

Murakami, S., Takenaka-Uema, A., Kobayashi, T., Kato, K., Shimojima, M., Palmarini, M. and Horimoto, T. (2017) Heparan sulfate proteoglycan is an important attachment factor for cell entry of Akabane and Schmallenberg viruses. *Journal of Virology*, 91(15), e00503-17. (doi:10.1128/JVI.00503-17) This is the author's final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/141940/

Deposited on: 03 July 2017

 $Enlighten-Research \ publications \ by \ members \ of \ the \ University \ of \ Glasgow \ \underline{http://eprints.gla.ac.uk}$

Heparan sulfate proteoglycan is an important attachment factor for cell entry of Akabane and Schmallenberg viruses $\mathbf{2}$ Shin Murakami^{a,#}, Akiko Takenaka-Uema^b, Tomoya Kobayashi^a, Kentaro Kato^{a,c}, $\mathbf{5}$ Masayuki Shimojima^{a,d}, Massimo Palmarini^e, and Taisuke Horimoto^{a,#} Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan^a; Department of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan^b; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan^c; Department of Virology I, Special Pathogens Laboratory, National Institute of Infectious Diseases, Tokyo, Japan^d; MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom^e Running Head: HSPG is an attachment factor for AKAV and SBV entry [#] Address correspondence to Shin Murakami, amurakam@mail.ecc.u-tokyo.ac.jp and Taisuke Horimoto, ahorimo@mail.ecc.u-tokyo.ac.jp Word count Abstract 141 words Text 3,709 words

37 Abstract

38	Akabane (AKAV) and Schmallenberg (SBV) viruses are Orthobunyavirus
39	transmitted by arthropod vectors with a broad cellular tropism <i>in vitro</i> as well as
40	in vivo. Both AKAV and SBV cause arthrogryposis-hydranencephaly syndrome
41	in ruminants. The main cellular receptor and attachment factor for entry of these
42	orthobunyaviruses are unknown. Here, we found that AKAV and SBV infections
43	were inhibited by the addition of heparin or enzymatic removal of cell surface
44	heparan sulfates. To confirm this finding, we prepared heparan sulfate
45	proteoglycan (HSPG)-knockout (KO) cells by using a CRISPR/Cas9 system and
46	measured the binding quantities of these viruses to cell surfaces. We observed a
47	substantial reduction in AKAV and SBV binding to cells, limiting the infections by
48	these viruses. These data demonstrate that HSPGs are important cellular
49	attachment factors for AKAV and SBV, at least in vitro, to promote virus
50	replication in susceptive cells.
51	

52 Importance

AKAV and SBV are the etiological agents of arthrogryposis-hydranencephaly
syndrome in ruminants, which causes considerable economic losses in the
livestock industry. Here, we identified heparan sulfate proteoglycan as a major
cellular attachment factor for the entry of AKAV and SBV. Moreover, we found
that heparin is a strong inhibitor of AKAV and SBV infections. Revealing the
molecular mechanisms of virus-host interactions is critical in order to understand
virus biology and develop novel live attenuated vaccines.

61 Introduction

62The Akabane (AKAV) and Schmallenberg (SBV) viruses belong to the 63 Simbu serogroup of the arthropod-borne Orthobunyavirus genus of the family Bunyaviridae. AKAV and SBV are phylogenetically closely related and they also 64possess similar biological characteristics: (i) both cause abortion, stillbirth, 65premature birth, and congenital deformities in cattle, sheep, and goats; (ii) both 6667 primarily infect the central nervous system (CNS) of the fetus; (iii) both are difficult to control, because they are transmitted by biting midges of the genus 68Culicoides (1). Both AKAV and SBV cause "abortion storms" that result in 69 70considerable economic losses to the livestock industry (2-4). 71Despite these similarities, there are important features that distinguish these two viruses. AKAV is endemic throughout Australia, Southeast Asia, East 72Asia, the Middle East, and Africa, whereas SBV has emerged and has dispersed 73across a large area of Europe since 2011. AKAV comprises four genogroups (I-7475IV), whereas SBV comprises a single genotype. No differences in the 76pathogenicity of different SBV strains have been described. On the other hand, the OBE-1 strain of AKAV [AKAV(OBE-1)] (genogroup I) causes severe fetal 77malformation, whereas the Iriki strain [AKAV(Iriki)] (genogroup II) causes also 78fatal non-suppurative encephalomyelitis in newborn cattle. Molecular 79 determinants distinguishing the pathogenicity of these two different strains are 80 81 unknown (5). 82 Orthobunyaviruses carry a tripartite, single-stranded, negative-sense RNA genome. The L segment encodes the L protein, a viral RNA-dependent 83 RNA polymerase; the S segment encodes the N protein and the non-structural 84

85	protein NSs, both transcribed from an overlapping open reading frame; and the
86	M segment encodes NSm, and the two major viral envelope proteins, Gn and Gc
87	(Gn/Gc), which form heterodimeric spikes on the virus particle. Gn/Gc are the
88	proteins on the surface of the virion that bind to cell surface molecules in the
89	initial step of orthobunyavirus infection (6, 7). Relatively few studies have
90	investigated orthobunyavirus entry. La Crosse and Germiston neurotropic
91	orthobunyavirus entry into the cell has been described to be promoted by
92	DC-SIGN (8, 9). However, DC-SIGN is probably not the main attachment factor
93	of ruminant orthobunyaviruses, because it is expressed on macrophages and
94	dendritic cells, not in the CNS. Heparan sulfate proteoglycan (HSPG), one of
95	major negatively charged transmembrane protein-linking glycosaminoglycans, is
96	expressed by almost all cells, including neural cells. HSPG is involved in cell
97	attachment of many viruses [e.g., herpes simplex virus (10, 11), adenovirus (12)
98	respiratory syncytial virus (13, 14), human papilloma virus (15), foot-and-mouth
99	disease virus (16), hepatitis B virus (17), hepatitis C virus (18), Ebola virus (19,
100	20), dengue virus (21), and human immunodeficiency virus (22)]. In addition,
101	HSPG is involved in cell attachment of phleboviruses in the family Bunyaviridae,
102	including Rift Valley fever virus and Toscana virus (23-25). In a previous report,
103	hemagglutination of AKAV was inhibited by the addition of heparin, a form of
104	heparan sulfate (26). Therefore, it is possible that HSPGs are involved in AKAV
105	and/or SBV infection, similarly to other viruses.
106	In this study we examined the role of HSPGs in AKAV and SBV
107	replication.

