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ABSTRACT We introduce the concept of topology weighting, a method for quantifying relationships between taxa that are not
necessarily monophyletic, and visualizing how these relationships change across the genome. A given set of taxa can be related in a
limited number of ways, but if each taxon is represented by multiple sequences, the number of possible topologies becomes very large.
Topology weighting reduces this complexity by quantifying the contribution of each taxon topology to the full tree. We describe our
method for topology weighting by iterative sampling of subtrees (Twisst), and test it on both simulated and real genomic data. Overall,
we show that this is an informative and versatile approach, suitable for exploring relationships in almost any genomic dataset. Scripts to
implement the method described are available at http://github.com/simonhmartin/twisst.
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THE relationship (or genealogy) among recombiningDNA
sequences from closely related taxa often varies across

the genome, due to both variation in lineage sorting and
introgression (Maddison 1997). Numerous methods focus
on inferring, from this genealogical variation, the underly-
ing population branching pattern (the species tree) (e.g.,
Heled and Drummond 2010) or demographic history (e.g.,
Lohse et al. 2012). It is now also possible to characterize the
complete genomic landscape of relatedness using whole ge-
nome sequences. For example, Hobolth et al. (2007) and
Dutheil et al. (2009) developed an approach that uses whole
genome sequences to infer not only the population history,
but also how and where in the genome the genealogy
changes. More recent studies have attempted to character-
ize patterns of relatedness along larger numbers of whole

genomes, either by simply inferring phylogenetic trees for
predefined windows (Martin et al. 2013; Fontaine et al.
2015), or by attempting to infer both the trees and the likely
breakpoints that separate them (Gante et al. 2016). An
emerging challenge with increasing numbers of sequences,
is that both the inference and interpretation of genealogies
becomes difficult, due to the rapid escalation of topologi-
cal complexity. For example, for five haploid sequences,
there are 15 possible unrooted, bifurcating tree topologies,
whereas for 10 sequences there are .2 million. Here we
address this challenge of characterizing and summarizing
the genomic landscape of relatedness in large datasets with
multiple genomes from multiple taxa.

One way to deal with the problem of increasing tree
complexity is to focus specifically on the relationships among
broader predefined taxa (hereafter taxon topologies), and
not among all of the sequences. This is straightforward if
each taxon is completely resolved into amonophyletic clade,
so that the branching patterns within each taxon can simply
be ignored, but it becomes challengingwhen the taxa are not
reciprocally monophyletic (i.e., when lineages are not com-
pletely sorted). This is often the case for closely related taxa,
in which lineages from the same population coalesce (share
a most recent common ancestor) in the ancestral popula-
tion, and may therefore be more closely related to lineages
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from other taxa than from their own (Figure 1A). We note
that tree inference using large genomic windows, entire
chromosomes, or whole genomes often yields completely
sorted monophyletic taxa, but this may be artificial as such
methods are usually forced to infer a single best-supported
tree, even though the regionmay represent multiple distinct
incompletely sorted ancestries. Population genetic statistics
based on allele frequencies, such as FST, have the advantage
of quantifying relatedness rather than simply qualitatively
describing the topology. However, by ignoring topology
entirely, they become difficult to interpret when the number
of taxa is more than two. Therefore, there is a need for de-
scriptive methods that incorporate both the qualitative tree-
like structure of relationships and the quantitative variation
in taxon relationships across the genome. Examples of such
methods include the so-called ABBA-BABA test (Green et al.
2010; Durand et al. 2011; Martin et al. 2015) and f statistics
(Reich et al. 2009, 2012; Patterson et al. 2012), both of
which evaluate the support for alternative taxon topologies
using allele frequencies at single nucleotide polymorphisms
(SNPs). However, because individual SNPs are only infor-
mative for defining two separate groupings, these methods
do not scale to more than four taxa.

Here we introduce the concept of topology weighting,
which offers a simple and general solution to the problem
of quantifying relationships among taxa that are not neces-
sarily monophyletic. Given a tree of relationships for a set
of taxa, each representedbyanarbitrarynumberof sequences,
topology weighting quantifies the contribution of each indi-
vidual taxon topology to the full tree. We describe our ap-
proach to compute topology weightings, which we call Twisst
(topology weighting by iterative sampling of subtrees), and
explore the utility of this approach using simulated data as
well as two different genomic datasets from butterflies and
fungi. Overall, we show that this concept provides a useful
means to explore relationships using genomic data, both to
test hypotheses and generate new ones.

