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Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and
homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar
membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal
guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry
into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally
suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli
makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and
crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion
transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved
water use efficiency and agricultural yields.

Stomata are pores that form across the epidermal cell
layer of plant leaves and stems. They connect the inner
air space of these organs with the atmosphere, thereby
serving as the major route for gaseous exchange,
bypassing the otherwise impermeable cuticle that
forms on the outer epidermal surface. Stomata respond
to environmental and endogenous (chemical and hy-
draulic) signals, opening and closing the pore in order
to satisfy the needs of the mesophyll cells for CO2 in
photosynthesis while limiting water loss via transpira-
tion to the atmosphere. In the light, stomatamay reduce
photosynthetic rates by 50% and more when water
supply is limiting (Lawson and Blatt, 2014; Vialet-
Chabrand et al., 2017). They have a major impact on
global water and carbon cycles. Transpiration by crops
has been a key factor in global atmospheric modeling
and weather prediction for over a quarter of a century
(Beljaars et al., 1996; Berry et al., 2010). Today, stomatal
transpiration is widely recognized to lie at the center of
the crisis in water availability and crop production now
expected over the next 20 to 30 years. Water use around
the world has increased 6-fold in the past 100 years,
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twice as fast as the human population, and is expected
to double again before 2030, driven mainly by agricul-
ture and irrigation (UNESCO, 2015). Indeed, there are
some very basic reasons for pursuing an understanding
of how stomata work.

Stomata attracted the attention of early microsco-
pists, including Grew (1682), who described stomata as
breathing holes on the surface of plant leaves. de
Candolle (1827) first confirmed that stomatal apertures are
variable, but it was only later that von Mohl (1856)
would appreciate the importance of turgor in driving
these changes. A number of observations recognizable
today followed the advent of the diffusion porometer
that enabledmeasurement of the resistance of the leaf to
gaseous flow (Darwin and Pertz, 1911). These included
transient movements (Darwin, 1916; Knight, 1916),
midday closure (Loftfield, 1921), and the effects of
drought (Laidlaw and Knight, 1916). Freudenberger
(1940) and Heath (1948) showed that CO2 within the
leaf air space was important in regulating aperture, and
Wilson (1948) established the importance for stomatal
movements of the vapor pressure difference between
inside and outside the leaf.

Stomata were inextricably bound up with the plant
hormone abscisic acid (ABA) when Wright and Hiron
(1969) at Wye College in the United Kingdom and
Mittelheuser and van Steveninck (1969) in the United
States discovered ABA to be highly effective in closing
stomata and in the subsequent resistance of the leaf to
wilting. This same period, during the 1960s and 1970s,
marked a recognition of ion transport, especially of K+

salts, and of solute content contributing to the cell tur-
gor as a driver behind stomatal movements (Fischer
and Hsiao, 1968; Humble and Hsiao, 1969). Ironically,
research on stomatal movements at the time was mo-
tivated by interest in the mechanism of opening and by
the new concepts of chemiosmosis (Mitchell, 1969).
Opening, but not closing, was thought to be active, re-
quiring coordination and energy for transport. Re-
search came to focus on stomatal closure only following
MacRobbie’s pioneering radiotracer flux analysis in the
1980s. Her studies showed that ion efflux during clo-
sure is a highly coordinated process (MacRobbie, 1981,
1983a).

The last three decades have seen an explosion in re-
search directed to the mechanics of solute transport and
its regulation. The majority of this new knowledge
comes from electrophysiological studies, both voltage
clamp on intact stomatal guard cells and patch clamp
on guard cell protoplasts, that allow separate transport
activities to be identified and characterized. These ef-
forts have provided an unprecedented depth of quan-
titative information about the kinetics of individual ion
transporters, including those of the H+-ATPases, K+,
Cl2, and Ca2+ channels at the plasma membrane and
several cation- and anion-selective channels at the
tonoplast, and about the dynamics of their regulation
(Pandey et al., 2007; Sokolovski and Blatt, 2007; Kim
et al., 2010; Roelfsema and Hedrich, 2010; Lawson
and Blatt, 2014). With the cloning of many of these

transporters, it has been possible to connect gene to
function through heterologous expression and analysis
in isolation. This same strategy has been used to dissect
macromolecular protein complexes regulating several
K+ channels (Honsbein et al., 2009; Grefen et al., 2015)
and to reconstruct speculative phosphorylation cas-
cades (Geiger et al., 2009, 2011). Imaging techniques
combined with voltage clamp studies have shown how
individual transporters are regulated in vivo by cyto-
solic free [Ca2+] ([Ca2+]i) and pH (pHi; Thiel et al., 1993;
Grabov and Blatt, 1998; Hamilton et al., 2000; Loro
et al., 2012). Site-directed mutation, complementation
studies, and structural analysis have uncovered the
molecular mechanics of channel gating (Riedelsberger
et al., 2010; Lefoulon et al., 2014) and early events of
ABA perception and signaling (Garcia-Mata et al., 2003;
Melcher et al., 2009; Cutler et al., 2010;Wang et al., 2013;
Eisenach and Di Angeli, 2017; Inoue and Kinoshita,
2017).

The actions of other hormones such as auxin (Blatt
and Thiel, 1994; Lohse and Hedrich, 1995), of light and
CO2 (Negi et al., 2008; Kim et al., 2010; Xue et al., 2011;
Kinoshita, 2017), and of plant pathogens (Melotto et al.,
2008) have not been neglected (Melotto et al., 2017).
Resolving the interface between transport and carbo-
hydrate metabolism remains a major challenge (Wang
and Blatt, 2011; Horrer et al., 2016; Griffiths and Males,
2017; Santelia and Lunn, 2017). Considerable attention,
too, has been drawn in recent years to the unusual
pattern of stomatal development within the epidermis
and to its evolution (McElwain et al., 2005; Bergmann
and Sack, 2007; Chen et al., 2017). Thus, present interest
in stomata extends well beyond ion transport and gas
exchange. Some of these topics are explored in depth in
this Focus Issue, and we direct the reader to the several
Updates accompanying this article (Brodribb and
McAdam, 2017; Chater et al., 2017; Vialet-Chabrand
et al., 2017). Nonetheless, in many respects, the focus
has come full circle, returning to issues of membrane
transport and its control. If we are to use our knowledge
of stomata to improve crop resilience and agricultural
capacity in marginal areas, then stomatal gas exchange
(Buckley, 2017; Franks et al., 2017) must be linked to an
understanding of the mechanics of stomatal ion trans-
port and its regulation as a priority for the future. Here,
we review the current knowledge of ion transport in
stomatal guard cells. We emphasize its dynamics and
coordination, the origins of which often defy intuitive
understanding yet are critical to any rational efforts
toward stomatal engineering, and we stress the im-
portance of quantitative functional data that are es-
sential to realize such efforts.

STOMATAL OPENING

Stomatal pores form between specialized pairs of
epidermal cells, the guard cells (Fig. 1). Guard cells of
dicotyledonous plants bow apart as they expand,
thereby opening the stomatal pore (Table I). The
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anatomy of stomata in many monocotyledonous plants
differs, but the principle of their movement is much the
same (Chen et al., 2017). In opening the pore, guard
cells accumulate solute, mainly K+ salts with Cl2 and

malate (Mal), as well as sugars. In closing the pore,
guard cells reverse this process by metabolizing these
solutes or releasing them to the apoplast. The changes
in solute content between the open and closed states
are substantial, often exceeding 300 to 400 mosmol L21

(= 300–400 mosM) on a cell volume basis (Table II), and
draw corresponding water fluxes, thereby driving the
volume and turgor changes that open and close the
pore. Mature guard cells lack plasmodesmata (Wille and
Lucas, 1984), so all of the inorganic ions, and during
closure much of the organic solute that is not metabo-
lized, must be transported across the plasmamembrane.
As in other plant cells, the vacuole in guard cells of open
stomata comprises some 80% to 90% of the cell volume
and remains isotonic with the cytosol. Thus, the bulk of
solute transported across the plasma membrane also
must pass across the tonoplast surrounding the vacuole.

Guard cells coordinate solute flux actively through a
number of major transport pathways at the plasma mem-
brane and the tonoplast during stomatal movements
(Box 1; Allen et al., 1999; Chen et al., 2016; Desikan et al.,
2002; Grabov et al., 1997; Takemiya et al., 2016; Takemiya
and Shimazaki, 2016; Suhita et al., 2004; Yamauchi
et al., 2016; Yin et al., 2009; Zhang et al., 2001; Zhao
et al., 2016). Like all plant cells, guard cells use ATP to
drive H+ out of the cell via H+-ATPases, thereby gen-
erating a membrane voltage, negative inside, and an
electrochemical potential difference (DmH) for the H+.
Stomatal opening is promoted by light and by the
breakdown of starch (Horrer et al., 2016) and lipid
(McLachlan et al., 2016) to organic osmotica.Membrane
voltage facilitates K+ uptake through K+ channels, in
Arabidopsis (Arabidopsis thaliana) primarily KAT1
(Nakamura et al., 1995; Pilot et al., 2001, 2003; Szyroki
et al., 2001; Lebaudy et al., 2008). The DmH also drives
high-affinity K+ transport (Blatt and Clint, 1989; Clint
and Blatt, 1989), most likely coupled 1:1 with H+ influx
through HAK-type transporters, as first described in
fungi and in other plant cells (Rodriguez-Navarro et al.,
1986; Blatt and Slayman, 1987; Maathuis and Sanders,
1994; Véry et al., 2014). Anion uptakemust be energized
by coupling with DmH to overcome the membrane
voltage, which opposes anion influx. In the few in-
stances in which it has been examined in plants, this
flux is coupled with at least two H+, giving a net
movement of one or more positive charges inward
with each anionic charge (Sanders and Hansen, 1981;
Hawkesford and Miller, 2004; Barbier-Brygoo et al.,
2011) and, hence, leading to membrane depolarizations
(Meharg and Blatt, 1995; Blatt et al., 1997). Transport at
the tonoplast is coordinated with ion flux across the
plasma membrane, in part because transporters at both
membranes share a common pool of solutes and me-
tabolites in the cytosol. For example, as K+ and Cl2 are
taken upby transport across the plasmamembrane, their
increased content in the cytosol feeds directly into their
transport across the tonoplast via mass action. Other
connections depend on common solutes that serve as
signaling intermediates, including [Ca2+]i and pHi (see
“Ca2+ Control of Osmotic Solute Efflux” below).