109 Materials and Methods

Cells. Baby hamster kidney cells stably expressing T7 RNA polymerase 110111 (BHK/T7-9 cells) (27) were kindly provided by Dr. Naoto Ito (Gifu University, Japan) and cultured in Dulbecco's modified Eagle's minimum medium (DMEM) 112supplemented with 5% fetal calf serum (FCS) and 10% tryptose phosphate broth 113at 37°C. Golden hamster lung (HmLu-1) cells were cultured at 37°C in DMEM 114supplemented with 5% FCS. Human embryonic kidney (HEK293T) cells were 115maintained in DMEM supplemented with 10% FCS. 116117Viruses. AKAV OBE-1 and Iriki strains (28, 29) and SBV (30) were generated by 118119reverse genetics. Briefly, to recover AKAV(Iriki), 1.2 µg of pT7riboSM2/IL, 0.6 µg of pT7riboSM2/IM, and 1.2 µg pT7riboSM2/IS plasmids were mixed in 200 µL of 120Opti-MEM (GIBCO, Grand Island, NY, USA) with 9 µL of Trans-IT LT1 (Mirus Bio, 121122Madison, WI, USA) transfection reagent, incubated at room temperature for 15 123min and then added to BHK-T7 cells (27) grown in 6-well plates. To recover 124AKAV(OBE-1), 1.2 µg of pT7riboSM2/OL, 0.6 µg of pT7riboSM2/OM, and 1.2 µg 125of pT7riboSM2/OS plasmids were transfected into BHK-T7 cells, as described for AKAV(Iriki) generation. To recover SBV, 1 µg of each pUCSBVST7, 126pUCSBVMT7, and pUCSBVLT7 plasmids and 2 µg of a plasmid expressing T7 127polymerase under control of the chicken β -actin promoter (pCAGGS-T7pol) 128were mixed in 300 µL of Opti-MEM (GIBCO) with 15 µL of Trans-IT 293 (Mirus) 129130transfection reagent, incubated at room temperature for 15 min, and then added to HEK293T cells grown in 6-well plates. At 3 days post-transfection, the culture 131supernatant of transfected cells was harvested and added to HmLu-1 cells. 132

133	Viruses were propagated in HmLu-1 cells cultured in DMEM supplemented with
134	2% FCS. Non-spreading vesicular stomatitis virus (VSV- Δ G-GFP) pseudotyped
135	with its own glycoprotein G was propagated following transfection of the VSV G
136	protein-expressing plasmid (pCAGGS-VSVG) into HEK293T cells (31).
137	VSV-pseudotyped virus with AKAV Gn and mutant Gc was also propagated in
138	HEK293T cells following transfection of the mutant Gn/Gc/NSm of AKAV(OBE-1),
139	which lacks a 10-amino-acid region in the C-terminal of the wildtype Gc. This
140	mutant was made since VSV-pseudotyped virus with Gn and mutant Gc lacking
141	C-terminal of cytoplasmic-tail glycoproteins of Crimian-Congo hemorrhagic fever
142	(CCHF) virus, a member of Bunyaviridae, showed higher titer than
143	VSV-pseudotyped virus with wild-type CCHF Gn/Gc proteins (32).
144	
144 145	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse
144 145 146	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of
144 145 146 147	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan
144 145 146 147 148	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal
144 145 146 147 148 149	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose
144 145 146 147 148 149 150	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified SBV in 6-week-old female ICR mice (Japan SLC) at 2-week
144 145 146 147 148 149 150 151	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified SBV in 6-week-old female ICR mice (Japan SLC) at 2-week intervals. Reactivities and specificities of both anti-SBV and anti-AKAV pAbs
144 145 146 147 148 149 150 151 152	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified SBV in 6-week-old female ICR mice (Japan SLC) at 2-week intervals. Reactivities and specificities of both anti-SBV and anti-AKAV pAbs were confirmed by immunofluorescent assay, using AKAV(OBE-1)- or
144 145 146 147 148 149 150 151 152 153	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified SBV in 6-week-old female ICR mice (Japan SLC) at 2-week intervals. Reactivities and specificities of both anti-SBV and anti-AKAV pAbs were confirmed by immunofluorescent assay, using AKAV(OBE-1)- or SBV-infected and mock-infected HmLu-1 cells.
144 145 146 147 148 149 150 151 152 153 154	Production of polyclonal antibodies to AKAV or SBV. An anti-AKAV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified AKAV(OBE-1) into 6-week-old female ICR mice (Japan SLC, Hamamatsu, Japan) at 2-week intervals. An anti-SBV mouse polyclonal antibody (pAb) was prepared by two intraperitoneal injections of sucrose gradient-purified SBV in 6-week-old female ICR mice (Japan SLC) at 2-week intervals. Reactivities and specificities of both anti-SBV and anti-AKAV pAbs were confirmed by immunofluorescent assay, using AKAV(OBE-1)- or SBV-infected and mock-infected HmLu-1 cells.

 $\,$ AKAV and SBV. After virus adsorption to HmLu-1 cells for 1 h at 37°C, the

inocula were removed, and cells were overlaid with DMEM containing 0.6%
agarose and 2% FCS. After incubation for 3 days, cells were stained with neutral
red before counting plaque-forming units (PFUs).

160

Plaque reduction assay. One hundred microliters of serial two-fold dilutions of
heparin solution were prepared in MEM containing 0.3% bovine serum albumin
(BSA/MEM). An equal volume of the suspensions containing 100 PFU/100 µL of
AKAV(OBE-1), AKAV(Iriki), or SBV were added to each dilution. After incubation
for 30 min at room temperature (RT), 200 µL of each virus-heparin mixture
(containing 100 PFU of viruses) was titrated by the plaque assay.

