2]; the latter of these results also implies that all the knots
in the family have the same genus. Note, however, that neither of theseworks show that
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the knots in our families are distinct. The toolwe use to this end isKhovanov homology
(see Theorem 3.2)—this appears to be a new topological application of the Khovanov
groups. While it seems likely that the family obtained from any single band sum
could be distinguished by other means (e.g. by hyperbolic volume), it seems difficult
to handle all band sums simultaneously. It would be interesting if purely geometric
techniques could be used to prove Corollary 2 and, particularly, the separation result
provided by Theorem 3.2.

The assumption that K is a band sumof twounknots is equivalent to a 4-dimensional
condition; namely, that K bounds a smooth and properly embedded disk in the 4-ball
on which the radius function restricts to a Morse function with no local maximum
and exactly two local minima. In particular, any such K is smoothly slice. One may
therefore be tempted to think that the lack of faithfulness of Floer homology on these
knots is somehow a byproduct of their trivial concordance class (recall that K and J are
called concordant if there is a smooth and properly embedded cylinder in S3 × [0, 1]
which connects them). However, we have following immediate corollary:

Corollary 3 For any knot J ⊂ S3, there exist infinitely many distinct knots, each of
which has the same concordance class as J and all of which have the same knot Floer
homology. ��

Indeed, a Künneth formula for the knot Floer homology of the connected sum
of knots [67, Theorem 7.1] (see Sect. 2 for a statement), together with the prime
decomposition theorem, implies that {J#Ki }i∈Z is an infinite family of distinct knots
concordant to J , all ofwhich have the sameFloer homology (here {Ki }i∈Z is any family
obtained from our theorem).We could similarly obtain infinite families of prime knots
concordant to J by appealing to the known behavior of knot Floer homology under
more general satellite operations [25–27,32,91]. Since infinite families of knots with
identical Floer invariants are so common, onemaywonderwhat allows for thedetection
of the unknot, trefoil, and figure eight. For these, and all other detection theorems for
Floer invariants known to the authors, the key facts have been that Floer homology
detects the minimal genus of embedded surfaces in 3-manifolds representing a given
homology class [61,74], and whether such surfaces arise as fibers in a fibration of the
3-manifold over the circle [22,59,60]. In the present context, this amounts to the fact
that knot Floer homology detects both the genus of a knot and whether it is fibered.
The detection theorems now follow from the paucity of genus one (and zero) fibered
knots.

Knot Floer homology also contains geometric information related to contact struc-
tures, and importing this information yields a new detection theorem. For a graded
group we use the notation top and bottom respectively to indicate the maximal and
minimal grading with non-trivial homology.

Theorem 4 Suppose K ⊂ Y is a knot with irreducible complement for which

dim Ĥ FK (Y, K , top) = dim Ĥ FK (Y, K ,bottom) = 1.
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Suppose further that generators of these groups are non-trivial in H∗(Ĥ FK (Y, K ),

∂K ). Then (Y, K ) 	 (#2gS1 × S2, B), where B is the unique fibered knot of genus
g = top with monodromy isotopic to the identity, rel boundary.

This should be compared with a similar characterization theorem for B due to Ni
[62, Theorem 1.3], which says that there are exactly g distinct knots in #2gS1 × S2

having Floer homology with rank equal to that of B. By appealing to a construction
of Ozsváth–Szabó, Theorem 4 implies that knot Floer homology detects links with
trivial monodromy.

Corollary 5 Suppose L ⊂ Y is a fibered linkwhosemonodromy is isotopic to the iden-
tity, rel boundary. Then L is detected by its knot Floer homology, (Ĥ FK (Y, L), ∂L).

As a consequence we obtain a new algorithm for determining whether mapping
classes are trivial, yielding a different proof of the following well-known result (c.f.
Baldwin-Grigsby [7] for a similar application to braid groups, and Clarkson [14,
Theorem 1]. We thank Eli Grigsby for suggesting this to us.

Corollary 6 (See [16, Theorem 4.2], or [57]) The mapping class group of an ori-
entable surface with non-empty boundary has solvable word problem.

1.2 Geography

Turning to the geography question, one could initially hope for an answer similar to
that for the Alexander polynomial; namely, that every symmetric bigraded group with
canceling differential can be realized as the knot Floer homology of some knot. The
reader familiar with knot Floer homology will immediately point out that there are
further restrictions on knot Floer homology groups coming from their role within the
(Z × Z)-filtered infinity version of knot Floer homology. Thus the correct geography
question should posit that the groups extend to a symmetric (Z × Z)-filtered complex
with canceling differential (see Sect. 2 for details), and one can then ask whether all
groups admitting such an extension arise from some knot. Our final result indicates
that this is not the case. It is best stated by noting that a bigraded group (G, ∂G) with
canceling differential has a numerical invariant, τ(G) ∈ Z, defined as the minimum a-
grading of any cycle homologous to a generator of H∗(G, ∂G) ∼= F. In the case of knot
Floer homology, this is the definition of the influential Ozsváth–Szabó concordance
homomorphism τ(K ) [73,79].

Theorem 7 Suppose G = ⊕
m,a∈Z Gm(a) is a symmetric bigraded group with can-

celing differential ∂G such that

(i) τ(G) = top i.e. the generator of H∗(G, ∂G) ∼= F lies in maximal a-grading.
(i) G−1(top) = G−1(top − 1) = 0

Then (G, ∂G) 
= (Ĥ FK (K ), ∂K ) for any knot K ⊂ S3.

The theorem gives rise to a classification of knot Floer homology groups of rank
3: They are exactly the groups of the (right- or left-handed) trefoil. Combined with
Ghiggini’s theorem we therefore have an improved detection theorem for the trefoil.
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Corollary 8 If K ⊂ S3 satisfies dim Ĥ FK (K ) = 3 then K is a trefoil.

Theorem 7 also leads to a new constraint on knots admitting surgeries with simple
Floer homology. Recall that an L-space is a rational homology sphere Y with simplest
possible Heegaard Floer homology, in the sense that dim Ĥ F(Y ) = |H1(Y ; Z)|; knots
admitting non-trivial L-space surgeries are referred to as L-space knots. Ozsváth and
Szabó showed that there are stringent restrictions on the knot Floer homology of an
L-space knot [71, Theorem 1.2] and these, in turn, place restrictions on the Alexander
polynomial [71, Corollary 1.3]; namely, the coefficients of the Alexander polynomial
take values in {−1, 0, 1}. Combining their theorem with Theorem 7 we have:

Corollary 9 If K is an L-space knot then the second highest Alexander grading of its
knot Floer homology is non-trivial, and the Alexander polynomial takes the form

�K (t) = t g − t g−1 · · · − t1−g + t−g,

where g denotes the Seifert genus of K . In particular, the coefficient of t g−1 is −1.

1.3 Organization

In Sect. 2 we recall some background on knot Floer homology, calling attention to
its algebraic role within the primary knot invariant from Heegaard Floer theory, the
so-called infinity knot Floer complex. We then survey some properties of knot Floer
homology, many of which will be used in the proofs that follow.

Section 3 proves Theorem 1. This is achieved by using the skein exact sequence to
verify isomorphism between the knot Floer homology groups of knots which differ
by twisting along the ribbon disk (Theorem 3.1). We then briefly develop a similar
skein exact sequence for Khovanov homology, and use it to distinguish the knots in
our families in Theorem 3.2.

Section 4 proves Theorem 4 by exploiting an invariant of contact structures defined
using the knot Floer homology of fibered knots. This invariant can show that a fibered
knot induces a tight contact structure, and the hypotheses of the theorem imply that
K ⊂ Y induces a tight contact structure on both Y and −Y . We then appeal to a result
of Honda, Kazez, and Matić which implies that the only fibered knot K ⊂ Y which
induces a tight contact structure on both Y and −Y is the knot B of the theorem.

Section 5 proves Theorem 7. The key tools for this theorem are a surgery formula
relating the knot Floer homology invariants of K ⊂ S3 to the Floer homology groups of
manifolds obtained by integral surgery on K , and an inequality of Rasmussen relating
a numerical derivative of these latter Floer groups to the 4-ball genus.

Section 6 concludes with a discussion of some conjectures and questions pertaining
to the botany question, with emphasis on trying to understand the extent to which L-
spaces, and the knots which give rise to them upon surgery, are detected by Floer
homology.
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2 A survey of knot Floer homology

This section provides background on the knot Floer homology invariants. We first
discuss the algebraic setting for these invariants; namely, as the associated graded
groups of a Z-filtered complex. This complex, however, can be viewed as a subquo-
tient complex of a (Z × Z)-filtered complex, CFK∞(K ), which is the primary knot
invariant provided by Heegaard Floer homology. This latter complex also allows for
the definition of the minus version of knot Floer homology, which categorifies the
Milnor torsion of a knot. After discussing this, we survey some key properties of the
knot Floer invariants, especially those which will be used in the proof of our theorems.
Throughout, we use the notation F = Z/2Z to denote the field with two elements.

2.1 The infinity complex, its reduction, and derivatives

We will use several variants of the knot Floer homology groups. Each of these can be
derived from a single invariant, the infinity complex of K , denoted (CFK∞(K ), ∂∞),
which we now discuss.

To begin,CFK∞ is a graded, bilfiltered chain complex, which means that it admits
an (infinite) F basis B with functions:

m : B → Z and F : B → Z × Z

called theMaslov grading and bifiltration, respectively, which are compatible with the
differential in the sense that for any a, b ∈ B,

a ∈ ∂∞b �⇒ m(a) = m(b) − 1 and F(a) ≤ F(b). (5)

Here a ∈ ∂∞b means that the coefficient of a appearing in the expansion of ∂∞b is
non-zero, and ≤ denotes the partial order on Z × Z given by (i, j) ≤ (i ′, j ′) if i ≤ i ′
and j ≤ j ′. Due to the first relation, the Maslov grading is frequently referred to as
the homological grading.