Figure 1. Guard cells expressing the GORK K+ channel in the Arabi-
dopsis leaf epidermis. A to D, Confocal images of the leaf epidermal
surface of Arabidopsis stably transformed with GORK-GFP under the
control of the Ubiquitin-10 promoter (Grefen et al., 2010b), showing
the distribution of GORK-GFP (A), chloroplast autofluorescence (B),
and the overlay of these images (C) with the corresponding bright-field
image (D). Bar = 20mm. E, Single optical section from a Z-stack through
two kidney-shaped guard cells surrounding one stoma (center), show-
ing the punctate distribution of GORK-GFParound the periphery of the
two guard cells. Z-plane transects taken along the x axis at positions 1 to
5 are shown below. F, The full three-dimensional projection of the
Z-stack clearly shows the punctate character of GORK localization and
the prevalence of the channel at the junctions between the two guard
cells. Bar = 5 mm. Data are from C. Eisenach, Ph.D. thesis. See Eisenach
et al. (2014) for further details.
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STOMATAL CLOSING

The characteristics of ion transport for solute accu-
mulation are generally shared among plant cells, in-
cluding guard cells. Where guard cells differ from the
norm is their ability to coordinate solute release and
close the stomatal pore. Voltage clamp studies at the
beginning of the 1990s first uncovered concerted alter-
ations in K+ channel activities associated with plasma
membrane depolarization and K+ and anion efflux in
the presence of ABA (Blatt, 1990; Linder and Raschke,
1992). These discoveries were soon tied to changes
in [Ca2+]i and pHi, each moderating subsets of trans-
porters and their activities (Schroeder and Hagiwara,
1989; Blatt et al., 1990b; Gilroy et al., 1990; McAinsh
et al., 1990; Blatt, 1992; Blatt and Armstrong, 1993;
Grabov and Blatt, 1997, 1998, 1999). Only later was
membrane voltage linked toCa2+ influx, Ca2+ release from
endomembrane compartments, and their regulation by

reactive oxygen species (ROS) and nitric oxide (NO;
Hamilton et al., 2000; Pei et al., 2000; Garcia-Mata et al.,
2003; Kwak et al., 2003; Sokolovski et al., 2005). The
origins of the changes in pHi observed in the presence of
ABA are still to be determined but are most likely an
emergent property of interactions between ion trans-
port and metabolism (Chen et al., 2012; Wang et al.,
2012). In parallel, these signals are interwoven with
phosphorylation cascades, now thought to be trig-
gered by ABA binding with one or more pyrabactin/
pyrabactin-like (PYR/PYL) ABA receptors that se-
quester and inhibit PP2C-type protein phosphatases.
The primary effects of ABA are to suppress the activ-
ities of the H+-ATPase and the inward-rectifying K+

channels (KAT) to prevent K+ uptake and to activate the
SLAC- and ALMT (QUAC)-type anion channels along
with outward-rectifying K+ channels (GORK) to facili-
tate K+, Cl2, and Mal efflux (Box 1).

Table I. Basic biophysical parameters of stomatal guard cells in the open and closed state in V. faba and Arabidopsis

References are as follows: Humble and Raschke (1971); Raschke et al. (1975); Blatt (1987b); Clint and Blatt (1989); Willmer et al. (1995); Willmer
and Fricker (1996); Franks et al. (2001); Shope et al. (2003); Shope and Mott (2006); Meckel et al. (2007); Vialet-Chabrand et al. (2016); Xie et al.
(2016). GC, Guard cells.

Parameter
Species

V. faba Arabidopsis

Closed Open Closed Open
Aperture (mm) 1.0–6.0 8.0–16.5 1–3 2–6
Pore area (mm2) 75–124 178–262 3–5 10–15
GC length (mm) 35–45 40–50 9–11 10–20
GC diameter (mm) 10–12 14–16 3–5 5–6
GC surface area (cm2 3 1025) 1.2–1.6 1.6–3 0.2–0.3 0.3–0.5
GC volume (pL) 2.7–3.7 4.0–7.5 0.3–0.4 0.5–0.65
GC vacuole surface area (cm2 3 1025) 0.96–1.2 1.3–1.6 0.15–0.23 0.25–0.43
GC vacuole volume (pL) 1.8–2.4 3.6–5.8 0.23–0.3 0.43–0.55
GC turgor (atm) 1–4 3.5–6 3–5 6–8
Plasma membrane voltage (mV) 230 to 270 2100 to 2180 230 to 270 2100 to 2180
Tonoplast membrane voltage (mV) 0 to 250 210 to 240 0 to 250 210 to 240

Table II. Compartmental ion and sugar concentrations of guard cells of closed and open stomata (in mM)

Data relate to V. faba unless noted otherwise. References are as follows: Fischer (1968); Allaway (1973);
Raschke et al. (1975); Raschke and Schnabl (1978); Van Kirk and Raschke (1978a, 1978b); MacRobbie
(1983b); Clint and Blatt (1989); Talbott and Zeiger (1993, 1996); Thiel et al. (1993); Marschner (1995);
Willmer and Fricker (1996); Guo et al. (2003); Dodd et al. (2005, 2007).

Solute
Apoplast Cytosol Vacuole

Closed Open Closed Open Closed Open

K+ 0.05–114 0.05–24 55–93 150–247 38–92 181–454
H+ (pH) a,b 6.2–7.1 4.8–6.5 7.4–7.9 7.2–7.7 5.2–6.5 4.0–5.3
Ca2+ c 0.05–1.0 0.5–1.7 0.1–0.9 mM 0.09–0.45 mM 1–5 3–22
Cl2 d 0.3–44 0.1–7 3–20 11–50 3–40 40–124
NO3

2 a,b 0.1–0.2 1–0.2 2–5 2–5 10–92 10–92
PO4

22 a 0.3–0.7 3–0.7 2–6 2–6 4–92 4–92
Mal d 0.5–20 0.4–3.5 0.1–6 2–25 5–48 41–464
Suc 0.4–3 1–8 12–20 6–75 1–27 45–200

aValues are typical for glycophytic plants. bValues incorporate data from Commelina communis and
Arabidopsis guard cells. cCytosol values are free concentrations. dCl2 will exchange with Mal,
subject to availability.
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A number of other stimuli promote stomatal closure,
including darkness, high CO2 partial pressures (pCO2),
and several plant pathogens. The mechanics of the
changes in transport in each case are thought to follow a
pattern similar to that for ABA. Indeed, the character-
istics required for closure generally limit transport
changes to those evoked byABA (Chen et al., 2012; Blatt
et al., 2014; Wang et al., 2014a). Of course, the signal
cascades need not be the same, but what detail is
available at present is often fragmentary. For the tran-
sition to darkness, there is virtually no quantitative
information beyond our knowledge of H+-ATPase
promotion by light for stomatal opening (above) and
hints, albeit temporally problematic, of an association
with [Ca2+]i (Marten et al., 2008). The stomatal response
to bacterial pathogens probably depends on kinase
cascades, NO, and ROS that are common to ABA
signaling (Melotto et al., 2006; Deger et al., 2015). The
fungal pathogen elicitor ofCladosporium fulvum engages
phosphorylation cascades that probably overlap with
those of ABA to regulate the K+ andCl2 channels for net
KCl efflux (Blatt et al., 1999). Elevated CO2 activates the
outward-rectifying K+ channels and SLAC-type Cl2

channels, and it reduces the activity of the KAT-like K+

channels in Vicia faba guard cells (Brearley et al., 1997),
actions that are consistent with measurements of
apoplastic Cl2 (Hanstein and Felle, 2002). Like ABA,
the CO2 signal cascade is associatedwith a rise in [Ca2+]i
(Webb et al., 1996), but it is not mediated directly
through changes in pHi (Brearley et al., 1997).
The stomatal response to CO2 is sensitive to external

pH, which suggests that HCO3
2 in solution, rather than

CO2 per se, is the primary ligand sensed within the
guard cell (Bown, 1985). More recently, the SLAC1
channel, and its activation, has become a focal point
for dissecting the mechanisms of CO2 regulation. The
hydration of dissolved CO2 is very slow in the absence
of carbonic anhydrase (Gutknecht et al., 1977). So it is
no surprise that stomata respond sluggishly to pCO2
changes in the ca1ca4 double mutant (Hu et al., 2010),
which eliminates the two major cytosolic and chloro-
plastic carbonic anhydrases in Arabidopsis (Fabre et al.,
2007). One recent study (Wang et al., 2016) used
Xenopus oocytes to reconstitute pCO2 signaling with car-
bonic anhydrases, the aquaporin PIP2;1 and SLAC1.
The relevance of this ex vivo association, like that of
several protein kinases (see “Phosphorylation Cas-
cades” below), remains speculative, however, espe-
cially given the immense differences in cell volume
between guard cells and Xenopus oocytes and the im-
plications for CO2 and HCO

3

2 diffusion. The results are
also difficult to reconcile with a publication from the
same group suggesting that phosphorylation sites on
both sides of the membrane are essential for the SLAC1
response to pCO2 (Yamamoto et al., 2016). Thus, the
relationships between aquaporins and carbonic anhy-
drases in water and CO2 permeability are a matter of
debate (Grondin et al., 2015; Zhao et al., 2016), as is their
coupling to activation of the anion channel. For now,
the guard cell CO2 (HCO3

2) sensors remain unknown,

although it is clear that, downstream, the action over-
laps with significant elements important also for ABA
signaling (Chater et al., 2015; Tian et al., 2015).

A WEALTH OF MOLECULAR IDENTITIES

The first plant K+ channel, KAT1, to be cloned and
functionally characterized (Anderson et al., 1992;
Schachtman et al., 1992) was soon associated with the
guard cells of Arabidopsis (Nakamura et al., 1995).
These discoveries accompanied a growing knowledge
of the principal ion pumps of the plasma membrane
and tonoplast, including the H+-ATPases and their
regulation (Kinoshita and Shimazaki, 1999; Moriau
et al., 1999; Kinoshita et al., 2001; Ueno et al., 2005;
Merlot et al., 2007), Ca2+-ATPases, and the tonoplast H+-
pyrophosphatase (H+-PPase; Martinoia et al., 2007;
McAinsh and Pittman, 2009). Other discoveries fol-
lowed with signaling proteins, including the OST1
protein kinase associated with ABA and ROS signal-
ing (Merlot et al., 2002; Mustilli et al., 2002), the ABI1
2C-type protein phosphatase (Leung et al., 1994;
Armstrong et al., 1995) now known to be part of a set of
key ABA receptor complexes (Ma et al., 2009; Melcher
et al., 2009; Miyazono et al., 2009), and the first vesicle-
trafficking protein affecting stomatal movements
(Leyman et al., 1999; Eisenach et al., 2012) now known
to interact physically with several K+ channels (see
“Coordinating Ion Transport, Membrane Traffic, and
Water Flux” below).

