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Abstract 37 

Akabane (AKAV) and Schmallenberg (SBV) viruses are Orthobunyavirus 38 

transmitted by arthropod vectors with a broad cellular tropism in vitro as well as 39 

in vivo. Both AKAV and SBV cause arthrogryposis-hydranencephaly syndrome 40 

in ruminants. The main cellular receptor and attachment factor for entry of these 41 

orthobunyaviruses are unknown. Here, we found that AKAV and SBV infections 42 

were inhibited by the addition of heparin or enzymatic removal of cell surface 43 

heparan sulfates. To confirm this finding, we prepared heparan sulfate 44 

proteoglycan (HSPG)-knockout (KO) cells by using a CRISPR/Cas9 system and 45 

measured the binding quantities of these viruses to cell surfaces. We observed a 46 

substantial reduction in AKAV and SBV binding to cells, limiting the infections by 47 

these viruses. These data demonstrate that HSPGs are important cellular 48 

attachment factors for AKAV and SBV, at least in vitro, to promote virus 49 

replication in susceptive cells.  50 

 51 

Importance 52 

AKAV and SBV are the etiological agents of arthrogryposis-hydranencephaly 53 

syndrome in ruminants, which causes considerable economic losses in the 54 

livestock industry. Here, we identified heparan sulfate proteoglycan as a major 55 

cellular attachment factor for the entry of AKAV and SBV. Moreover, we found 56 

that heparin is a strong inhibitor of AKAV and SBV infections. Revealing the 57 

molecular mechanisms of virus-host interactions is critical in order to understand 58 

virus biology and develop novel live attenuated vaccines.  59 

 60 
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Introduction 61 

 The Akabane (AKAV) and Schmallenberg (SBV) viruses belong to the 62 

Simbu serogroup of the arthropod-borne Orthobunyavirus genus of the family 63 

Bunyaviridae. AKAV and SBV are phylogenetically closely related and they also 64 

possess similar biological characteristics: (i) both cause abortion, stillbirth, 65 

premature birth, and congenital deformities in cattle, sheep, and goats; (ii) both 66 

primarily infect the central nervous system (CNS) of the fetus; (iii) both are 67 

difficult to control, because they are transmitted by biting midges of the genus 68 

Culicoides (1). Both AKAV and SBV cause “abortion storms” that result in 69 

considerable economic losses to the livestock industry (2-4).  70 

Despite these similarities, there are important features that distinguish 71 

these two viruses. AKAV is endemic throughout Australia, Southeast Asia, East 72 

Asia, the Middle East, and Africa, whereas SBV has emerged and has dispersed 73 

across a large area of Europe since 2011. AKAV comprises four genogroups (I–74 

IV), whereas SBV comprises a single genotype. No differences in the 75 

pathogenicity of different SBV strains have been described. On the other hand, 76 

the OBE-1 strain of AKAV [AKAV(OBE-1)] (genogroup I) causes severe fetal 77 

malformation, whereas the Iriki strain [AKAV(Iriki)] (genogroup II) causes also 78 

fatal non-suppurative encephalomyelitis in newborn cattle. Molecular 79 

determinants distinguishing the pathogenicity of these two different strains are 80 

unknown (5).  81 

 Orthobunyaviruses carry a tripartite, single-stranded, negative-sense 82 

RNA genome. The L segment encodes the L protein, a viral RNA-dependent 83 

RNA polymerase; the S segment encodes the N protein and the non-structural 84 
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protein NSs, both transcribed from an overlapping open reading frame; and the 85 

M segment encodes NSm, and the two major viral envelope proteins, Gn and Gc 86 

(Gn/Gc), which form heterodimeric spikes on the virus particle. Gn/Gc are the 87 

proteins on the surface of the virion that bind to cell surface molecules in the 88 

initial step of orthobunyavirus infection (6, 7). Relatively few studies have 89 

investigated orthobunyavirus entry. La Crosse and Germiston neurotropic 90 

orthobunyavirus entry into the cell has been described to be promoted by 91 

DC-SIGN (8, 9). However, DC-SIGN is probably not the main attachment factor 92 

of ruminant orthobunyaviruses, because it is expressed on macrophages and 93 

dendritic cells, not in the CNS. Heparan sulfate proteoglycan (HSPG), one of 94 

major negatively charged transmembrane protein-linking glycosaminoglycans, is 95 

expressed by almost all cells, including neural cells. HSPG is involved in cell 96 

attachment of many viruses [e.g., herpes simplex virus (10, 11), adenovirus (12) 97 

respiratory syncytial virus (13, 14), human papilloma virus (15), foot-and-mouth 98 

disease virus (16), hepatitis B virus (17), hepatitis C virus (18), Ebola virus (19, 99 

