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Experience Report: Well-typed music does not sound wrong
Anonymous Author(s)

Abstract
Music description and generation are popular use cases for Haskell,

ranging from live coding libraries to automatic harmonisation sys-

tems. Some approaches use probabilistic methods, others build on

the theory of Western music composition, but there has been little

work done on checking the correctness of musical pieces in terms

of voice leading, harmony, and structure. Haskell’s recent additions

to the type-system now enable us to perform such analysis and

veri�cation statically.

We present our experience implementing a type-level model of

classical music and an accompanying EDSL which enforce the rules

of classical music at compile-time, turning composition mistakes

into compiler errors. Along the way, we discuss the strengths and

limitations of doing this in Haskell and demonstrate that the type

system of the language is fully capable of expressing non-trivial

and practical logic speci�c to a particular domain.

CCSConcepts •Applied computing→ Sound andmusic com-
puting; • Software and its engineering→ Functional languages;

Keywords Type-level computation; Haskell; music theory

ACM Reference format:
Anonymous Author(s). 2017. Experience Report: Well-typed music does not

sound wrong. In Proceedings of Haskell Symposium, Oxford, UK, September
2017 (HASKELL’17), 6 pages.

DOI: 10.475/123_4

1 Introduction
The connection between music and mathematics has been studied

by scholars as early as Pythagoras. These investigations were the

beginnings of the �eld of Western music theory – a formal descrip-

tion of what sounds good to the ear and what does not. For example,

consider the following composition
1
:

For readers who do not read music: the exact meaning of this

depiction is irrelevant, but note that compositions are read from

left to right and that, in this example, there are two voices – the

two series of notes which occur at the same points horizontally.

To ensure that compositions sound good, composers follow strict

rules which have been developed over centuries of music tradition.

The piece above does not abide by these rules and will sound odd

when played. To avoid this, composers have to check by hand,

1
The example is based on h�p://decipheringmusictheory.com/?page_id=46.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).
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through close inspection of the notes, which rules have been vio-

lated. This process is laborious, error-prone and requires a thorough

understanding of music theory.

We present Mezzo, an embedded domain-speci�c language for

describing music in Haskell which statically enforces the rules of

classical music theory. Compositions which break the rules are not

valid programs and result in type errors. For example, the composi-

tion we gave can be described in the Mezzo EDSL as follows:

v1 = d qn :|: g qn :|: fs qn :|: g en
:|: a en :|: bf qn :|: a qn :|: g hn

v2 = d qn :|: ef qn :|: d qn :|: bf_ en
:|: a_ en :|: b_ qn :|: a_ qn :|: g_ hn

comp = defScore (v1 :-: v2)

The :|: operator is used for sequential composition of notes and

:-: is used to combine the two voices, v1 and v2, in parallel. The

defScore function applies a default set of rules. If we attempt to

compile this, GHC gives us the following two type errors:

error:
Can't have major sevenths in chords: Bb - B_.
Parallel octaves are forbidden: A - A_, then G - G_.

As expected, the program does not compile since comp is musically

incorrect. The task of �nding the mistakes which would have taken

a composer some time to complete was accomplished by Mezzo in

a fraction of that time. The type errors also tell us exactly what is

wrong and where the errors lie, although we have omitted line and

column numbers from the example here.

The �rst error is caused by a violation of a harmonic rule: major

seventh chords, which sound very dissonant, are generally forbid-

den. The second error is more complex and relates to counterpoint –

a polyphonic (multi-voice) compositional technique. Its most impor-

tant consideration is that the melodic lines have to be independent,

but give a coherent whole when played together. Composers have to

follow strict rules of voice-leading and harmonic motion to ensure

this [6]. Whenever two voices sing a perfect interval apart (unison,

�fth or octave), they become hard to distinguish and e�ectively

fuse together into one voice. Simply put, series of perfect intervals

are not interesting enough to create complex, dynamic music and

are therefore forbidden.

To correct the problems, we change the last three notes of the

second voice to avoid the major seventh and the parallel octaves:

v2 = d qn :|: ef qn :|: d qn :|: bf_ en
:|: a_ en :|: g_ qn :|: fs_ qn :|: g_ hn

The corrected code compiles without errors and comp is seen as a

valid composition that can be used in larger pieces or exported to a

MIDI �le.