Materials and Methods

Topology weighting by iterative sampling of subtrees

A given set of taxa can be related in a limited number of ways.
For example, for four taxa labeledA,B,C, andD, thereare three
possible unrooted bifurcating topologies: [(A,B),C,D], [(A,C),
B,D], and [(A,D),B,C] (Figure 1A). Given a treewith any num-
ber of tips (or leaves), each assigned to a particular taxon, we
define the weighting of a particular taxon topology, t, as the
fraction of all unique subtrees (in which each taxon is repre-
sented by a single tip) thatmatch the particular taxon topology

wt ¼ K
N
; (1)

where N is the number of possible unique sample sets in
which each taxon is represented by a single sample. This
corresponds to the product of the number of samples in each

taxon. K is the number of these unique sample sets for which
the corresponding subtree topology matches t. Thus,

N ¼
Yn
j¼1

sj;K ¼
XN
i¼1

½xi ¼ t�; (2)

in which n is the number of defined taxa (groups), sj is the
number of samples in taxon j, and xi is the subtree topology
corresponding to subset i.

Topology weighting therefore reduces the complexity of
the full tree to a number of values, each giving the propor-
tionate contribution of a particular taxon topology (Figure
1A). This method has conceptual similarities to the quartet
sampling approach for comparing topologies (Estabrook et al.
1985), except that here we do not consider all subtrees, but
only those in which each tip represents a different taxon.
Moreover, topology weighting can be applied to any number
of taxa. The taxa can be defined arbitrarily, for example by
phenotype or geography, as with the operational taxonomic
units used in biogeography. Because the number of taxon
topologies is limited, the weightings can be normalized to
sum to 1, making them easily comparable between different
parts of the genome.

We computed topology weightings using our Twisst ap-
proach, implemented by Python scripts (available for down-
load at https://github.com/simonhmartin/twisst). The
Twisst algorithm first computes all possible unrooted, bifur-
cating taxon topologies, and then determines the number of
unique subtrees that match each topology by iteratively sam-
pling a single individual from each taxon and “pruning” away
all other branches and nodes. Our implementation makes
use of the Environment for Tree Exploration toolkit version 3
(Huerta-Cepas et al. 2016).

The number of unique sample combinations (and corre-
sponding subtrees) can be very large. However, the iterative
process is sped up considerably by first collapsing monophy-
letic groups of samples from the same taxon and weighting
these nodes proportionately (Supplemental Material, Figure
S1 in File S2). Nevertheless, if the taxa are highly unsorted
and the tree is large, it may not be possible to consider all
possible sample combinations in a reasonable amount of
time. In such cases, approximateweightings can be computed
by randomly sampling a subset of sample combinations
(Figure S2 in File S2). Random sampling for approximate
weighting is performed with replacement, so that the errors
fit a binomial distribution, allowing for the computation of a
confidence interval (Figure S2 in File S2). Our implementa-
tion of Twisst also allows a threshold-based sampling proce-
dure, in which sampling is repeated until a particular level of
confidence is achieved. This allows further speed-ups since
highly sorted trees, in which weightings are biased toward
one or a few topologies, require less sampling for high confi-
dence than unsorted or star-like trees, where most weight-
ings are intermediate. For all analyses in this study, dataset
sizes allowed for computation of complete weightings.
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Analysis of simulated chromosomes

In order to test our method on realistic data for which the
complete genealogical history is known, we simulated the evo-
lution of recombining chromosomes using the coalescent simu-
latormsms (Ewing and Hermisson 2010). Simulations involved
four taxa, each represented by 10 haploid sequences (40 in
total) that split in the order {[(A,B),C],D} (Figure 2A), or five
taxa, each represented by six sequences, that split in the order
{[(A,B),(C,D)],E} (Figure S7A in File S2), with split times of
0.5, 1, and 1.5 (in units of 4N generations). Population size was
constant throughout. In all scenarios, unidirectional migration
from C to B was simulated. The simulation was performed for a
1Mb chromosome, with a population recombination rate (4Nr)
of 0.01 or 0.001. Genealogies for each unique ancestry block
(separated by recombinations) were recorded. Thesewere used
to calculate the true weightings using Twisst.