20), dengue virus (21), and human immunodeficiency virus (22)]. In addition, 100 

HSPG is involved in cell attachment of phleboviruses in the family Bunyaviridae, 101 

including Rift Valley fever virus and Toscana virus (23-25). In a previous report, 102 

hemagglutination of AKAV was inhibited by the addition of heparin, a form of 103 

heparan sulfate (26). Therefore, it is possible that HSPGs are involved in AKAV 104 

and/or SBV infection, similarly to other viruses.  105 

 In this study we examined the role of HSPGs in AKAV and SBV 106 

replication.  107 

 108 

http://jvi.asm.org/


5 
 

Materials and Methods 109 

Cells. Baby hamster kidney cells stably expressing T7 RNA polymerase 110 

(BHK/T7-9 cells) (27) were kindly provided by Dr. Naoto Ito (Gifu University, 111 

Japan) and cultured in Dulbecco's modified Eagle's minimum medium (DMEM) 112 

supplemented with 5% fetal calf serum (FCS) and 10% tryptose phosphate broth 113 

at 37°C. Golden hamster lung (HmLu-1) cells were cultured at 37°C in DMEM 114 

supplemented with 5% FCS. Human embryonic kidney (HEK293T) cells were 115 

maintained in DMEM supplemented with 10% FCS.  116 

 117 

Viruses. AKAV OBE-1 and Iriki strains (28, 29) and SBV (30) were generated by 118 

reverse genetics. Briefly, to recover AKAV(Iriki), 1.2 μg of pT7riboSM2/IL, 0.6 μg 119 

of pT7riboSM2/IM, and 1.2 μg pT7riboSM2/IS plasmids were mixed in 200 μL of 120 

Opti-MEM (GIBCO, Grand Island, NY, USA) with 9 μL of Trans-IT LT1 (Mirus Bio, 121 

Madison, WI, USA) transfection reagent, incubated at room temperature for 15 122 

min and then added to BHK-T7 cells (27) grown in 6-well plates. To recover 123 

AKAV(OBE-1), 1.2 μg of pT7riboSM2/OL, 0.6 μg of pT7riboSM2/OM, and 1.2 μg 124 

of pT7riboSM2/OS plasmids were transfected into BHK-T7 cells, as described 125 

for AKAV(Iriki) generation. To recover SBV, 1 µg of each pUCSBVST7, 126 

pUCSBVMT7, and pUCSBVLT7 plasmids and 2 μg of a plasmid expressing T7 127 

polymerase under control of the chicken β-actin promoter (pCAGGS-T7pol) 128 

were mixed in 300 μL of Opti-MEM (GIBCO) with 15 μL of Trans-IT 293 (Mirus) 129 

transfection reagent, incubated at room temperature for 15 min, and then added 130 

to HEK293T cells grown in 6-well plates. At 3 days post-transfection, the culture 131 

supernatant of transfected cells was harvested and added to HmLu-1 cells. 132 
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Viruses were propagated in HmLu-1 cells cultured in DMEM supplemented with 133 

2% FCS. Non-spreading vesicular stomatitis virus (VSV-ΔG-GFP) pseudotyped 134 

with its own glycoprotein G was propagated following transfection of the VSV G 135 

protein-expressing plasmid (pCAGGS-VSVG) into HEK293T cells (31). 136 

VSV-pseudotyped virus with AKAV Gn and mutant Gc was also propagated in 137 

HEK293T cells following transfection of the mutant Gn/Gc/NSm of AKAV(OBE-1), 138 

which lacks a 10-amino-acid region in the C-terminal of the wildtype Gc. This 139 

mutant was made since VSV-pseudotyped virus with Gn and mutant Gc lacking 140 

C-terminal of cytoplasmic-tail glycoproteins of Crimian-Congo hemorrhagic fever 141 

(CCHF) virus, a member of Bunyaviridae, showed higher titer than 142 

VSV-pseudotyped virus with wild-type CCHF Gn/Gc proteins (32).  143 

 144 

Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse 145 

polyclonal antibody (pAb) was prepared by two intraperitoneal injections of 146 

sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan 147 

SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal 148 

antibody (pAb) was prepared by two intraperitoneal injections of sucrose 149 

gradient-purified SBV in 6-week-old female ICR mice (Japan SLC) at 2-week 150 

intervals. Reactivities and specificities of both anti-SBV and anti-AKAV pAbs 151 

were confirmed by immunofluorescent assay, using AKAV(OBE-1)- or 152 

SBV-infected and mock-infected HmLu-1 cells. 153 

 154 

Plaque assay. A standard plaque assay was used to determine the infectivity of 155 

AKAV and SBV. After virus adsorption to HmLu-1 cells for 1 h at 37°C, the 156 
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inocula were removed, and cells were overlaid with DMEM containing 0.6% 157 

agarose and 2% FCS. After incubation for 3 days, cells were stained with neutral 158 

red before counting plaque-forming units (PFUs). 159 

 160 

Plaque reduction assay. One hundred microliters of serial two-fold dilutions of 161 

heparin solution were prepared in MEM containing 0.3% bovine serum albumin 162 

(BSA/MEM). An equal volume of the suspensions containing 100 PFU/100 µL of 163 

AKAV(OBE-1), AKAV(Iriki), or SBV were added to each dilution. After incubation 164 

for 30 min at room temperature (RT), 200 µL of each virus-heparin mixture 165 

(containing 100 PFU of viruses) was titrated by the plaque assay. 166 

  167 

Heparinase treatment. Cells were seeded in 48-well plates 24h prior to 168 

infection. Medium was removed, and the cells were incubated with serial 169 

four-fold dilutions of heparinase II (New England Biolabs) in BSA/MEM with 2 170 

mM CaCl2 for 1 h at 37°C and then washed with BSA/MEM. The plates were 171 

immediately transferred on ice to suppress the synthesis and transport of HSPG. 172 