This experience report describes the implementation of Mezzo

and also addresses the challenges we faced by using Haskell for

type-level computation. Our library provides both a non-trivial and

practical use case for advanced type-level features in Haskell and

functional programming in general. We also provide evidence that

Haskell is more than capable of handling relatively sophisticated

http://decipheringmusictheory.com/?page_id=46
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type-level computation without being a fully dependently-typed

language yet.

2 Music model
In this section, we give a top-down description of the music model

implemented in Mezzo and present the majority of the type-level

computation techniques used by the library.

Enforcing the musical rules at the type-level buys us many advan-

tages over a more standard implementation at the term-level. For

example, we get better integration with existing development tools

which can highlight the precise locations in source �les at which

type errors occur. Users of our library can therefore see where the

rules are violated, and we found this very useful in practice. We

also bene�t from the usual advantages of static typing such as the

ability to write functional programs in which only compositions

that are guaranteed to sound good may be constructed, or func-

tions which do not need to handle inputs that cannot possibly be

musically or structurally valid. However, in our experience, type

inference cannot always handle the complex types involved, which

makes such programs di�cult to write. The leaking of internals

in the case of real type errors is also common, but this is a known

drawback of EDSL design in general.

2.1 The Music data type
Mezzo’s music model is responsible for representing musical pieces

both at the term- and type-level, as well as expressing and enforcing

the composition rules.

The main inspiration comes from Haskore, a music description

library developed by Hudak et al. [8]. The novelty of Haskore is

that it treats music as a recursive structure with two associative

operators: sequential (melodic) and parallel (harmonic) composition.

In BNF syntax, a piece of music M can be expressed as:

M ::= Note | Rest | M : | : M | M :−: M

This is translated into Haskell as follows:

data Music = Note Pit Dur | Rest Dur
| Music :|: Music | Music :-: Music

This describes a tree-like structure with the leaves containing

notes (with some pitch and duration) or rests (with some dura-

tion). Though the Music type is fairly simple, it is already capable

of expressing a huge variety of musical compositions – however,

we have no guarantee that Music values will sound good, as there

is nothing to constrain their structure.

To enforce rules on compositions, we need to know the detailed

structure of them at compile-time. This can be achieved by adding

a type argument to the Music type, containing some type-level

representation of the music (Section 2.2). Ideally, we would like

this to depend on the term-level value of Music m, which is a typi-

cal use-case for dependently typed programming. Haskell already

supports this through various language extensions [3]. In this case,

we can use GADTs [11]: this way, each constructor can determine

what m should be instantiated with. More complex computation is

enabled by the TypeFamilies extension, which we use to convert

type-level information about pitches and durations into our music

representation, as well as to combine these representations. Finally,

we encode musical rules as type class constraints on the type vari-

ables: whenever we construct a new term of type Music m, it must

follow the composition rules. Our �nal Music type looks like this:

data Music m where
Note :: NoteConstraints p d

=> Pit p -> Dur d -> Music (FromPitch p d)
Rest :: RestConstraints d

=> Dur d -> Music (FromSilence d)
(:|:) :: MelConstraints m1 m2

=> Music m1 -> Music m2 -> Music (m1 +|+ m2)
(:-:) :: HarmConstraints m1 m2

=> Music m1 -> Music m2 -> Music (m1 +-+ m2)

The separation of structure and constraints makes it easy to extend

or even completely change the musical rules implemented, as well

as to add new top-level musical constructs, such as chords or chord

progressions.

2.2 The pitch matrix
A crucial step in creating a static model of music is �nding a suitable

representation of musical pieces on the type level. It must have a

consistent, but accurate structure that makes rule enforcement as

simple as possible. The model must also not discard any relevant

musical information: for example, it should always be possible to

compose a long melody with a long accompaniment and ensure that

all arising harmonic intervals are valid. While intuitive to compose

with, the Haskore algebra is too unstructured to formally reason

about: for example, it is not clear how one would recursively �nd

two notes which are played at the same time.

We decided on the straightforward approach of keeping the

music in a two-dimensional array of notes. The columns of this

matrix represent durations and the rows are individual voices. The

matrix elements are pairs of pitches and durations, which specify

notes. Importantly, all durations in one column are equal: this

ensures that notes in the same column are played at the same time.