While infinitely generated over F, CFK∞ is freely and finitely generated as a
module over F[U,U−1] by certain collections of intersection points of curves on a
Heegaard diagram, which we call generators. Let us denote the set of generators by
G, so that the basis B over F is given by elements Udx, with d ∈ Z, x ∈ G. On such
elements, the bifiltration is given by:

F(Udx) = (−d, A(x) − d)

where A : G → Z is a function defined on generators called theAlexander grading (we
will, more generally, refer to the second coordinate of F as the Alexander grading).
Thus the variableU has bifiltration (−1,−1). TheMaslov grading is alsowell-behaved
with respect to the F[U,U−1] module structure, and satisfies

m(Ud · α) = m(α) − 2d,
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for anyMaslov-homogenous element α ∈ CFK∞. The differential onCFK∞ counts
certain pseudo-holomorphic disks in a symmetric product of a Heegaard diagram.2

The relation between the bifiltration function and the differential in (5) endows
CFK∞ with the structure of a (Z × Z)-filtered chain complex. To understand this,
let S(i, j) denote the subgroup of CFK∞ generated by basis elements in the set
F−1({≤ i} × {≤ j}). The right half of (5) implies that the S(i, j) satisfy

∂∞S(i, j) ⊆ S(i, j), and S(i, j) ⊆ S(i ′, j ′) if (i, j) ≤ (i ′, j ′)

i.e. that the S(i, j) are subcomplexes of CFK∞ and of each other, where inclusion
of subcomplexes is governed by the partial order on Z × Z. Clearly the union of
all S(i, j) is equal to CFK∞. A complex equipped with an exhausting sequence
of subcomplexes indexed by Z × Z in this way is, by definition, a (Z × Z)-filtered
complex. The (Z × Z)-filtered chain homotopy type of CFK∞(K ) is an invariant
of the knot K which was discovered independently by Ozsváth and Szabó [67] and
Rasmussen [79].

It is often convenient to regard CFK∞(K ) as a collection of basis elements (dots)
arranged at integer lattice points in the plane. Powers of the variable U act by trans-
lation along lattice points lying along the lines of slope one. The differential can be
pictured as a collection of translation invariant arrows which connect basis elements,
and which travel down and to the left. (See Fig. 5 for an illustration.) With this picture
in mind, the knot Floer homology groups can be recovered from the vertical strip in
the plane consisting consisting of lattice points with i-coordinate zero. Put differently,
the subquotient complex F−1({0} × Z) of CFK∞(K ) inherits a Z-filtration from
the second coordinate of F . The associated graded homology groups of this filtra-
tion are the knot Floer homology groups Ĥ FKm(K , a), where the Alexander grading
corresponds to the filtration index.

A useful algebraic lemma allows us to consider an often much simpler complex,
whilst preserving the (Z × Z)-filtered chain homotopy type of CFK∞(K ): given a
graded, bifiltered complex (C, ∂), one can find another such complex (C, ∂) called the
reduction of (C, ∂), which is (Z × Z)-filtered chain homotopy equivalent to (C, ∂),
but for which the restriction of ∂ to the subquotient complex F−1(i, j) vanishes for
any pair (i, j) [79, Lemma 4.5]. Informally, ∂ is zero within any given lattice point.
We state and (tersely) prove the lemma for posterity since it has not appeared in this
form, though is implicitly used throughout the literature:

Reduction lemma Let (C, ∂,F) be a graded, bifiltered complex, which is freely and
finitely generated over F[U,U−1] as above by a collection of Maslov and Alexan-
der homogeneous generators G, where U has Maslov grading −2 and bilfiltration
(−1,−1). Then there is another complex (C, ∂,F), called the reduction of (C, ∂,F)

satisfying:

(1) (C, ∂) is (Z×Z)-filtered chain homotopy equivalent to (C, ∂) (where filtrations
are induced by F and F , respectively),

(2) (C, ∂) is generated over F[U,U−1] by a subset G ⊂ G,

2 Several combinatorial interpretations of this invariant now exist [8,53,54,70].
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(3) The restriction of ∂ to F−1
(i, j) is identically zero for any (i, j) ∈ Z × Z.

Proof The proof is essentially an equivariant application of the well-known cancel-
lation lemma (e.g. [79, Lemma 5.1]). More precisely, suppose that in the complex
(C, ∂), we have a non-zero term in the restriction of the differential to F−1(0, j):

y ∈ ∂x, F(y) = F(x) = (0, j)

where y, x are elements in G (for convenience, we work with the subquotients with
first F-index zero so that elements from our F basis are in G). Then [30, Lemma
4.1], applied over the ring R = F[U,U−1], says that we can obtain a new complex
(C ′, ∂ ′) which is freely generated over F[U,U−1] by G�{x, y} which is homotopy
equivalent to (C, ∂). A bifiltered version of [30, Lemma4.2] implies thatwe can extend
the bifiltration function F to a function F ′, and the resulting (Z × Z)-filtered chain
homotopy type is the same as that on (C, ∂) induced byF .We now repeatedly apply the
lemma, a sequence which must terminate in a complex for which the restriction of the
resulting differential toF−1(0, j) is zero (by finiteness of this subspace).We repeat for
each of the (finite number of) non-zero subquotient complexes F−1(0, j ′), arriving at
a filtered chain homotopy equivalent complex (C, ∂) freely generated over F[U,U−1]
by a subset of G, for which the restriction of ∂ to each subquotient F−1(0, j) is zero.
But this implies that the restriction of ∂ to each of the subquotients F−1(i, j) is zero,
by free generation of the complex over F[U,U−1]. ��

Consider then, the reduction ofCFK∞(K ). Restricting this complex toF−1({0}×
Z), we obtain a bigraded chain complex whose groups are isomorphic to Ĥ FK (K ),
and with a differential which we denote ∂K . This allows us to think of the knot Floer
homology groups as a chain complex in their own right, with a differential that strictly
lowers the Alexander grading. This is the perspective taken in the introduction; com-
pare [81, Section 2], and see [79, Sections 4.5 and 5.1] for more details. As a final
observation, note that the reduced complex is generated as an F[U,U−1] module by
the knot Floer homology groups,

CFK∞(K ) 	 Ĥ FK (K ) ⊗ F[U,U−1] (6)

Of course the differential on (CFK∞(K ), ∂∞) is not generated by the differential on
Ĥ FK (K ). In general, only the purely vertical components of ∂∞ are determined by
∂K . Our discussion now brings us to a more refined version of the geography question:

Precise geography question Which (Z×Z)-filtered chain homotopy types of graded
bifiltered complexes arise as CFK∞ complexes of knots in the three-sphere?

To any such complex (G∞, ∂∞) one can consider its reduction and the associated
hat complex (G, ∂G) i.e. the Z-filtered subquotient F−1({0} × Z)), equipped with its
induced differential. As observed in the introduction, certainly any graded bifiltered
chain complex which arises from knot Floer homology has a symmetric hat complex
for which the induced differential is canceling. A priori, however, these are not the
only restrictions. Indeed, CFK∞ itself has a global canceling differential, in the
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sense that its homology is isomorphic to F[U,U−1]. Moreover, each vertical “slice”
is isomorphic to a shifted version of the knot Floer homology groups

F−1({i} × Z)) = (Ĥ FK (K ), ∂K )[2i, i],

where the notation on the right means that the Maslov grading has been shifted up by
2i , and the Alexander grading by i .

In addition to the knot Floer homology groups, wewill workwith another derivative
ofCFK∞(K ), theminusknot Floer homologygroups. These are the associated graded
homology groups of the subcomplexF−1(Z≤0 ×Z) (the 2nd and 3rd quadrants of the
(i, j)-plane), again endowed with a Z-filtration coming from the second coordinate
function. We denote these groups HFK−

m(K , a). Their graded Euler characteristic
satisfies:

�K (t)

(1 − t−1)
=

∑

a

(∑

m

(−1)mdimHFK−
m(K , a)

)
· ta

The minus groups inherit an F[U ]-module structure from the U -action on CFK∞,
and this structure determines the hat Floer homology groups through a long exact
sequence for each a ∈ Z:

· · · HFK−
m(K , a) HFK−

m−2(K , a − 1) Ĥ FKm−2(K , a − 1) · · ·U δ

The connecting homomorphism δ raises both Alexander and Maslov gradings by one.

2.2 Properties of knot Floer homology

We now survey some important properties of the knot Floer invariants, many of which
will be instrumental in the proofs of our theorems. We begin with a lift of Conway’s
skein relation for theAlexander polynomial to knot Floer homology, the so-called skein
exact sequence. This exact sequence will be the key tool for the proof of Theorem 1.

Skein exact sequence ([63, Theorem 1.1]) LetK+,K0, andK− be three links, which
differ at a single crossing as in Fig. 2. Suppose that the two strands meeting at the
distinguished crossing in K+ belong to the same component, so that in the oriented
resolution the two strands correspond to two components, i and j , of K0. Then there
are long exact sequences

· · · Ĥ FKm(K+, a) Ĥ FKm(K−, a) Ĥ FKm−1(K0, a) · · ·ĥ f̂ ĝ ĥ
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Fig. 2 Three links forming a
skein triple

K− K0 K+

· · · HFK−
m(K+, a) HFK−

m(K−, a) Hm−1

(
CFK−(K0)

Ui−Uj
, a

)
· · ·h− f − g−

h−

The h maps preserve both Maslov and Alexander grading. Moreover, the second
sequence is equivariant with respect to the action by U.

There is a similar theorem for the casewhen the two strands belong to different com-
ponents. Since the theorem involves links, we should recall that there are several Floer
homology invariants for links. In the above, the invariants which appear are the hat
and minus knot Floer homology groups of the link. These are again bigraded theories,
which capture the single variable Alexander polynomial of the link (as opposed to the
multi-variable Alexander polynomial captured by the link Floer homology groups):

(t1/2 − t−1/2)n−1 · �L(t) =
∑

a

( ∑

m

(−1)mdimĤ FKm(L , a)
)

· ta

�L(t) =
∑

a

( ∑

m

(−1)mdimHFK−
m(L , a)

)
· ta .

In the first equation n denotes the number of components of L . The minus version is
most naturally a module over F[U1, . . . ,Un], where each variable carries Alexander
grading−1 andMaslov grading−2. For our purposes the key point about the invariants
of links is that for the two-component unlink

H∗
(CFK−(Unlink)

U1 −U2

) ∼= F[U ] ⊕ F[U ]

with the bi-grading of 1 in the first summand given by (m, a) = (0, 0) and in the
second summand by (m, a) = (−1, 0). This can be calculated from directly from a
genus zero, four-pointed, Heegaard diagram adapted to the unlink.

It is well known that the Alexander polynomial is insensitive to reflection and
orientation reversal:

�K (t) = �K (t) and �Kr (t) = �K (t)

where K is the mirror image of K , and Kr is K with its orientation reversed. Knot
Floer homology satisfies analogous categorified versions of these equalities.
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Mirror duality ([67, Proposition 3.7]) There is a grading-reversing isomorphism

(Ĥ FK (K ), ∂K ) ∼= (Ĥ FK (K ), ∂K )∗

where the term on the right is the hom dual complex. In particular,

Ĥ FKm(K , a) ∼= Ĥ FK−m(K ,−a)

for all a,m ∈ Z.

Reversal insensitivity ([67, Proposition 3.9]) There is a (Z×Z)-filtered chain homo-
topy equivalence

CFK∞(Kr ) 	 CFK∞(K )

and, moreover, the complex on the left may be obtained from the complex on the right
by composing F with the map defined by (i, j) �→ ( j, i).