Three distinct evolutionary scenarios were simulated
(Figure 2A and Figure S7A in File S2).msms command options
are provided in File S1. The first was a “Neutral” scenario,
with no selection and a lowmigration rate from B to C of 0.1
(in units of 4Nm, where m is the fraction of B made up of
migrants from C each generation). The second was an “Adap-
tive Introgression” scenario, which is the same as above ex-
cept that a beneficial allele at a locus in the center of the 1Mb
chromosome is allowed to move from population C into B at
time 0.1. This was achieved by initiating selection at this time
point on a dominant allele that was fixed in population C and
absent from the other populations. A selection coefficient of
0.005 was used for both the homozygote and heterozygote,
with a diploid population size of 100,000, giving a selection
strength (2Ns) of 1000 for both genotypes. The third was a
“Barrier Locus” scenario, where the rate of migration from

Figure 1 Topology weighting.
(A) An example genealogy for
four taxa (A, B, C and D), plotted
as an unrooted tree on the top
right. Taxa B and C are not mono-
phyletic, due to both deep coales-
cences causing incomplete lineage
sorting and gene flow. The three
possible taxon topologies are
shown, along with a single example
subtree that matches each topol-
ogy. The percentage of all subtrees
matching each taxon topology (i.e.,
the weightings) are shown by verti-
cal bars. (B) Topology weightings
plotted across a 50 kb region of a
simulated recombining chromo-
some. Weightings for the three to-
pologies are stacked (they always
sum to 1, as they are proportions).
Changes in the weightings along
the chromosome indicate regions
of distinct genealogical history sep-
arated by recombinations. Below,
the same data are plotted with
loess smoothing (span = 2.5 kb).
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C to B was five (in units of 4Nm, as above), and a dominant
allele at the central locus that is fixed in C is selected against
in population B. The same selection coefficient and popula-
tion size as above were used.

We simulated sequences from the simulated genealogies
using seq-gen (Rambaut and Grass 1997). Command op-
tions are provided in File S1. The branch scaling factor
for mutation was 0.01. Since branches in the simulated
genealogies are in units of 4N generations, taking N to
be 100,000 gives m (the per generation mutation rate) of
2.5 3 1028.

Inferring trees in sliding windows

We tested different methods for inferring trees in windows
across the chromosome. The simplest approach used non-
overlapping windows of a fixed number of SNPs. A range of
window sizes were tested. Trees were then inferred for each

window using PhyML version 3.0 (Guindon et al. 2010),
implementing either the BIONJ neighbor-joining algorithm
(Gascuel 1997) or maximum likelihood optimization of the
topology and branch lengths. To investigate the consistency
of the tree inference and compute confidence thresholds for
the weightings, we performed bootstrapping by randomly
resampling the SNPs in each window with replacement and
repeating the tree inference. We also tested an approach to
infer likely window breakpoints from the data. Taking the
topology weightings computed from 10 SNP windows, we
used the R package GenWin (Beissinger et al. 2015) to fit a
b-spline to the data and find likely inflection points, which we
then used as window breakpoints and inferred a new set of
trees for these. In addition, we tested the program Saguaro,
which infers both the breakpoints and the distance matrix
describing each region. Distance matrices were converted
to trees using BIONJ, as above.

Figure 2 Tests on simulated chromosomes. (A) In all three demographic scenarios, populations split in the order {[(A,B),C],D}, at the split times indicated
(in units of 4N generations), with migration from C to B (indicated by arrows). In the Neutral scenario, there is no selection and moderate migration. The
Adaptive Introgression scenario is similar, except a beneficial allele at a locus in the center of the chromosome is allowed to move from population C into
B at time 0.1. In the Barrier Locus scenario, the rate of migration is high, but an allele at the central locus that is fixed in C is selected against in
population B. (B) Mean weightings for the three possible taxon topologies across the 1 Mb simulated chromosome. Note that we illustrate the
topologies for the four taxa as rooted, with D as the outgroup for simplicity, but the rooting is not considered when computing the weightings. (C)
Weightings for all three topologies plotted (stacked) across the chromosome, with loess smoothing (span = 20 kb). (D) Weightings for topology
{[(A,B),C],D} inferred from simulated sequence data using nonoverlapping 50 SNP windows and neighbor joining. Solid blue lines indicate the true
values, and dashed black lines indicate the inferred values. Gray shading indicates the lower (5%) and upper (95%) quantiles based on 100 bootstrap
replicates. Values are smoothed as above.
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Power analyses

An important aspect of our approach is its dependence upon
reliable trees, which may be inferred from relatively short
sequence windows. To investigate the power available to infer
topologyweightings from short sequences, we simulated data-
sets under a range of sampling strategies and demographic
scenarios, and then compared the true weightings to those
computed using trees inferred from the simulated sequences.