Following publication of the Arabidopsis genome in
1999, the list of guard cell transporters, and even more
so that of the regulatory proteins functional in guard
cells, has expanded rapidly. These include the full
complement of plasma membrane K+ channels homol-
ogous to the mammalian voltage-sensitive (Kv) chan-
nels (Dreyer and Blatt, 2009), the tonoplast TPK1
(Gobert et al., 2007) and TPC1 (Peiter et al., 2005; Islam
et al., 2010) channels corresponding to the so-called
Vacuole K+ (VK) and Slow Vacuole (SV) currents,
and Cl2- and Mal-permeable channels, including
the slow-activating SLAC1 Cl2 channel and several
quick-activating, ALMT (QUAC)-type anion channels
(Kovermann et al., 2007; Negi et al., 2008; Vahisalu
et al., 2008; Meyer et al., 2010, 2011; Sasaki et al., 2010).
The molecular identities of several H+-coupled trans-
porters are known as well, including the endomem-
brane and vacuolar H+-coupled alkali cation and Ca2+

exchangers (Padmanaban et al., 2007; Bassil et al., 2011;
Pittman, 2011; Andrés et al., 2014; Bassil and Blumwald,
2014), the CLC-type Cl2 and NO3

2 transporters ob-
served previously to show channel-like behaviors (De
Angeli et al., 2006; Jossier et al., 2010), and plasma
membrane transporters for Mal (Lee et al., 2008;
Medeiros et al., 2016) and even for ABA itself (Merilo
et al., 2015). Less is known for sugar transport (Ritte
et al., 1999; Stadler et al., 2003), although it is likely to
facilitate organic solute uptake and communication
with the photosynthetic mesophyll (Lawson et al., 2008;
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Lawson and Blatt, 2014). Finally, the plasmamembrane
aquaporin PIP2;1 was recently shown to promote ABA-
mediated stomatal closure, most likely by enhancing
the capacity for water flux (Grondin et al., 2015).
Much attention has been drawn by the recent dis-

covery of the family of PYR and PYL ABA receptor
proteins, their regulation of PP2C-type protein phos-
phatases, including ABI1, and their coordination with
Ca2+-mediated control in guard cells (Ma et al., 2009;
Melcher et al., 2009; Miyazono et al., 2009; Nishimura
et al., 2010; Wang et al., 2013). These receptors mark the
beginning of a key phosphorylation cascade triggered
by ABA. Downstream effectors include the SLAC1 Cl2

channel, but lacking still is unequivocal evidence of
the relevant phosphorylation targets in vivo (see
“Phosphorylation Cascades” below). A similar situa-
tion applies to members of the family of small auxin
up-regulated RNA (SAUR) proteins. Several SAURs are
known to promote stomatal opening and have been
associated with the regulation of H+-ATPase activi-
ties through the actions of PP2C-D protein phospha-
tases (Spartz et al., 2014). The molecular identities of
their immediate targets are less well defined, how-
ever, nor is it clear whether the H+-ATPases are the
only transporters affected directly by SAUR activity
in vivo.
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ré
s
et

al
.,
2
0
1
4
;
H
an

et
al
.,
2
0
1
5
);
D

(A
cc

ar
d
i
an

d
M
il
le
r,
2
0
0
4
;
D
e
A
n
ge

li
et

al
.,
2
0
0
6
,
2
0
0
9
a;

vo
n
d
er

Fe
ch

t-
B
ar
te
n
b
ac
h
et

al
.,
2
0
1
0
;
Jo
ss
ie
r
et

al
.,
2
0
1
0
);
E
(B
u
rl
a
et

al
.,
2
0
1
3
).

Tr
an

sp
o
rt
er

N
am

e
Lo

cu
s

Fu
n
ct
io
n

N
o
.

St
o
ic
h
io
m
et
ry

I s
at

I V
E r

ev
Io
n
Se

le
ct
iv
it
y

R
ef
er
en

ce
s

3
1
0
6
ce

ll
2
1

m
A
cm

2
2

m
A
cm

2
2

m
V

V
H

+
-A
T
Pa
se

(V
H
-A
T
Pa
se
)

V
H
A
-A

A
T
1
G
7
8
9
0
0

H
+
u
p
ta
ke

,

en
er
gi
za

ti
o
n

3
–8

*
2
H

+
:1

A
T
P

2
e

1
–2

e
2
9
4
to

+
2
3

A
ss
u
m
ed

h
ig
h
H

+
se
le
ct
iv
e

A

V
H
A
-B

A
T
1
G
7
6
0
3
0

3
–3

.5
a

V
H
A
-C

A
T
1
G
1
2
8
4
0

0
.6
–1

d

V
H
A
-D

A
T
3
G
5
8
7
3
0

V
H
A
-E

A
T
4
G
1
1
1
5
0

V
H
A
-F

A
T
4
G
0
2
6
2
0

V
H
A
-G

A
T
3
G
0
1
3
9
0

V
H
A
-H

A
T
3
G
4
2
0
5
0

V
H
A
-a

A
T
2
G
2
8
5
2
0

V
H
A
-c

A
T
4
G
3
4
7
2
0

V
H
A
-c
’’

A
T
4
G
3
2
5
3
0

V
H
A
-d

A
T
3
G
2
8
7
1
0

V
H
A
-e

A
T
5
G
5
5
2
9
0

V
H

+
-P
Pa
se

(V
H
-P
Pa
se
)

A
V
P
1

A
T
1
G
1
5
6
9
0

H
+
u
p
ta
ke

,
en

er
gi
za

ti
o
n

6
–2

0
**

1
H

+
:1

P
P
i

n
.d
.

0
.6
–2

.1
2
6
0
to

2
2
0

A

A
V
P
2

A
T
1
G
7
8
9
2
0

V
C
a2

+
-A
T
Pa
se

(V
C
a-
A
T
Pa
se
)

A
C
A
4

A
T
2
G
4
1
5
6
0

C
a2

+
u
p
ta
ke

0
.3
–1

**
*

1
C
a2

+
:1

A
T
P
**
**

Se
e
I V

0
.0
1
–0

.0
2
c,
**
*

2
1
0
0
to

2
8
0

n
.d
.

B

A
C
A
1
1

A
T
3
G
5
7
3
3
0

0
.1

b
, *
**

H
+
/C
a2

+
an

ti
p
o
rt

(C
A
X
)

C
A
X
1

A
T
2
G
3
8
1
7
0

C
a2

+
ex

ch
an

ge
0
.1
–0

.3
**
*

3
H

+
:1

C
a2

+
Se

e
I V

2
0
.6

1
,b
, *
**

.
+
1
0
0

A
ss
u
m
ed

se
le
ct
iv
e
fo
r
C
a2

+
an

d
H

+
B

C
A
X
2

A
T
3
G
1
3
3
2
0

C
A
X
3

A
T
3
G
5
1
8
6
0

C
A
X
5

A
T
1
G
5
5
7
3
0

C
A
X
6

A
T
1
G
5
5
7
2
0

C
A
X
7

A
T
5
G
1
7
8
6
0

H
+
/c
at
io
n
an

ti
p
o
rt

N
H
X
1

A
T
5
G
2
7
1
5
0

C
at
io
n
ex

ch
an

ge
,

p
H

i
re
gu

la
ti
o
n

0
.1
–0

.3
**
*

1
H

+
:1

K
+

C

N
H
X
2

A
T
3
G
0
5
0
3
0

H
+
/C
l2

(N
O

3
2
)

an
ti
p
o
rt
(C
LC

)

C
LC

-B
A
T
3
G
2
7
1
7
0

A
n
io
n
ex

ch
an

ge
0
.3
–1

**
*

1
H

+
:2

C
l2

Se
e
I V

0
.0
5
–0

.1
2
,b

2
6
0
to

0
N
O

3
2
.
C
l2
.
.
SO

4

2
2

D

C
LC

-E
A
T
4
G
3
5
4
4
0

1
H

+
:2

N
O

3
2

2
4
8
b

C
LC

-A
A
T
5
G
4
0
8
9
0

C
LC

-C
A
T
5
G
4
9
8
9
0

A
B
A
tr
an

sp
o
rt

A
B
C
C
1

A
T
1
G
3
0
4
0
0

A
B
A
gl
yc

o
sy
l
es
te
r
u
p
ta
ke

n
.d
.

n
.d
.

n
.d
.

n
.d
.

n
.d
.

n
.d
.

E

A
B
C
C
2

A
T
2
G
3
4
6
6
0

A
B
A
gl
yc

o
sy
l
es
te
r
u
p
ta
ke

a
C
h
ar
a
co

ra
ll
in
a.

b
A
ra
b
id
o
p
si
s.

c B
ra
ss
ic
a
o
le
ra
ce

a.
d
C
o
m
m
el
in
a
co

m
m
u
n
is
.

e B
et
a
vu

lg
ar
is
.

1
.

5
0
m
M

[C
a2

+
] i
.

2
4
m

M
[N

O
3
2
] i
.

*C
al
cu

la
te
d
as
su
m
in
g
a
tr
an

sp
o
rt

ra
te

o
f
5
0
H

+
s2

1
,
a
to
n
o
p
la
st
su
rf
ac

e
ar
ea

o
f
2
3

1
0
2
5
cm

2
,
an

d
H

+
fl
u
x
fr
o
m

C
o
m
m
el
in
a
co

m
m
u
n
is
(W

il
lm

er
et

al
.,
1
9
9
5
).

**
C
al
cu

la
te
d
fr
o
m

cu
rr
en

t
d
en

si
ti
es

as
su
m
in
g
a
tr
an

sp
o
rt
ra
te

o
f

5
0
H

+
s2

1
(R
ea

an
d
P
o
o
le
,
1
9
9
3
)
an

d
a
to
n
o
p
la
st
su
rf
ac

e
ar
ea

o
f
2
3

1
0
2
5
cm

2
.