Reversal insensitivity places strong restrictions on the (Z × Z)-filtered homotopy
types which can arise from knot Floer homology. In particular, it implies that the
horizontal subquotient complex F−1(Z × {0}) is Z-filtered homotopy equivalent to
F−1({0} × Z) i.e. to knot Floer homology equipped with its canceling differential. In
fact, this induced Z-filtered homotopy equivalence is responsible for the symmetry of
the knot Floer homology groups mentioned in the introduction. Indeed, we have

F−1(0, j) 	 F−1( j, 0) 	 U jF−1(0,− j)

where the first equivalence is induced by the one at hand, and the second follows from
(6). Now observe that the two ends are isomorphic to Ĥ FK ∗(K , j) (by definition)
and Ĥ FK ∗−2 j (K ,− j) (by the fact that U j has Maslov grading −2 j), respectively.

The Alexander polynomial is well-behaved under satellite operations. The simplest
case of this behavior is the formula for connected sums,�K1#K2(t) = �K1(t)·�K2(t).
For knot Floer homology we have:

Künneth formula ([67, Theorem 7.1])

Ĥ FK (K1#K2) ∼= Ĥ FK (K1) ⊗ Ĥ FK (K2)

The above tensor product is taken in the bigraded sense, meaning that for each m, a ∈
Z, we have

Ĥ FKm(K1#K2, a) ∼=
⊕

m1+m2=m, a1+a2=a

Ĥ FKm1(K1, a1) ⊗ Ĥ FKm2(K2, a2)

A similar theorem holds for HFK− but is somewhat more complicated due to the Tor
terms which naturally arise in the context of F[U ]-modules.
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Floer homology is also well-understood under more general satellite operations
[25–27,32,47,76,91]. We discuss these results (and their implications for this work)
further in Sect. 3.

The Alexander polynomial can be defined using a Seifert surface for a knot. As
such, it is not surprising that it is related to the geometry of such surfaces. For instance,
if we let a j denote the coefficient of t j in �K (t), and g(K ) denote the Seifert genus
of K , is easily shown that:

g(K ) ≥ deg �K := max{ j ∈ Z | a j 
= 0}
ag(K ) = ±1 if K is fibered

The information knot Floer homology provides about Seifert surfaces is considerably
stronger:

Genus detection ([74, Theorem 1.2])

g(K ) = max{a ∈ Z | Ĥ FK (K , a) 
= 0}

Fibered knot detection ([59, Theorem 1.1], cf. [22,38])

rank Ĥ FK (K , g(K )) = 1 if and only if K is fibered.

Both theorems have extensions to knots in arbitrary manifolds (where the latter
requires irreducibility of the knot complement). The theorems indicate a strong con-
nection to embedded surfaces bounded by a knot in three-space. There is a similar
connection to surfaces in four-space. Recall from the introduction the invariant τ(K )

is defined as the minimal Alexander grading of any cycle in (Ĥ FK (K ), ∂K ) which
generates the homology. We have

Four-ball genus bound ([73, Corollary 1.3]) Let g4(K ) denote the smooth four-ball
genus; that is, the minimum genus of any smooth and properly embedded surface in
the four-ball, bounded by K . Then

|τ(K )| ≤ g4(K ).

There is a useful interpretation of τ(K ) in terms of themodule structure on HFK−.
It says that τ(K ) is proportional to both the Alexander or Maslov grading of the
generator of a distinguished free submodule. To state it, let F[U ]{m,a} denote the free
bigraded F[U ]-module in which 1 ∈ F[U ] has Maslov grading m and Alexander
grading a, respectively. We have

HFK− structure theorem For any knot K , there is a splitting of bigraded F[U ]-
modules:

H FK−(K ) ∼= F[U ]{−2τ(K ),−τ(K )} ⊕ Tor,

where Tor is a bigraded, finitely-generated, torsion F[U ]-module.
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Proof The fact that rankF[U ] HFK−(K ) = 1 follows easily from the facts that
CFK∞ has a canceling differential and that every element in the quotient CFK+ :=
CFK∞/CFK− is U -torsion. Indeed, we have an exact sequence of F[U ] modules:

· · · HFK− HFK∞ HFK+ · · ·

F[U,U−1]
∼=

δ

where the last term is torsion, and the first term is finitely generated as anF[U ]-module
(by the Heegaard diagram). Such a sequence can only exist if the rank of the first term
is one, so the structure theorem for finitely generated modules over a PID gives us the
splitting claimed. Thus the heart of the theorem is to show that the element 1 ∈ F[U ]
has Alexander grading −τ(K ) and Maslov grading −2τ(K ). This was proved in [72,
Lemma A.2] for the Alexander grading, but we will prove both for completeness.
All complexes appearing in the proof will have differentials induced from CFK∞,
reduced according to Sect. 2.1.

Let F̂(a) = F−1({0} × {≤a}) denote the filtered subcomplex of Ĥ FK (K ) =
F−1({0} × Z) consisting of elements with Alexander grading less than or equal to a.
Then an equivalent definition of τ(K )—indeed, the original definition—is

τ(K ) = min {a ∈ Z | ι∗ : H∗(F̂(a)) → H∗(Ĥ FK ) ∼= F is surjective}

The minus Floer homology groups are, by definition:

HFK−∗ (K , a) := H∗(F−1({≤0} × {a})).

We now have homotopy equivalences:

F−1({≤0} × {a}) 	 F−1({a} × {≤0}) 	 F−1({0} × {≤− a})[−2a],

where thefirst is given by reversal insensitivity and the secondby the remarks following
the statement of the true geography question (the shift of−2a is in theMaslov grading).
Taking homology of the extremal complexes, we have

HFK−∗ (K , a) ∼= H∗+2a(F̂(−a)). (7)

Recall that the U -module structure on CFK∞, and hence HFK−, is induced by the
identification of groups CFK∞ = Ĥ FK ⊗ F[U,U−1]. From this, it follows that
under (7) an element in HFK−∗ (K , a) of infiniteU -order corresponds to a homology

class in H∗+2a(F̂(−a))whichmaps onto the generator of H(Ĥ FK ) ∼= F. Conversely,
a homology class in H∗+2a(F̂(−a))mapping onto a generator gives rise to an element
of infinite order in HFK−. The proposition now follows immediately, noting the
reversal in Alexander grading and the shift in Maslov grading in (7). ��
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There are two more important properties of knot Floer homology which we will
utilize in our proofs. The first is a connection with contact geometry. To state it, we
first recall that with a fibered knot K ⊂ Y one can associate an essentially unique
contact structure on Y , denoted ξK (see [92] for the construction of ξK and [93] for
its uniqueness). Knot Floer homology gives rise to an invariant of ξK in the following
sense

Contact invariance ([68, Theorem 1.3]) Given a fibered knot K ⊂ Y with fiber
surface of genus g, let cbot be a generator for the non-trivial knot Floer homology
group in bottommost Alexander grading

Ĥ FK (−Y, K ,−g) ∼= F〈cbot〉.

Then the class c(ξK ) defined by

c(ξK ) := [cbot] ∈ H∗(Ĥ FK (−Y, K ), ∂K ) ∼= Ĥ F(−Y ),

is an invariant of ξK , meaning that for any other fibered knot J with ξJ 	 ξK , we
have c(ξJ ) = c(ξK ) ∈ Ĥ F(−Y ).

Strictly speaking, the Alexander grading here depends on the relative homology class
of the fiber surface for its definition. The fact that the bottommost group has rank one
is a consequence of the fact that K is fibered, and the fact that ∂K (cbot) = 0 (so that
the homology class of cbot is defined) follows from the fact that we use the reduced
complex, so that there are no chains in Ĥ FK with Alexander grading less than −g.

The final property of knot Floer homology used in this paper relates the filtered
homotopy type of CFK∞(K ) to the Floer homology of closed 3-manifolds obtained
by surgery on K . Before stating it, we first point out that to a 3-manifold with Spinc

structure s, there are threeFloer chain complexes,CF−(Y, s),CF∞(Y, s),CF+(Y, s),
related by a short exact sequence.

Now let S3n(K ) denote the 3-manifold obtained by n-framed surgery on K , and
let −Wn denote the associated 4-dimensional 2-handle cobordism with its orientation
reversed, viewed “backwards” as a cobordism from S3n(K ) to S3. In terms of this
cobordism we define sm to be the unique Spinc structure on S3n(K ) which extends
over −Wn to a Spinc structure tm with Chern class given by c1(tm) = (−n + 2m) · S,
where S ∈ H2(−Wn) ∼= Z is a generator.

Surgery formula ([67, Theorem 4.4]) Let S3n(K ) denote the manifold obtained by
n-framed surgery on K and let sm denote the Spinc structure defined above. Then for
all n ≥ 2g(K ) − 1, and any m in the interval

�(−n + 1)/2� ≤ m ≤ �n/2�
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there is a commutative diagram of short exact sequences:

0 F−1({i < 0}, { j < m}) CFK∞(K )
CFK∞(K )

F−1({i<0},{ j<m}) 0

0 CF−(S3n(K ), sm) CF∞(S3n(K ), sm) CF+(S3n(K ), sm) 0

i

	

p

	 	
i p

where the horizontal maps are inclusion into, and projection onto, sub and quotient
complexes, respectively, and the vertical maps are chain homotopy equivalences of
complexes of F[U ]-modules.

There is a corresponding surgery formula which computes the Floer homology
for all framed surgeries along K [69, Theorem 1.1] in terms of a mapping cone of
complexes derived from CFK∞, and a further refinement which computes the Floer
homology of all (rational-sloped) Dehn surgeries [75, Theorem 1.1]. These formulae
are also very useful, but we will have no need for them in the present article.

3 Proof of Theorem 1

In this section we prove Theorem 1, which we break into two results. The first (Theo-
rem 3.1) shows that all members of a family of knots obtained by twisting along a band
sum of two unknots have isomorphic knot Floer homology. This is an application of
the skein exact sequence. The second (Theorem 3.2) distinguishes the knots in such a
family in the case that the band sum we start with is a non-trivial knot. For this we use
Khovanov homology and a similar exact sequence in that context (Proposition 3.3),
together with Kronheimer and Mrowka’s result that Khovanov homology detects the
unknot [46].