Eight samplingstrategieswerecompared, including four,five,
six, or 10 sequences from either four or five populations (Figure
S3 in File S2). For each sampling strategy, two different demo-
graphic scenarios were simulated. In the four-population sce-
narios, the populations split in the order [(1,2),(3,4)], with the
basal split time (t1) at either 0.5 or 1 3 4N generations in the
past, and the splits between populations one and two and three
and four both occurring at 0.13 4N generations in the past (t2)
(Figure S3 in File S2). In the five-population cases, the popula-
tions split in the order {[(1,2),(3,4)],5}. As above, t1 occurs at
either 0.5 or 1 3 4N generations in the past. The next split,
between populations one and two and populations three and
four, occurs at 0.2 3 4N generations in the past (t1b), and the
final two splits between populations one and two, and three and
four both occur at t2 (Figure S3 in File S2).

In each run, we used msms (Ewing and Hermisson 2010)
to simulate 500 genealogies for the given sampling design
and demographic scenario. For each genealogy, we computed
the topology weightings using Twisst, and then generated a
simulated set of sequences using seq-gen (Rambaut and Grass
1997). The sequences were then truncated at different
lengths to compare tree inference using 10, 25, 50, 100,
200, or 400 SNPs. Trees were inferred in Phyml (Guindon
et al. 2010), using either BIONJ or with maximum likelihood
optimization of the topology and branch lengths. Weightings
were then computed from the inferred tree, and compared to
the set of true weightings using a scaled Euclidean distance of

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðwi2x ̂iÞ2
m2

i

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn2 1Þp ; (3)

where n is the number of weighting values (i.e., the number
of taxon topologies),wi is the true weighting for topology i, xî
is the inferred weighting for topology i. mi is the absolute
value of the maximum possible distance from wi. This value
therefore gives a distance between the true and inferred sets
of weightings on a scale of 0–1, with 0 indicating identical
values (i.e., perfect inference) and 1 indicating a maximum
possible discrepancy between the true and inferred values.

Not all SNPs are phylogenetically informative, and even
those that are (those that are not singletons), are not neces-
sarily informative about the relationships among the broader
taxa, which is of primary interest for topology weighting. We
therefore also tested the power of inferenceusing a subclass of
taxon informative sites (TISs), which we define as having at
least two alleles present in at least two taxa. As above,

simulated sequences were truncated to contain the number
of TISs.

Analysis of real genomic data

We tested Twisst on two published genomic datasets from Neu-
rospora spp. (ascomycete fungi) and Heliconius spp. (butter-
flies), selected to represent different sampling strategies (four
and five taxa, respectively), as well as different levels of evolu-
tionary complexity. The Neurospora dataset (Corcoran et al.
2016) consisted of 22 aligned haploid genome sequences from
Neurospora tetrasperma samples (10 of mating type A and 12 of
mating type a), along with single genomes representing two
related species: Neurospora crassa and Neurospora hispaniola.
Whole genome alignments were obtained from http://data-
dryad.org/resource/doi:10.5061/dryad.162mh. We used Line-
age-10 (UK) samples of N. tetrasperma, as these had been
shown to carry a strong signal of introgression from N. hispa-
niola (Corcoran et al. 2016). Trees were constructed for sliding
windows of 50 SNPs using BIONJ as described above, with the
requirement that each sample had to be genotyped at $40 of
the 50 SNPs per window. Topology weightings were computed
usingTwisst,with fourdefined taxa:N. tetraspermamat a (12 se-
quences), N. tetrasperma mat A (10 sequences), N. crassa (one
sequence), and N. hispaniola (one sequence).

The Heliconius dataset consisted of 18 resequenced genomes
(or 36 haploid genomes) from Martin et al. (2013). These sam-
ples comprised five populations: two geographically isolated
races of Heliconius melpomene, from Panama (H. m. rosina,
n = 4) and Peru (H. m. amaryllis, n = 4), and their respective
sympatric relatives Heliconius cydno chioneus from Panama
(n = 4) and Heliconius timareta thelxinoe from Peru (n = 4),
with which they are known to hybridize; along with two addi-
tional samples of the more distant silvanifrom clade to serve as
outgroups. We limited our analysis to two chromosomes: 18,
which carries the gene optix, known to be associated with red
wing pattern variation; and 21, the Z sex chromosome, which
has been shown to experience reduced gene flow between these
species, probably due to genetic incompatibilities (Martin et al.
2013). Fastq reads were downloaded from the European Nucle-
otide Archive, study accession no. ERP002440. Reads were
mapped to theH.melpomene reference genomeversion2 (Davey
et al. 2016) using BWA-mem (Li and Durbin 2009; Li 2013),
with default parameters. Genotyping was performed using the
Genome Analysis Toolkit (DePristo et al. 2011) version 3 Haplo-
typeCaller and GenotypeGVCFs, with default parameters except
that heterozygosity was set to 0.02. Phasing and imputation was
performed using Beagle version 4 (Browning and Browning
2007). Trees were inferred as described above, and weightings
were computed using Twisst, with the five taxa described above.

