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DNA site-specific recombinases are enzymes (often

associated with mobile DNA elements) that catalyse breaking

and rejoining of DNA strands at specific points, thereby

bringing about precise genetic rearrangements. Serine

integrases are a group of recombinases derived from

bacteriophages. Their unusual properties, including

directionality of recombination and simple site requirements,

are leading to their development as efficient, versatile tools for

applications in experimental biology, biotechnology, synthetic

biology and gene therapy. This article summarizes our current

knowledge of serine integrase structure and mechanism, then

outlines key factors that affect the performance of these phage

recombination systems. Recently published studies, that have

expanded the repertoire of available systems and reveal

system-specific characteristics, will help us to choose the best

integrases for envisaged applications.
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Introduction
Since the early days of molecular biology, the world of

prokaryote mobile genetic elements and the cellular

defences against them has proved to be a fertile source

of tools for manipulation of DNA molecules [1,2]. Exam-

ples include restriction enzymes, DNA polymerases and

ligases, transposases, and CRISPR-Cas systems. Another

large class of useful systems that is prevalent in mobile

elements carry out precise, programmed DNA rearrange-

ments by the process known as site-specific recombina-

tion. Each site-specific recombination system requires a

recombinase enzyme that recognizes specific sites in the

DNA and catalyses strand cleavage and rejoining. One

class of recombinases called the serine integrases is
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currently attracting much interest from those seeking

practical methods for precise manipulation of DNA mole-

cules or sequences.

Many bacteriophages with double-stranded DNA gen-

omes have the capacity to integrate their genomic DNA

into that of a host cell, thereby entering a lysogenic state

where the prophage DNA is passively replicated along

with the host DNA over many generations. At some point

the prophage DNA is excised and the phage enters the

lytic phase, whereupon it replicates its DNA genome

repeatedly and packages it into phage particles prior to

cell lysis. Integration and excision are mediated by a

phage-encoded integrase enzyme. Integrases belong to

one of the two large families of site-specific recombinases,

called the serine recombinases and the tyrosine recom-

binases according to the nucleophilic active site amino

acid residue that attacks specific DNA phosphodiesters to

cleave strands. Integration and excision of the archetypal

lysogenic phage, l, are promoted by a tyrosine integrase.

Serine integrases were discovered relatively recently (in

the 1990s), one of the first examples to be studied being

that of the Streptomyces phage fC31 [3,4�,5].

Phage integration is brought about by integrase-promoted

recombination between an attP site in the circularized

phage DNA and a bacterial genomic site attB. Excision is

essentially the reverse of integration; integrase promotes

recombination between the two sites flanking the pro-

phage DNA (called attL and attR) [5] (Figure 1). Integrase

thus promotes both integration and excision, but phage

biology demands that only one ‘direction’ is preferred at

any particular time. Phages have therefore evolved mech-

anisms to achieve directionality; that is, to drive recom-

bination towards integration when entering lysogeny, and

towards excision when entering the lytic state. Another

phage-encoded protein is required for specific stimulation

of attL � attR recombination; often called Xis

(‘excisionase’) for l integrase and its tyrosine integrase

relatives, or RDF (Recombination Directionality Factor)

for serine integrases [5,6].

Although the tyrosine and serine integrases both carry out

essentially the same function, their modes of action are

very different. The attB sites for tyrosine integrases are

short (�25–40 bp) and are bound by an integrase dimer,

but the attP sites are typically long, with multiple binding

sites for integrase subunits as well as other ‘accessory’

proteins which may be required to stimulate recombina-

tion (in the case of the 240-bp phage l attP, these include

the bacterial host-encoded architectural proteins IHF and
www.sciencedirect.com
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Bacteriophage integration and excision. See text for details.
Fis; [7]). The attL and attR sites, made by splicing attB
with attP, are thus also long and complex. In contrast, the

attP and attB sites for serine integrases are both short (attP
�50 bp; attB �40 bp); each site is bound by a dimer of

integrase, and no host-encoded proteins are required.

The mechanisms of DNA strand exchange also differ;

tyrosine integrases make single-strand breaks in the DNA

and exchange a single strand of each site to form an

intermediate Holliday junction-like DNA structure,

which is resolved to recombinants by cleavage and

exchange of the other pair of strands [7], whereas serine

integrases make double-strand breaks in the DNA and

exchange strands by a rotational mechanism [3,5]

(Figure 2).