Theorem 3.1 Let be K be a band sum of two unknots, and Ki the knot obtained
from K by adding i full twists along the band (see Fig. 1 for an illustration). Then
HFK−(Ki ) ∼= HFK−(K ) as bigraded modules over F[U ].
Proof Wewill show that Ki and Ki+1 have isomorphic Floer homology for any i ∈ Z.
The key observation is that Ki and Ki+1 are related by a single crossing change.
Further, for each i ∈ Z, the oriented resolution of the crossing results in the two
component unlink. Indeed, this resolution cuts the band from which K = K0 is
constructed. Letting K+ = Ki , K− = Ki+1, and K0 = Unlink, we can apply the
skein exact sequence to relate HFK− of the three links.

To do this, recall that for any knot the HFK− structure theorem gives a decompo-
sition

HFK−(K ) ∼= F[U ]{−2τ,−τ } ⊕ Tor .

In the case at hand Ki is a ribbon knot for all i ∈ Z. Hence the smooth 4-ball genus of
Ki is zero, and the four-ball genus bound for τ implies that for each i ∈ Z we have

HFK−(Ki ) ∼= F[U ]{0,0} ⊕ Tori
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As a result the skein exact sequence takes the form:

· · · F[U ]{0,0} ⊕ Tori F[U ]{0,0} ⊕ Tori+1 F[U ]{0,0} ⊕ F[U ]{−1,0} · · ·h− f − g− h−

where all maps are F[U ]-module homomorphisms. The fact that the torsion submod-
ules are finitely generated, together with the structure theorem for modules over a
PID, implies that the torsion modules are finite dimensional as F-vector spaces. Thus
each torsion submodule has non-trivial elements in but a finite number of Alexan-
der gradings. On the other hand, U carries bidegree (m, a) = (−2,−1), and so the
free submodules have non-trivial elements in all Alexander gradings less than zero. It
follows that for all a � 0 the exact sequence gives:

HFK−
2a(K0, a) HFK−

2a(Ki , a) HFK−
2a(Ki+1, a) HFK−

2a−1(K0, a)

0 F F F F 0

h−

∼=

f −

∼=

g−

∼= ∼=
1 0 1

where each F is generated by the monomial U−a in one of the free F[U ] summands.
Analyzing g−, we have

U−a · g−(1) = g−(U−a · 1) = U−a ∈ F[U ]{−1,0}

where 1 ∈ F[U ] ⊂ HFK−(Ki+1) is the generator. The first equality follows from
U -equivariance, and the second is the lower right isomorphism in the diagram above.

Thus g−(1) 
= 0, and since 1 ∈ F[U ]{−1,0} is the only element in HFK−(Unlink)
with grading −1, it follows that g−(1) = 1. Hence, by U -equivariance, g− maps
F[U ] ⊂ HFK−(Ki+1) isomorphically onto F[U ]{−1,0} ⊂ HFK−(Unlink). More-
over, as the target is free, the torsion submodule is in the kernel of g−.

The same analysis shows that h− maps F[U ]{0,0} ⊂ HFK−(Unlink) isomorphi-
cally onto F[U ] ⊂ HFK−(Ki ); indeed,

U−a · h−(1) = h−(U−a · 1) = U−a

for all a � 0. Thus h−(1) is an element in HFK−
0 (Ki , 0) which is not U -torsion.

The only such element is 1 ∈ F[U ]. Exactness now implies that f − is a bigraded iso-
morphism between the torsion submodules Tori and Tori+1. Since the free summands
are isomorphic it follows that HFK−(Ki ) ∼= HFK−(K j ) for all i, j ∈ Z. ��

Note that since knot Floer homology detects the genus and fiberedness of a knot,
the above theorem implies all members of a family obtained by twisting along a band
have the same genus and fiberedness status. In particular, it follows immediately that
Ki is non-trivial for any integer i .

Thus to prove Theorem 1 (and Corollary 2), it remains to verify that the knots Ki

and K j are distinct for all i 
= j , in the case that Ki is non-trivial for some, and
hence all, i ∈ Z. For this we will use Khovanov homology [43]. In order to draw as
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close a parallel with knot Floer homology as possible, we employ the reduced version
of Khovanov homology K̃ h(K ) [41], with q-grading half of the quantum grading in
[43]. As above, we take coefficients in F = Z/2Z. With these conventions the Jones
polynomial of a knot K in S3 is recovered by

VK (t) =
∑

q∈Z

( ∑

u∈Z
(−1)u dim K̃ huq(K )

)
· tq ,

normalized to take the value 1 on any diagram of an unknot and satisfying the skein
relation

t−1 · V (t) − t · V (t) = (t−1/2 − t1/2) · V (t). (8)

We prove the following:

Theorem 3.2 Let K be a non-trivial band sum of two unknots, and Ki the knot
obtained from K by adding i full twists along the band. Then K̃ h(Ki ) � K̃ h(K j ) if
i 
= j .

For the reader content to distinguish the knots in a specific family, the skein relation
for the Jones polynomial implies that

VKi (t) = t2( j−i)(VK j (t) − 1) + 1 (9)

for all i, j ∈ Z. Thus the Jones polynomials of knots in a family will be mutually
distinct, provided that none of these polynomials is trivial.3 It is currently unknown
whether there exists a non-trivial knotwith trivial Jones polynomial. This explainswhy
we turn to Khovanov homology, equipped with Kronheimer and Mrowka’s unknot
detection theorem. As such our proof might be viewed as a categorification of Eq. (9).

3.1 The skein exact sequence in Khovanov homology

Wedevelop the oriented exact sequencewhich categorifies the skein relation of Eq. (8).
This exact sequence was alluded to in Rasmussen [81, Section 4.2], and proved for
slN link homology theory in [82, Proposition 7.6]. We essentially follow this latter
proof in the context of reduced Khovanov homology,4 with conventions tailored to
our needs. See Fig. 3 for an illustration of the conventions used here.

We find it convenient to use the diagonal grading δ = u−q giving rise to a (Z×Z)-
graded (co)homological invariant K̃ hδ

q(K ) of a knot K (for links this invariant is ( 12Z×
1
2Z)-graded). A shift operator [·, ·] adjusts the bigrading by the rule K̃ hδ

q(K )[i, j] =
K̃ hδ−i

q− j (K ).

3 Should this case arise the polynomials are trivial for all i ∈ Z; this would give rise to an infinite family
of non-trivial knots with trivial Jones polynomial.
4 Up to taking mirrors, the N = 2 case of Khovanov and Rozansky’s (reduced) slN -homology [42,44]
studied by Rasmussen in [82] coincides with reduced Khovanov homology (see also Hughes [37]).
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There are a pair of long exact sequences for this theory described by Ras-
mussen [81], though our conventions are consistent with Manolescu and Ozsváth
[52, Proposition 2.2]. Let n−(K ) count the number of negative crossings in a fixed
orientation of (a diagram of) K . Given a distinguished positive crossing in K
set c+ = n−( ) − n−( ); this constant compares the negative crossings in the
original diagram with the negative crossings in a choice of orientation on the resolu-
tion (different choices of orientation may result in different constants). Similarly, set
c− = n−( ) − n−( ) for a negative crossing. Then for each q we have long exact
sequences

· · · K̃ h( )[− 1
2c+, 1

2 (3c+ + 2)] K̃ h( ) K̃ h( )[− 1
2 ,

1
2 ] · · ·i∗+ ∂∗+

and

· · · K̃ h( )[ 12 ,− 1
2 ] K̃ h( ) K̃ h( )[− 1

2 (c− + 1), 1
2 (3c− + 1)] · · ·i∗− ∂∗−

where the connecting homomorphisms ∂∗± raise the δ-grading by one and preserve the
q-grading, and the other maps preserve bigrading. Both long exact sequences arise
from a natural splitting at the chain level from the inclusions of subcomplexes

i+ : C̃Kh( )[− 1
2 c+, 1

2 (3c+ + 2)] ↪→ C̃Kh( ) and i− : C̃Kh( )[ 12 ,− 1
2 ] ↪→ C̃Kh( )

where C̃Kh(K ) is the chain complex computing K̃ h(K ). In particular, each long exact
sequence arises from a mapping cone construction. Towards comparing K+ and K−
(as in Fig. 2), for the same choice of orientation on the (common) resolution at the
distinguished crossing, let c = c+ so that c− = c − 1. Then the relevant mapping
cones in this setting are

C̃Kh( ) = cone
(
∂+ : C̃Kh( )[− 1

2 ,
1
2 ] → C̃Kh( )[− 1

2c,
1
2 (3c + 2)]

)
(10)

C̃Kh( ) = cone
(
∂− : C̃Kh( )[− 1

2c,
1
2 (3c − 2)] → C̃Kh( )[ 12 ,− 1

2 ]
)

(11)

Following [82, Section 7.3] and [81, Section 4.2], we deduce the oriented skein
exact sequence from this pair of mapping cones. Rasmussen observes that from (11)
it follows there is a homotopy equivalence

C̃Kh( )[− 1
2c,

1
2 (3c + 2)] cone

(
i− : C̃Kh( )[− 1

2 ,
3
2 ] → C̃Kh( )[0, 2]

)

∈ ∈

x (∂−(x), (x, 0))

ι

where the target vector ι(x) is written with respect to the natural direct sum decompo-
sition of the mapping cone consisting of two copies of the complex associated with
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on either side of the complex for . Note we have applied an overall (and cosmetic)
shift [0, 2], and that there is an additional shift of −1 in the δ-grading of C̃Kh( )

to ensure that i−, now the differential in a mapping cone, raises δ-grading by one. In
fact ι is a homotopy inverse to the natural projection from cone (i−) onto its C̃Kh( )

summand. Moreover, ι is an inclusion in a strong deformation retract [82, Proof of
Proposition 7.6], so by an observation of Bar-Natan [10, Lemma 4.5] we obtain

C̃Kh( ) 	 cone
(
ι∂+ : C̃Kh( )[− 1

2 ,
1
2 ] → cone (i−)

)
.