We then added the appropriate amounts of AKAV(OBE-1), AKAV(Iriki), or SBV to 173 

100 µL of BSA/MEM and incubated the mixture for 1 h on ice. Supernatant was 174 

removed and cells washed twice with BSA/MEM, and DMEM with 5% FCS 175 

before incubation for 8 h at 37°C. The cells were then fixed with 4% 176 

paraformaldehyde for 15 min at RT. After removing paraformaldehyde, the cells 177 

were permeabilized with 0.1% Triton-X 100 and incubated with anti-AKAV N 178 

mouse monoclonal antibody (mAb) (5E8) (33) for AKAV-infected cells or 179 

anti-SBV mouse polyclonal antibody pAb for SBV-infected cells, followed by 180 
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incubation with Alexa Fluor 488-conjugated anti-mouse IgG antibody. The 181 

fluorescence-positive cells were counted as AKAV- or SBV-infected cells under 182 

fluorescent microscopy (Vert. A1, Carl Zeiss). 183 

 184 

EXT2-KO cells. EXT2-KO cells were established using the CRISPR/Cas9 185 

system. EXT2 gene target sequences (EXT2-1: CTATCCCCTGAAAAAGTACG 186 

or EXT2-2: CTACACGGATGACATCAGCC) containing oligos were introduced 187 

into the guide RNA (gRNA) expression cassette of the plentiCRISPR vector (a 188 

gift from Dr. Feng Zhang, Addgene plasmid #52961) (34). A random target 189 

sequence (N20) containing oligos was also introduced into the gRNA expression 190 

cassette of the plentiCRISPR vector. One µg of the plentiCRISPR plasmid 191 

containing each target gRNA sequence was transfected into HmLu-1 cells (1 × 192 

105 cells) with TransIT-LT1 (Mirus). One day after transfection, media were 193 

replaced with 10 μg/mL of puromycin-containing media for 5 days of selection. 194 

Surviving cells were passaged, diluted, and inoculated onto fresh dishes for 195 

colony formation. Each colony was picked, propagated, and genotyped. The 196 

genomic region surrounding the CRISPR/Cas9 target site for each gene in 197 

cloned cell was PCR-amplified with KOD-FX neo (TOYOBO), and the PCR 198 

products were gel extracted and sequenced using a 3130 Genetic Analyzer 199 

(ABI). Primer sequences are available upon request. Clones with indels 200 

introduced at the targeted site were picked. Genotyped clones were detached 201 

with phosphate-buffered saline (PBS) containing ethylenediaminetetraacetic 202 

acid (EDTA) and incubated with anti-heparan sulfate mAb (10E4) (USBio) (35) 203 

followed by incubation with Alexa Fluor 488-conjugated anti-mouse IgM antibody 204 
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(AbCam). IgM clone MOPC 104E (Sigma, St. Louis, MO, USA) was used as an 205 

isotype control. Labeled cells were analyzed by flow cytometry (FACSVerse, BD 206 

Biosciences).  207 

 208 

Real-time reverse transcription-polymerase chain reaction (RT-PCR) for 209 

the quantification of cell surface-attached viruses. For virus absorption on 210 

cells, 1 x 107 PFU/mL of AKAV(OBE-1), AKAV(Iriki), or SBV were inoculated onto 211 

HSPG-KO or random-KO HmLu-1 cells for 1 h at 4 °C. After 1 h of incubation, 212 

unbound viruses were washed three times with ice-cold BSA/MEM. Virus-bound 213 

cells were lysed, and the total RNA was extracted with ISOGEN (Nippon Gene). 214 

The extracted RNAs were assayed using RNA-direct SYBR Green Real-time 215 

PCR Master Mix (Toyobo), according to the manufacturer's instructions, in a 216 

Thermal Cycler Dice Real Time System (Takara). One µg of the extracted RNAs 217 

were amplified using the AKAV S RNA-specific primer set (forward 5′218 

-CCACAACCAAGTGTCGATCT-3′; reverse 5′-AGATGCGGTGAAGCGTAAA-3′), 219 

or SBV S RNA-specific primer set (forward 220 

5′-GGCCAAGATGGTCCTACATAAG-3′; reverse 221 

5′-TGTCTGGCACAGGATTTGAG-3′). The RNA was normalized to host GAPDH 222 

mRNA using a golden hamster GAPDH-specific primer set (forward 223 

5′-AAGGTCATCCCAGAGCTGAA-3′; reverse 224 

5′-CTGCTTCACCACCTTCTTGA-3′). For relative quantification, a standard 225 

curve of AKAV or SBV S RNA and GAPDH was prepared by serial dilution of the 226 

mixture of total RNA extracted from uninfected HmLu-1 cells and viral RNA 227 

extracted from AKAV(OBE-1)- or SBV-containing supernatants.  228 
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 229 