**
*C

al
cu

la
te
d
fr
o
m

I s
at
o
r
th
e
ty
p
ic
al

tr
an

sp
o
rt
cu

rr
en

t
as
su
m
in
g
a
tr
an

sp
o
rt
tu
rn
o
ve
r
ra
te

o
f
5
0
s2

1
an

d
a
gu

ar
d

ce
ll
su
rf
ac

e
ar
ea

o
f
3
3

1
0
2
5
cm

2
;
es
ti
m
at
es

fo
r
th
e
C
a2

+
-A
T
Pa
se

ar
e
b
as
ed

o
n
as
su
m
p
ti
o
n
o
f
a
1
0
-
to

3
0
-f
o
ld

lo
w
er

d
en

si
ty

th
an

th
e
V
-t
yp

e
H

+
-A
T
Pa
se

an
d
H

+
-c
o
u
p
le
d
tr
an

sp
o
rt
er
s
sc
al
ed

ac
co

rd
in
gl
y.

**
**
St
o
ic
h
io
m
et
ry

d
et
er
m
in
ed

as
th
e
m
in
im

u
m

th
er
m
o
d
yn

am
ic

re
q
u
ir
em

en
t
to

d
ri
ve

n
et

ac
cu

m
u
la
ti
o
n
.

Plant Physiol. Vol. 174, 2017 497

Guard Cell Ion Transport

 www.plantphysiol.orgon July 10, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


T
ab

le
V
I.

P
re
d
o
m
in
an

t
io
n
ch

an
n
el
s
in

th
e
to
n
o
p
la
st
o
f
gu

ar
d
ce

ll
s
an

d
th
ei
r
fu
n
ct
io
n
al

ch
ar
ac

te
ri
st
ic
s

G
en

et
ic

co
d
es

re
la
te

to
A
ra
b
id
o
p
si
s,
fu
n
ct
io
n
al

d
at
a
re
la
te

to
V
.
fa
b
a
u
n
d
er

ty
p
ic
al

gu
ar
d
ce

ll
io
n
ic

co
n
te
n
ts
(s
ee

Ta
b
le

II
)
u
n
le
ss

n
o
te
d
o
th
er
w
is
e;

ch
an

n
el

cu
rr
en

ts
ar
e
ty
p
ic
al

va
lu
es

at
0
m
V

(I
V
K
,
I M

al
,
I V

C
a
,
I V

C
l)
an

d
+
5
0
m
V

(I
SV
).
Sh

o
rt
h
an

d
id
en

ti
fi
er
s
in

p
ar
en

th
es
es

cr
o
ss
-r
ef
er
en

ce
to

B
o
x
1
.
n
.d
.,
n
o
t
d
et
er
m
in
ed

.
R
ef
er
en

ce
s
ar
e
as

fo
ll
o
w
s:
A
(W

ar
d
an

d
Sc
h
ro
ed

er
,
1
9
9
4
;
A
ll
en

an
d

Sa
n
d
er
s,
1
9
9
6
;
A
ll
en

et
al
.,
1
9
9
8
;
B
ru
gg
em

an
n
et

al
.,
1
9
9
9
b
,
1
9
9
9
a;

Pe
i
et

al
.,
1
9
9
9
;
B
ih
le
r
et

al
.,
2
0
0
5
;
Si
n
n
ig
e
et

al
.,
2
0
0
5
;
G
o
b
er
t
et

al
.,
2
0
0
7
;
R
o
cc
h
et
ti
et

al
.,
2
0
1
2
);
B
(A
ll
en

an
d
Sa

n
d
er
s,

1
9
9
4
,
1
9
9
5
,
1
9
9
6
;
W
ar
d
an

d
Sc
h
ro
ed

er
,
1
9
9
4
;
P
ei

et
al
.,
1
9
9
9
;
B
ih
le
r
et

al
.,
2
0
0
5
;
P
o
tt
o
si
n
an

d
Sc
h
ö
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Other transporters undoubtedly remain to be iden-
tified, and intermediates such as the gasotransmitter
H2S (Scuffi et al., 2014; Papanatsiou et al., 2015) and
NO-dependent S-nitrosylation (Sokolovski and Blatt,
2004; Wang et al., 2015) remain to be placed within the
broader framework of guard cell physiology. Most
notable, we still do not know the molecular identity of
themajor Ca2+-permeable channels responsible for Ca2+

influx across the plasma membrane, nor for the chan-
nels mediating Ca2+-evoked release of Ca2+ from the
several intracellular compartments that serve as Ca2+

stores (see “The Ca2+ Signal, Its Origins and Oscilla-
tions” below). These channels are nonetheless well
documented in vivo, with their kinetic and regulatory
characteristics defined with respect to single-channel
conductance, voltage and Ca2+ sensitivities, their de-
pendence on ROS and NO, and their requirements for
phosphorylation (Hamilton et al., 2000, 2001; Pei et al.,
2000; Garcia-Mata et al., 2003; Kwak et al., 2003; Wang
et al., 2013).
Indeed, even without knowledge of individual genes

and the proteins they encode, electrophysiological
studies provide quantitative information about the ki-
netic and regulatory properties that are essential to
understand the functions of these transporters and their
contributions to stomatal movements. For example, the
biophysical and regulatory properties of the outward-
rectifying K+ channels in guard cells were known in
detail early on, including their dependence on voltage
and external K+, their regulation by pH, and their in-
sensitivity to [Ca2+]i (Blatt, 1988b; Hosoi et al., 1988;
Blatt and Armstrong, 1993). This knowledge informed
on their function in vivo more than a decade before the
GORK K+ channel was identified (Ache et al., 2000;
Hosy et al., 2003). Such information is essential to un-
derstand their mechanics and physiology in the guard
cell context (see “Systems Models for Guard Cell
Transport” below). A comprehensive list of these
transporters and their functional characteristics at the
plasmamembrane and tonoplast are included in Tables
III to VI, together with the corresponding genes from
Arabidopsis where known. The major regulatory links
to the transporters are summarized in Tables VII and
VIII.
Conversely, for stomatal function, knowledge of

a gene product based on mutant analysis alone is
often uninformative and, without functional informa-
tion, can be misleading. The Golgi-localized alkaline
ceramidase, TOD1, is a case in point (Chen et al., 2015).
Ceramidases are enzymes that cleave phospholipids
and, together with sphingosine kinases, are important
for sphingosine-1-phosphate (S1P) synthesis. Stomatal
closure in ABA is promoted by adding exogenous S1P
(Guo et al., 2012), suggesting that its synthesis might be
important for ABA signaling. The TOD1 promoter is
active in guard cells, and its gene product is able to
complement a yeast mutant lacking ceramidase activ-
ity. However, TOD1 is also present in other cell types,
the tod1 mutation affects stomatal aperture in both the
presence and absence of ABA, and its phenotype is

pleiotropic, affecting stomata, pollen growth rate, and
fertility. So, is TOD1 part of an ABA signal cascade? Or
is it part of an assembly necessary for the general in-
tegrity of cellular homeostasis, including ABA signal-
ing? Clearly, what is missing is evidence that TOD1
activity responds to ABA, its kinetics, and, down-
stream, the identity of the targets for S1P.

PHOSPHORYLATION CASCADES

A number of protein kinases and phosphatases have
been identified to affect stomatal movements, both
opening and closing. Initially, much information was
drawn from inhibitor studies, their actions on aperture,
ion flux, and transport current (Macrobbie, 1997; Blatt,
2000). Subsequent work has benefitted frommutational
screening and site-directed mutagenesis, and in a
handful of cases, we now have knowledge of their
phosphorylation targets. Table IX summarizes the ma-
jor groups of these kinases and phosphatases, and
we direct the reader to several excellent reviews
(Shimazaki et al., 2007; Cutler et al., 2010; Lee et al.,
2016), including those in this Focus Issue, for further
information.

Recent work has taken advantage of the Xenopus
oocyte as a platform to reconstitute plausible regulatory
cascades with the SLAC1 anion channel and several
protein kinases, including the SnRK2-type kinase OST1
originally identified in thermal screening for reduced
drought sensitivity (Merlot et al., 2002; Mustilli et al.,
2002), the GHR1 kinase (Hua et al., 2012) associated
with ROS-mediated control of SLAC1, the HT1 kinase
associated with CO2 (Tian et al., 2015; Hashimoto-
Sugimoto et al., 2016), and the kinase partners of cal-
cineurin B-like (CBL) proteins (Luan et al., 2002;
Maierhofer et al., 2014). These studies support the idea
of phosphorylation cascades that contribute to Cl2

channel regulation by ABA. What they have largely
failed to address to date are the connections between
protein phosphorylation, whether of SLAC1 or associ-
ated targets, and its integration with other signaling
intermediates and transporters in vivo. For example, in
analyzing theV. faba SLAC-like Cl2 channel, Chen et al.
(2010) found two separate components to the channel
current. Quantitative analysis showed that ABA in-
creased the amplitude of the minor component inde-
pendent of [Ca2+]i. However, the primary response was
a shift in the [Ca2+]i sensitivityof themajor component, from
a KCa of 720 nM to a value near 500 nM, which sets to
rest the ill-defined concept of so-called Ca2+-priming
(Siegel et al., 2009). Stange et al. (2010) reported a
similar [Ca2+]i sensitivity, although lacking the ef-
fects of phosphorylation. In effect, Chen et al. (2010)
show that the primary action of phosphorylation
in vivo is to enhance the sensitivity of the Cl2

channels to [Ca2+]i.
Oocyte reconstitution studies with SLAC1 to date

have not considered the [Ca2+]i sensitivity of the chan-
nel nor tested the effects of [Ca2+]i on its activity after
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heterologous expression. Indeed, to our knowledge, no
evidence has surfaced to confirm that SLAC1 activation
is solely dependent on phosphorylation in oocytes,
whether via [Ca2+]i-dependent kinases or otherwise.
The findings to date, therefore, beg questions about the
target sites, kinase and phosphatase specificities, and
their relationships to SLAC1 control in vivo. Nor are the
data clear cut or consistent. Initial work suggested that
[Ca2+]i could promote phosphorylation by the CPK21
kinase of a SLAC1 N-terminal peptide in vitro (Geiger
et al., 2010) and with a similar [Ca2+]i dependence to
that of the current in vivo (Chen et al., 2010). However,
coexpression of SLAC1 with CPK21 yielded little cur-
rent (Geiger et al., 2010), possibly because [Ca2+]i was
too low in the oocytes.