167

Heparinase treatment. Cells were seeded in 48-well plates 24h prior to 168 infection. Medium was removed, and the cells were incubated with serial 169170four-fold dilutions of heparinase II (New England Biolabs) in BSA/MEM with 2 171mM CaCl₂ for 1 h at 37°C and then washed with BSA/MEM. The plates were 172immediately transferred on ice to suppress the synthesis and transport of HSPG. 173We then added the appropriate amounts of AKAV(OBE-1), AKAV(Iriki), or SBV to 174100 µL of BSA/MEM and incubated the mixture for 1 h on ice. Supernatant was 175removed and cells washed twice with BSA/MEM, and DMEM with 5% FCS before incubation for 8 h at 37°C. The cells were then fixed with 4% 176177paraformaldehyde for 15 min at RT. After removing paraformaldehyde, the cells 178were permeabilized with 0.1% Triton-X 100 and incubated with anti-AKAV N mouse monoclonal antibody (mAb) (5E8) (33) for AKAV-infected cells or 179anti-SBV mouse polyclonal antibody pAb for SBV-infected cells, followed by 180

incubation with Alexa Fluor 488-conjugated anti-mouse IgG antibody. The
fluorescence-positive cells were counted as AKAV- or SBV-infected cells under
fluorescent microscopy (Vert. A1, Carl Zeiss).

184

EXT2-KO cells. EXT2-KO cells were established using the CRISPR/Cas9 185system. EXT2 gene target sequences (EXT2-1: CTATCCCCTGAAAAAGTACG 186187 or EXT2-2: CTACACGGATGACATCAGCC) containing oligos were introduced into the guide RNA (gRNA) expression cassette of the plentiCRISPR vector (a 188189 gift from Dr. Feng Zhang, Addgene plasmid #52961) (34). A random target 190sequence (N₂₀) containing oligos was also introduced into the gRNA expression 191 cassette of the plentiCRISPR vector. One µg of the plentiCRISPR plasmid containing each target gRNA sequence was transfected into HmLu-1 cells (1 × 19219310⁵ cells) with TransIT-LT1 (Mirus). One day after transfection, media were 194replaced with 10 µg/mL of puromycin-containing media for 5 days of selection. 195Surviving cells were passaged, diluted, and inoculated onto fresh dishes for 196colony formation. Each colony was picked, propagated, and genotyped. The 197 genomic region surrounding the CRISPR/Cas9 target site for each gene in cloned cell was PCR-amplified with KOD-FX neo (TOYOBO), and the PCR 198 products were gel extracted and sequenced using a 3130 Genetic Analyzer 199 (ABI). Primer sequences are available upon request. Clones with indels 200201 introduced at the targeted site were picked. Genotyped clones were detached 202 with phosphate-buffered saline (PBS) containing ethylenediaminetetraacetic 203 acid (EDTA) and incubated with anti-heparan sulfate mAb (10E4) (USBio) (35) 204 followed by incubation with Alexa Fluor 488-conjugated anti-mouse IgM antibody (AbCam). IgM clone MOPC 104E (Sigma, St. Louis, MO, USA) was used as an
isotype control. Labeled cells were analyzed by flow cytometry (FACSVerse, BD
Biosciences).

- 209 Real-time reverse transcription-polymerase chain reaction (RT-PCR) for
- 210 the quantification of cell surface-attached viruses. For virus absorption on
- cells, 1 x 10⁷ PFU/mL of AKAV(OBE-1), AKAV(Iriki), or SBV were inoculated onto
- HSPG-KO or random-KO HmLu-1 cells for 1 h at 4 °C. After 1 h of incubation,
- 213 unbound viruses were washed three times with ice-cold BSA/MEM. Virus-bound
- cells were lysed, and the total RNA was extracted with ISOGEN (Nippon Gene).
- 215 The extracted RNAs were assayed using RNA-direct SYBR Green Real-time
- 216 PCR Master Mix (Toyobo), according to the manufacturer's instructions, in a
- 217 Thermal Cycler Dice Real Time System (Takara). One μg of the extracted RNAs
- 218 were amplified using the AKAV S RNA-specific primer set (forward 5'
- 219 -CCACAACCAAGTGTCGATCT-3'; reverse 5'-AGATGCGGTGAAGCGTAAA-3'),
- 220 or SBV S RNA-specific primer set (forward
- 221 5'-GGCCAAGATGGTCCTACATAAG-3'; reverse
- 222 5'-TGTCTGGCACAGGATTTGAG-3'). The RNA was normalized to host GAPDH
- 223 mRNA using a golden hamster GAPDH-specific primer set (forward
- 224 5'-AAGGTCATCCCAGAGCTGAA-3'; reverse
- 225 5'-CTGCTTCACCACCTTCTTGA-3'). For relative quantification, a standard
- 226 curve of AKAV or SBV S RNA and GAPDH was prepared by serial dilution of the
- 227 mixture of total RNA extracted from uninfected HmLu-1 cells and viral RNA
- 228 extracted from AKAV(OBE-1)- or SBV-containing supernatants.

230	Sandwich ELISA for the detection of N proteins of cell surface-attached
231	AKAV. For virus absorption on cells, 1 x 10 ⁷ PFU of AKAV(OBE-1) was
232	inoculated onto HSPG-KO or control HmLu-1 cells in 6-well plates for 1h at 4°C.
233	After 1 h of incubation, unbound viruses were washed three times with ice-cold
234	BSA/MEM. Then, virus-bound cells were lysed with lysis buffer containing 10
235	mM Tris-HCI (pH 7.4), 0.5% TritonX-100, 150 mM NaCl, and 1 mM EDTA for 10
236	min on ice. The lysates were collected and clarified by centrifugation (10,000 x g
237	for 5 min at 4 °C). Supernatants were then added to the anti-AKAV N mAb
238	(5E8)-coated wells of 96-well ELISA plates (Maxisorp, Nunc) and incubated for
239	30 min at RT. After washing with PBS-0.1% Tween 20 (PBS-T), biotinylated
240	(Biotin Labeling Kit-NH $_2$, Dojindo) anti-AKAV mouse pAb was added to the wells
241	and incubated for 30 min at RT. After washing with PBS-T, avidin-biotinylated
242	horseradish peroxidase (HRP) complex (VECTASTAIN ABC Kit, Vector
243	Laboratories) was added to the wells and incubated for 30 min at RT. A
244	3,3',5,5' -tetramethylbenzidine (TMB) substrate solution was used to read the
245	assay.
246	
247	EXT2 gene reintroduction into HSPG-KO cells. The golden hamster EXT2
248	open reading frame sequence (GenBank accession number XM_013118841)
249	was amplified from a pool of cDNA, which was a product of reverse transcription
250	of total RNA from HmLu-1 cells, using an <i>EXT</i> 2-specific primer set. A pS
251	lentivirus transfer vector under the control of the spleen focus-forming virus