Sandwich ELISA for the detection of N proteins of cell surface-attached 230 

AKAV. For virus absorption on cells, 1 x 107 PFU of AKAV(OBE-1) was 231 

inoculated onto HSPG-KO or control HmLu-1 cells in 6-well plates for 1h at 4°C. 232 

After 1 h of incubation, unbound viruses were washed three times with ice-cold 233 

BSA/MEM. Then, virus-bound cells were lysed with lysis buffer containing 10 234 

mM Tris-HCl (pH 7.4), 0.5% TritonX-100, 150 mM NaCl, and 1 mM EDTA for 10 235 

min on ice. The lysates were collected and clarified by centrifugation (10,000 x g 236 

for 5 min at 4 °C). Supernatants were then added to the anti-AKAV N mAb 237 

(5E8)-coated wells of 96-well ELISA plates (Maxisorp, Nunc) and incubated for 238 

30 min at RT. After washing with PBS-0.1% Tween 20 (PBS-T), biotinylated 239 

(Biotin Labeling Kit-NH2, Dojindo) anti-AKAV mouse pAb was added to the wells 240 

and incubated for 30 min at RT. After washing with PBS-T, avidin-biotinylated 241 

horseradish peroxidase (HRP) complex (VECTASTAIN ABC Kit, Vector 242 

Laboratories) was added to the wells and incubated for 30 min at RT. A 243 

3,3′,5,5′-tetramethylbenzidine (TMB) substrate solution was used to read the 244 

assay. 245 

 246 

EXT2 gene reintroduction into HSPG-KO cells. The golden hamster EXT2 247 

open reading frame sequence (GenBank accession number XM_013118841) 248 

was amplified from a pool of cDNA, which was a product of reverse transcription 249 

of total RNA from HmLu-1 cells, using an EXT2-specific primer set. A pS 250 

lentivirus transfer vector under the control of the spleen focus-forming virus 251 

promoter was prepared by removing the Venus gene from pSVenusfull vector 252 
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(36) by BamHI and NotI digestion. Amplified EXT2 cDNA was cloned into the pS 253 

lentivirus vector and designated as pS-EXT2. The lentivirus EXT2-expression 254 

vector was produced in HEK293T cells by co-transfection of the transfer vector 255 

pS-EXT2 and two lentivirus packaging plasmids p8.9QV (37) and 256 

pCAGGS-VSVG. The lentivirus vector was concentrated by ultracentrifugation 257 

and inoculated onto EXT2-KO HmLu-1 cells. HSPG expression was confirmed 258 

by flow cytometry as described above. 259 

 260 

Statistical analysis. All samples were compared by Student’s t-test with 261 

two-tailed analysis to determine statistically significant differences. 262 

 263 

Results 264 

Heparin or heparinase treatment inhibits AKAV and SBV infections. 265 

Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor 266 

of infection by various viruses. To test whether heparin inhibits AKAV or SBV 267 

replication, AKAV and SBV were incubated with different concentrations of 268 

heparin for 30 min and the titers of the viruses neutralized by heparin were 269 

measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support 270 

efficient replication of the Akabane and Schmallenberg viruses and abundantly 271 

express heparan sulfate. The number of plaques induced by either AKAV or SBV 272 

was reduced in a heparin concentration-dependent manner. These data suggest 273 

that heparin affects the replication cycle of both viruses.  274 

Next, we pre-treated HmLu-1 cells with heparinase to remove HPSG from 275 

the cell surface and subsequently infected them with AKAV(OBE-1), AKAV(Iriki), 276 
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SBV. We also used or VSV-ΔG-GFP, a VSV-based vector expressing GFP that 277 

can complete only a single replication cycle within the cell (31), because this 278 

virus does not utilize HSPG during the early events of infection (23, 39). At 8 h 279 

post-infection (hpi), cells were fixed and stained with anti-AKAV or anti-SBV 280 

antibodies for the detection of AKAV- or SBV-infected cells, respectively. 281 

GFP-positive cells were instead counted to determine the number of 282 

VSV-ΔG-GFP-infected cells. As shown in Fig. 1B, VSV-ΔG-GFP was not 283 

susceptible to heparinase treatment, whereas the number of cells infected by 284 

AKAV and SBV were reduced in a heparinase concentration-dependent manner. 285 

SBV was more susceptible to heparinase treatment than the AKAVs (p<0.05 at 286 

20 and 78 µU/µL of heparinase). These data suggest that HSPG plays important 287 

roles in AKAV and SBV infections.  288 

 289 

AKAV and SBV replication in HSPG-KO cells. In order to further validate the 290 

data shown above, we established HSPG-KO cells using a CRISPR/Cas9 291 

system (34) disrupting the EXT2 gene, which encodes one of the 292 

HSPG-synthesizing enzymes (38). We designed two gRNAs (EXT2-1 and 293 

EXT2-2) targeting different positions in the EXT2 gene and obtained three 294 

clones for each target (EXT2KO-1-1, -1-2, -1-3, -2-1, -2-2, and -2-3 cells). We 295 