The implementation of the composition rules relies on the fact

that the composed music values have the same “size”: sequential

pieces must have the same number of voices, and parallel pieces

must have the same length. An experienced Haskell programmer

would immediately exclaim “Vectors!” – but note that we are at the

type level. Thanks to data type promotion [13] and TypeInType,

this is not an issue: any data type, even GADTs, can be promoted to

the type level. All we need is to de�ne the usual Vector data type:

data Vector :: Type -> Nat -> Type where
None :: Vector t 0
(:--) :: t -> Vector t (n - 1) -> Vector t n

This vector type is suitable for storing the rows of the matrix (the

individual voices), but in those rows we need to store both pitches

and durations. Moreover, we want the length of a voice to be the

total duration of the notes, so we need to keep the duration on the

type level. We do this by de�ning a new Elem type that holds a value

(a pitch) and the number of repetitions (the duration), expressed as

the proxy Times for Nats:

data Times (n :: Nat) = T

data Elem :: Type -> Nat -> Type where
(:*) :: t -> Times n -> Elem t n

This is used to build up an optimised vector. Note that in this case,

the length of this vector is not the number of elements, but their

total duration, so a whole note and 8 eighths have the same length:

data OptVector :: Type -> Nat -> Type where
End :: OptVector t 0
(:-) :: Elem t d -> OptVector t (n - d)
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-> OptVector t n

We can now declare a type synonym for matrices:

type Matrix t p q = Vector (OptVector t q) p

Thanks to GADT promotion, all these types are available at the kind

level and we can de�ne type families for common list and matrix

operations. In particular, we de�ne horizontal (+|+) and vertical

(+-+) concatenation of matrices, as well as means of converting

musical values to pitch matrices. For example, FromPitch p d
creates a singleton matrix with the pitch p of duration d.

Finally, we need to describe musical values at the type level – this

is a straightforward application of data type promotion. All types

which describe compositions need term-level values: we accomplish

this by creating kind-constrained proxies, such as Pit:

data PitchClass = C | D | E | F | G | A | B
data Accidental = Natural | Sharp | Flat
data Octave = Oct_1 | Oct0 | Oct1 | Oct2 | ...

data PitchType = Pitch PitchClass Accidental Octave
| Silence

data Pit (p :: PitchType) = Pit

We also de�ne specialised types for pitch vectors and matrices:

type Voice l = OptVector PitchType l
type PitchMatrix n l = Matrix PitchType n l

We can now explicitly specify the type variable for Music m. A mi-

nor nuisance here is that kind inference of recursive types can only

use monomorphic recursion, just like type inference. If we want

polymorphic recursion, which we have in the recursive application

of the Music type constructor in :|: and :-:, we need to provide

a complete user-supplied kind signature (CUSK). Additionally, with

-XTypeInType enabled, GHC requires us to quantify all the kind

variables in the type de�nition as shown below. This is explained

in more detail in Section 9.11.5 of the GHC 8 User Guide.

data Music :: forall n l. PitchMatrix n l -> Type where
...

2.3 Intervals
The rules implemented in Mezzo mainly constrain the musical
intervals arising between two composed pieces. To �nd the interval

between two pitches, we declare a type family called MkInterval.

It is used in most of the low-level correctness checks. For example,

the interval between a C and a G in the same octave and with the

same accidental is a perfect �fth, while the interval between a C

and a pc2 sharp in the same octave is the interval between the C

and a pc2 natural expanded by a semitone:

type family MkInterval p1 p2 :: IntervalType where
MkInterval (Pitch C acc o) (Pitch G acc o) =

Interval Perf Fifth
MkInterval (Pitch C Natural o) (Pitch pc2 Sharp o) =

Expand (MkInterval (Pitch C Natural o)
(Pitch pc2 Natural o)) ...

2.4 Musical rules
An example of a musical rule is checking harmonic intervals: clas-

sically, minor seconds (one semitone) and major sevenths (11 semi-

tones) are to be avoided since they sound very dissonant. To ex-

press this limitation, we declare the ValidHarmInterval type class

which determines whether an interval is harmonically valid. GHC’s

custom type error feature (in GHC.TypeLits) lets us specify in-

stances for invalid intervals by making the type error the “precon-

dition”, as shown below. Hence whenever GHC tries to determine

whether a major seventh is a valid harmonic interval, it encounters

a type error. A general, catch-all instance represents valid intervals:

class ValidHarmInterval (i :: IntervalType)
instance TypeError (Text "Minor seconds forbidden.")

=> ValidHarmInterval (Interval Min Second)
instance TypeError (Text "Major sevenths forbidden.")