252 promoter was prepared by removing the Venus gene from pSVenusfull vector

253	(36) by <i>Bam</i> HI and <i>Not</i> I digestion. Amplified <i>EXT2</i> cDNA was cloned into the pS
254	lentivirus vector and designated as pS-EXT2. The lentivirus <i>EXT</i> 2-expression
255	vector was produced in HEK293T cells by co-transfection of the transfer vector
256	pS-EXT2 and two lentivirus packaging plasmids p8.9QV (37) and
257	pCAGGS-VSVG. The lentivirus vector was concentrated by ultracentrifugation
258	and inoculated onto EXT2-KO HmLu-1 cells. HSPG expression was confirmed
259	by flow cytometry as described above.
260	
261	Statistical analysis. All samples were compared by Student's t-test with
262	two-tailed analysis to determine statistically significant differences.
263	
264	Results
265	Heparin or heparinase treatment inhibits AKAV and SBV infections.
265 266	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor
265 266 267	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV
265 266 267 268	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of
265 266 267 268 269	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were
265 266 267 268 269 270	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support
265 266 267 268 269 270 271	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support efficient replication of the Akabane and Schmallenberg viruses and abundantly
265 266 267 268 269 270 271 272	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support efficient replication of the Akabane and Schmallenberg viruses and abundantly express heparan sulfate. The number of plaques induced by either AKAV or SBV
265 266 267 268 269 270 271 272 272	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support efficient replication of the Akabane and Schmallenberg viruses and abundantly express heparan sulfate. The number of plaques induced by either AKAV or SBV was reduced in a heparin concentration-dependent manner. These data suggest
265 266 267 268 269 270 271 272 273 273	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support efficient replication of the Akabane and Schmallenberg viruses and abundantly express heparan sulfate. The number of plaques induced by either AKAV or SBV was reduced in a heparin concentration-dependent manner. These data suggest that heparin affects the replication cycle of both viruses.
265 266 267 268 269 270 271 272 273 273 274 275	Heparin or heparinase treatment inhibits AKAV and SBV infections. Heparin is a highly sulfated form of heparan sulfate (38) and is a known inhibitor of infection by various viruses. To test whether heparin inhibits AKAV or SBV replication, AKAV and SBV were incubated with different concentrations of heparin for 30 min and the titers of the viruses neutralized by heparin were measured by plaque reduction assay in HmLu-1 cells (Fig. 1A), which support efficient replication of the Akabane and Schmallenberg viruses and abundantly express heparan sulfate. The number of plaques induced by either AKAV or SBV was reduced in a heparin concentration-dependent manner. These data suggest that heparin affects the replication cycle of both viruses. Next, we pre-treated HmLu-1 cells with heparinase to remove HPSG from

277SBV. We also used or VSV-ΔG-GFP, a VSV-based vector expressing GFP that 278can complete only a single replication cycle within the cell (31), because this 279virus does not utilize HSPG during the early events of infection (23, 39). At 8 h 280post-infection (hpi), cells were fixed and stained with anti-AKAV or anti-SBV antibodies for the detection of AKAV- or SBV-infected cells, respectively. 281282 GFP-positive cells were instead counted to determine the number of 283VSV-ΔG-GFP-infected cells. As shown in Fig. 1B, VSV-ΔG-GFP was not 284susceptible to heparinase treatment, whereas the number of cells infected by 285AKAV and SBV were reduced in a heparinase concentration-dependent manner. 286SBV was more susceptible to heparinase treatment than the AKAVs (p<0.05 at 28720 and 78 μ U/ μ L of heparinase). These data suggest that HSPG plays important 288roles in AKAV and SBV infections. 289

290AKAV and SBV replication in HSPG-KO cells. In order to further validate the 291data shown above, we established HSPG-KO cells using a CRISPR/Cas9 292 system (34) disrupting the EXT2 gene, which encodes one of the 293 HSPG-synthesizing enzymes (38). We designed two gRNAs (EXT2-1 and EXT2-2) targeting different positions in the EXT2 gene and obtained three 294295clones for each target (EXT2KO-1-1, -1-2, -1-3, -2-1, -2-2, and -2-3 cells). We also established control "random-KO" HmLu-1 cells by introducing a 20-nt 296297 random target sequence in the gRNA with the CRISPR/Cas9 system and 298obtained three clones of the random-KO cells (Random-KO-1, -2, and -3). Lack 299 of HSPG expression in HSPG-KO cells, but not in random-KO or wild type cells, was confirmed by flow cytometry analysis (Fig 2A). In the HSPG-KO cells, titers 300

301	of AKAV(OBE-1) and AKAV(Iriki) were about 100 fold lower than that in
302	random-KO cells at 24 hpi but were of similar levels at later time points (Fig. 2B).
303	SBV titers were instead between 10 to 1000 fold lower in HSPG-KO cells than in
304	random-KO cells throughout the course of the experiment (Fig. 2B). Next, we
305	examined AKAV and SBV infectivity in the EXT2-KO cells and random-KO cells.
306	EXT2-KO cells or random-KO cells were infected with AKAV(OBE-1), AKAV(Iriki),
307	SBV or VSV- Δ G-GFP (moi of 0.1). At 8 hpi, AKAV, SBV antigen-positive cells or
308	GFP-positive cells were counted (Fig 2C). Control VSV- Δ G-GFP-infected cell
309	numbers were not significantly different between random-KO and HSPG-KO
310	cells. Five to ten times lower numbers of AKAV and SBV antigen-positive cells
311	were detected in EXT2-KO cells compared to those in random-KO cells. To
312	eliminate the possibility that replication step of AKAV affected the results shown
313	in Fig. 2C, we used a VSV-pseudotyped virus bearing AKAV glycoproteins
314	(VSV- Δ G-GFP/AKAV). VSV- Δ G-GFP/AKAV or VSV- Δ G-GFP was inoculated into
315	EXT2-KO cells or random-KO cells. At 8 hpi, GFP-positive cells were counted
316	(Fig. 2D). As shown in Fig. 2C, control VSV- Δ G-GFP-infected cell numbers did
317	not show significant difference between random-KO and HSPG-KO cells.
318	However, GFP-cells detected were three times less in EXT2-KO cells than in
319	random-KO cells (p<0.01). These data indicated that HSPG was important for
320	AKAV and SBV infections.
321	
322	Quantification of AKAV and SBV bound to HSPG-KO cells surface. To

- 323 determine whether HSPG is important for AKAV and SBV cell surface
- 324 attachment, we quantified the amounts of cell surface-bound viruses.