also established control “random-KO” HmLu-1 cells by introducing a 20-nt 296 

random target sequence in the gRNA with the CRISPR/Cas9 system and 297 

obtained three clones of the random-KO cells (Random-KO-1, -2, and -3). Lack 298 

of HSPG expression in HSPG-KO cells, but not in random-KO or wild type cells, 299 

was confirmed by flow cytometry analysis (Fig 2A). In the HSPG-KO cells, titers 300 

http://jvi.asm.org/


13 
 

of AKAV(OBE-1) and AKAV(Iriki) were about 100 fold lower than that in 301 

random-KO cells at 24 hpi but were of similar levels at later time points (Fig. 2B). 302 

SBV titers were instead between 10 to 1000 fold lower in HSPG-KO cells than in 303 

random-KO cells throughout the course of the experiment (Fig. 2B). Next, we 304 

examined AKAV and SBV infectivity in the EXT2-KO cells and random-KO cells. 305 

EXT2-KO cells or random-KO cells were infected with AKAV(OBE-1), AKAV(Iriki), 306 

SBV or VSV-ΔG-GFP (moi of 0.1). At 8 hpi, AKAV, SBV antigen-positive cells or 307 

GFP-positive cells were counted (Fig 2C). Control VSV-ΔG-GFP-infected cell 308 

numbers were not significantly different between random-KO and HSPG-KO 309 

cells. Five to ten times lower numbers of AKAV and SBV antigen-positive cells 310 

were detected in EXT2-KO cells compared to those in random-KO cells. To 311 

eliminate the possibility that replication step of AKAV affected the results shown 312 

in Fig. 2C, we used a VSV-pseudotyped virus bearing AKAV glycoproteins 313 

(VSV-ΔG-GFP/AKAV). VSV-ΔG-GFP/AKAV or VSV-ΔG-GFP was inoculated into 314 

EXT2-KO cells or random-KO cells. At 8 hpi, GFP-positive cells were counted 315 

(Fig. 2D). As shown in Fig. 2C, control VSV-ΔG-GFP-infected cell numbers did 316 

not show significant difference between random-KO and HSPG-KO cells. 317 

However, GFP-cells detected were three times less in EXT2-KO cells than in 318 

random-KO cells (p<0.01). These data indicated that HSPG was important for 319 

AKAV and SBV infections. 320 

 321 

Quantification of AKAV and SBV bound to HSPG-KO cells surface. To 322 

determine whether HSPG is important for AKAV and SBV cell surface 323 

attachment, we quantified the amounts of cell surface-bound viruses. 324 
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AKAV(OBE-1) and SBV were incubated with EXT2-KO-1, EXT2-KO-2, or 325 

random-KO cells for 1h at 4°C and virus-bound cells were collected. RNA was 326 

extracted from the cells and AKAV or SBV RNA (S segment) was quantified by 327 

qRT-PCR (Fig. 3A). AKAV and SBV RNA was significantly lower in HSPG-KO 328 

cells than in random-KO cells (p<0.01). We also measured cell-bound AKAV by 329 

quantifying N protein using an N-detecting sandwich ELISA (Fig. 3B). Cell 330 

surface bound N proteins were significantly lower in EXT2-KO-1 and EXT2-KO-2 331 

cells than in random-KO cells, confirming the qRT-PCR results. These data 332 

suggest that HSPG is an important molecule for AKAV and SBV cell surface 333 

attachment. 334 

 335 

AKAV and SBV replication is restored in EXT2 add-back cells. We next 336 

transduced the EXT2-KO cells with the EXT2 gene, in order to confirm that 337 

AKAV and SBV replication could be restored by simply reintroducing the EXT2 338 

gene back to EXT2-KO cells. We first confirmed that HSPG expression was 339 

restored in these cells by flow cytometry (Fig. 4A). Next, we examined AKAV and 340 

SBV infectivity in the EXT2 gene transduced EXT2-KO cells and wild-type cells. 341 

EXT2-KO cells or wild-type cells were infected with AKAV(OBE-1), AKAV(Iriki),or 342 

SBV. At 8 hpi, AKAV-, SBV-infected cells were detected (Fig 4B). As expected, 343 

infectivity of AKAV(OBE-1), AKAV(Iriki), and SBV was restored in the EXT2 344 

add-back cells. 345 

346 
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Discussion 347 

 AKAV and SBV infect neurons (2, 4, 30) and a broad range of cells in the 348 

infected hosts. This suggests that AKAV and SBV use cellular receptor(s) or 349 

attachment factor(s) that are expressed on a variety of cells. DC-SIGN was 350 

previously shown to promote La Crosse and Germiston neurotropic 351 

orthobunyavirus entry (8, 9). However, the distribution of DC-SIGN is not 352 

consistent with the tropisms of either AKAV or SBV, because DC-SIGN is 353 

expressed on a limited number of cell types (i.e., dendritic cells and 354 

macrophages). Here, we demonstrated that HSPG plays an important role in 355 

AKAV and SBV infections as an attachment factor. Cell surface HSPGs are 356 

expressed ubiquitously throughout the body (38), including on neuronal cells 357 

(40). Therefore, our data support the correlation between HSPG distribution and 358 