Data availability

All genotype files, window trees, and weightings for both
simulated and real datasets are available from DataDryad at
http://datadryad.org/resource/10.5061/dryad.4jm83. Scripts
used to implement the Twisst method are available at http://
github.com/simonhmartin/twisst.
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Results

Analysis of simulated chromosomes

Topology weighting provides an informative summary of
the genealogical data and highlights differences between
the simulated scenarios (Figure 2). As described above,
there are three possible unrooted topologies for the four
taxa. In the Neutral scenario, the most prevalent topology,
{[(A,B),C],D}, which reflects the population split times, has
an average weighting of 71% across the chromosome. The
other two topologies are both fairly rare, but {[(B,C),A],D}
is more common on average (17%) than {[(A,C),B],D}
(12%). This is because the former can result from both gene
flow and incomplete lineage sorting (ILS), whereas the lat-
ter can only result from ILS, as there was no simulated mi-
gration between A and C or between B and D. In the
Adaptive Introgression scenario, the weightings are very
similar to the Neutral scenario on average, but in the center
of the chromosome there is a strong excess of the topology
{[(B,C),A],D}, created by the spread of a beneficial allele
from population C into B. Finally, in the Barrier Locus sce-
nario, high migration from C to B causes a swamping by the
topology {[(B,C),A],D}, which has an average weighting of
65%. However, there is a broad peak at the center of the
chromosome where the population branching topology
{[(A,B),C],D} had not been eroded, due to selection limit-
ing introgression.

In the corresponding simulations with five taxa, there
are 15 possible taxon topologies (Figure S7 in File S2).
There is greater topological variation overall, as there
are more ways that incomplete sorting can occur. None-
theless, topology weights clearly detect the differences
among the scenarios, highlighting the most abundant
topologies as well as the location of the selected locus
(Figure S7 in File S2).

Inferring weightings from simulated sequence data

Above, we computed the weightings directly from the simu-
lated genealogies, but we are also able to show that topology
weightings canbe reliably estimatedwhen thegenealogies are
inferred from simulated sequence data (Figure 2D and Figure
S7D in File S2). Because neither the genealogies nor the re-
combination breakpoints at which genealogies switch are
known, we tested several approaches for inferring genealo-
gies for narrow intervals across the chromosome. First, we
performed extensive power analyses, covering a range of de-
mographic scenarios and sampling designs, to explore the
relationship between the number of SNPs used for tree in-
ference and the accuracy of topology weighting. Across the
range of scenarios investigated, we find a consistent lower
bound of 50 SNPs to achieve .90% accuracy (Figure S4,
Figure S5, and Figure S6 in File S2). Focusing specifically
on TISs (see above) makes no discernible difference, proba-
bly because most SNPs in our simulations are taxon informa-
tive. These tests also indicate that neighbor-joining trees
provide more accurate weightings than maximum likelihood

trees, in addition to much faster computation (Figure S4,
Figure S5, and Figure S6 in File S2).

We then analyzed trees inferred for nonoverlapping win-
dowsacrossour simulated recombining chromosomes.Afixed
window size of 50 SNPs gives results that most closely ap-
proximate the true weightings (Figure 2D and Figure S7D in
File S2). In agreement with our power analyses, with ,50
SNPs the estimates are less accurate and tend to underesti-
mate theweighting of themost prevalent topology (Figure S8
and Figure S9 in File S2). Weightings tending toward inter-
mediate values are expected as the underlying trees become
less well resolved. Interestingly, windows of$100 SNPs also
result in reduced accuracy, but with a tendency to overesti-
mate support for the most prevalent topology and underesti-
mate support for others (Figure S8 and Figure S9 in File S2).
This can be explained by the fact that large windows are
forced to average over regions of distinct ancestry, therefore
favoring the most widespread signal. To confirm this hypoth-
esis, we repeated our neutral simulation using a 10-fold
lower population recombination rate. In this new dataset,
100 SNP windows give the most accurate weightings, and
even 200 SNP windows have high accuracy, while 50 SNP
windows perform only marginally less well (Figure S10 and
Figure S11 in File S2).