Both families of integrases have been widely adopted for

applications in biotechnology and synthetic biology that

demand precise, efficient DNA rearrangements [8,9].

Notably, the phage l tyrosine integrase (Int) is the basis

of the very popular Gateway cloning system [10]. How-

ever, the serine integrase systems, with apparently
Figure 2
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simpler DNA components and without requirement for

host factors, have recently moved into the limelight, with

numerous actual or mooted applications.

Serine integrase mechanism
Following recognition of the att sites by integrase, dimers

bound at an attP and an attB interact to form a synaptic

complex (Figure 2). Integrase then promotes double-

strand cleavage at the centres of both sites. After strand

cleavage, each DNA ‘half-site’ is covalently attached to

an integrase subunit, via a phosphodiester linking the

active site serine residue to the recessed 50 DNA end.

The cleaved half-sites along with the attached integrase

subunits then swap positions by a rotational movement,

and the DNA ends are rejoined in this recombinant

configuration by reversal of the cleavage mechanism,

giving attL and attR sites [4�,11�,12]. The attP and attB
sites (and thus the integrase-att complexes) have imper-

fect two-fold symmetry, which suggests that they could

recombine in two different ways, with the sites aligned in

‘parallel’ or ‘antiparallel’. However, the top and bottom

strand cleavages of the sites are at each end of an

asymmetric central 2-bp sequence, creating 2-nt over-

hangs on the cleaved DNA ends which must correctly

base-pair in the recombinant sites. Recombination thus

demands parallel alignment (as in Figure 2) [3,5,13�].

Integrase binds to all four types of att sites, but in the

absence of RDF it characteristically promotes recombi-

nation only between attP and attB. Excisive (attL � attR)
recombination additionally requires the presence of the

RDF, but the basic catalytic mechanism is thought to be

otherwise essentially the same as for attP � attB recom-

bination. The asymmetric central 2 bp of the sites

enforces parallel recombination as described above
attR
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[13�,14]. RDF reprogrammes integrase to favour

attL � attR recombination by binding directly to the

integrase protein [5,15,16] (not the DNA, as is the case

for Xis in tyrosine integrase systems; [7]).

Unlike many other site-specific recombinases, serine

integrases do not display a strong specificity for the

structure of the substrate DNA molecules; they will

recombine sites in the same DNA molecule (in either

head-to-head or head-to-tail orientation) or in different

molecules, and the molecules themselves can be super-

coiled, or linear, or even double-stranded oligonucleo-

tides [5,8].

Serine integrases are large multidomain proteins, typi-

cally 400 amino acids or more. Their membership of the

serine recombinase ‘supergroup’ is established by the

sequence and structural similarity of a �150-amino acid

domain at the integrase N-terminus to the catalytic

domains of well known ‘small’ serine recombinases such

as the Tn3 and gd resolvases [3,5,17]. In the small serine

recombinases, the N-terminal catalytic domain is imme-

diately followed by a small DNA-binding C-terminal

domain (CTD) that confers sequence specificity. The

much larger serine integrase CTD remained relatively

poorly understood until 2013, when the Van Duyne group

published structures of this part of phage A118 integrase

bound to a DNA half-site [18��]. These remarkably

informative structures revealed that the integrase CTD

in fact comprises three domains, two of which are

involved in DNA sequence recognition. A third domain

with a coiled-coil structure is proposed to play an essential

role in synapsis of two sites bound by integrase dimers. Its

different positions in complexes with attP, attB, attL and

attR could account for specificity of recombination

between attP and attB in the absence of RDF. Binding

of RDF to integrase is proposed to alter the positioning of

the coiled-coil domains and thereby favour attL � attR
recombination [18��,19–21].

Serine integrase diversity
A large number of putative serine integrases can be

identified from DNA sequence databases, along with

other large serine recombinases that are not associated

with phages [5,22,23��]. In order to reconstitute a com-

plete integration system (e.g., for a biotechnology appli-

cation), one must also identify the recombination sites

and the RDF. At present only about 20 serine integrase-

based systems have been characterized in substantial

depth, and even fewer (<10) have a known RDF [5].