AKAV and SBV tropism. However, AKAV and SBV show a strong preference for 359 

neuronal cells in vivo and there are likely other reasons for this. AKAV and SBV 360 

were still able to replicate in HSPG-KO cells, although at lower levels than to 361 

those in HSPG-expressing cells. These data suggest the presence of other 362 

cellular factors(s) that defines the tissue tropisms of AKAV and SBV. Further 363 

studies are needed to identify the neuronal cell-specific receptors or reveal other 364 

defining steps after cell entry.  365 

In AKAV (Iriki)-infected HSPG-KO cells, after the virus titer reached a 366 

plateau at 24 and 36 hpi, a second AKAV (Iriki) growth wave was observed at 48 367 

hpi (Fig. 2B). During the AKAV (Iriki) replication in HSPG-KO cells, the virus may 368 

have acquired mutation(s) in the receptor-binding site of the glycoproteins, 369 

possibly leading to adaptation to HSPG-KO cells. Thus, to investigate whether 370 
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the AKAV (Iriki), recovered from HSPG-KO cells at a later time-point of infection, 371 

included mutations in their glycoproteins, we sequenced the entire M segment at 372 

60 hpi but found no mutations. Hence, the mechanism of the second growth 373 

wave of AKAV (Iriki) still remains unknown. Continuous virus passage in 374 

HSPG-KO cells may result in mutations to adapt to other cellular attachment 375 

factor(s) or receptor(s).  376 

 Repetitive passage of some viruses in tissue culture induces one to two 377 

amino acid mutations in their glycoproteins, which increases their affinity toward 378 

HSPGs (41-46). This adaptation also induces viral attenuation in vivo (41-46). A 379 

previous study showed that cell culture-derived SBV showed slightly slowed 380 

replication in cattle; however, the involvement of HSPG underlying this is 381 

unknown (47). Rift Valley fever virus (23), dengue virus (48), and human 382 

t-lymphotropic virus 1 (HTLV-1) (49) do not acquire any mutations after passage 383 

in cell culture, which enhances their affinity toward HSPGs. This suggests that 384 

the species of the virus determines whether the virus adapts to cell culture and 385 

uses HSPGs for entry. AKAV (OBE-1), AKAV (Iriki), and SBV used in the present 386 

study were passaged several times in tissue culture before cloning them into 387 

reverse genetics plasmids. However, AKAV (Iriki) which used in this study 388 

maintained its pathogenic potential against goat fetus and mice (29, 50), 389 

implying that it did not undergo changes during passage in the cell culture. 390 

However, it is unclear whether serial passages in cell culture induced mutations 391 

in Gn/Gc proteins of AKAV and SBV to have higher affinity to HSPG. Therefore, 392 

further studies are needed to compare the HSPG-binding affinity of viral strains 393 

examined with our lab strains and isolates from clinical specimens which have 394 
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original sequences.  395 

 In this study, we showed that the heparinase susceptibly of SBV was 396 

greater than that of AKAVs. In addition, SBV replication in HSPG-KO cells was 397 

limited compared to that of AKAVs. Moreover, AKAV(OBE-1) exhibited slightly 398 

lower HSPG dependency than AKAV(Iriki) did for virus infection and growth. One 399 

possible explanation for the difference in HSPG dependency is that 400 

AKAV(OBE-1), AKAV(Iriki), and SBV possess different sequences in their 401 

HSPG-binding domains and probably in Gn or Gc. Although HSPG-binding 402 

domains have been identified in other viral glycoproteins as well as in cellular 403 

proteins (51), we could not find known HSPG-binding motifs in AKAV and SBV 404 

glycoprotein sequences (data not shown). HSPG-binding domains are not 405 

simply defined by the secondary sequences of HS-binding proteins (51). The 406 

tertiary structure of these proteins and heparan sulfate interactions are also 407 

important for binding. Determining the three-dimensional (3D) structure of Gn/Gc 408 

proteins is likely required to define the binding site more precisely. Although the 409 

orthobunyavirus Gn/Gc 3D structure is not available currently, determining the 410 

3D structure of Gn/Gc proteins is likely required to define the HSPG binding site.  411 

 Here, we clearly show that AKAV and SBV utilize HSPG for their initial 412 

cell surface attachment in gene-edited HSPG-KO cells. These findings further 413 

our understanding of the orthobunyavirus life cycle. Molecules inhibiting 414 

orthobunyavirus and HSPG interactions may be effective antivirals.  415 
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Figure legends 592 

Fig. 1. Effects of heparin and heparinase treatment on AKAV and SBV infections. 593 