We can unpack this iterated cone description of C̃Kh( ) as follows:

C̃Kh( )[− 1
2 ,

1
2 ]

C̃Kh( )[0, 2]
C̃Kh( )[− 1

2 ,
3
2 ]

(∂+, 0)

∂−∂+
i−

By construction, the maps in this three-step filtration on C̃Kh( ) raise δ-grading by
1 and preserve the q-grading. Clearly C̃Kh( )[0, 2] is a subcomplex, from which it
follows that there is a short exact sequence

0 C̃Kh( )[0, 2] C̃Kh( ) cone (∂−∂+) 0.

Notice that taking the graded Euler characteristic yields

V (t) = t2 · V + χ(cone (∂−∂+))

where χ(cone (∂−∂+)) = (t1/2 − t3/2) · V (t). This can be rewritten, after multipli-

cation by t−1, as

t−1 · V (t) − t · V (t) = (t−1/2 − t1/2) · V (t)

and compared with Eq. (8).
It will be necessary to have an interpretation of cone (∂−∂+), and not merely its

Euler characteristic, in terms of the link obtained from the oriented resolution. To this
end, recall that choosing a marked point pi on each of the l components of a link
diagram endows the Khovanov complex with the structure of a module over the ring
F[x1, . . . , xl ]/(x21 , . . . , x2l ). On the vector subspace (F[X ]/X2)⊗n in CKh arising
from a given complete resolution, the variable xi acts as multiplication by X on the
tensor factor corresponding to the unknotted component in the resolution containing
pi . We refer to the endomorphism xi as a basepoint map. The basepoint maps are
chain maps and, taken together, they endow the Khovanov complex and its homology
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Fig. 3 Grading conventions illustrated for (the mirror of) the knot 819 in Rolfsen’s table [84]: In this work,
the primary grading is δ (diagonal) and the secondary grading is q (quantum) on the reduced Khovanov
homology, K̃ h(819). Each • denotes a copy of the vector space F. In this example s̃(819) = −3, and the
pairings given by the canceling differential have been illustrated (the spectral sequence, for 819, collapses
on the E2-page since there are only two diagonals). Notice that V819 (t) = t−3 + t−5 − t−8 in this case;
this graded Euler characteristic is recorded at the right

with the aforementioned module structure. The module structure on homology is an
invariant of the link (see [30, Section 2], [41] or [82] for more details).

The invariance of theKhovanovmodule identifies cone (∂−∂+) as an invariant of the
oriented resolution: one checks that if basepoints p1 and p2 are placed on either strand
near the resolved crossing in , then we have ∂−∂+ = x1 + x2, as endomorphisms of
the unreduced Khovanov complex. Picking one of these two points as distinguished,
say p1, the reduced complex C̃Kh of each of the three links in the skein relation is
formed as the cokernel complex of x1. It follows that

cone (∂−∂+) = cone
(
x2 : C̃Kh( ) → C̃Kh( )

)
,

and the proof of invariance of the Khovanov module implies that the homology of
the mapping cone on the right is an invariant of the 2-pointed link (specifically [30,
Lemma 2.3], [82, Lemma 5.16]). In the case that has two components, cone (x2)
is an invariant of together with an ordering of its components which Rasmussen
calls the totally reduced homology; and in the case that is a knot, it is simply a knot
invariant.

Proposition 3.3 (Rasmussen [81, Section 4.2] [82, Proposition 7.6]) Let K± be the
links of Fig. 2 that differ by a single crossing change. There is a long exact sequence

· · · K̃ h(K−)[0, 2] K̃ h(K+) H∗(cone (∂−∂+)) · · ·

where (∂−∂+)∗ : K̃ h(K0)[− 1
2 ,

1
2 ] → K̃ h(K0)[− 1

2 ,
3
2 ] is the basepoint map (x2)∗, an

invariant of K0 relative to the component(s) on either side of the resolution. All maps
preserve the q-grading; the connecting homomorphisms raise the δ-grading by 1. ��
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3.2 A canceling differential in Khovanov homology

As with knot Floer homology, Khovanov homology admits a canceling differential
owing to the existence of an analogue of Lee’s spectral sequence for F-coefficients.

Theorem 3.4 (Turner [94]) Given a knot K in S3 there is a spectral sequence with
E1 ∼= K̃ h(K ) and E∞ ∼= F supported in grading u = δ + q = 0. The differential di
on the Ei -page raises the δ-grading by 1 − i and raises the q-grading by i . ��

Note that these conventions follow [96, Section 3.4]. In direct analogy with Ras-
mussen’s s-invariant (for Khovanov homology over Q) or the τ -invariant (for HFK ),
the canceling differential produces an invariant, s̃(K ) ∈ Z, defined to be the quantum
grading of the generator surviving Turner’s spectral sequence. We will make use of:

Theorem 3.5 (Rasmussen [83], Lipshitz-Sarkar [50]) For any knot K , |s̃(K )| ≤
g4(K ). ��

Note that 2s̃(K ) and s(K ) are not equal for all K (the factor of 2 here is an artifact
of our grading convention). Indeed, Seed [88] found examples on which the invariants
differ, e.g. K = 14n19265 has s(K ) = 0 and s̃(K ) = −1 [50, Proof of Theorem 3 and
Remark 6.1].

With this background on Khovanov homology in place, we complete the proof of
Theorem 1 and, at the same time, Corollary 2.

Proof of Theorem 3.2 Suppose we are given a non-trivial band sum of unknots, K ,
and let Ki denote the knot obtained from K by adding i full twists to the band. Letting
K+ = Ki , K− = Ki+1, and K0 = Unlink, we see that the oriented skein exact
sequence of Proposition 3.3 will be of use once H∗(cone (∂−∂+)) is calculated in the
case of K0 = Unlink. This can be easily obtained, for instance, by applying the exact
sequence to the situation when K+ and K− are unknots with a single positive and
negative crossing, respectively. Since K̃ h(K+) ∼= F

δ=0
q=0

∼= K̃ h(K−) in this case, it
follows that

H∗(cone (∂−∂+)) ∼= F
δ=0
q=0 ⊕ F

δ=-1
q=2

where K0 is the two-component unlink.
Thus, in the present setting the oriented skein exact sequence becomes

· · · K̃ hδ
q−2(Ki+1) K̃ hδ

q (Ki ) F
δ=0
q=0 ⊕ F

δ=-1
q=2 K̃ hδ+1

q−2(Ki+1) · · · ,
d

so that K̃ hδ
q−2(Ki+1) ∼= K̃ hδ

q(Ki ) for q 
= 0, 2 or for δ 
= −1, 0, 1. This will amount
to the key observation; compare Eq. (9). More precisely, we have two exact sequences
of interest:

0 K̃ h−1
0 (Ki+1) K̃ h−1

2 (Ki ) F K̃ h00(Ki+1) K̃ h02(Ki ) 0

0 K̃ h0−2(Ki+1) K̃ h00(Ki ) F K̃ h1−2(Ki+1) K̃ h10(Ki ) 0

d2

d0
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For all other values of δ, q the exact sequence gives isomorphism of Khovanov
homology groups. Namely, if there is a δ 
= −1, 0, 1 supporting non-trivial Khovanov
homology then for some q we have

K̃ hδ
q(Ki ) ∼= K̃ hδ

q−2(Ki+1) � 0

and, more generally,

K̃ hδ
q(Ki ) ∼= K̃ hδ

q−2( j−i)(K j ) � 0

for all i, j . Hence Ki 	 K j if and only if i = j , since otherwise the respective (finite
dimensional) Khovanov homologies differ as graded vector spaces.

Similarly, if there is a odd integer q supporting non-trivial Khovanov homology
then for some δ we have

K̃ hδ
q(Ki ) ∼= K̃ hδ

q−2( j−i)(K j ) � 0

for all i, j and the knots Ki and K j are separated as above.
To complete the proof then it remains to carefully analyze the case wherein K̃ h(Ki )

is supported entirely in gradings δ = −1, 0, 1 and only in (a finite number of)
even gradings q. Taking the additional structure of Khovanov homology into account
(namely, the canceling differential of Theorem 3.4) places further constraints on the
support of Khovanov homology in this case. For example, since the differential di on
the Ei -page raises δ-grading by 1− i , it follows that in the present setting the spectral
sequence must collapse on the E3-page for dimension reasons. Indeed, there are at
most 3 adjacent δ-gradings supporting K̃ h(Ki ) (δ = −1, 0, 1). Furthermore, since the
differential di on the Ei -page raises q-grading by i , both the d1 and the d3 differen-
tial must vanish: K̃ h(Ki ) is supported only in even q-gradings. To summarize, when
K̃ h(Ki ) is supported only in gradings δ = −1, 0, 1 and only in even q-gradings, d2
constitutes the entire canceling differential.

Since Ki is a ribbon knot, hence slice, it must be that K̃ h00(Ki ) � 0 so that s̃(Ki ) =
0; from the preceding discussion, H∗

(
K̃ h(Ki ), d2

) ∼= F
δ=0
q=0. Moreover, as we have

shown that Ki is necessarily non-trivial (appealing to the fact that knot Floer homology
detects the unknot; compare Theorem 3.1), it must be that dim K̃ h(Ki ) > 1 (and odd)
by applying Kronheimer and Mrowka’s detection theorem for Khovanov homology
[46, Theorem 1.1]. Therefore,

K̃ h(Ki ) ∼= F
δ=0
q=0 ⊕

( ⊕

�∈2Z
(Fn� )δ=−1

q=� ⊕ (Fn� )δ=0
q=�−2 ⊕ (Fm� )δ=0

q=� ⊕ (Fm� )δ=1
q=�−2

)

where all but finitely many of the integers m�, n� are 0 (but at least one such is non-
zero since Ki is non-trivial). Notice that the domain of d2 is

⊕
�∈2Z(Fn� )δ=0

q=�−2 ⊕
(Fm� )δ=1

q=�−2 and the image of d2 is
⊕

�∈2Z(Fn� )δ=−1
q=� ⊕ (Fm� )δ=0

q=� so that the n� and

the m� pair up to cancel all but the vector space F
δ=0
q=0. With this in place, we claim
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that

K̃ h(K j ) ∼= F
δ=0
q=0 ⊕

( ⊕

�∈2Z
(Fn� )δ=−1

q=�−2( j−i) ⊕ (Fn� )δ=0
q=�−2−2( j−i) ⊕ (Fm� )δ=0

q=�−2( j−i)

⊕(Fm� )δ=1
q=�−2−2( j−i)

)

for all integers j .
Since the long exact sequence induces isomorphisms K̃ hδ

q(Ki ) ∼= K̃ hδ
q−2(Ki+1)

away from q = 0, 2—in agreement with the claim—it suffices to lighten notation and
consider the case

K̃ h(Ki ) ∼= F
δ=0
q=0 ⊕ (Fn)δ=−1

q=2 ⊕ (Fn)δ=0
q=0 ⊕ (Fm)δ=0

q=2 ⊕ (Fm)δ=1
q=0

for at least one of n or m non-zero. Now the exact sequence gives

0 K̃ h−1
0 (Ki+1) F

n
F K̃ h00(Ki+1) F

m 0
d2

and

0 K̃ h0−2(Ki+1) F
n+1

F K̃ h1−2(Ki+1) F
m 0

d0

leading to 4 cases to consider.
When dim(d0) = 1 and dim(d2) = 0 we have that

K̃ h(Ki+1) ∼= F
δ=0
q=0 ⊕ (Fn−1)δ=−1

q=0 ⊕ (Fn+1)δ=0
q=−2 ⊕ (Fm−1)δ=0

q=0 ⊕ (Fm+1)δ=1
q=−2

which is impossible: With this form H∗
(
K̃ h(Ki+1), d2

) ∼= F
3, a contradiction (note

that this case does not arise when n = 0).
When dim(d0) = 1 and dim(d2) = 1 we calculate that