Subsequent studies focused on other kinases. Anal-
ysis of SLAC1 peptides phosphorylated in vitro sug-
gested that OST1, CPK3, and CPK6 kinases can target
Ser-59 and that OST1 and CPK6 also can phosphorylate
Ser-120, both residues located in the cytosolic N-terminal
domain of the channel (Vahisalu et al., 2010; Brandt
et al., 2015). The SLAC1S59A mutation, which prevents
phosphorylation at this site, reduced SLAC1 activa-
tion in oocytes by OST1, CPK6, and the CBL1-
CIPK23 calcineurin-kinase pair (Maierhofer et al.,
2014). Yet, a separate study found OST1 to fully acti-
vate the SLAC1S59A channel (Brandt et al., 2015).
Other inconsistencies are evident when comparing the
reconstituted systems in oocytes with the in vivo
characteristics in the guard cell. Most telling, the ost1

Table VII. Activators and inhibitors of the predominant plasma membrane transporters and ion channels in stomatal guard cells (data relate to V.
faba or Arabidopsis unless noted otherwise)

References are as follows: A (Blatt, 1988a; Blatt and Clint, 1989; Clint and Blatt, 1989; Lohse and Hedrich, 1992; Goh et al., 1995, 1996; Kinoshita
et al., 1995; Baunsgaard et al., 1998; Kinoshita and Shimazaki, 1999; Taylor and Assmann, 2001); B (Palmgren and Harper, 1999; Geisler et al.,
2000; Sze et al., 2000); C (Blatt et al., 1990b; Blatt, 1992; Fairley-Grenot and Assmann, 1992; Lemtiri-Chlieh and MacRobbie, 1994; Kelly et al.,
1995; Ilan et al., 1996; Grabov and Blatt, 1997, 1999; Romano et al., 2000; Garcia-Mata et al., 2003; Dreyer and Uozumi, 2011); D (Blatt and
Armstrong, 1993; Ilan et al., 1994; Lemtiri-Chlieh and MacRobbie, 1994; Miedema and Assmann, 1996; Blatt and Gradmann, 1997; Grabov and
Blatt, 1997; Garcia-Mata et al., 2003; Hosy et al., 2003; Eisenach et al., 2012); E (Dietrich and Hedrich, 1998; Garcia-Mata et al., 2003; Chen et al.,
2010; Diatloff et al., 2010; Meyer et al., 2010; Wang and Blatt, 2011; Xue et al., 2011; Tian et al., 2015; Wang et al., 2016); F (Hamilton et al., 2000;
Pei et al., 2000; Sokolovski et al., 2008); G (Maurel et al., 2008; Verdoucq et al., 2008; Grondin et al., 2015; Byrt et al., 2016).

Transporter/

Channel Type Activators Inhibitors References

H+-ATPase Fusicoccin (K1/2 = 10 mM) [Ca2+]i (Ki = 300 nM) A
Blue light (20–100 mmol m22 s21 via

photophosphorylation)
Auxin

Ca2+-ATPase [Ca2+]i (K1/2 = 0.5–1 mM) B
Calmodulin (approximate molar ratio)

IK,in [H+]o shifts v1/2 positive (+15–24 mV per
pH unit) and enhances Gmax (pKa = 6.7; nh = 1)

[Ca2+]i (Ki = 330 nM; nh = 3.8–4.1) shifts v1/2
negative and suppresses Gmax

C

Increasing [H+]i enhances Gmax [Al3+] (Ki = 15 mM)
[Cs+] (Ki = 0.1 mM)

IK,out Decreasing [H+]i Increasing [H+]i (pKa = 7.4–7.5; nh = 2–2.4) D
Increasing [Ca2+]i
ABA

IAnion (R-type) [ABA]i (K1/2 = 2.6 mM) [H+]o slows kinetics without affecting steady-state ICl E
[ATP] (K1/2 = 0.4 mM)
[Ca2+]i enhances Gmax (500–700 nM, nh = 3–4)
[H+]i enhances Gmax (pKa = 6.9, nh = 1)
ABA (Ca2+ independent)

ICl (S-type) [ABA]cyt (K1/2 = 2.6 mM; Ca2+ dependent or
independent)

Insensitive for [H+]o E

[Ca2+]i enhances Gmax (K1/2 = 500–700 nM, nh = 3–4)
High [HCO3

2]i increases [Ca
2+]i sensitivity

High [HCO3
2]i (Ca

2+ independent)

ICa ROS (H2O2) [K+]i , , 1 mM F
ABA shifts voltage sensitivity for Ca2+ gating [Ca2+]i shifts v1/2 negative (225–30 mV/[Ca2+]i decade)

[H+]i shifts v1/2 negative (possible 255 mV per pH unit)

Aquaporins ABA High [Ca2+]i G
[Cd+]i, [Mn2+]i, [Sr

2+]i, [Ba
2+]i, [Ni2+]i

High [H+]i
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null mutant suppressed the ABA activation of SLAC1
current in Arabidopsis guard cells (Acharya et al.,
2013), even though several other kinases and their as-
sociated cascades were present. The mutant cipk23
showed enhanced sensitivity to ABA and closed the
stomata (Cheong et al., 2007). Finally, complementa-
tions of the slac1 mutant with SLAC1S120A had little
effect on ABA-mediated stomatal closure and with
deletion of the entire N-terminal domain of SLAC1 sup-
pressed closure only partially (Yamamoto et al., 2016).
This latter study does present difficulties for interpreta-
tion, notably the dissimilar effects of complementations in
two different slac1 mutant lines and a lack of some key
controls, but the work appears to highlight differences in
SLAC1 activation by elevated pCO2 and by ABA.
At least for the discrepancies between oocytes and

guard cells, the most plausible explanation is that a
subset, possibly all, of these kinases engage different
targets in vivo from those available when reconstituted
in oocytes and that their regulation of SLAC1 is nor-
mally indirect. It may be, too, that theworkwith SLAC1
in oocytes to date has simply refined our knowledge
of the minor, [Ca2+]i-independent component of the

current found in vivo (Chen et al., 2010). In assessing
the actions of the kinase and phosphatase mutants, we
need to keep in mind that the guard cells also harbor
other anion channels, including ALMT12, which is
also affected by the OST1 kinase, but for which less
information is available at present (Meyer et al., 2010;
Imes et al., 2013). So, in the absence of supporting data
in vivo, the relevance of the studies in oocytes must be
interpreted with caution. It is time that experiments
move beyond reconstitution studies in oocytes. Further
progress now will depend, most importantly, on time-
resolved phosphorylation assays carried out in vivo.

COORDINATING ION TRANSPORT, MEMBRANE
TRAFFIC, AND WATER FLUX

Guard cells integrate ion transport with secretory
traffic that adds new membrane surface as the cells
expand; conversely, rates of endocytosis coordinate
with solute export as the cell volume decreases. While
membrane traffic has generally correlated with changes
in external osmolality and cell volume (Homann and

Table VIII. Activators and inhibitors of the predominant tonoplast transporters and ion channels in stomatal guard cells (data relate to V. faba or
Arabidopsis unless noted otherwise)

References are as follows: A (Fricker and Willmer, 1990a; Davies et al., 1991; Willmer et al., 1995; Obermeyer et al., 1996; Darley et al., 1998); B
(Evans, 1994); C (De Angeli et al., 2009b); D (Ward and Schroeder, 1994; Allen and Sanders, 1996; Allen et al., 1998; Lemtiri-Chlieh et al., 2003); E
(Schulz-Lessdorf and Hedrich, 1995; Pei et al., 1999; Carpaneto et al., 2001; Lemtiri-Chlieh et al., 2003; Pottosin et al., 2004; Bihler et al., 2005;
Pottosin and Schönknecht, 2007; Beyhl et al., 2009); F (Pantoja and Smith, 2002; Meyer et al., 2011).

Transporter/Channel Type Activators Inhibitors References

VH+-ATPase ABA [NO3
2]i (Ki = 7 mM) A

NaCl H2O2 (Ki = 800 mM)
[K+]i Insensitive to ABA and fusicoccin
[Cl2]v

VH+-PPase High [K+]i (K1/2 = 2–50 mM) [Ca2+]i (Ki = 80 nM) A
Low [K+]v

VCa2+-ATPase Calmodulin (approximate molar ratio) B

H+/Cl2 (NO3
2) antiport ATP (up to 60% inhibition of CLCa) C

IVK (TPK) [H+]i (pKa = 7.4) D
[Ca2+]i (K1/2 = 1–30 mM)

IFV IP6 (K1/2 = 100 nM) [Mg2+]v (Ki = 0.23 mM, nh = 0.67) D
Low [H+]i [Ca2+]i (Ki = 200 nM)

[H+]i (pKa ; 6.4)

ISV [Ca2+]i (K1/2 = 3–30 mM) [Ca2+]v shifts v1/2 positive (+55 mV/[Ca2+]v decade) E
[Mg2+]i shifts v1/2 negative
IP6 (K1/2 = 100 nM)

[Zn2+]

i

, [Ni2+]

i[H+]i (pK ; 6.8)

IVCl [Ca2+]i (K1/2 = 1 mM)

[Zn2+]i

F
[Ca2+]i independent (ALMT)
[Mal2-]i (ALMT9)
High [H+]i

IMal [Ca2+]i (K1/2 = 1 mM; activation of
ALMT9 Ca2+-independent)

[H+]i (pKi = 7.1, nh = 2a) F
[H+]v shifts v1/2 positive (+60 mV per pH unit)

aKalanchoë daigremontiana.
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Table IX. Major groups of kinases involved in regulation of guard cell transporters and channels

Functions listed relate to the kinase group as a whole, not necessarily to the specific kinase on the same line of text. References are as follows: A
(Pei et al., 1996; Mori et al., 2006; Zhu et al., 2007; Geiger et al., 2010; Zou et al., 2010, 2015; Ronzier et al., 2014; Brandt et al., 2015; Li et al.,
2016); B (Fujii et al., 2009; Geiger et al., 2009; Lee et al., 2009; Park et al., 2009; Sato et al., 2009; Sirichandra et al., 2009; Umezawa et al., 2009;
Imes et al., 2013; Osakabe et al., 2013; Wege et al., 2014; Grondin et al., 2015; Yin et al., 2016); C (Guo et al., 2002; Ohta et al., 2003; Xu et al.,
2006; Cheong et al., 2007; Held et al., 2011; Maierhofer et al., 2014); D (Gosti et al., 1999; Merlot et al., 2001; Chérel et al., 2002; Leonhardt et al.,
2004; Saez et al., 2004, 2006; Kuhn et al., 2006; Yoshida et al., 2006; Ma et al., 2009; Park et al., 2009; Rubio et al., 2009; Lan et al., 2011; Brandt
et al., 2015; Lefoulon et al., 2016; Xie et al., 2016); E (Leonhardt et al., 2004; Saez et al., 2004, 2006; Park et al., 2009; Nishimura et al., 2010); F
(Jammes et al., 2009; Hõrak et al., 2016).