325	AKAV(OBE-1) and SBV were incubated with EXT2-KO-1, EXT2-KO-2, or
326	random-KO cells for 1h at 4° C and virus-bound cells were collected. RNA was
327	extracted from the cells and AKAV or SBV RNA (S segment) was quantified by
328	qRT-PCR (Fig. 3A). AKAV and SBV RNA was significantly lower in HSPG-KO
329	cells than in random-KO cells (p<0.01). We also measured cell-bound AKAV by
330	quantifying N protein using an N-detecting sandwich ELISA (Fig. 3B). Cell
331	surface bound N proteins were significantly lower in EXT2-KO-1 and EXT2-KO-2
332	cells than in random-KO cells, confirming the qRT-PCR results. These data
333	suggest that HSPG is an important molecule for AKAV and SBV cell surface
334	attachment.

AKAV and SBV replication is restored in EXT2 add-back cells. We next 336 337 transduced the EXT2-KO cells with the EXT2 gene, in order to confirm that 338 AKAV and SBV replication could be restored by simply reintroducing the EXT2 339 gene back to EXT2-KO cells. We first confirmed that HSPG expression was 340 restored in these cells by flow cytometry (Fig. 4A). Next, we examined AKAV and 341SBV infectivity in the EXT2 gene transduced EXT2-KO cells and wild-type cells. EXT2-KO cells or wild-type cells were infected with AKAV(OBE-1), AKAV(Iriki), or 342343SBV. At 8 hpi, AKAV-, SBV-infected cells were detected (Fig 4B). As expected, 344infectivity of AKAV(OBE-1), AKAV(Iriki), and SBV was restored in the EXT2 345add-back cells.

347 Discussion

AKAV and SBV infect neurons (2, 4, 30) and a broad range of cells in the 348 349 infected hosts. This suggests that AKAV and SBV use cellular receptor(s) or attachment factor(s) that are expressed on a variety of cells. DC-SIGN was 350previously shown to promote La Crosse and Germiston neurotropic 351352orthobunyavirus entry (8, 9). However, the distribution of DC-SIGN is not 353consistent with the tropisms of either AKAV or SBV, because DC-SIGN is expressed on a limited number of cell types (i.e., dendritic cells and 354macrophages). Here, we demonstrated that HSPG plays an important role in 355356 AKAV and SBV infections as an attachment factor. Cell surface HSPGs are 357 expressed ubiquitously throughout the body (38), including on neuronal cells (40). Therefore, our data support the correlation between HSPG distribution and 358 359AKAV and SBV tropism. However, AKAV and SBV show a strong preference for 360 neuronal cells in vivo and there are likely other reasons for this. AKAV and SBV 361 were still able to replicate in HSPG-KO cells, although at lower levels than to 362 those in HSPG-expressing cells. These data suggest the presence of other 363 cellular factors(s) that defines the tissue tropisms of AKAV and SBV. Further studies are needed to identify the neuronal cell-specific receptors or reveal other 364 defining steps after cell entry. 365 In AKAV (Iriki)-infected HSPG-KO cells, after the virus titer reached a 366 367 plateau at 24 and 36 hpi, a second AKAV (Iriki) growth wave was observed at 48

368 hpi (Fig. 2B). During the AKAV (Iriki) replication in HSPG-KO cells, the virus may

have acquired mutation(s) in the receptor-binding site of the glycoproteins,

370 possibly leading to adaptation to HSPG-KO cells. Thus, to investigate whether

the AKAV (Iriki), recovered from HSPG-KO cells at a later time-point of infection,
included mutations in their glycoproteins, we sequenced the entire M segment at
60 hpi but found no mutations. Hence, the mechanism of the second growth
wave of AKAV (Iriki) still remains unknown. Continuous virus passage in
HSPG-KO cells may result in mutations to adapt to other cellular attachment
factor(s) or receptor(s).

377 Repetitive passage of some viruses in tissue culture induces one to two 378amino acid mutations in their glycoproteins, which increases their affinity toward 379 HSPGs (41-46). This adaptation also induces viral attenuation in vivo (41-46). A 380 previous study showed that cell culture-derived SBV showed slightly slowed 381replication in cattle; however, the involvement of HSPG underlying this is unknown (47). Rift Valley fever virus (23), dengue virus (48), and human 382 383 t-lymphotropic virus 1 (HTLV-1) (49) do not acquire any mutations after passage 384in cell culture, which enhances their affinity toward HSPGs. This suggests that 385the species of the virus determines whether the virus adapts to cell culture and 386 uses HSPGs for entry. AKAV (OBE-1), AKAV (Iriki), and SBV used in the present 387 study were passaged several times in tissue culture before cloning them into reverse genetics plasmids. However, AKAV (Iriki) which used in this study 388 maintained its pathogenic potential against goat fetus and mice (29, 50), 389 implying that it did not undergo changes during passage in the cell culture. 390 391 However, it is unclear whether serial passages in cell culture induced mutations 392 in Gn/Gc proteins of AKAV and SBV to have higher affinity to HSPG. Therefore, 393 further studies are needed to compare the HSPG-binding affinity of viral strains examined with our lab strains and isolates from clinical specimens which have 394

395 original sequences.

396	In this study, we showed that the heparinase susceptibly of SBV was
397	greater than that of AKAVs. In addition, SBV replication in HSPG-KO cells was
398	limited compared to that of AKAVs. Moreover, AKAV(OBE-1) exhibited slightly
399	lower HSPG dependency than AKAV(Iriki) did for virus infection and growth. One
400	possible explanation for the difference in HSPG dependency is that
401	AKAV(OBE-1), AKAV(Iriki), and SBV possess different sequences in their
402	HSPG-binding domains and probably in Gn or Gc. Although HSPG-binding
403	domains have been identified in other viral glycoproteins as well as in cellular
404	proteins (51), we could not find known HSPG-binding motifs in AKAV and SBV
405	glycoprotein sequences (data not shown). HSPG-binding domains are not
406	simply defined by the secondary sequences of HS-binding proteins (51). The
407	tertiary structure of these proteins and heparan sulfate interactions are also
408	important for binding. Determining the three-dimensional (3D) structure of Gn/Gc
409	proteins is likely required to define the binding site more precisely. Although the
410	orthobunyavirus Gn/Gc 3D structure is not available currently, determining the
411	3D structure of Gn/Gc proteins is likely required to define the HSPG binding site.
412	Here, we clearly show that AKAV and SBV utilize HSPG for their initial
413	cell surface attachment in gene-edited HSPG-KO cells. These findings further
414	our understanding of the orthobunyavirus life cycle. Molecules inhibiting
415	orthobunyavirus and HSPG interactions may be effective antivirals.
416	