=> ValidHarmInterval (Interval Maj Seventh)
instance {-# OVERLAPPABLE #-} ValidHarmInterval i

Note that in the general case we need to permit overlapping in-

stances, which is indicated by a compiler pragma.

We now need to apply this rule to the pitches in our pitch matrix.

This is done by a series of simple inference rules, which are easy

to express using class constraints on the instance declarations. For

example, to check that two pitches (a dyad) are separated by a

valid interval, we need to form an interval and establish that it is

harmonically valid:

class ValidHarmDyad (p1 :: PitchType) (p2 :: PitchType)
instance ValidHarmInterval (MkInterval a b)

=> ValidHarmDyad a b

When working with constraints, a useful abstraction is made

possible by the ConstraintKinds extension. Constraints (and func-

tions returning constraints) can be passed around as types, which

opens the door to many �exible options for validation. For example,

we can check if a vector of types satis�es a constraint or a type

satis�es all the constraints in a vector. The following de�nition

allows us to apply a binary constraint to two optimised vectors,

ensuring that all constraints hold pairwise (the durations can be

ignored, as notes in the same column have the same duration):

type family AllPairsSatisfy
(c :: a -> b -> Constraint)
(xs :: OptVector a n) (ys :: OptVector b n)
:: Constraint where

AllPairsSatisfy c End End = Valid
AllPairsSatisfy c (x :* _ :- xs) (y :* _ :- ys)

= ((c x y), AllPairsSatisfy c xs ys)

Now we can de�ne validity for harmonic concatenation of two

voices. ValidHarmDyad, de�ned above, is a two-parameter type

class of kind PitchType -> PitchType -> Constraint – a suit-

able �rst argument to AllPairsSatisfy:

class ValidHarmDyadsInVoices
(v1 :: Voice l) (v2 :: Voice l)

instance AllPairsSatisfy ValidHarmDyad v1 v2
=> ValidHarmDyadsInVoices v1 v2

Finally, we use ValidHarmDyadsInVoices to validate the compo-

sition of pitch matrices. Given two matrices (v :-- vs) and us
(where v is the topmost voice of the �rst matrix), they can be con-

catenated if: (1) vs and us can be concatenated, and (2) v can be

concatenated with all of the voices in us. The second condition is

implemented by mapping ValidHarmDyadsInVectors v (of kind

Voice l -> Constraint) over all the voices in us and check-

ing whether all the constraints are satis�ed. AllSatisfy applies a

unary constraint to all elements of a Vector:

class ValidHarmConcat (ps :: PitchMatrix n1 l)
(qs :: PitchMatrix n2 l)
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instance ( ValidHarmConcat vs us
, AllSatisfy (ValidHarmDyadsInVectors v) us
) => ValidHarmConcat (v :-- vs) us

By translating logical expressions into type class constraints, we

can encode most of the low-level musical rules in the type system.

We found the pitch matrix representation very well suited for this

purpose, as it encapsulates all of the relevant musical information

in a structured way that is easy to reason about.

2.5 Rule sets
Mezzo’s rule sets address the question of �exibility: how can we rec-

oncile formal rule checking with artistic expression? Our solution

is to provide users with three levels of rule strictness (including

one that does not enforce any musical rules), and let them de�ne

their custom rules and correctness checks if they wish. Di�erent

parts of a composition can be checked according to di�erent rules.

Rule sets are implemented using constraint kinds and associated

type families. The RuleSet type class contains associated constraint

synonyms for each of the Music constructors:

class RuleSet t where
type HarmConstraints t m1 m2 :: Constraint
type NoteConstraints t p d :: Constraint ...

A rule set is de�ned as a unit data type and an accompanying

instance of RuleSet:

data Classical = Classical
instance RuleSet Classical where

type HarmConstraints Classical m1 m2 =
ValidHarmConcat m1 m2

type NoteConstraints Classical p d = Valid ...

Finally, we have to parameterise Music values by their rule set:

data Music :: Type -> PitchMatrix n l -> Type where
(:-:) :: HarmConstraints rs m1 m2 =>
Music rs m1 -> Music rs m2 -> Music rs (m1 +-+ m2)

Note :: NoteConstraints rs p d =>
Pit p -> Dur d -> Music rs (FromPitch p d) ...