Name Range of Functions References

Ca2+-dependent protein kinases (CDPKs) ABA-induced Ca2+-dependent activation of anion currents A
CPK3 SLAC1 activation
CPK4 ABA-mediated regulation of CAT3 activity
CPK5 Inhibition of KAT2 and KAT1
CPK6 Activation of vacuolar anion channels
CPK8
CPK10
CPK11
CPK13
CPK21
CPK23
CPK32
CPK33

SnRK2 kinases ABA-induced Ca2+-independent activation of anion currents B
SRK2E/SnRK2.6/OST1 SLAC1 activation in an ABI1-dependent manner
SRK2D/SnRK2.2 ALMT12/QUAC1 activation
SRK2I/SnRK2.3 ABA-induced phosphorylation of K+ uptake transporter6 (KUP6)
SRK2C/SnRK2.8 ABA-induced phosphorylation of aquaporin PIP2;1

Involved in methyl jasmonate-induced stomatal closure
Inactivation of KAT1
Activation of NADPH oxidase subunit AtrbohF (ROS production)
Activation of CLCa to increase anion efflux from the vacuole

SnRK3 kinases (CIPKs) Ca2+-dependent activation of anion currents C
CIPK6 SLAC1 and SLAH3 activation in the presence of CALCINEURIN-B-LIKE1 and

CALCINEURIN-B-LIKE9CIPK15/PKS3
Increases phosphorylation-independent translocation of AKT2 to the plasma

membrane
CIPK23

Stomatal closure in response to ABA by interacting with ABI1 and ABI2CIPK24/SOS2

Protein phosphatase 2Cs Deactivation of ABA-activated SnRK2 protein kinases by dephosphorylation D
SLAC1 dephosphorylation in the absence of ABAPP2CA/AHG3
SnRK2 inhibition (interaction with OST1, SnRK2.2, and SnRK2.3)ABI1
Decrease of GORK channel activityABI2
Decrease of AKT2 channel activityHAB1
Dephosphorylation and down-regulation of SLAC1AIP
Suppression of CPK activation of SLAC1
Inhibition of anion current activation by CBL-CIPK

RCAR/PYR/PYL ABA receptors Inhibition of PP2Cs to enable SnRK2-mediated stomatal closure E
PYR1 Interaction with and repression of ABI1, ABI2, and HAB1
PYL1
PYL2
PYL3
PYL4
PYL9/RCAR1

Mitogen-activated protein kinases (MPKs) F
MPK4 Involved in ROS-mediated ABA signaling
MPK9 Positive regulator of CO2-induced stomatal regulation by inhibition of HT1

kinaseMPK12
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Thiel, 2002; Shope et al., 2003; Hurst et al., 2004; Meckel
et al., 2005; Shope and Mott, 2006), these studies, and
those of other plant cell models (Campanoni and Blatt,
2007; Kroeger et al., 2011), have offered few clues to the
mechanisms linking membrane traffic and ion trans-
port. One mechanism that surfaced recently follows on
the identification of the plasma membrane protein
SYP121, and its tobacco (Nicotiana tabacum) homolog
NtSYR1, associated with the ABA regulation of guard
cell ion channels (Leyman et al., 1999). These proteins

belong to the superfamily of solubleN-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE)
proteins that were first characterized in the 1980s and
later recognized as part of the molecular machinery for
secretory traffic in yeast, animals, and plants (Söllner
et al., 1993a, 1993b; Sanderfoot et al., 2000; Duman and
Forte, 2003). The association with ion transport is well
illustrated by Eisenach et al. (2012), who reported that
the syp121 mutation impairs stomatal reopening fol-
lowing closure in elevated [Ca2+]i (Fig. 2). The mutant
mimicked the phenomenon of so-called programmed
closure, previously ascribed to a memory of stress that
leads stomata to reopen only slowly (Allen et al., 2001).
The syp121 mutant showed reduced recycling of the
KAT1 K+ channel from endosomal membranes to
the plasma membrane, thereby suppressing channel-
mediated K+ uptake by the guard cells, slowing stomatal
reopening, and leading to a strong reduction in vegetative
growth through stomatal-limited photosynthesis.

The connections of the SNAREs to solute transport go
well beyond ion channel traffic, however, as was rec-
ognized early on (Leyman et al., 1999; Sutter et al., 2006,
2007). Honsbein et al. (2009, 2011) uncovered direct and
selective binding between SYP121 and the K+ channels
KC1 and KAT1. Channel binding occurred at the
plasma membrane independent of channel traffic and,
in roots as in aerial tissues, binding promoted channel
activity and K+ uptake (Geelen et al., 2002; Sokolovski
et al., 2008; Grefen et al., 2010a). Intriguingly, the cog-
nate SNAREVAMP721, which is localized to the vesicle
membrane and assembles with SYP121 for vesicle fu-
sion, also binds andmodulates the K+ channels butwith
opposing effects on channel activity (Zhang et al., 2015).
Thus, from the viewpoint of the capacity for K+ uptake,
the ion flux may be temporally coupled with an ex-
change in channel binding between cognate SNAREs
during the process of vesicle fusion (Karnik et al., 2017).

The complementary site for SYP121 binding resides
at the base of the K+ channel S1 a-helix, which forms
part of the channel voltage sensor domain (VSD; Grefen
et al., 2015). Voltage-sensitive K+ channels, including
KC1, AKT1, and KAT1 in Arabidopsis, belong to the
superfamily of so-called Kv channels that are found
across all phyla. These channels assemble as tetramers
of four subunits, each subunit consisting of six trans-
membrane a-helices. The first four a-helices (S1–S4)
of the channel protein form a semiautonomous VSD
structure. These VSDs incorporate a series of fixed
positive charges that, with a change in voltage, drive
the VSD conformation, moving it partway across the
membrane and drawing open the channel pore (Lai
et al., 2005; Dreyer and Blatt, 2009; Labro et al., 2012).
Grefen et al. (2015) found that the VSD promoted se-
cretory traffic so long as the VSDwas locked in the open
channel conformation (Lefoulon et al., 2014) or could be
driven to this conformation by voltage (Fig. 3). These
findings demonstrate that SYP121 commandeers the
channel VSD to sense the membrane voltage as a proxy
for solute uptake, adjusting the rates of secretory traffic
with uptake while promoting K+ transport.

Figure 2. The syp121 SNARE mutation slows stomatal reopening and
shows a strong growth phenotype at moderate relative humidities. A,
Stomatal apertures normalized to values at time zero for stomata from
the wild type and the SYP121-complemented syp121 mutant (black
circles) and the mutants syp121 (white circles) and syp122 (black tri-
angles) before, during, and after the closing stimulus of elevated CaCl2
outside (gray bar). B, Arabidopsis wild-type, syp121, and syp122 plants
grown for 3weeks under 150mmolm22 s21 light and relative humidities
(RH) of 95% and 55%. (This figure was modified from Eisenach et al.,
2012.)
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Such coupling between SNAREs and channel
VSDs may be common in plants. Both motifs are
closely conserved within subsets of plasma membrane
SNAREs and K+ channels in vascular plants (Grefen
et al., 2011, 2015), implying their coevolution as the
number of SNARE genes expanded when plants colo-
nized land (Sanderfoot, 2007; Karnik et al., 2017). The
same SNAREs also interact with several plasma
membrane-localized aquaporins (Besserer et al., 2012;
Hachez et al., 2014), suggesting functional impacts
that extend to plasma membrane water flux. It remains

to be seen whether these interactions affect water
permeability directly in addition to aquaporin traffic
(Chaumont and Tyerman, 2014), possibly to aquaporin
function associated with stomatal closure in ABA
(Grondin et al., 2015). Certainly, there is reason to sus-
pect that water flux, like that of solute transport, may be
coordinated directly with membrane traffic as part of a
supermolecular response complex.

THE IMPORTANCE OF VOLTAGE CONTROL

If this wealth of information on guard cell transport is
not daunting enough, it is further compounded by the
interactions of solute transport across each bounding
membrane. Separating the intrinsic characteristics of
transport interactions from those of extrinsic regula-
tion, such as by protein phosphorylation, is often
challenging. Membrane voltage is a major factor de-
termining osmotic solute flux for stomatal move-
ments (Tables III–VI), and it is central to understanding
these transport interactions. From an enzyme kinetic
standpoint, voltage serves as a driving force, an elec-
trical substrate, that acts on each charge-carrying
transporter in a manner analogous to the mass action
effect of adding a chemical substrate to an enzymatic
reaction; voltage is also an electrical product of charge-
carrying transporters (Blatt, 2004). Following this sim-
ple analogy (Box 2; Sanders and Slayman, 1982), plasma
membrane voltage is a product of H+ export by the H+-
ATPases; it is a substrate for K+ and Cl2 import by H+-
coupled transport; and it is a substrate for K+

flux
through the two major classes of K+ channels, defined
by the currents IK,in and IK,out, and for anion efflux. Most
important, voltage is a shared intermediate in the charge
circuit of each membrane and, therefore, ensures an in-
terdependency between all charge-carrying transporters.