K̃ h(Ki+1) ∼= F
δ=0
q=0 ⊕ (Fn)δ=−1

q=0 ⊕ (Fn+1)δ=0
q=−2 ⊕ (Fm)δ=0

q=0 ⊕ (Fm+1)δ=1
q=−2

forcing H∗
(
K̃ h(Ki+1), d2

) ∼= F
δ=0
q=−2. This has the appropriate dimension, but is

supported in 0 
= u = δ + q = −2, a contradiction.
Similarly, when dim(d0) = 0 and dim(d2) = 0 we calculate that

K̃ h(Ki+1) ∼= F
δ=0
q=0 ⊕ (Fn−1)δ=−1

q=0 ⊕ (Fn)δ=0
q=−2 ⊕ (Fm−1)δ=0

q=0 ⊕ (Fm)δ=1
q=−2

so that H∗
(
K̃ h(Ki+1), d2

) ∼= F
δ=0
q=−2, again, a contradiction (note that this case does

not arise when n = 0).
Finally, the remaining case when dim(d0) = 0 and dim(d2) = 1 gives

K̃ h(Ki+1) ∼= F
δ=0
q=0 ⊕ (Fn)δ=−1

q=0 ⊕ (Fn)δ=0
q=−2 ⊕ (Fm)δ=0

q=0 ⊕ (Fm)δ=1
q=−2
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so that s̃(Ki+1) = 0, as required, and the result as claimed in the case j = i + 1.
With this observation in hand the long exact sequence may be iterated (with

dim(d0) = 0 and dim(d2) = 1) to obtain the general statement, from which it follows
immediately that K̃ h(Ki ) ∼= K̃ h(K j ) as graded vector spaces if and only if i = j . ��

4 Proof of Theorem 4

Suppose that we have a knot K ⊂ Y with irreducible complement satisfying

rank Ĥ FK (Y, K , top) = rank Ĥ FK (Y, K ,bottom) = 1.

Then the fibered knot detection theorem [59, Theorem 1.1] implies that K is fibered,
with fiber surface of genus equal g = top. We can now employ the contact invariance
of the Floer class associated with the contact structure ξK induced by the fibration on
Y � K [92]. Recall that if cbot is a generator for

Ĥ FK (−Y, K ,bottom) ∼= F〈cbot〉,

then the contact invariant c(ξK ) is defined by

c(ξK ) := [cbot] ∈ H∗(Ĥ FK (−Y, K ), ∂K ) ∼= Ĥ F(−Y ).

Using mirror duality, the hypothesis that the generator of the top group represents
a non-trivial Floer homology class in Ĥ F(Y ) implies that c(ξK ) 
= 0 ∈ Ĥ F(−Y ).
Similarly, we can consider the mirror K ; that is, regard K ⊂ −Y . Now the mirror
duality property, together with our assumption that the generator of the bottom group
is non-trivial in Ĥ F(Y ), implies c(ξK ) 
= 0 ∈ Ĥ F(Y ).

Thus the fibered knot K induces contact structures ξK , ξK on Y and −Y ,
respectively, each of whose Ozsváth–Szabó contact elements is non-trivial. By [68,
Theorem 1.4], this implies each contact structure is tight. Now observe that reversing
the orientation of Y can be achieved by reversing the orientation on the page of the
open book decomposition induced by K . This implies that if φ ∈ MCG(
g,1) is the
mapping class element specifying the monodromy for the open book decomposition
induced by K , then φ−1 represents the monodromy of the open book induced by K .

We now appeal to a result of Honda et al. [36, Theorem 1.1] which states that a
contact structure is tight if and only if every open book decomposition supporting
it has right-veering monodromy. It follows immediately from the definition that the
only element φ ∈ MCG(
g,1) such that φ and φ−1 are both right-veering is the trivial
mapping class. Thus the monodromy of K is isotopic rel boundary to the identity.

To finish the argument, we observe that the complement of the binding of the open
book with trivial monodromy is homeomorphic to S1 × 
g,1 ∼= #2gS1 × S2 � B and
(as noted in [62]) that work of Gabai shows that knots in #2gS1 × S2 are determined
by their complement [21, Corollary 2.14]. �� Theorem 4
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Proof of Corollary 5 Ozsváth and Szabó show that with a link L ⊂ Y of |L| com-
ponents, one can associate a knot κ(L) ⊂ Y#|L|−1S1 × S2 [67, Section 2.1]. This
construction served as their original definition of the knot Floer homology of L:

(Ĥ FK (Y, L), ∂L) := (Ĥ FK (Y#|L|−1S1 × S2, κ(L)), ∂κ(L)).

From their definition, it is easy to see that κ(L) is obtained from L by plumbing
|L| − 1 copies of the unique fibered link with identity monodromy and fiber surface
an annulus to the fiber surface for L , in such a way as to make the boundary of the
resulting surface connected (c.f. [58, Lemma 4.4]). Gabai showed that any plumbing
of fiber surfaces is a fiber surface [20]. Moreover, the monodromy of the plumbings’
fibration is the composition of those of the plumbands. Thus, if L is a fibered link with
genus g fiber surface and monodromy isotopic to the identity, then κ(L) is the fibered
knot of genus g + |L| − 1 with identity monodromy. The previous theorem says that
κ(L) is detected by its knot Floer homology. Hence L is detected by its knot Floer
homology, by the definition of the knot Floer homology of a link. ��

Before turning to the proof of Corollary 6, recall that a finitely generated group G has
solvable word problem if, given a product of generators w (a word in the generators
of G), there exists an algorithm to decide if w represents the trivial element in G.

Proof of Corollary 6 Let MCG(
g,k, ∂) denote the mapping class group of diffeo-
morphisms of a genus g surface with k boundary components which fix the boundary
pointwise. Given φ ∈ MCG(
g,k, ∂), let Y = Y (φ) denote the 3-manifold specified
by the open book decomposition associated with φ, and let L denote the binding. By
Corollary 5 the knot Floer homology groups Ĥ FK (Y#|L|−1S1 × S2, κ(L)), together
with their canceling differential ∂κ(L), will certify whether φ is trivial, so it remains
to verify that there is an algorithm for computing this information. This is provided
by the Sarkar-Wang algorithm for computing the hat Floer homology groups of an
arbitrary 3-manifold, as well as the filtered homotopy type of the filtration of the hat
complex induced by an arbitrary knot therein [85]. This algorithm may be adapted to
the setting at hand, namely, for a mapping class φ expressed as a word in a generating
set of Dehn twists—see Plamenevskaya [77] for an approach catered to the relevant
contact-geometric information used by Theorem 4. Using the reduction process, this
yields the knot Floer homology groups of κ(K ) and the canceling differential. ��

5 Proof of Theorem 7

Noting that the genus detection of knot Floer homology [74, Theorem 1.2] identifies
the Seifert genus with the top-most Alexander grading in the support of knot Floer
homology, suppose we are given K ⊂ S3 for which the knot Floer homology groups
satisfy:

(i) τ(K ) = g
(ii) Ĥ FK−1(K , g) = Ĥ FK−1(K , g − 1) = 0,
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where g is the Seifert genus. We wish to show that no such K exists.
We will use the surgery formula for knot Floer homology, together with a result of

Rasmussen. Associated with an oriented rational homology 3-sphere Y equipped with
a Spinc structure s is the Ozsváth–Szabó “correction term” [65, Section 4] (see below
for the definition). Denoted d(Y, s), this is aQ-valued invariant derived from theF[U ]-
module structure on the Heegaard Floer homology of Y (see Frøyshov [17] for the
Seiberg-Witten motivation for these invariants). In the case at hand, let d(S3n(K ), sm)

denote the correction term associated with the Spinc structure sm on S3n(K ), which
was defined before the statement of the surgery formula in Sect. 2.

We can compare the d-invariants for surgeries on a knot K to the d-invariants for
the corresponding surgery on the unknot by defining:

hm(K ) := d(S3n(Unknot), sm) − d(S3n(K ), sm)

2

This is essentially an invariant defined byRasmussen [79,80] in analogy to an invariant
of Frøyshov from instanton homology [18]. It has a 4-dimensional interpretation as
the rank of the kernel of the map on HF+ induced by the Spinc 2-handle cobordism
(−W ′

n, tm), restricted to the image of HF∞, though this interpretation will not be
needed in our discussion.

The careful reader will note that hm(K ) differs from Rasmussen’s invariant, given
by [80, Equation (2)]:

hm(K ) = d(S3−n(K ), sm) − d(S3−n(Unknot), sm)

2

(the unknot term is denoted E(n,m) in [80]). We claim that

hm(K ) = hm(K ).

To see this, note first that S3n(K ) = −S3−n(K ) and that Unknot = Unknot. Now recall
that the d-invariants reverse sign when the orientation of a 3-manifold is reversed [65,
Proposition 4.2]:

d(−Y, s) = −d(Y, s).

The stated relationship follows immediately. The reader may worry that the labeling
conventions for Spinc-structures on S3n(K ) and S3−n(K ) disagree. However, it is easy
to see that they are forced to agree up to the sign of m. Since the resulting invariants
hm and hm are independent of the sign of m (by conjugation invariance of Floer
homology), we make no effort to make this technicality precise.

A key tool is an inequality satisfied by hm , due to Rasmussen. This inequality can
be viewed as a Heegaard Floer analogue of a result for instanton homology proved by
Frøshov [19]. To state it, let K ⊂ S3, and let g4(K ) be its smooth 4-ball genus. Then
[80, Theorem 2.3] states that hm(K ) = 0 for |m| ≥ g4(K ), while for |m| < g4(K )

we have
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0

g − 1
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Fig. 4 The shaded region in the figure indicates the portion of the (i, j)-plane specifying the “hook”
complex Ag−2. The dots represent non-trivial homology classes which exist, due to the assumption τ(K ) =
g, in the E1 term of the spectral sequence associated with the horizontal filtration of Ag−2 (by the i-
coordinate), and the curved arrows represent the endomorphism U . The hatching indicates a region of
CFK∞ without generators. The left-most dot has Maslov grading −4

hm(K ) ≤
⌈g4(K ) − |m|

2

⌉
.

In the case at hand, we have observed that a knot with the putative Floer homology
will have τ(K ) = g(K ) which, when combined with the four-ball genus bound [73,
Corollary 1.3] |τ(K )| ≤ g4(K ) shows that g4(K ) = g(K ). Since the 4-genus is
invariant under taking mirrors, Rasmussen’s bound for hm shows that

hg−2(K ) ≤ 1.