417 Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (B) (grant

- 419 number 15K19104), Grant-in-Aid for Scientific Research (A) (grant number
- 420 26252048), and Grant-in-Aid for Challenging Exploratory Research (grant
- 421 number 26660227) from the Japan Society for the Promotion of Science (JSPS),
- 422 Japan.
- 423
- 424

References

1.	Jennings M, Mellor PS. 1989. Culicoides: biological vectors of Akabane
	virus. Vet Microbiol 21:125-31.
2.	Kirkland PD. 2015. Akabane virus infection. Rev Sci Tech 34:403-10.
3.	Wernike K, Elbers A, Beer M. 2015. Schmallenberg virus infection. Rev
	Sci Tech 34:363-73.
4.	Wernike K, Conraths F, Zanella G, Granzow H, Gache K, Schirrmeier H,
	Valas S, Staubach C, Marianneau P, Kraatz F, Höreth-Böntgen D,
	Reimann I, Zientara S, Beer M. 2014. Schmallenberg virus-two years of
	experiences. Prev Vet Med 116:423-34.
5.	Kobayashi T, Yanase T, Yamakawa M, Kato T, Yoshida K, Tsuda T. 2007.
	Genetic diversity and reassortments among Akabane virus field isolates.
	Virus Res 130:162-71.
6.	Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. 2016. Early
	Bunyavirus-Host Cell Interactions. Viruses 8.
7.	Elliott RM. 2014. Orthobunyaviruses: recent genetic and structural
	insights. Nat Rev Microbiol 12:673-85.
8.	Hofmann H, Li X, Zhang X, Liu W, Kühl A, Kaup F, Soldan SS,
	González-Scarano F, Weber F, He Y, Pöhlmann S. 2013. Severe fever
	with thrombocytopenia virus glycoproteins are targeted by neutralizing
	antibodies and can use DC-SIGN as a receptor for pH-dependent entry
	into human and animal cell lines. J Virol 87:4384-94.
9.	Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK,
	Pettersson RF, Helenius A. 2010. Entry of bunyaviruses into mammalian
	cells. Cell Host Microbe 7:488-99.
10.	WuDunn D, Spear PG. 1989. Initial interaction of herpes simplex virus
	with cells is binding to heparan sulfate. J Virol 63:52-8.
11.	Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH,
	Eisenberg RJ, Rosenberg RD, Spear PG. 1999. A novel role for
	3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell
	99:13-22.
12.	Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G. 2000. Heparan
	sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host $% \left({{{\left({{{{{\bf{n}}}} \right)}}} \right)$
	cell interactions. Virology 268:382-90.
13.	Bourgeois C, Bour JB, Lidholt K, Gauthray C, Pothier P. 1998.
	Heparin-like structures on respiratory syncytial virus are involved in its
	 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

461		infectivity in vitro. J Virol 72:7221-7.
462	14.	Feldman SA, Audet S, Beeler JA. 2000. The fusion glycoprotein of human
463		respiratory syncytial virus facilitates virus attachment and infectivity via an
464		interaction with cellular heparan sulfate. J Virol 74:6442-7.
465	15.	Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. 2001. Human
466		papillomavirus infection requires cell surface heparan sulfate. J Virol
467		75:1565-70.
468	16.	Jackson T, Ellard FM, Ghazaleh RA, Brookes SM, Blakemore WE,
469		Corteyn AH, Stuart DI, Newman JW, King AM. 1996. Efficient infection of
470		cells in culture by type O foot-and-mouth disease virus requires binding to
471		cell surface heparan sulfate. J Virol 70:5282-7.
472	17.	Vanlandschoot P, Van Houtte F, Serruys B, Leroux-Roels G. 2005. The
473		arginine-rich carboxy-terminal domain of the hepatitis B virus core protein
474		mediates attachment of nucleocapsids to cell-surface-expressed heparan
475		sulfate. J Gen Virol 86:75-84.
476	18.	Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H,
477		Kinoshita-Toyoda A, Toida T, Van Kuppevelt TH, Depla E, Von
478		Weizsacker F, Blum HE, Baumert TF. 2003. Cellular binding of hepatitis C
479		virus envelope glycoprotein E2 requires cell surface heparan sulfate. J
480		Biol Chem 278:41003-12.
481	19.	Salvador B, Sexton NR, Carrion R, Nunneley J, Patterson JL, Steffen I,
482		Lu K, Muench MO, Lembo D, Simmons G. 2013. Filoviruses utilize
483		glycosaminoglycans for their attachment to target cells. J Virol
484		87:3295-304.
485	20.	O'Hearn A, Wang M, Cheng H, Lear-Rooney CM, Koning K,
486		Rumschlag-Booms E, Varhegyi E, Olinger G, Rong L. 2015. Role of EXT1
487		and Glycosaminoglycans in the Early Stage of Filovirus Entry. J Virol
488		89:5441-9.
489	21.	Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks
490		RM. 1997. Dengue virus infectivity depends on envelope protein binding
491		to target cell heparan sulfate. Nat Med 3:866-71.
492	22.	Roderiquez G, Oravecz T, Yanagishita M, Bou-Habib DC, Mostowski H,
493		Norcross MA. 1995. Mediation of human immunodeficiency virus type 1
494		binding by interaction of cell surface heparan sulfate proteoglycans with
495		the V3 region of envelope gp120-gp41. J Virol 69:2233-9.
496	23.	de Boer SM, Kortekaas J, de Haan CA, Rottier PJ, Moormann RJ, Bosch