To instantiate rs, we create a new type encapsulating Music values

and rule sets:

data Score = forall rs m. MkScore rs (Music rs m)

Now we can dynamically change the type checking behaviour by

changing the rule set arguments: for example, MkScore Classical
(c qn :-: b qn) produces a type error, while MkScore Empty
(c qn :-: b qn) compiles (where Empty enforces no rules). As

Haskell type classes are open, users are free to de�ne their own

rule sets with custom constraints on composition operators, chords,

or even notes and rests. For instance, we can implement a rule set

for �rst-species counterpoint by extending the prede�ned Strict
rule set with constraints allowing only whole notes and no chords.

3 Music description language
This section showcases some interesting aspects of the Mezzo EDSL

which makes use of the type-level model. To increase usability and

conciseness, the language provides shorthand methods for note,

chord, melody and progression input, covering the most common

musical structures composers might use.

3.1 Note and chord input
Mezzo’s note and chord input method is based on continuation-
passing style: it allows musical values to be built via a series of

�exible “transformations” with little syntactic interference. For

example, a C quarter note can be written as c qn, while a D �at

major half chord in �rst inversion is d flat maj inv hc. The

main advantage of this approach – as opposed to simple constructor

functions – is the reuse of syntactic constructs: if the pitch c is

followed by qn, we construct a C quarter note; but if it is followed

by maj qc, we create a C major quarter chord. The exact details

of the implementation are outside the scope of this paper and

involve no complex type-level computation. However, we refer the

interested reader to Okasaki’s paper on �at combinators for more

information on this style of programming [10].

3.2 Melodies
The input method described above is concise, but still contains a

lot of redundancy, especially when writing melodies. For the �rst

voice in Section 1, we had to specify the duration of every note,

even though most notes had the same duration, which is commonly

the case. It is therefore more convenient to be explicit only when

the duration changes, and otherwise assume that each note has the

same duration as the previous one. With this in mind, we can use

Mezzo’s melody construction syntax to describe the melody from

Section 1 more concisely:

melody :| d :| g :| fs :< e :| a :^ bf :| a :> g

Notes are only given as pitches and the duration is either implicit,

or explicit in the constructor. For example, :| means “the next note

has the same duration as the previous note”, while :< means “the

next note is an eighth note”. This makes melody input shorter and

less error-prone, as most of the constructors will likely be :|.

Melodies are implemented as “snoc” lists, i.e. lists whose head is

at the end. The Melody type keeps additional information in its type

variables (like a vector), and has a constructor for every duration:

data Melody :: PitchMatrix 1 l -> Nat -> Type where
Melody :: Melody (End :-- None) Quarter
(:|) :: (MelConstraints ms (FromPitch p d))

=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p d) d

(:<) :: (MelConstraints ms (FromPitch p Eighth))
=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p Eighth) Eighth ...

The type keeps track of the “accumulated” music, as well as the

duration of the last note. The Melody constructor initialises the

pitch matrix and sets the default duration to a quarter. The binary

constructor :| takes the melody composed so far (the tail) and a

pitch speci�er PitchS (the type of the overloaded pitch literals, such

as c), and returns a new melody with the added pitch and unchanged

duration. The other constructors do the same thing, except they

ignore the argument d of the tail and change the duration of the

last note. While the syntax of the constructors might need getting

used to, they allow for quick and intuitive melody input.

4 Music rendering
Mezzo can export all well-typed compositions to MIDI �les. The

principal question is how to reify compositions which exist entirely

on the type-level so that we can create the corresponding values

on the term-level. Recall that users of Mezzo mainly interact with
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proxies which contain no term-level information, and types are

erased at runtime. To solve this problem, we make use of type

classes to reify type-level data.

4.1 The Primitive class
Our aim is to �nd a primitive representation for all of the musical

types that the user is exposed to. That is, to �nd a function which can

convert type-level information into term-level values. Our solution

is to de�ne a type class for “primitive” values:

class Primitive (a :: k) where
type Rep a
prim :: proxy a -> Rep a

Primitive is poly-kinded, so it can be used with naturals, pitches,

etc. Its only method, prim, takes the instance type with an arbitrary

type constructor, and returns a representation type of the value,

speci�ed in an associated type family. The primitive representation

for a pitch would be an integer (e.g. its MIDI number), while for

a chord it would be a list of integers (the constituent pitches). As

there are no constraints on the representation type, we can be even

more �exible: for example, chord types (major, diminished, etc.) are

converted into functions from integers to integer lists, mapping the

MIDI code of the root pitch to the list of codes of the chord pitches.