We will show that our assumptions on the knot Floer homology groups, together with
the surgery formula, implies hg−2(K ) ≥ 2, thus arriving at a contradiction to prove
the theorem.

Let Ag−2 denote the quotient complex of CFK∞(K ) given by

Ag−2 := CFK∞(K )

F−1({i < 0}, { j < g − 2})

i.e. the complex generated by basis elements whose bifiltration coordinates satisfy the
constraint max(i, j − g + 2) ≥ 0. Geometrically, we think of this quotient complex
as a “hook” in CFK∞(K ), as shown in Fig. 4. The surgery formula [67, Theorem
4.4] states that for n ≥ 2g(K ) − 1, the Floer homology of HF+(S3n(K ), sg−2) is the
homology of this quotient:
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HF+∗+s(S
3
n(K ), sg−2) ∼= H∗(Ag−2), (12)

where the shift s in the Maslov grading on CFK∞(K ) is independent of the knot K
(it depends only on the surgery coefficient n and the Chern class of the extension of
the Spinc structure over the 2-handle cobordism). The correction term is defined via
the F[U ] module structure in a dual manner to our characterization of τ(K ) in terms
of the module structure on HFK−:

d(Y, s) := min
ξ∈HF+(Y,s)

{gr(ξ) | ξ ∈ Im Ud ∀d > 0}.

Thus, according to (12), we have

d(S3n(K ), sg−2) = s + min
ξ∈H∗(Ag−2)

{gr(ξ) | ξ ∈ Im Ud ∀d > 0}.

For the unknot, the second term is easily seen to be zero. Thus hg−2 is given by:

−2hg−2(K ) = min
ξ∈H∗(Ag−2)

{gr(ξ) | ξ ∈ Im Ud ∀d > 0}.

It suffices to show that the right-hand quantity is less than or equal to −4. To
do this, note that the quotient complex Ag−2 inherits a (Z × Z)-filtration from
CFK∞(K ). Using the Z-filtration coming from the i-coordinate, in particular, we
obtain a spectral sequence of F[U ]-modules. Now consider a cycle representative for
H∗(Ĥ FK (K ), ∂K ) ∼= F. Any such cycle lives in Alexander grading τ(K ) = g, by
assumption (i), and the Uk translates of this cycle generate a non-trivial homology
class in each filtration level i ≥ −2 in the E1 page of the spectral sequence. See Fig. 4.
Moreover, the class in filtration −2 has grading −4 and is in the image of Ud for all
d. Call this class α.

Now observe that for each filtration i ≥ 0, we have Ei
1

∼= F(2i), where the super-

script indicates the filtration level. This happens because H∗(Ĥ FK (K ), ∂K ) ∼= F,
and for each i ≥ 0 the sub-quotient of Ag−2 with fixed i is isomorphic to

(Ĥ FK (K ), ∂K )[2i, i]). Thus the only way for α to die in the spectral sequence is
if it is the boundary of a chain in E−1

1 under the d1 differential. Assumption (ii), how-
ever, implies that there are no chains in E−1

1 (or even in E−1
0 ) with Maslov grading

−3. Thus α generates a non-trivial homology class in H∗(Ag−2)which is in the image
of Ud for all d. � Theorem 7

The utility of Theorem 7 is illustrated through an example in Fig. 5.

Proof of Corollary 8 Assume rank Ĥ FK (K ) = 3. If Ĥ FK (K , i) = 0 for all i 
= 0,
then the genus of K is zero, and K is the unknot (which has rank one Floer homology).
If Ĥ FK ∗(K , i) 
= 0 for some i 
= 0, then symmetry implies Ĥ FK ∗−2i (K ,−i) 
= 0.
This accounts for rank 2. Thus symmetry implies Ĥ FK (K , 0) 
= 0. Since a canceling
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Fig. 5 The knot Floer homology of the right-hand trefoil (left), and a complex that is ruled out as the knot
Floer homology of any knot by Theorem 7 (right). The i = 0 slice has been singled out; each • denotes a
copy of F

differential lowers Maslov grading by one and H∗(Ĥ FK , ∂) is supported in grading
zero, the only possibilities for the knot Floer homology groups are

Ĥ FKm (K , a) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F m = 0, a = i

F m = 1 − 2i, a = 0

F m = −2i, a = −i

0 otherwise

or Ĥ FKm (K , a) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F m = 2i, a = i

F m = 2i − 1, a = 0

F m = 0, a = −i

0 otherwise

In the first case, the only Alexander grading that supports non-trivial Floer homology
in Maslov grading zero is a = i , hence τ(K ) = i . Now if i 
= 1, Theorem 7 tells us K
cannot exist; indeed, in this case there is no Floer homology at all in Maslov grading
−1. If i = 1 Ghiggini’s theorem [22, Corollary 1.5] tells us K is the right-handed
trefoil. Mirror duality implies that if K has knot Floer homology groups as on the
right, then K has the groups on the left, thus proving the corollary. ��

Proof of Corollary 9 Let K be an L-space knot. Ozsváth and Szabó proved that that
τ(K ) = g [71, Corollary 1.6]. This implies that assumption (i) in the statement of
Theorem 7 is satisfied and that dim Ĥ FK 0(K , g) > 0. Indeed, in order for τ(K ) to
equal the genus, there must be a cycle for ∂K in the top group of knot Floer homol-
ogy, and this cycle must lie in Maslov grading zero as it generates the homology
H∗(Ĥ FK , ∂K ). Moreover, they showed that dim Ĥ FK (K , a) is 1 or 0 for every a
[71, Theorem 1.1]. It follows that the top group of knot Floer homology is supported
entirely in grading zero. Theorem 7 then implies that Ĥ FK−1(K , g − 1) = 1. The
corollary follows. ��
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6 Questions, conjectures, and concluding remarks

6.1 Abstract infinity complexes

The results of this article, while interesting—at least to the authors—in their own right,
serve to highlight how little is know about the geography and botany questions in knot
Floer homology. The geography question, in particular, seems quite difficult. Let us
define

Definition 6.1 An (abstract) infinity complex is a graded, bifiltered complex
(C, ∂,F) satisfying

(1) (C, ∂) is freely generated as complex of modules over F[U,U−1] by a finite set
of graded, bifiltered homogeneous generators.

(2) Acting by U shifts the grading by −2 and the bifiltration by (−1,−1).
(3) (C, ∂) has a global canceling differential, in the sense that H∗(C, ∂) ∼=

F[U,U−1], where 1 ∈ F[U,U−1] has grading 0.
(4) The complex (C, ∂,Fr ), where Fr is the bifiltration function Fr (i, j) :=

F( j, i), is (Z × Z)-filtered homotopy equivalent to (C, ∂,F)

The discussion of Sect. 2 indicates that CFK∞(K ) is an abstract infinity complex
for any K . Theorem 7 indicates, however, that the most naive guess at an answer
to the geography question—that any infinity complex arises as a knot Floer infinity
complex—is wrong. While our theorem places new restrictions on which infinity
complexes arise, it offers little insight as to what a general characterization of knot
Floer complexes could look like. Indeed, the theorem seems to take us further from a
conjectural characterization than where we started.

A potentially more tractable geography question could be phrased in terms of
a 4-dimensional relation placed on knot Floer complexes. In [33], Hom defined a
{−1, 0, 1}-valued invariant of an infinity complex, C . Denoted ε(C), the invariant
measures how a generator of the homology of the vertical complex interacts with
the horizontal components of the differential. The behavior of ε under duality and
tensor products gives rise to a group CFK, which we call the knot Floer concordance
group, whose elements are ε-equivalence classes of infinity complexes. Here, two
such complexes C, D are equivalent if ε(C ⊗ D∗) = 0 (with D∗ the dual complex),
with the product and inverse operations in CFK given by tensor product and duality,
respectively [34,35]. The primary utility of the knot Floer concordance group is that
it is the receptor of a natural homomorphism, which we denote H , from the smooth
concordance group C. Two questions we find interesting are:

Question 6.2 What is CFK? More precisely, can CFK be given a presentation in
terms of generators and relations?

Question 6.3 (CFK Geography Question) What is the image of Hom’s homomor-
phism H : C → CFK? In particular, is H surjective?

Work of [24,35] implies that CFK (and indeed the image of H ) is necessarily infinitely
generated, and has a rich filtration structure by Archimedean equivalence classes.



On the geography and botany of knot Floer homology 1029

While difficult, there is more hope that both questions could be answered due to the
algebraic flexibility that ε-equivalence provides, and the abundance of knots whose
infinity complexes are now understood. For instance, the ε-equivalence class of the
“shifted trefoil” complex in Fig. 5 which is obstructed by Theorem 7, is realized by
H([T4,5] − [T2,3;2,5]), where T2,3;2,5 denotes the (2, 5) cable of the trefoil knot [31].
Thus one could retain hope that H is surjective and that the geography question—up
to ε-equivalence—is answered by the naive guess: abstract infinity complexes.

6.2 Botany and the Berge conjecture

From a topological perspective, the botany problem seems more interesting. Under-
standing when the question has a finite answer, in particular, seems well-motivated by
potential applications to the study of Dehn surgery. Such applications arise from the
following general strategy:

(1) Assume surgery on an (unknown) knot K produces a particular manifold, Y (or
a particular type of manifold, e.g. a lens space).

(2) Use the surgery formula to show this assumption implies CFK∞(K ) is of a
particular form.

(3) Invoke a finite answer to the botany problem for such CFK∞ to determine that
K is a member of some finite set.

For instance, this strategy can be used to show that if there is an orientation-
preserving diffeomorphism S3n(K ) ∼= S3n(Unknot), then K is unknotted;5 that is, the
unknot is characterized by any member of its integer surgery spectrum. Similar results
hold for the trefoil and figure eight knots [64] using the same strategy and the fact
that, like the unknot, these knots are determined by their knot Floer homology.

In a similar vein, the Berge Conjecture asserts that the set of knots in S3 on which
one can perform surgery to obtain a lens space is exactly the class which can be placed
on the genus two Heegaard surface in such a way that they are doubly primitive, see
[40, Problem 1.78], [11]. This conjecture would be implied by an affirmative answer
to the following botany conjecture for knot Floer homology of knots in lens spaces:

Conjecture 6.4 ([3, Conjecture 1.5] cf. [29,78]) Suppose a knot K in the lens space
L(p, q) satisfies

dim Ĥ FK (L(p, q), K ) = p.

Then K is isotopic to the union of two properly embedded chords in a pair of minimally
intersecting meridional disks of the two Heegaard solid tori in L(p, q).