497		BJ. 2012. Heparan sulfate facilitates Rift Valley fever virus entry into the
498		cell. J Virol 86:13767-71.
499	24.	Riblett AM, Blomen VA, Jae LT, Altamura LA, Doms RW, Brummelkamp
500		TR, Wojcechowskyj JA. 2016. A Haploid Genetic Screen Identifies
501		Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus
502		Infection. J Virol 90:1414-23.
503	25.	Pietrantoni A, Fortuna C, Remoli ME, Ciufolini MG, Superti F. 2015.
504		Bovine lactoferrin inhibits Toscana virus infection by binding to heparan
505		sulphate. Viruses 7:480-95.
506	26.	Jusa ER, Inaba Y, Ishibashi K, Noda M. 1995. Effect of heparin on
507		hemagglutination by Akabane and Aino viruses belonging to the Simbu
508		group of bunyaviruses. Vet Microbiol 45:251-8.
509	27.	Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, Minamoto
510		N. 2003. Improved recovery of rabies virus from cloned cDNA using a
511		vaccinia virus-free reverse genetics system. Microbiol Immunol 47:613-7.
512	28.	Takenaka-Uema A, Murata Y, Gen F, Ishihara-Saeki Y, Watanabe K,
513		Uchida K, Kato K, Murakami S, Haga T, Akashi H, Horimoto T. 2015.
514		Generation of a Recombinant Akabane Virus Expressing Enhanced
515		Green Fluorescent Protein. J Virol 89:9477-84.
516	29.	Takenaka-Uema A, Bangphoomi N, Shioda C, Uchida K, Gen F, Kato K,
517		Haga T, Murakami S, Akashi H, Hoimoto T. 2016. Characterization of a
518		recombinant Akabane mutant virus with knockout of a nonstructural
519		protein NSs in a pregnant goat model. Virol Sin 31:274-7.
520	30.	Varela M, Schnettler E, Caporale M, Murgia C, Barry G, McFarlane M,
521		McGregor E, Piras IM, Shaw A, Lamm C, Janowicz A, Beer M, Glass M,
522		Herder V, Hahn K, Baumgärtner W, Kohl A, Palmarini M. 2013.
523		Schmallenberg virus pathogenesis, tropism and interaction with the
524		innate immune system of the host. PLoS Pathog 9:e1003133.
525	31.	Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka
526		Y. 1997. A system for functional analysis of Ebola virus glycoprotein. Proc
527		Natl Acad Sci U S A 94:14764-9.
528	32.	Suda Y, Fukushi S, Tani H, Murakami S, Saijo M, Horimoto T, Shimojima
529		M. 2016. Analysis of the entry mechanism of Crimean-Congo
530		hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping
531		system. Arch Virol 161:1447-54.
532	33.	Akashi H, Inaba Y. 1997. Antigenic diversity of Akabane virus detected by

533		monoclonal antibodies. Virus Res 47:187-96.
534	34.	Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and
535		genome-wide libraries for CRISPR screening. Nat Methods 11:783-4.
536	35.	van den Born J, Gunnarsson K, Bakker MA, Kjellén L, Kusche-Gullberg M,
537		Maccarana M, Berden JH, Lindahl U. 1995. Presence of N-unsubstituted
538		glucosamine units in native heparan sulfate revealed by a monoclonal
539		antibody. J Biol Chem 270:31303-9.
540	36.	Shimojima M, Ströher U, Ebihara H, Feldmann H, Kawaoka Y. 2012.
541		Identification of cell surface molecules involved in
542		dystroglycan-independent Lassa virus cell entry. J Virol 86:2067-78.
543	37.	Shimojima M, Ikeda Y, Kawaoka Y. 2007. The mechanism of
544		AxI-mediated Ebola virus infection. J Infect Dis 196 Suppl 2:S259-63.
545	38.	Sarrazin S, Lamanna WC, Esko JD. 2011. Heparan sulfate proteoglycans.
546		Cold Spring Harb Perspect Biol 3.
547	39.	Shieh MT, WuDunn D, Montgomery RI, Esko JD, Spear PG. 1992. Cell
548		surface receptors for herpes simplex virus are heparan sulfate
549		proteoglycans. J Cell Biol 116:1273-81.
550	40.	Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JC, Fawcett JW. 2015.
551		"GAG-ing with the neuron": The role of glycosaminoglycan patterning in
552		the central nervous system. Exp Neurol 274:100-14.
553	41.	Janowicz A, Caporale M, Shaw A, Gulletta S, Di Gialleonardo L, Ratinier
554		M, Palmarini M. 2015. Multiple genome segments determine virulence of
555		bluetongue virus serotype 8. J Virol 89:5238-49.
556	42.	Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T,
557		Heinz FX. 2001. Adaptation of tick-borne encephalitis virus to BHK-21
558		cells results in the formation of multiple heparan sulfate binding sites in
559		the envelope protein and attenuation in vivo. J Virol 75:5627-37.
560	43.	Bernard KA, Klimstra WB, Johnston RE. 2000. Mutations in the E2
561		glycoprotein of Venezuelan equine encephalitis virus confer heparan
562		sulfate interaction, low morbidity, and rapid clearance from blood of mice.
563		Virology 276:93-103.
564	44.	Byrnes AP, Griffin DE. 2000. Large-plaque mutants of Sindbis virus show
565		reduced binding to heparan sulfate, heightened viremia, and slower
566		clearance from the circulation. J Virol 74:644-51.
567	45.	Olmsted RA, Baric RS, Sawyer BA, Johnston RE. 1984. Sindbis virus
568		mutants selected for rapid growth in cell culture display attenuated

569		virulence in animals. Science 225:424-7.
570	46.	Gardner CL, Hritz J, Sun C, Vanlandingham DL, Song TY, Ghedin E,
571		Higgs S, Klimstra WB, Ryman KD. 2014. Deliberate attenuation of
572		chikungunya virus by adaptation to heparan sulfate-dependent infectivity:
573		a model for rational arboviral vaccine design. PLoS Negl Trop Dis
574		8:e2719.
575	47.	Wernike K, Eschbaumer M, Breithaupt A, Hoffmann B, Beer M. 2012.
576		Schmallenberg virus challenge models in cattle: infectious serum or
577		culture-grown virus? Vet Res 43:84.
578	48.	Artpradit C, Robinson LN, Gavrilov BK, Rurak TT, Ruchirawat M,
579		Sasisekharan R. 2013. Recognition of heparan sulfate by clinical strains
580		of dengue virus serotype 1 using recombinant subviral particles. Virus
581		Res 176:69-77.
582	49.	Jones KS, Petrow-Sadowski C, Bertolette DC, Huang Y, Ruscetti FW.
583		2005. Heparan sulfate proteoglycans mediate attachment and entry of
584		human T-cell leukemia virus type 1 virions into CD4+ T cells. J Virol
585		79:12692-702.
586	50.	Ogawa Y, Fukutomi T, Sugiura K, Kato K, Tohya Y, Akashi H. 2007.
587		Comparison of Akabane virus isolated from sentinel cattle in Japan. Vet
588		Microbiol 124:16-24.
589	51.	Xu D, Esko JD. 2014. Demystifying heparan sulfate-protein interactions.
590		Annu Rev Biochem 83:129-57.
591		