We tested whether bootstrapping over the SNPs in each
window can be used to validate the accuracy of the observed
weightings. Bootstrap weights tend to be similar but mar-
ginallymore conservative, underestimating theweight of the
most prevalent topology (Figure 2D). This is because the
bootstrap trees tend to be slightly less well resolved, leading
to more intermediate weightings. Bootstrapping is therefore
a useful means to test the strength of support for an ob-
served peak in the weighting of a particular topology. How-
ever, being inherently conservative, bootstrapping would
not be able to determine whether an observed intermediate
weighting was accurate or simply the result of a poorly re-
solved tree.

Because real recombination breakpoints are not evenly
spaced, we also tested two approaches in which the window
boundaries are inferred from the data itself. In our first
approach, we used the R package GenWin (Beissinger et al.
2015) to fit a smooth spline to the weightings from 10 SNP
windows and identify likely window boundaries as inflection
points, and then inferred trees for the newly defined window
regions. The resulting topology weightings match the true
weightings fairly well, but not as well as for the fixed
50 SNP windows (Figure S12 and Figure S13 in File S2).
As above, this appears to be due to poor tree inference in
the smallest windows. The second approach used themethod
Saguaro (Zamani et al. 2013), which combines a hidden Mar-
kov model and a self-organizing map to infer both the trees
and window boundaries. This approach poorly recapitulates
the true weightings, greatly overestimating support for the
most prevalent topology (Figure S12 and Figure S13 in File
S2). We therefore used fixed windows of 50 SNPs for all
further analyses.
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Branch lengths differ among topology types

Topologyweighting is primarily a descriptivemethod, but the
weightings do carry information that can aid inferences about
population history. The simulated Barrier Locus scenario
(Figure 2) provides an interesting test case. Due to the over-
whelming signal of introgression, it would be difficult to
know which topology corresponds to the true population
branching order (i.e., the species tree) if this was not known.
The topology {[(B,C),A],D} is prevalent across much of the
chromosome, but {[(A,B),C],D} is prevalent around the chro-
mosome center. It has been proposed that the original pop-
ulation branching order can be identified by considering
branch lengths (Fontaine et al. 2015; Gante et al. 2016). Taxa
that cluster together due to recent introgression tend to be
separated by short branches, whereas those that cluster
according to the population branching order should have
deeper splits. Indeed, in trees inferred from 50 SNPwindows,
pairwise branch distances between the taxa suggest that sub-
trees matching {[(B,C),A],D} tend to result from recent in-
trogression between B and C (Figure S14 in File S2), thus
implying that {[(A,B),C],D} is the more likely population
branching order.

Analysis of real genomic data

The Neurospora dataset consists of four taxa (three possible
topologies) and is the simpler of the two real datasets ana-
lyzed (Figure 3, A and B). It was selected to test how well
Twisst is able to detect the signal of a previously described
adaptive introgression event from N. hispaniola into N. tetra-
sperma individuals of the A mating type (Corcoran et al.
2016). This introgression covers the entire (�7 Mb) nonre-
combining region of linkage group I (LGI). Indeed, we find a
dramatic shift in the pattern of topology weightings in the
central part of LGI (Figure 3C). The species-tree topology
(topo1), which groups the two N. tetrasperma mating types
as closest relatives, is prevalent across most of the genome
but has very little weighting in the central part of LGI. In-
stead, it is replaced by topo3, which groups mating type A
individuals of N. tetrasperma with N. hispaniola. Elsewhere,
topo3 has limited weighting, nearly identical to that of topo2,
and consistent with a low level of ILS throughout the ge-
nome. However, a region of linkage group IV also shows a
weak shift in support toward topo3, potentially reflecting a
separate introgression signal involving a small number of
sequences.