All we need now is to declare instances of Primitive for our

types: unfortunately, we have to do this mostly by hand, as Haskell

does not have “kind classes” which would let us express that “every

type of this kind is a primitive”. In our case, we declare separate

instances for all of the promoted data constructors of a type:

instance Primitive Oct0 where
type Rep Oct0 = Int ; prim _ = 12 ...

instance Primitive C where
type Rep C = Int ; prim _ = 0 ...

Having done the hard part, reifying pitches (and other compound

types) is straightforward:

instance (Primitive pc, Primitive acc, Primitive oct)
=> Primitive (Pitch pc acc oct) where

type Rep (Pitch pc acc oct) = Int
prim _ = prim (PC @pc) + prim (Acc @acc)

+ prim (Oct @oct)

The @pc syntax is possible with the TypeApplications extension,

which provides a short way of instantiating the polymorphic type

variables of a term [5]. The pc type variable is bound to the one in

the instance declaration, and since we assert that pc is an instance

of Primitive, we can get its primitive representation using prim.

4.2 MIDI export
MIDI is a simple, compact standard for music communication, often

used for streaming events from electronic instruments. To render

compositions as MIDI �les, we use a MIDI codec package for Haskell

called HCodecs2 by George Giorgidze, which provides lightweight

MIDI import and export capabilities. We only needed to add a type

for MIDI notes (with their MIDI number, start time and duration)

and the functions playNote and playRest to convert notes and

rests into two MIDI events NoteOn and a NoteOff. Thanks to the

algebraic description of Music values, converting Mezzo composi-

tions into MIDI tracks is entirely syntax-directed:

2 h�ps://hackage.haskell.org/package/HCodecs

toMidi (Note pit dur) = playNote (prim pit) (prim dur)
toMidi (Rest dur) = playRest (prim dur)
toMidi (m1 :|: m2) = toMidi m1 ++ toMidi m2
toMidi (m1 :-: m2) = toMidi m1 >< toMidi m2

For notes and rests, we use prim to get the integer representation of

the pitch and duration and convert them into a MIDI track with two

events. Sequential composition simply maps to concatenating the

two tracks, while parallel composition uses the library’s merging

operation, denoted here by (><), which interweaves the two lists

of messages respecting their timestamps. One of the main bene�ts

of the Haskore system is that the algebraic description maps so

elegantly to common list operations, and all the work of convert-

ing proxies into primitive values is done by the overloaded prim
function.

All that is left to do is to attach a header to this track (containing

the tempo, instrument name and key signature) and export it as a

MIDI �le, which is done using HCodecs functions. We also have

means of con�guring various attributes of the MIDI �le, such as

tempo, time signature or track name.

5 Related work
Formal descriptions of music are frequently used for algorithmic

music composition [9] but have also been applied to analysis and

music information retrieval. Martin Rohrmeier developed a formal

grammar of functional harmony [12] which was then implemented

as a Haskell library, HarmTrace [2], for music analysis and com-

position. This work describes harmonic constructs such as chords

and progressions at the type level and has been one of the initial

inspirations for Mezzo. In our partial implementation, progressions

are indexed by the key, which lets us change the key of the entire

progression without altering the schema:

inKey c_maj (ph_VI dom_vii0 ton :+ cadence auth_V7)

While there is substantial research on generation and analysis

of music, little work has been done on checking the correctness

of compositions: the system closest to ours is Chew and Chuan’s

Palestrina Pal [7], a Java program for grammar-checking music

written in the contrapuntal style of Palestrina. There exist similar

commercial programs and composition software plugins such as

Counterpointer 3
and Fux 4

, but these are also specialised to coun-

terpoint and do not o�er general purpose composition features.

We are not aware of related libraries for functional languages or

systems that enforce musical rules statically.

Haskell’s type-level computation features are seeing increasing

adoption and practical use. For example, Augustsson and Ågren

describe the implementation of a statically-typed wrapper of a

dynamic relational algebra library by describing schemas at the

type-level [1]. However, their library does not yet demonstrate the

bene�ts of TypeInType.

6 Conclusions
We have described the implementation of Mezzo, a library for com-

posing music which statically enforces that compositions follow the

rules of classical music. Users can choose from pre-de�ned rule sets

or add their own and di�erent rule sets can be applied to di�erent

parts of a composition.