(A) Effects of heparin on AKAV and SBV plaque reduction. Various 594 

concentrations of heparin were incubated for 30 min at room temperature with 595 

100 plaque-forming units of AKAV(OBE-1), AKAV(Iriki), or SBV, and the ability of 596 

heparin to reduce plaque formation was assessed. (B) Effects of heparinase 597 

treatment on AKAV and SBV infectivity. HmLu-1 cells were treated with various 598 

concentrations of heparinase II, followed by AKAV or SBV infection. Cells were 599 

stained for AKAV or SBV antigen, and positive cells were counted under a 600 

fluorescent microscope. For VSV-ΔG-GFP-infected cells, GFP-positive cells 601 

were counted under a fluorescent microscope. Results are expressed in 602 

percentages relative to cells that were not treated with heparinase. The data are 603 

reported as the mean value with standard deviations for three independent 604 

experiments. 605 

 606 

Fig. 2. AKAV and SBV growth kinetics and infectivity in HSPG-KO HmLu-1 cells. 607 

(A) Flow cytometric analysis of EXT2-KO HmLu-1 cells. CRISPR/Cas9-mediated 608 

EXT2-KO cell clones (EXT2-1 and EXT2-2) were labeled with anti-heparan 609 

sulfate mouse-monoclonal antibody (10E4) (black) or with isotype control (red) 610 

and analyzed by flow cytometry (FACS verse, BD Biosciences). The 611 

representative data (one out of three clones of random-KO, EXT2KO-1, and 612 

EXT2KO-2) are shown. (B) Growth kinetics of AKAV or SBV in HSPG-KO cells. 613 

AKAV(OBE-1), AKAV(Iriki), or SBV was inoculated onto three clones of 614 

random-KO, EXT2KO-1, and EXT2KO-2 cells at a multiplicity of infection of 0.01. 615 
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Virus titers were determined by plaque assay in normal HmLu-1 cells. The data 616 

are reported as the mean titer of three clones of each KO cell (EXT2KO-1, 617 

EXT2KO-2, or random-KO) with standard deviations. (C) Infectivities of AKAV 618 

and SBV in HSPG-KO cells. Random-KO or HSPG-KO cells were infected with 619 

AKAV(OBE-1), AKAV(Iriki), SBV, or control VSV-ΔG-GFP. Cells were stained for 620 

AKAV or SBV antigen, and positive cells were counted under a fluorescent 621 

microscope. For VSV-ΔG-GFP-infected cells, GFP-positive cells were counted 622 

under a fluorescent microscope. Results are expressed as percentages relative 623 

to the number of positive random-KO cells. The data are reported as the mean 624 

value of three clones of each KO cell (EXT2KO-1, EXT2KO-2, or Random-KO) 625 

with standard deviations. (D) Infectivities of VSV pseudotyped with AKAV Gn/Gc 626 

(VSV-ΔG-GFP/AKAV) in HSPG-KO cells. Random-KO or HSPG-KO cells were 627 

infected with VSV-ΔG-GFP/AKAV or control VSV-ΔG-GFP. GFP-positive cells 628 

were counted under a fluorescent microscope. Results are represented as 629 

percentages relative to the number of positive random-KO cells. The data are 630 

shown as the mean value of three clones of each KO cell (EXT2KO-1, 631 

EXT2KO-2 or random-KO) with standard deviations. 632 

 633 

 634 

Fig. 3. AKAV and SBV binding assays in HSPG-KO cells. (A) Real-time reverse 635 

transcription-polymerase chain reaction (RT-PCR) for the quantification of cell 636 

surface-attached viruses. AKAV(OBE-1) or SBV was incubated with HSPG-KO 637 

cells at 4°C. After a washing step, total RNAs were extracted. AKAV or SBV S 638 

RNAs were quantified by one-step real-time RT-PCR. For relative quantification, 639 
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standard curves of AKAV or SBV S RNA and GAPDH were prepared by serial 640 

dilution of a mixture of total RNA from uninfected HmLu-1 cells and RNA 641 

extracted from AKAV(OBE-1) or SBV-containing supernatants. Results are 642 

expressed as the percentages relative to the levels in random-KO cells. The 643 

results are representative of three different experiments. (B) Sandwich ELISA for 644 

the detection of N proteins of AKAV attached to cell surfaces. AKAV(OBE-1) was 645 

inoculated onto HSPG-KO or random-KO HmLu-1 cells for 1 h at 4°C. After a 646 

washing step, the cells were lysed, and the lysates were added to the anti-AKAV 647 