Applications of serine integrases
Very soon after the discovery of the first serine integrase

systems, they began to be put to use. Early applications

were for site-specific transgene integration, at first in

bacteria; but it was soon shown that serine integrases

would function efficiently in many organisms including
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multicellular eukaryotes such as flies and humans. Their

use has now become widespread in numerous organisms,

and applications have become more sophisticated, often

involving rearrangements by multiple recombinases

[5,8,9]. Recently, there has been a flood of interest in

uses of serine integrases for synthetic biology applica-

tions; for assembly of long arrays of genes or other DNA

fragments, creation of genetic switches, circuits and logic

systems, and for permanent genomic recording of cellular

events [8,9,23��,24–28,29�,30�,31,32��,33]. The diagrams

in Figure 3 illustrate these types of processes. Although

other site-specific recombination systems share features

of precision and efficiency with the serine integrases, the

unique selling point of the latter systems is their one-way

directional nature; the products of integrase-mediated

attP � attB recombination are typically inert to any fur-

ther reactions (unless RDF is present).

The perfect integrase for these applications would be a

stable protein, in cells and/or in vitro, which is robustly

active under varying conditions. Integrase-promoted

recombination should be fast and highly directional (com-

plete conversion of substrates to recombinants, with no

back reaction). Furthermore, recombination should be

site-specific (no off-target activity) and precise (no DNA

damage or mutation of the sites). For some applications

we would like to use several integrases together, each

integrase acting exclusively on its cognate sites. Ideally

there should be no crosstalk between these integrases,

either at the DNA or the protein level, and each RDF

should act strictly on its cognate integrase. The serine

integrases characterized to date seem to have these desir-

able properties to varying extents. For future advanced

applications of these systems, it will be essential to

understand the idiosyncrasies of each integrase and to

optimize them for the intended uses. Some integrases

may be more suitable than others for specific applications,

and we might be able to modify system parts to improve

performance.

Finding more serine integrases
Until recently, serine integrase-based recombination sys-

tems were identified and characterized fairly sporadically

as their coding sequences turned up in newly sequenced

phage genomes. However, the recent upsurge in interest

has led to systematic attempts to find more, diverse serine

integration systems [23��]. Coding sequences for serine

integrases are quite easy to find in databases because of

the similarity of their N-terminal, catalytic domains (see

above). However, the identification and delimitation of

the recombination (att) sites for a novel integrase, and

particularly the identification of its RDF, can be much

more difficult. The most successful strategy for finding

the att sites has been to sequence prophage from bacterial

genomic DNA; attL and attR should be at the bacterial-

phage DNA junctions, and from these the attP and attB
sequences can be deduced [5,23��,34,35]. With the
www.sciencedirect.com
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Figure 3
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Example applications of integrase-promoted recombination in synthetic biology and biotechnology. (a) Integration of a circular transgene-bearing

DNA molecule by recombination with a chromosomal site. (b) Cassette exchange. (c) Assembly of multiple DNA fragments into a linear array. (d)

An inversion switch. The grey squiggles represent flanking chromosomal DNA, and dashed lines represent flanking DNA that is not retained in the

recombinant of interest. The bent black arrow in (d) represents a hypothetical promoter within the invertible DNA segment whose orientation might

cause alternative expression states of flanking genes, for example as part of a genetic circuit. The orientation of an invertible segment can also

represent a binary digit (0 or 1) in a genetic logic or memory system. For more details, see Ref. [9].
integrase and att sites, it can be demonstrated that the

system is active and is not a defunct relic from a once-

active phage. Only a few RDFs have been characterized

[5]. Unlike the integrases, there is no clear sequence

conservation among RDFs; although some closely related

integrases have related RDFs, others vary dramatically in

length and sequence [34,36]. Also, the RDF can be a

protein with additional functions [37]. Nor is there a clear

conservation of location of the RDF gene in the phage

genome.