The Heliconius dataset represents a more complex, five-
taxon test case. The five taxa include an outgroup and two
pairs of sympatric, nonsister taxa, betweenwhich gene flow is
known to occur (Figure 4A). Of the 15 possible topologies
(Figure 4B), the two most common across these chromo-
somes are topo3 and topo6. topo3 is consistent with the ac-
cepted species branching order, in which the allopatric H.
c. chioneus and H. t. thelxinoe are sister taxa; whereas topo6
groups populations by geography, consistent with interspe-
cific gene flow in both Panama and Peru. The former is by far

the most prevalent throughout the Z chromosome (Figure
4C). By contrast, the species topology has variable weighting
across chromosome 18, and is outweighed in places by topol-
ogies consistent with gene flow (topo4, topo5, topo6, topo11,
and topo14). In particular, there is a strong peak in the region
of optix for topo11, which groups the taxa by wing pattern,
and is consistent with the previously described adaptive in-
trogression of the red-band allele between H. m. amaryllis
and H. t. thelxinoe in Peru (Pardo-Diaz et al. 2012; The
Heliconius Genome Consortium 2012). Zooming in on this
peak shows a clear block of�150 kb over which the introgres-
sion topology is weighted highly (Figure S15 in File S2). This
block includes the regulatory region downstream of optix that
is known to controls wing pattern variation in these species
(Baxter et al. 2010; Wallbank et al. 2016). Another four topol-
ogies that partially match the species branching order (topo1,
topo2, topo10, and topo15) have moderate weightings
throughout, whereas topologies consistent with neither the
species tree nor gene flow (topo7, topo8, topo9, topo12, and
topo13) have low weightings, especially across the Z chromo-
some, implying less ILS than on chromosome 18.

Discussion

Most statistics used in population genetics describe as-
pects of the underlying genealogy. For example, FST can be
expressed as the relative rate of coalescence within sub-
populations compared to the total population (Slatkin and
Voelm 1991). Similarly, the D statistic of the ABBA-BABA test
compares the relative rate of coalescence between two pairs
of nonsister populations (Green et al. 2010; Durand et al. 2011).
Topology weighting can be seen as a generalization of this
principle, as it determines the relative frequency of all possi-
ble patterns of coalescence among samples from a set of de-
fined taxa. Unlike the ABBA-BABA test, which is based on
binary trees (samples either share the same allele or not)
and therefore only four taxa, topology weighting uses a full
genealogy and can, in principle, be applied to any number of
taxa, each represented by any number of sequences. In prac-
tice, however, beyond six taxa, the number of possible taxon
topologies becomes very large, making topology weighting
less practical. Nevertheless, even when the number of taxon
topologies is very large, there may be value in comparing the
weightings of particular topologies that support specific hy-
potheses (Van Belleghem et al. 2017). Unlike other methods
for comparing tree topologies (e.g., Robinson and Foulds
1981; Estabrook et al. 1985), topology weighting reduces
the problem to quantifying relationships among but not
within defined taxa. There is also no real limitation on the
number of samples included per taxon. Although computa-
tion of exact weightings may become infeasible for large
trees, it remains possible to compute approximate weightings
with small margins of error fairly rapidly. Our computational
approach, Twisst, is based on a simple counting procedure but
we are confident that more efficient analytical solutions, or at
least approximations, will be found.
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An important consideration when applying this method is
its dependence on the trees used. In most cases, the true
genealogy for each distinct ancestry block is not known and
must be inferred from the sequences. Accurate inference
requires multiple informative SNPs. Our tests on simulated
data highlight a central difficulty when analyzing recombin-
ing chromosomes: a trade-off between signal and resolution.
Using larger numbers of SNPs increases our ability to infer the
correct tree, but may average over genomic regions with
different histories. This leads to a systematic overestimation
of theweightings formore abundant topologies, whose signal
tends to swampout that of others.Using fewSNPsperwindow
allows for better resolution but can lead to inaccuracies in tree
reconstruction from insufficient signal (i.e., phylogenetic er-
ror), producing star-like trees and intermediate weightings
for all topologies. Fortunately, this means that errors in tree
inference are unlikely to result in spurious peaks in the
weighting of a single topology, but instead may lead to un-
derestimation of the height of a particular peak. A peak can
be validated using bootstrapping, but an even better test is to
demonstrate that it persists with decreasing window sizes.
Our simulations, based on realistic recombination and muta-
tion rates, indicate that a window size of 50 SNPs provides a
good compromise between signal and resolution across a
range of demographic scenarios, although larger windows
may be acceptable if the population recombination rate is

known to be low.While in some caseswith high recombination
rates there may be too few mutations per recombination to
accurately infer variation in genealogies across the genome,
we expect that many cases will fall within a feasible range.
Importantly, not all recombinations are relevant for topology
weighting: only recombination events between lineages from
distinct taxa (i.e., effective recombinations or intertaxon re-
combinations) can alter taxon relationships, and hence alter
the weightings. The ability to infer the patterns of topology
weighting across the genome therefore depends on the rela-
tionship between the mutation rate and the rate of intertaxon
recombination. Where possible, simulations tailored to the
taxa being studied can be used to guide the choice of window
size. In the future, improvedmethods to infer breakpoints from
the data may further resolve this difficulty.