Voltage also determines the activity of several ion
channels that contribute to solute flux across both
the plasma membrane and the tonoplast. For the K+

channels that often dominate the plasma mem-
brane (Blatt et al., 2007; Pandey et al., 2007; Lawson
and Blatt, 2014), voltage affects channel gating
and commonly restricts ion flux. For example, the
outward-rectifying K+ channels of plants, including
GORK (Hosy et al., 2003), normally gate open only at
voltages positive of the K+ equilibrium voltage (EK)
when the thermodynamic driving force for K+

flux is
directed out of the cell. When the voltage is situated
negative of EK, the gates close within milliseconds,
thereby preventing net K+ influx through these
channels. By contrast, inward-rectifying K+ chan-
nels, including the KAT1 K+ channel of Arabidopsis,
typically gate open at voltages substantially more
negative than 2120 mV and achieve maximum activity
only at voltages negative of 2180 mV. These two pop-
ulations of K+ channels give rise to two of the most dis-
tinctive properties of the guard cell plasma membrane:
they effectively delimit the range of physiological volt-
ages normally observed in vivo, and they define the

Figure 3. Voltage-dependent conformation of a K+ channel VSD
regulates secretion. Coexpression of the VSD (VSDwt) of the K+

channel KC1 and its mutant VSDD132E rescues secretory traffic block
by the SYP121 soluble domain SYP121DC. Coexpression with the
mutant VSDD132E, which locks the VSD in the open-channel con-
figuration, also rescues secretory traffic. Traffic is not rescued by
coexpression with VSDF129W, which locks the VSD in the closed-
channel configuration, nor with VSDwt in 50 mM KCl, which depo-
larizes the plasma membrane. Images are projections of Arabidopsis
roots transiently transformed using the tetracistronic vector pTecG-
2in1-CC (Karnik et al., 2013) carrying secretory marker secYFP,
GFP-HDEL as a transformation marker and ratiometric reference,
SYP121DC, and VSDwt, VSDF129W, or VSDD132E in 1 and 50 mM KCl
(left). Bright-field images are single medial plane images with fluo-
rescence overlaid. VSD structures are shown in the closed, open,
and again closed conformations (right, top to bottom) corresponding
to the conditions and VSD constructs used. For clarity, only water
molecules (light blue) on either side (in and out) of the membrane are
shown. VSD transmembrane a-helices are color coded in green (S1),
black (S2), red (S3), and yellow (S4). The RYxxWE motif that forms
the binding site for SYP121 is shown with stick representations.
Bar = 100 mm. (This figure was modified from Grefen et al. 2015, and
Karnik et al. 2017.)
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two distinct states of the membrane associated with
solute influx and efflux (Box 3).

Ca2+ CONTROL OF OSMOTIC SOLUTE EFFLUX

Unquestionably, [Ca2+]i overlays much of guard
cell signal transduction and, especially, of voltage

control in membrane transport (Tables III–VIII; Blatt,
2000; Hetherington and Brownlee, 2004; Martinoia
et al., 2007; Roelfsema and Hedrich, 2010). Although
changes in [Ca2+]i have not always been associated
with stomatal movements (Gilroy et al., 1991;
Lemtiri-Chlieh and MacRobbie, 1994; Armstrong
et al., 1995; Romano et al., 2000), its elevation is
thought to accelerate closure and its reduction is
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generally recognized to favor stomatal opening.
Raising [Ca2+]i (Box 1) suppresses H+-ATPase ac-
tivity and current through the inward-rectifying
K+ channels, and it promotes SLAC1 and related
channel activities (Blatt et al., 1990b, 2007; Kinoshita
et al., 1995; Chen et al., 2010; Roelfsema and Hedrich,
2010). Elevating [Ca2+]i also suppresses H+ transport
via the tonoplast H+-PPase (Darley et al., 1998) and
K+

flux through FV-type K+ channels (Tikhonova et al.,
1997); it activates the TPK1 K+ channel (Gobert et al.,
2007), the K+- and Ca2+-permeable TPC1 channel, and
vacuolar Cl2- and Mal-permeable channels (Pei et al.,
1996, 1999; Beyhl et al., 2009; Rienmüller et al., 2010;
Eisenach and Di Angeli, 2017). Of course, raising [Ca2+]i
also provides substrate for CAX-mediated Ca2+/H+

exchange (Pittman, 2011) and Ca2+ efflux driven by the
Ca2+-ATPases, with the net effect at both membranes of
removing Ca2+ from the cytosol (Geisler et al., 2000; Sze
et al., 2000; Bonza and DeMichelis, 2011; Pittman, 2011).

A few transporters are either demonstrably [Ca2+]i
insensitive or are likely to be so, including the outward-
rectifying K+ channels such as GORK in Arabidopsis,
the H+-coupled transporters for K+, Cl2, Mal, and sugar

at the plasma membrane, and the VH+-ATPase and CLC
Cl2/H+ antiporters at the tonoplast. Each of these trans-
porters is affected by membrane voltage (Tables III–VIII)
and, therefore, will be subject to [Ca2+]i indirectly through
its action on Ca2+-sensitive transport. Thus, resting
[Ca2+]i near 100 to 200 nM favors energization by the
plasma membrane H+-ATPase and tonoplast H+-PPase,
and K+ and anion flux across both membranes into the
vacuole; conversely, raising [Ca2+]i has the overall effect
of reducing metabolically driven H+ transport that en-
ergizes both membranes, and it promotes the net export
of K+, Cl2, and Mal22 from the vacuole, through the
cytosol, and out across the plasma membrane. In short,
elevated [Ca2+]i shifts the balance of solute transport
from net solute influx to net solute efflux.

THE Ca2+ SIGNAL, ITS ORIGINS
AND OSCILLATIONS

Membrane voltage and [Ca2+]i obviously con-
nect through the gating properties of the plasma
membrane Ca2+ channels and through the actions of
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[Ca2+]i on one or more endomembrane Ca2+ channels
(Grabov and Blatt, 1999; Garcia-Mata et al., 2003). As
a consequence, voltage and [Ca2+]i form two inter-
acting control loops that impact directly on guard
cell transport. The plasma membrane Ca2+ channels
(Hamilton et al., 2000, 2001) show a voltage sensi-
tivity near unity and activation sufficient to trigger
[Ca2+]i elevations observed in vivo at voltages more
negative than 2150 mV (Grabov and Blatt, 1998;
Garcia-Mata et al., 2003; Chen et al., 2010). Volt-
age will also exert control on Ca2+ efflux through Ca2+-
ATPases at the plasma membrane, in Arabidopsis
the ACA8 Ca2+-ATPase (Bonza et al., 2000; Geisler
et al., 2000), but antiparallel to its effect on the Ca2+

channels. The Ca2+-ATPases almost certainly couple
charge flux with ATP hydrolysis in a 2:1 ratio, that
is 1 Ca2+:1 ATP (Geisler et al., 2000; Sze et al., 2000),
implying a reversal voltage near 2200 mV at resting
[Ca2+]i with 1 mM Ca2+ outside. These characteris-
tics also imply a strong kinetic enhancement as
the membrane depolarizes toward 0 mV. So, be-
tween roughly 2200 to 250 mV, Ca2+ flux across the
plasma membrane alternates between net influx and
efflux, promoting and suppressing [Ca2+]i elevation,
respectively.
The interactions between voltage and Ca2+ chan-

nel gating are more subtle, however, and give rise to
the phenomenology of [Ca2+]i oscillations observed
during stomatal closing (McAinsh et al., 1995;
Grabov and Blatt, 1998; Staxen et al., 1999; Allen
et al., 2000; Sokolovski et al., 2008). In general, such
oscillations arise only when three prerequisites are
met: (1) Ca2+ must enter the cytosol from at least two
sources or pathways with different temporal kinet-
ics; (2) each pathway must be self-limiting to ensure
that [Ca2+]i elevations are transient and will not
overwhelm the cytosol; and (3) each Ca2+ source
must operate one or more mechanisms for Ca2+ re-
covery following a rise in [Ca2+]i. It is now widely
recognized that [Ca2+]i transients in guard cells and
other plant cells depend on Ca2+ from outside as well
as on its release from endomembrane stores. Simi-
larly, energy-coupled Ca2+ transporters, both CAX
antiporters mediating Ca2+/H+ exchange and ACA
Ca2+-ATPases, are widely distributed among all of
the major membranes within the plant cell (Lopez-
Marques et al., 2004; Pardo et al., 2006; Martinoia
et al., 2007; Bonza and De Michelis, 2011; Pittman,
2011). These transporters ensure a capacity for Ca2+

recovery with affinities suited to scavenging Ca2+

across a wide range of free concentrations (Tables III
and V). So, both the first and third of the three pre-
requisites are met.
It is the second prerequisite that has proven more

difficult to establish. All evidence points to a set of
highly Ca2+-selective channels at the plasma mem-
brane as the major pathway for Ca2+ entry into the
guard cell (Grabov and Blatt, 1999; Hamilton et al.,
2000, 2001), although a number of other channels that
are nonselective among cations have been proposed

(Véry and Sentenac, 2002), including several of the Glu
receptor-like channels (Qi et al., 2006; Cho et al., 2009).
The Glu receptor-like channels GLR3.1 and GLR3.5
have been shown to affect resting levels of [Ca2+]i, but
their voltage dependence and sensitivity to [Ca2+]i are
insufficient to account for transients in its free con-
centration and they do not affect stomatal closure in
ABA (Kong et al., 2016). By contrast, the Ca2+-selective
channels (Hamilton et al., 2000, 2001) show a low
(13 pS) single-channel conductance, they activate in a
strongly voltage-dependent manner negative of ap-
proximately 2150 mV, and their gating is affected by
ABA. Most important, their gating is suppressed as
[Ca2+]i rises above approximately 1 mM. This [Ca2+]i
sensitivity is crucial and satisfies the essential prereq-
uisite for self-limitation. Indeed, to date, these are the
only channels in plants known to exhibit such char-
acteristics.

ABA displaces the gating of the Ca2+ channels to
more positive voltages (Hamilton et al., 2000), which
accounts for the parallel shift with ABA in the volt-
age threshold for [Ca2+]i elevations (Grabov and
Blatt, 1998). How this displacement in gating arises
has yet to be explored in detail, but it may be linked
to phosphorylation of the channels (Box 1) or asso-
ciated proteins (Köhler and Blatt, 2002; Sokolovski
et al., 2005; Mori et al., 2006). Additionally, the Ca2+

channels are activated by ROS, in Arabidopsis sub-
ject to the atrbohd and atrbohf mutants, which en-
code plasma membrane-localized NADPH oxidases
(Kwak et al., 2003). The quadruple ABA receptor
mutant pyr1/pyl1/pyl2/pyl4, which is much reduced
in its response to ABA (Park et al., 2009; Nishimura
et al., 2010), also suppresses [Ca2+]i elevation in ABA.
This impairment has been linked to a loss in ROS
production in ABA, and adding the ROS hydrogen
peroxide (H2O2) recovers both the enhanced activity
of the Ca2+ channels in vivo and stomatal closure
(Wang et al., 2013). Until the molecular identity of
the Ca2+ channels is determined, however, further
processes to understand their regulation will be
hampered.