N monoclonal antibody (5E8)-coated wells of 96-well ELISA plates (Maxisorp, 648 

Nunc), followed by incubation with biotinylated anti-AKAV mouse polyclonal 649 

antibody. Subsequently, the wells were incubated with avidin-biotinylated 650 

horseradish peroxidase (HRP) complex (VECTASTAIN ABC Kit, Vector 651 

Laboratories). A 3,3′,5,5′-tetramethylbenzidine (TMB) substrate solution was 652 

used for detection, and optical density values were measured. Results are 653 

expressed as percentages relative to the number of positive random-KO cells. 654 

The results are representative of three independent experiments. 655 

 656 

Fig. 4. Rescue of AKAV and SBV infectivities by add-back of the EXT2 gene in 657 

EXT2-KO cells. (A) Flow cytometric analysis of adding back the EXT2 gene in 658 

EXT2KO-1 HmLu-1 cells. Cells were labeled with anti-heparan sulfate 659 

mouse-monoclonal antibody (10E4) and analyzed by flow cytometry (FACS 660 

verse, BD Biosciences). (B) Infectivities of AKAV and SBV in EXT2-added back 661 

cells. The cells were infected with AKAV(OBE-1), AKAV(Iriki), or SBV. Cells were 662 

stained for AKAV or SBV antigen, and positive cells were counted under a 663 
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fluorescent microscope. Results are expressed as percentages relative to the 664 

number of wild-type cells. The data are reported as the mean value with 665 

standard deviations for three independent experiments. 666 

http://jvi.asm.org/


AKAV(OBE-1)

AKAV(Iriki)

SBV

0

20

40

60

80

100

120

0 125 250 375 500 625 750 875 1000

P
la

q
u

e
 f
o

rm
a

ti
o

n
 in

h
ib

it
io

n
 (

%
)

Heparin (µg/mL)

AKAV(Iriki)

SBV

AKAV(OBE-1)

A B

VSV-ΔG-GFP

0

20

40

60

80

100

120

R
e
la

ti
v
e
 i
n
fe

c
ti
v
it
y
 (

%
)

0 20 78 313 1250 5000

Heparinase (µU/µL)

http://jvi.asm.org/


0

1

2

3

4

5

6

7

8

9

0 12 24 36 48

0

1

2

3

4

5

6

7

8

0 12 24 36 48
0

1

2

3

4

5

6

7

8

9

0 12 24 36 48

Time post-infection (h) Time post-infection (h) Time post-infection (h)

In
fe

c
ti
v
it
y
 t

it
e

r 
(P

F
U

/m
L

)

In
fe

c
ti
v
it
y
 t

it
e

r 
(P

F
U

/m
L

)

In
fe

c
ti
v
it
y
 t

it
e

r 
(P

F
U

/m
L

)

Random-KO Random-KO Random-KO
EXT2KO-1

EXT2KO-1

EXT2KO-1

EXT2KO-2
EXT2KO-2

EXT2KO-2

AKAV(OBE-1) AKAV(Iriki) SBV

100

200

500

400

300

100

200

500

400

300

600

700

100

200

500

400

300

100

200

500

400

300

600

700

900

800

0 102 105104103 0 102 105104103 0 102 105104103 0 102 105104103

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

Wild-type Random-KO EXT2KO-1 EXT2KO-2

HSPG (Alexa488) HSPG (Alexa488) HSPG (Alexa488) HSPG (Alexa488)

A

B

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120140

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

In
fe

c
ti
o

n
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

In
fe

c
ti
o

n
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

In
fe

c
ti
o

n
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

AKAV(OBE-1) AKAV(Iriki) SBV

C
VSV-ΔG-GFP

0

20

40

60

80

100

120

In
fe

c
ti
o

n
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

140

D

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

0

20

40

60

80

100

120

In
fe

c
ti
o

n
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

0

20

40

60

80

100

120

In
fe

c
ti
o

n
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

VSV-ΔG-GFP/AKAV VSV-ΔG-GFP

http://jvi.asm.org/


0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120
AKAV(OBE-1) SBV

O
D

 (
%

 t
o

 R
a

n
d

o
m

-K
O

)

R
e

la
ti
v
e

 c
o

p
y
 n

u
m

b
e

r
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

R
e

la
ti
v
e

 c
o

p
y
 n

u
m

b
e

r
 (

%
 t

o
 R

a
n

d
o

m
-K

O
)

A B

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

E
X
T2K

O
-1

E
X
T2K

O
-2

R
an

do
m

-K
O

http://jvi.asm.org/


0

20

40

60

80

100

120

140

160

180

WT EXT2KO Add-back

AKAV(OBE-1)

0

20

40

60

80

100

120

140

WT EXT2KO Add-back

AKAV(Iriki)

0

20

40

60

80

100

120

WT EXT2KO Add-back

SBV

100

200

50

400

300

150

C
o
u
n
t

0 102 105104103

HSPG (Alexa488)

0 102 105104103

HSPG (Alexa488)

0 102 105104103

HSPG (Alexa488)

100

200

400

300

250

350

450

100

200

50

400

300

150

250

350

450

0 00

500

C
o
u
n
t

C
o
u
n
t

Wild-type EXT2KO-1 EXT2 add-back

In
fe

c
ti
v
it
y
 (

%
 t

o
 W

T
)

In
fe

c
ti
v
it
y
 (

%
 t

o
 W

T
)

In
fe

c
ti
v
it
y
 (

%
 t

o
 W

T
)

A

B

http://jvi.asm.org/