Another challenge is that diploid resequencing data should
ideally be phased so that each tip in the tree represents a
distinct haplotype. Phasing can be performed using probabi-
listic approaches informed by patterns of linkage disequilib-
rium (Browning and Browning 2007; Delaneau et al. 2013).
Although such methods may be error-prone across large ge-
nomic distances, they have fairly high accuracy at short
ranges (Bukowicki et al. 2016), making them suited to the
narrow windows used for topology weighting. Moreover, the
genomic regions involving intertaxon recombinations (i.e.,
those relevant for topology weighting) are more likely to be

Figure 3 Neurospora analysis. (A) The putative species tree. Note that mating type a and A individuals of N. tetrasperma are shown as separate
branches, while in reality, apart from the nonrecombining region of LGI, these samples represent a single recombining population. The putative
introgression from N. hispaniola into N. tetrasperma mat A individuals (Corcoran et al. 2016) is indicated by an arrow. (B) The three possible taxon
topologies for these four taxa. (C) Topology weightings for 50 SNP windows plotted across all seven linkage groups, with loess smoothing (span =
500 kb). The top and bottom plots show the same data, plotted as stacked or as separate lines, respectively.
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phased correctly because they tend to involve more divergent
sequences.

Topologyweighting is principally adescriptivemethodand
can be applied with no prior knowledge of the studied sam-
ples, apart from some basis onwhich to define distinct groups,
such as geography or phenotype. By capturing the tree-like
nature of sequence evolution, it provides information that is
not provided by descriptive statistics like FST (Figure S16, or
clustering methods such as Structure (Pritchard et al. 2000).
In addition to describing the taxon branching order, tree-
based methods allow incorporation of additional parameters
like a nucleotide substitution model and different rates of
evolution in different parts of the tree. Unlike conventional
phylogenomic methods, topology weighting captures infor-
mation about fine-scale and quantitative variation across the
genome. This power and resolution is highlighted in the
Heliconius example studied here, where topologies support-
ing admixture are common across chromosome 18, but there
is one narrow peak consistent with the adaptive introgression
of a wing patterning allele near the gene optix, as described
previously (Pardo-Diaz et al. 2012; The Heliconius Genome

Consortium 2012). We note that topology weighting simply
describes the signal in the data, and does not explicitly test for
introgression over other causes of discordant phylogenetic sig-
nal. For example, the elevated frequency of topologies consistent
with introgression across Heliconius chromosome 18 compared
to the Z chromosome is only partially due to an elevated rate of
gene flow on autosomes (Martin et al. 2013), but also reflects
increased ILS due to their larger effective population size relative
to the sex chromosome. Weightings may be more difficult to
interpret in cases with a less well understood evolutionary his-
tory. Nevertheless, it may be possible for example to differentiate
between topologies representing the species tree and those
reflecting recent introgression by comparing their branch lengths
(which can be output by Twisst) (Fontaine et al. 2015; Gante
et al. 2016). Finally, we have found that topology weighting
provides a means to identify candidate loci underlying trait var-
iation, based on clustering of taxa by phenotype [see also Van
Belleghem et al. (2017), for a more extensive demonstration of
this power]. In summary, topology weighting is a simple but
versatile exploratory tool that is applicable to a diverse range
of questions and datasets.

Figure 4 Heliconius analysis. (A) The putative species tree. Shaded arrows indicate ongoing gene flow between sympatric, nonsister taxa in Panama and
Peru, respectively (Martin et al. 2013). The solid red arrow indicates the putative adaptive introgression of the red wing-patterning allele near the gene
optix (Pardo-Diaz et al. 2012; The Heliconius Genome Consortium 2012). (B) The 15 possible taxon topologies for these five taxa. (C) Topology
weightings for 50 SNP windows plotted across chromosomes 18 and 21 (Z), with loess smoothing (span = 500 kb). The top and bottom plots show
the same data, plotted as stacked or as separate lines, respectively. The location of optix on chromosome 18 is indicated by a dashed vertical line.
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