Less obvious is how Ca2+-permeable but nonse-
lective cation channels contribute to the regulation of
[Ca2+]i, among these OSCA1 (Yuan et al., 2014) and
its close homolog CSC1 (Hou et al., 2014). The osca1
mutant is impaired in its response to hyperosmotic
stress, leading to the proposal that OSCA1 is im-
portant for [Ca2+]i elevation under mechanical or
osmotically induced stress. However, stomata of the
mutant responded normally to ROS (H2O2) and ABA,
the channels show no evidence of self-limitation,
and their localization to the plasma membrane,
based solely on the diffuse distribution of an over-
expressed, GFP-tagged construct, is unconvincing.
Thus, neither OSCA1 nor CSC1 is likely to trigger the
cyclic elevations in [Ca2+]i that have been observed
in vivo, although they may contribute to osmotic
equilibrium across the tonoplast or other endo-
membranes.
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If Ca2+ entry is important to trigger [Ca2+]i in-
creases, it is its release from intracellular stores that
contributes the bulk of the Ca2+ to raise [Ca2+]i. Best
estimates (Chen et al., 2012) indicate that over 95%
of the total Ca2+ entering the cytosol during [Ca2+]i
transients comes from within endomembrane com-
partments, much as it does in animals (Bezprozvanny
et al., 1991; Hille, 2001). These compartments almost
certainly include the endoplasmic reticulum (Garcia-
Mata et al., 2003; Blatt et al., 2007; Bonza et al., 2013),
the vacuole (Allen et al., 1995; Beyhl et al., 2009) and,
over a higher [Ca2+]i range, also mitochondria and
chloroplasts (McAinsh and Pittman, 2009; Loro et al.,
2012; Loro and Costa, 2013). In guard cells, Ca2+ is
released as [Ca2+]i rises, triggered by Ca2+ influx
across the plasmamembrane (Grabov and Blatt, 1999;
Garcia-Mata et al., 2003), a process that leads to os-
cillations and is often identified as Ca2+-induced Ca2+

release. Endomembrane Ca2+ release is key to pro-
ducing the [Ca2+]i oscillations and their interactions
with voltage observed in vivo (Grabov and Blatt,
1998; Allen et al., 2001; McAinsh and Pittman, 2009;
Minguet-Parramona et al., 2016). Several Ca2+-
permeable channels associated with endomembrane
stores are activated by cytosolic Ca2+ and lig-
ands, including IP3, cADP-ribose, NO, and inositol
hexakisphosphate (IP6), that are known or have been
implicated in promoting Ca2+ release (Alexandre
et al., 1990; Muir and Sanders, 1996; Wu et al., 1997;
Leckie et al., 1998; Grabov and Blatt, 1999; Garcia-
Mata et al., 2003; Lemtiri-Chlieh et al., 2003). Yet, al-
though essential for [Ca2+]i to oscillate (Chen et al.,
2012; Minguet-Parramona et al., 2016), missing for all
of the channels characterized to date, including the
Ca2+- and K+-permeable channel TPC1 (Peiter et al.,
2005; Dadacz-Narloch et al., 2011), is evidence of
self-limitation leading to suppressed Ca2+ release at
elevated [Ca2+]i.

SYSTEMS MODELS FOR GUARD CELL TRANSPORT

Although essential for any rational approach to
engineering stomata, relating the transport capacity
of guard cells to stomatal movements in quantitative
mechanistic terms poses a number of difficulties
(Buckley, 2017). As a consequence, relatively few
studies have progressed beyond the qualitative
analysis of mutant associations. One of the difficul-
ties, as we note above, arises because flux through
the predominant transporters for K+, Cl2, and Mal,
as well as the H+-ATPases, depends strongly on mem-
brane voltage. The physical requirement for charge to
balance means that the transport of each ionic species is
necessarily joined to that of all others across the same
membrane, unless this connection is bypassed by the
circuit of a voltage clamp (Blatt, 2004). So knowledge of
the prevailing voltage and of the voltage dependence for
each transporter is critical (see “The Importance of Volt-
age Control” above).

A second difficulty arises from the general finding
that the ion fluxes needed for stomatal movements
reflect only a small fraction of the maximal capacity of
several transporters mediating these fluxes (Thiel
et al., 1992; Hamilton et al., 2000; Pottosin and
Schönknecht, 2007; De Angeli et al., 2009b). As a case
in point, during stomatal opening, the solute content
of a typical V. faba or Arabidopsis guard cell rises by
approximately 200 to 300 mM on a cell volume basis,
roughly half of this K+ (Table II). For Arabidopsis, the
changes are equivalent to 0.03 to 0.07 pmol of K+ per
guard cell and, over the period of opening (typically
60 min), translates to a K+

flux of 6 to 10 amol s21 and
a current of 0.5 to 0.9 pA or 1 to 3 mA cm22. Such
currents are typical for the inward-rectifying K+

channels at voltages near2150 mV in vivo (see Boxes
2 and 3), but they are no more than 2% to 3% of the K+

current when maximally activated, such as recorded
at 2200 mV (Wang et al., 2012, 2013). One general
conclusion, then, is that the capacity for transport,
especially through the individual ion channels that
facilitate K+, Cl2, and Mal flux, is not inherently
limiting. Instead, it is the balance between the sum of
all transporters at the membrane that limits solute
flux. Again, manipulating solute flux through any
one transporter inevitably affects this balance and,
thereby, directly affects other transporters at the
same membrane.

Systems modeling offers one approach to over-
coming these difficulties. It enables the detailed
knowledge available for the individual transporters
to be reconstructed within the physiological frame-
work of the cell. Effective physiological models are
constrained by fundamental physical laws and the
known kinetic relationships, ligand binding, and re-
lated regulatory properties for each transporter. Such
models address the difficulties inherent to under-
standing how transport and metabolic activities are
temporally connected. A growing number of studies
employ systems approaches, for example to validate
a role for K+ transport in the phloem loading of su-
crose as an energy reserve (Gajdanowicz et al., 2011)
and to describe oscillatory characteristics in H+ and
K+

flux (Gradmann et al., 1993; Shabala et al., 2006).
Boolean network models (Li et al., 2006; Sun et al.,
2014) also have been applied to guard cell signaling
and transport control, although these models oper-
ate with nodes and links that can only be on or off, so
they omit the most important insights that arise from
the quantitative and dynamic interactions between
transporters.

Of course, the real test of any model is its capacity
not only for reproducing experimental observations
but for predicting new and unexpected behaviors. In
this regard, the development of the OnGuard plat-
form for modeling stomata (Chen et al., 2012; Hills
et al., 2012; freely available at www.psrg.org.uk) has
proven the most successful to date, demonstrating
true predictive power in uncovering previously
unexpected and emergent features of guard cell
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physiology, several of which have been verified ex-
perimentally. Among these, OnGuard analysis of
the Arabidopsis slac1 mutant predicted a connection
between the Cl2 channel and the plasma membrane
K+ channels that was subsequently confirmed ex-
perimentally (Wang et al., 2012). The results showed
how slac1 slowed K+ uptake and stomatal opening,
even though the SLAC1 Cl2 channel contributes
directly only to solute loss and stomatal closure.
OnGuard models have since resolved an unforeseen
coordination between the plasma membrane and
tonoplast transport in the Arabidopsis ost2 H+-
ATPase mutant (Blatt et al., 2014); they accurately
predicted (Wang et al., 2014a) the consequences of
overexpressing the KAT1 K+ channel and AHA2 H+-
ATPase in Arabidopsis guard cells (Wang et al.,
2014b); and they have shed new light on the con-
nection between [Ca2+]i oscillation frequency and
the osmotic solute flux (Minguet-Parramona et al.,
2016). The latter study is especially informative, not
only in validating the concept of the [Ca2+]i signal
cassette (Blatt, 2000) but in illustrating how quanti-
tative modeling is essential as an approach to physiology
that otherwise confounds intuitive understanding and
leads to misinterpretations.

CONCLUDING REMARKS

If we are to design crops with improved water use
efficiency and able to cope with reduced water
availability, then manipulating stomatal conduc-
tance is an obvious target. Reducing stomatal den-
sity has already proven successful in some contexts
(Condon et al., 2002, 2004), but to date, although
conceptually the most promising approach there are
no examples in which manipulating guard cell
behavior per se has resulted in improved water
use efficiency without a cost in carbon gain. The
challenge, therefore, will be to moderate stomatal
conductance without a significant cost in photo-
synthetic assimilation (Lawson and Blatt, 2014).
Ideally, improved stomatal function also needs to
be achieved without increasing vulnerabilities to
the naturally fluctuating environment or to path-
ogens. This problem is a highly complex one. It
demands a comprehensive and quantitative under-
standing of the metabolic and signaling pathways
that determine the physiological responses of guard
cells. It also requires an understanding of how the
functions of guard cells are coordinated within the
plant, notably with carbon assimilation (Lawson
et al., 2012) and with hydraulic water flux (Caldeira
et al., 2014; Chaumont and Tyerman, 2014). From
research on guard cell ion transport and its regula-
tion over the past three decades, there is now a
substantial body of quantitative information, all
essential to inform rational efforts in manipulating
stomatal responses. Even so, assembling this infor-
mation to anticipate the consequences of specific

genetic manipulations clearly is not straightfor-
ward (see Outstanding Questions).

How might we engineer guard cell transport to
reduce water use without a cost to carbon gain by the
plant? Although separate ion transporters are re-
sponsible for driving solute flux during stomatal
opening and closing (Li et al., 2006), a primary diffi-
culty remains that all of these transporters interact.
We come back to the studies of SLAC1, which amply
demonstrate that manipulations of transport to affect
stomatal closing have profound effects on opening as
well and are predictable outcomes of the intrinsic
interactions between transport at the plasma and
tonoplast membranes (Wang et al., 2012). Thus,
insights from quantitative systemsmodeling of guard
cell transport clearly will be vital in guiding efforts
toward rational molecular designs in the future.
Wang et al. (2014a) used OnGuard to survey manip-
ulations of each of the major transporters, one at a
time, in the guard cell. Their results confirm experi-
mental observations from known mutants, including
gork (Hosy et al., 2003), slac1 (Negi et al., 2008; Wang
et al., 2012), ost2 (Merlot et al., 2007), clca (De Angeli
et al., 2006), and tpk1 (Gobert et al., 2007). They also
show that the transport interactions inherent to guard
cells preempt most, if not all, intuitive approaches to
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altering stomatal behavior. In short, the problem of
manipulating stomata throws up a surprising degree
of complexity that will need more subtle methods if
practical solutions are to be found to reverse engineer
stomata. Of course, these models are still in their in-
fancy and will need to be extended to the scales of the
leaf and the whole plant canopy (Pieruschka et al.,
2010) in order to bridge the modeling gap between
microscopic functionalities and macroscopic outputs.
Once this micro-macro link is made, we expect sub-
stantial and rapid progress to be realized through
quantitative modeling of guard cell membrane
transport.
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