592 Figure legends

593Fig. 1. Effects of heparin and heparinase treatment on AKAV and SBV infections. 594(A) Effects of heparin on AKAV and SBV plaque reduction. Various 595concentrations of heparin were incubated for 30 min at room temperature with 100 plaque-forming units of AKAV(OBE-1), AKAV(Iriki), or SBV, and the ability of 596597 heparin to reduce plaque formation was assessed. (B) Effects of heparinase 598treatment on AKAV and SBV infectivity. HmLu-1 cells were treated with various concentrations of heparinase II, followed by AKAV or SBV infection. Cells were 599600 stained for AKAV or SBV antigen, and positive cells were counted under a 601 fluorescent microscope. For VSV-ΔG-GFP-infected cells, GFP-positive cells 602 were counted under a fluorescent microscope. Results are expressed in percentages relative to cells that were not treated with heparinase. The data are 603 reported as the mean value with standard deviations for three independent 604 605experiments. 606 607 Fig. 2. AKAV and SBV growth kinetics and infectivity in HSPG-KO HmLu-1 cells. 608 (A) Flow cytometric analysis of EXT2-KO HmLu-1 cells. CRISPR/Cas9-mediated 609 EXT2-KO cell clones (EXT2-1 and EXT2-2) were labeled with anti-heparan 610 sulfate mouse-monoclonal antibody (10E4) (black) or with isotype control (red) and analyzed by flow cytometry (FACS verse, BD Biosciences). The 611 612 representative data (one out of three clones of random-KO, EXT2KO-1, and 613 EXT2KO-2) are shown. (B) Growth kinetics of AKAV or SBV in HSPG-KO cells. 614 AKAV(OBE-1), AKAV(Iriki), or SBV was inoculated onto three clones of

random-KO, EXT2KO-1, and EXT2KO-2 cells at a multiplicity of infection of 0.01.

616	Virus titers were determined by plaque assay in normal HmLu-1 cells. The data
617	are reported as the mean titer of three clones of each KO cell (EXT2KO-1,
618	EXT2KO-2, or random-KO) with standard deviations. (C) Infectivities of AKAV
619	and SBV in HSPG-KO cells. Random-KO or HSPG-KO cells were infected with
620	AKAV(OBE-1), AKAV(Iriki), SBV, or control VSV-∆G-GFP. Cells were stained for
621	AKAV or SBV antigen, and positive cells were counted under a fluorescent
622	microscope. For VSV- Δ G-GFP-infected cells, GFP-positive cells were counted
623	under a fluorescent microscope. Results are expressed as percentages relative
624	to the number of positive random-KO cells. The data are reported as the mean
625	value of three clones of each KO cell (EXT2KO-1, EXT2KO-2, or Random-KO)
626	with standard deviations. (D) Infectivities of VSV pseudotyped with AKAV Gn/Gc
627	(VSV- Δ G-GFP/AKAV) in HSPG-KO cells. Random-KO or HSPG-KO cells were
628	infected with VSV- Δ G-GFP/AKAV or control VSV- Δ G-GFP. GFP-positive cells
629	were counted under a fluorescent microscope. Results are represented as
630	percentages relative to the number of positive random-KO cells. The data are
631	shown as the mean value of three clones of each KO cell (EXT2KO-1,
632	EXT2KO-2 or random-KO) with standard deviations.
633	

635	Fig. 3. AKAV and SBV binding assays in HSPG-KO cells. (A) Real-time reverse
636	transcription-polymerase chain reaction (RT-PCR) for the quantification of cell
637	surface-attached viruses. AKAV(OBE-1) or SBV was incubated with HSPG-KO
638	cells at 4°C. After a washing step, total RNAs were extracted. AKAV or SBV S $$
639	RNAs were quantified by one-step real-time RT-PCR. For relative quantification,

640	standard curves of AKAV or SBV S RNA and GAPDH were prepared by serial
641	dilution of a mixture of total RNA from uninfected HmLu-1 cells and RNA
642	extracted from AKAV(OBE-1) or SBV-containing supernatants. Results are
643	expressed as the percentages relative to the levels in random-KO cells. The
644	results are representative of three different experiments. (B) Sandwich ELISA for
645	the detection of N proteins of AKAV attached to cell surfaces. AKAV(OBE-1) was
646	inoculated onto HSPG-KO or random-KO HmLu-1 cells for 1 h at 4° C. After a
647	washing step, the cells were lysed, and the lysates were added to the anti-AKAV $% \left({{{\rm{A}}} \right)$
648	N monoclonal antibody (5E8)-coated wells of 96-well ELISA plates (Maxisorp,
649	Nunc), followed by incubation with biotinylated anti-AKAV mouse polyclonal
650	antibody. Subsequently, the wells were incubated with avidin-biotinylated
651	horseradish peroxidase (HRP) complex (VECTASTAIN ABC Kit, Vector
652	Laboratories). A 3,3' ,5,5' -tetramethylbenzidine (TMB) substrate solution was
653	used for detection, and optical density values were measured. Results are
654	expressed as percentages relative to the number of positive random-KO cells.
655	The results are representative of three independent experiments.
656	
657	Fig. 4. Rescue of AKAV and SBV infectivities by add-back of the <i>EXT</i> 2 gene in
658	EXT2-KO cells. (A) Flow cytometric analysis of adding back the EXT2 gene in
659	EXT2KO-1 HmLu-1 cells. Cells were labeled with anti-heparan sulfate
660	mouse-monoclonal antibody (10E4) and analyzed by flow cytometry (FACS
661	verse, BD Biosciences). (B) Infectivities of AKAV and SBV in <i>EXT2</i> -added back
662	cells. The cells were infected with AKAV(OBE-1), AKAV(Iriki), or SBV. Cells were
663	stained for AKAV or SBV antigen, and positive cells were counted under a

- 664 fluorescent microscope. Results are expressed as percentages relative to the
- number of wild-type cells. The data are reported as the mean value with
- 666 standard deviations for three independent experiments.