3
http://www.ars-nova.com/cp/

4
https://musescore.org/en/project/fux

https://hackage.haskell.org/package/HCodecs
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6.1 Proxies
We chose to use proxies and rei�cation instead of the conventional

approach of programming with singletons. This decision is impor-

tant: instead of trying to merge or mirror the term and type level,

we make use of the term-type separation to model the music in

two di�erent ways. The term-level algebraic representation is very

convenient for composition and recursive traversal, but we need the

structured pitch matrix to perform rule-checking e�ectively. More-

over, abstract musical types (e.g. pitches) are converted directly

into concrete values (e.g. MIDI numbers), so having an abstract

term-level representations of musical values via singletons (or full

dependent types) would bring us no obvious bene�ts.

6.2 Type-level computation
Haskell has many unique features in its type system, including type

classes, functional dependencies, and type families. Mezzo uses

most of Haskell’s type system features and development has been

both really enjoyable and surprisingly easy: data type promotion,

GADTs and type families work seamlessly together and there is very

little mental overhead needed to think and reason about programs.

While we would wish that type families were �rst-class types so that

we could write higher-order type functions, conditionals, data types,

and recursion still enabled us to express musical rules e�ectively.

During development, we have encountered a few limitations

and nuisances and some of these are already being addressed. A

frequent type error we saw was related to type family applications

in type class (or family) instances: this was often triggered when

pattern-matching on types whose kind-variables are results of type

family applications (e.g. arithmetic)
5
. For example, this is the reason

why the Vector type’s :-- constructor has an argument of type

Vector (n-1) instead of the more obvious Vector (n+1) in its

return type: otherwise, to pattern-match on an argument of type

Vector, GHC would have to reduce a type family application.

Other causes for unexpected errors were type families, as they

may not reduce as far as we might expect. This made debugging

di�cult and was the reason why we implemented the rule system

using type classes instead of type families on constraints: custom

compiler errors would not always get triggered if e.g. a custom type

error occurred as an argument to a type family.

While type-level programming is already quite pain-free, we

thought of a few features that we would have found helpful. The

large part of the rule-checking system is built using type classes,

but handling overlapping instances made describing recursive rules

problematic. In normal usage, closed type classes would not make

much sense since the instances rarely overlap, but a separate con-

struct acting as a closed type predicate could be useful for veri�-

cation applications or rule-based systems. Similarly, we often felt

that the lack of “kind classes” or type-class promotion forced us to

write a lot of repetitive code, e.g. enumerating pitch classes. Kind

classes would open the doors to pretty-printing of types, simpli�ed

implementation of singletons and ways of adapting other term-level

abstractions to the type level.

6.3 Composition using Mezzo
When designing Mezzo’s EDSL, our aim was to create a consistent,

intuitive syntax for note, chord and melody input, which would be

easy to read and write even for non-programmers. The paper could

5
This problem is known and tracked under ticket #12564 on GHC Trac.

not give much detail on this aspect of the library (the approaches

are not speci�c to type-level computation), but we have received

encouraging responses from professional musicians regarding the

language. Another topic we omitted for brevity is our partial im-

plementation of the HarmTrace model, which lets users compose

simple chord accompaniments from progression schemas.

The EDSL, rule sets and various modularisation techniques make

Mezzo entirely usable even for large compositions. We have com-

plete, working encodings of Bach’s Prelude in C Major, BWV 846,

Beethoven’s Für Elise and Chopin’s Prelude, Op. 28, No. 20. In Bach’s

piece, we could make good use of the fact that Mezzo is an embed-

ded DSL: to exploit the repetitive rhythmic nature of the piece, we

wrote a function that generates an entire bar from the �ve pitches

appearing in it. GHC can infer all the complex types of the functions

and rule-checking works as it should.

The performance of our library was not a main goal of our work

and we cannot expect a type checker to match the performance of

highly optimised machine code execution. Compilation times were

slow but not unacceptably so: the average was on the order of 5-10

seconds for shorter compositions, but even a complex piece such

as Für Elise compiles in under 30 seconds. Albeit this is slower than

a fully term-level solution would be, users save “debugging” time

by getting a clear description and location of the musical errors,

which could not be achieved as conveniently with runtime checks.

Overall, Haskell provided everything we were looking for, if not

more: mature and robust type-level computation features, a great

medium for implementing embedded domain-speci�c languages

and good library and community support.
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