Site-specificity
Studies to date in vivo and in vitro indicate that serine

integrases are typically very specific for recombination

activity at their cognate sites [5]. Some envisaged appli-

cations which require extremely high specificity have

been shown to be viable; for example, targeted transgene

integration at a unique site in the genomic DNA of

human cells, where there are literally billions of potential

off-target sites [38]. However, serine integrases do show

low levels of off-target activity at ‘pseudosite’ sequences

that are similar to the natural att sites. For example,

considerable numbers of mammalian genomic
www.sciencedirect.com 
pseudosites for the widely used fC31 integrase have

been identified [39�,40]. Site specificity might also

become an issue in designed systems involving multiple

integrases (see ‘Orthogonality’ section below).

Precision
One might expect that serine integrases will have evolved

to carry out very precise recombination in the phage’s

host cells, leaving no residual DNA damage or mutations,

and this property is observed in in vitro experiments.

However, evidence is accumulating that recombination

can be less precise when integrases act in cells that are not

their natural phage hosts; sequencing of recombinants has

revealed various types of damage, including mutations at

the centres of the att sites (rendering them refractory to

further reactions) and deletions at the sites which may

extend into flanking DNA [38]. The biochemical causes

of this damage remain to be established; possibilities

include effects of chromatin and DNA-binding proteins,

or interruption of recombination by cellular events such

as transcription and replication. Some integrases may be

less prone to cause damage than others [41,42].
Current Opinion in Microbiology 2017, 38:130–136
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Speed, efficiency and directionality
Current data on the speed of integrase-mediated recom-

bination in vivo are patchy, but recombination can be

complete within quite short times (hours) in some sys-

tems [23��]. In vitro, reactions can be fast, with half-times

for conversion of substrates to products of a few minutes,

but some systems appear to recombine faster than others

[4�,13�,43�,44].

Recombination efficiency and directionality are subject to

numerous factors specific to the experimental system

being studied, including the nature of the substrate

(intramolecular or intermolecular reactions, distance

between sites in the same molecule, etc.), stoichiometry

of the recombining sites, and cellular environment

[5,11�,14,45]. For accurate comparisons it is best to study

recombination in vitro, where it is apparent that some

integrases can give higher levels of conversion to products

than others [46–49]. Mathematical modelling of the

kinetics of fC31 integrase-mediated recombination

implies that incomplete (�80%) conversion of an

attP � attB plasmid substrate to recombinant products

in vitro is an intrinsic feature of that system linked to

the mechanism of directionality [43�,50]. This modelling

predicts that directionality might be enhanceable by

directed evolution and/or engineering of the integrase

protein, or modifications of the recombination sites.

Orthogonality
If multiple serine integrases are to be used together, they

should be orthogonal; that is, an integrase should not

recognize or recombine sites cognate to the other inte-

grases, nor should it interact directly with the other

integrase proteins such that it interferes with their activ-

ity, nor (ideally) should it interact with the RDFs of the

other integrases. Some integrase pairs that have been

analysed in detail apparently fulfil these requirements

(e.g., fC31 and Bxb1 integrases; [51]), whereas others do

not, and display ‘crosstalk’ [23��,36,48].

Conclusions and future directions
We already know of the existence of large numbers of

distinct serine integrases. One obvious future challenge is

to establish one or more sets of high-performance, orthog-

onal integrases with their sites and RDFs, as toolboxes

that can reliably be utilized together by anyone with an

envisaged application. This programme will involve

assessment of each integrase for its conformity with the

criteria highlighted above. So far, up to 11 integrases have

been used successfully together in one system, albeit with

some evidence of crosstalk [23��]. In the longer run, as

well as characterizing new natural integrases it may also

prove valuable to investigate ways of improving the

integrases that we have, for example by directed evolu-

tion approaches [52] or by systematic protein engineering

(e.g., by attachment of modifier domains [53] or modifica-

tion of active site residues). Another long-term goal which
Current Opinion in Microbiology 2017, 38:130–136 
has already seen some preliminary effort is to engineer

the specificity of existing serine integrases so that they act

orthogonally on new target sequences [22,54]. Making

such engineered systems fully orthogonal is a big chal-

lenge because it involves changes to protein–protein

interactions as well as protein-DNA recognition (see

Figure 2). All efforts to subvert the natural serine inte-

grase systems for our own purposes are deeply dependent

on advances in our understanding of their molecular

structures and functions, where, despite the progress

summarized above, there is still much to learn.
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