Note that there is a canceling differential ∂K on Ĥ FK (L(p, q), K ), whose homol-
ogy has dimension p. The dimension assumption of the theorem is therefore equivalent
to ∂K ≡ 0. In the case of S3, such an assumption implies that K is unknotted. There

5 This theorem was first proved using a similar strategy for monopole Floer homology, which at the time
lacked knot Floer homology [45] cf. [74]. It can be reproved using knot Floer homology, as suggested.
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was a similar conjecture that a pair of knots in L(p, q), each of which has Floer
homology of rank p+2, are detected by knot Floer homology [3, Conjecture 1.6] [29,
Figure 3] (this is the lens space analogue of Corollary 8), however this was disproved
by Baker and Hoffman [4, Theorem 1].

Returning to the botany question for knots in the 3-sphere, Theorem 1 suggests
that the knot Floer homology of most knots will be realized infinitely often. Indeed,
Theorem 1, combined with the behavior of knot Floer homology under satellite oper-
ations, can be used to quite flexibly produce infinite families of distinct knots with
identical knot Floer homology groups (or infinity chain complexes) having various pre-
scribed qualities. For instance, there are infinite families of “thin” knots with the same
Floer homology i.e. knots whose hat Floer homology groups plotted in the Maslov-
Alexander plane are supported on a single diagonal. Indeed, any knot of the form B#B

r

where B is 2-bridge will be thin and a member of R, hence will produce an infinite
family of thin knots with the same Floer homology by Theorem 1. Note that by [66,
Second paragraph of pg. 246], the filtered homotopy type of (CFK∞, ∂∞) of a thin
knot is determined by the knot Floer homology groups (cf. [76, Theorem 4]), so that
these families actually have the same infinity complexes. One can similarly produce
examples of families with arbitrary τ , families all of whose members are fibered (see,
for example, Theorem 6.12 and the accompanying discussion in Sect. 6.5), families
whose Floer homology has arbitrary width, and families whose Alexander polynomial
is arbitrarily prescribed, by appealing to the Künneth formula and formulas for the
knot Floer homology of Whitehead doubles or cables.

One class of knots whose Floer homology we find difficult to replicate by our
constructions are the fibered knots which induce the standard tight contact structure
on the 3-sphere. Combining the fibered knot detection of Floer homology and [28,
Proposition 2.1] this class can be defined Floer theoretically as the class of knots
satisfying

Ĥ FK (K , g) = F supported in Maslov grading 0, and τ(K ) = g,

where g is the Seifert genus. This class is also equivalent, again by [28, Proposition
2.1] and Ni’s fibered knot detection theorem, to the class of strongly quasipositive
fibered knots. Our efforts make the following question seem natural:

Question 6.5 Are there infinitely many distinct strongly quasipositive fibered knots
with the same knot Floer homology?

If not, then this would be one class of knots which knot Floer homology coarsely
detects.6 While we expect, however, that there are infinitely many strongly quasi-
positive fibered knots with the same Floer homology, one way to approach a coarse
detection theorem would be through the following simpler question:

Question 6.6 Are there infinitely many distinct strongly quasipositive fibered knots
with the same Alexander polynomial?

6 We’ll say an invariant coarsely detects a topological object X if only finitely many objects have the same
invariant as X .
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Table 1 Some properties of L-space knots

Property Attribution

g(K ) = g4(K ) = τ(K ) = s(K ) Various authors, see [28]

The coefficients of �K (t) take values in {−1, 0, 1} Ozsváth and Szabó [71, Theorem 1.2]

K is fibered Ghiggini [22], Ni [59]

K is strongly quasipositive [28, Proposition 2.1]

K induces the standard tight contact structure on S3 [28, Proposition 2.1]

dim Ĥ FK (K , a) = 1 for a = g, g − 1 Theorem 7; Corollary 9

In fact the answer to this question is yes, as was pointed out to us by Sebastian Baader;
compare [2]. One can plumb a positive Hopf band to the fiber surface of the positive
(2, 6)-torus link using infinitely many distinct isotopy classes of proper arcs, all of
which are homologous. This can produce, for instance, infinitely many distinct fibered
strongly quasipositive knots with Alexander polynomial equal to that of the (2, 7)-
torus knot.

6.3 Coarse detection of L-space knots

While we are pessimistic that knot Floer homology coarsely detects strongly quasi-
positive fibered knots, one might be hopeful that it does so for a very interesting subset
of these, the so-called L-space knots. Recall that a knot is a (positive) L-space knot
if S3n(K ) is an L-space for some n > 0. The simplicity of the Floer homology of
L-spaces implies, by the surgery formula, that the knot Floer homology of L-space
knots is tightly constrained; see Table 1. Indeed, this is the context where the strategy
outlined above is likely to be most fruitful, but where botany results are lacking.

We make the following conjecture:

Conjecture 6.7 Let K be an L-space knot. Then there are only finitely many other
knots whose Floer homology is isomorphic to Ĥ FK (K ).

It should be pointed out that the structure of Ĥ FK of an L-space knot implies that
the hat Floer homology groups determine CFK∞, up to homotopy, much in the same
way that the infinity complex of a thin knot is determined by its knot Floer homology
groups. If true, the conjecture would have as corollary that there are only finitely many
knots on which a fixed lens space can be obtained via Dehn surgery; this corollary is
also implied by the Berge Conjecture. Of relevance here is the fact that there are known
pairs of knots which admit L-space surgeries and share the same Floer homology, the
simplest being the (2, 3)-cable of the trefoil and the (3, 4)-torus knot [27].

Notice that Conjecture 6.7 would follow were it known that any L-space knot could
be represented as the closure of a positive braid. This is not the case, however, and we
are grateful to Cameron Gordon, Jen Hom and Tye Lidman for pointing out that the
(2, 3)-cable of the trefoil is an L-space knot that cannot be represented as the closure of
a positive braid. Indeed, a result of Cromwell gives 4g as upper bound on the number
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of crossings in a diagram of a fibered, positive knot, where g is the genus of the braid
closure [15, Corollary 5.1]; compare [89, Section 3.1]. In this example then we obtain
an upper bound of 12, but a direct check of the knot tables certifies that the minimal
crossing number of this cable (let alone a purported positive braid diagram) exceeds
this bound.

Work of the first author alluded to above implies that any L-space knot can be
represented as the closure of a strongly quasipositive braid [28, Corollary 1.4]. By
plumbing positive Hopf bands one can show that there are infinitely many distinct
strongly quasipositive fibered knots of any genus greater than one, in contrast to the
finiteness of positive braid closures with bounded genus. As such, Conjecture 6.7
places the class of L-space knots in a perhaps interesting tension between the classes
of positive and quasipositive braids.

An affirmative answer to the following two conjectures could be helpful in under-
standing the botany problem for L-space knots (see [6] for several other interesting
conjectures, and a nice discussion of L-space knots):

Conjecture 6.8 Any L-space knot admits a strong inversion.

Update: This has been disproved by Baker and Luecke [5]. See also [97, Conjecture
30] and the accompanying discussion.

Conjecture 6.9 ([49, Conjecture 4]) An L-space knot contains no essential Conway
spheres in its complement.

While we don’t really know whether to expect coarse detection of L-space knots
by knot Floer homology (we conjecture it mainly because we find it difficult even to
produce families of L-space knots, let alone families with the same Floer homology),
it is perhaps more justified to conjecture such a result for particular subsets of L-space
knots. For instance, Li and Ni make the following conjecture:

Conjecture 6.10 ([48, Conjecture 1.3]) Suppose K has the Floer homology of an
L-space knot whose Alexander polynomial has its roots on the unit circle. Then K is
an iterated torus knot.

The conjecture is motivated, in part, because an affirmative answer would imply a
conjecture of Boyer and Zhang that any finite filling of a hyperbolic knot complement
must be of integral slope [12]. The example of the (2, 3)-cable of the trefoil and the
(3, 4)-torus knot tells us that it is not true that Floer homology detects iterated torus
knots on the nose. Coarse detection, however, seems plausible.

6.4 On small rank in knot Floer homology

As with the trefoil, the figure eight—being the other genus one fibered knot in S3—is
also characterized by knot Floer homology [22]. However, in contrast withCorollary 8,
it is not clear that there is a finite collection of knots with knot Floer homology of rank
5 (both the (2, 5)- and (3, 4)-torus knot have knot Floer homology of rank 5, as do
certain cables of the trefoil).
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p q

Fig. 6 TheKanenobu knot Kp,q , where p, q ∈ Z record the number of full-twists on two strands following
the convention in Fig. 1 (note that this convention agrees with [39] but differs from that of [95]). Notice that
Kp,q may be realized as the band sum of two unknots in two different ways by cutting the band at either of
the two twist sites. The infinite family of knots considered in Theorem 6.12 arise for integers p = −q = n

••

•••••

••By contrast, as a consequence of Theorem 1, there is an infinite family of
distinct knots in S3 sharing the knot Floer homologyof the twist knot 61. This
results from the fact that this knot is ribbon; see Fig. 1. That is, if K0 = 61
then by twisting the ribbon disk to obtain {Ki }i∈Z we have that Ĥ FK (Ki )

is completely determined by the Alexander polynomial−2t−1+5−2t (and
vanishing signature). In particular, this is an infinite family of distinct genus
one knots with identical knot Floer homology of rank 9 (the subquotient complex
F−1({0} × Z) is shown on the right).

There is an obvious question worth recording.

Question 6.11 Are there only finitely many knots in S3 with knot Floer homology of
rank 5? Of rank 7?

6.5 Families of knots indistinguishable by homological invariants

Kanenobu gave examples of distinct knots with identical HOMFLY polynomial [39].
We will denote these by Kp,q where p, q ∈ Z record the number of full twists in two
different locations on a ribbon disk; see Fig. 6. The knot K0,0 is a connect sum of figure
eight knots and, more generally, Kp,q is a symmetric union of figure eight knots. See
[39] for details; see [95] for for various generalizations of the construction. From the
foregoing discussion, it is worth recording that the Kp,q are fibered and, apart from
the connect sum for (p, q) 
= (0, 0), are all hyperbolic as well [39, Theorem 2].

Let Kn be the Kanenobu knot Kn,−n for n ∈ Z. This is an infinite family of distinct
ribbon knots [39, Lemma 2]. This final result is recorded for posterity.

Theorem 6.12 The following homological invariants fail to separate the knots
{Kn}n∈Z:
(i) Khovanov homology
(ii) odd Khovanov homology
(iii) sl(N ) homology
(iv) HOMFLY homology
(v) knot Floer homology
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Proof The case (i) is established by the second author [95], and a modification of the
argument is used with Greene in [23] to obtain (ii). Both (iii) and (iv) are results of
Lobb [51]. Finally, since each Kn is ribbon, (v) is an application of Theorem 1. ��
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