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Abstract

This work proposes a multivariate logit model which models the influence of explanatory

variables on continuous compositional response variables. This multivariate logit model

generalizes an elegant method that was suggested previously by Wedderburn (1974) for

the analysis of leaf blotch data in the special case of J = 2, leading to our naming this

new approach as the generalized Wedderburn method. In contrast to the logratio mod-

eling approach devised by Aitchison (1982, J. Roy Stat. Soc. B.), the multivariate logit

model used under the generalized Wedderburn approach models the expectation of a com-

positional response variable directly and is also able to handle zeros in the data. The

estimation of the parameters in the new model is carried out using the technique of gener-

alized estimating equations (GEE). This technique relies on the specification of a working

variance-covariance structure. A working variance-covariance structure which caters for

the specific variability arising in compositional data is derived. The GEE estimator that is

used to estimate the parameters of the multivariate logit model is shown to be invariant to

the values of the correlation and dispersion parameters in the working variance-covariance

structure. Due to this invariance property and the fact that the estimating equations used

under the generalized Wedderburn method are linear and unbiased, the GEE estimator

achieves full efficiency across a wide class of potential dispersion and correlation matrices

for the compositional response variables. As for any other GEE estimator, the estimator

used in the generalized Wedderburn method is also asymptotically unbiased and consis-

tent, provided that the marginal mean model specification is correct. The theoretical

results derived in this thesis are substantiated by simulation experiments, and properties

of the new model are also studied empirically on some classic datasets from the literature.
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Ẏ
)

Rij Pearson residuals under the generalized Wedderburn method
R∗ij Aitchison residuals

xv



List of Abbreviations

GEE Generalized Estimating Equations
GLM Generalized Linear Model
GLS Generalized Least Squares
GW Generalized Wedderburn
ML Maximum Likelihood
MLE Maximum Likelihood Estimator
MRM Multiplicative Regression Model
OLS Ordinary Least Squares

xvi



Chapter 1

Introduction

This thesis concerns regression modeling of compositional data, that is, models and asso-

ciated methods used to describe the dependence of compositional responses upon explana-

tory variables. This chapter aims to provide the setting required, to better appreciate the

challenges that have been faced in trying to find a suitable approach to model continuous

compositional data. An introductory note on what compositional data is, is provided in

Section 1.1. Section 1.2 then gives some details on a number of distributions that have

been considered apt to model this type of data, namely the Dirichlet distribution and

some of its generalizations, and the logistic normal distribution. The normal distribution,

Barndorff-Nielsen and Jørgensen (1991) simplex distribution, the von Mises distribution

and the Kent distribution (Kent, 1982) are also mentioned briefly. The logratio trans-

formation (Aitchison, 1982) is presented in relation to the logistic normal distribution.

Through this transformation it is possible to model the influence of explanatory variables

on the transformed variables, using standard multivariate techniques. The main drawback

with the logratio transformation is that it fails when any zeros are present in the data.

A brief account of various ways in which researchers have tried to tackle the problem of

zeros is thus provided in Section 1.3. Section 1.4 then describes some previous attempts

at modeling compositional response data through the generalized linear modeling frame-

work. Studies which used the method of generalized estimating equations (GEE) to model

compositional response data are presented in Section 1.5. At the end of Section 1.5, a new

approach which may be used to model continuous compositional response variables and

which will be developed in this thesis, is introduced. This approach is also based on the

technique of generalized estimating equations.

1.1 What is Compositional Data?

A composition Y is a J -vector whose components Y1, . . . , YJ are non-negative and satisfy

a sum constraint, that is, Y1 + · · · + YJ = k, where k is some fixed known constant that

depends on unit of measurement. The constant is often equal to 1 or 100. Some examples
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of how a composition may arise include measurements on the mineral and chemical content

of rocks, household expenditure patterns, or time allocated to various activities during a

particular day.

Due to the nature of compositional data, one part of the composition may always be

written in terms of the remaining parts, effectively reducing the dimension of a J -part

composition to J − 1. The importance thus lies not with the actual value of a part in a

composition but with the magnitude of a part in relation to the magnitude of the other

parts in a composition. In much of the theoretical development of compositional data,

the magnitude of the constant k in the sum-constraint, is set equal to 1. Fixing k at

1 gives rise to a (J − 1)-dimensional unit simplex, SJ−1, embedded in a J -dimensional

non-negative space. Without loss of generality, the material presented in this work will

take k to be equal to 1.

Let Ẏ be a J -vector in the positive space IRJ
+, defined as Ẏ =

(
Ẏ1, . . . , ẎJ

)′
, where each

Ẏj (j = 1, . . . , J), is measured in the same units and each Ẏj provides relative information.

The term relative refers to the fact that meaning to the information provided is given by

the ratios of the different components. Due to only relative information being provided

by the data, the unit of measurement chosen for Ẏ will make no difference to the analysis.

In fact, any two such vectors, say Ẏ and Ẏ
∗
, which are related by the equation Ẏ

∗
= aẎ,

for some positive constant a, are regarded as equivalent. The equivalent vectors Ẏ
∗

and

Ẏ may both be said to fall into the class cl
(
Ẏ
)

=
{
aẎ : a > 0

}
, the latter geometrically

represented by a ray from the origin in IRJ
+. Intersecting this ray and the unit simplex SJ−1

results in any vector in the class cl
(
Ẏ
)

to be sum-constrained to 1. This intersection,

a constraining operation known as closure, relates the composition Y to any vector Ẏ in

class cl
(
Ẏ
)

as follows

Y = C
(
Ẏ
)

=
Ẏ

Ẏ1 + · · ·+ ẎJ
. (1.1)

The fact that a whole class of vectors in IRJ
+ have the same closure Y leads to prob-

lems in analyzing compositional data using standard multivariate techniques directly. In

particular, as per Aitchison (1986), the independence of the components of Ẏ would not

correspond to any simple ‘null’ structure of the covariance between the components of

the composition Y. Restriction on the variance-covariance structure of the variables form-

ing the composition arises in the fact that at least one covariance is forced, through the

sum constraint, to be negative. As an example of the latter, consider J = 2 and the

sum constraint Y1 + Y2 = 1. From this it follows that Cov (Y1, Y1 + Y2) = 0 and hence

Var (Y1) = −Cov (Y1, Y2) automatically. This restriction on Cov (Y1, Y2) will then lead to

a restriction in the correlation coefficient.

Pearson (1897) had already put forward the possibility of obtaining a ‘high degree of

correlation between series of absolutely independent judgements’ when dealing with com-
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positional data. Nothwithstanding this fact, scientists and statisticans alike still resorted

to the standard multivariate techniques to analyze this type of data and it was only around

the 1960s that papers which expressed disapproval towards using the usual statistical ap-

proach started to emerge.

The most prominent critic of the time was the geologist Felix Chayes. His criticism was

mainly focused on the interpretation of the correlation coefficient between components in a

geochemical composition. Chayes (1960) stated ‘neither the resulting spurious correlation

itself nor the difficulty it creates with regard to the interpretation of composition data has

been adequately described, and no general remedy has yet been suggested’.

A lot of effort has been directed in trying to obtain a formulation for this spurious cor-

relation, or mostly known as null correlation as opposed to the zero correlation resulting

from lack of dependence in the usual statistical sense. Papers by Darroch (1969), Meisch

(1969), Darroch and Ratcliff (1970), Darroch and Ratcliff (1978) and Kork (1977), all dealt

with the issue of the sum-to-a-constant constraint and its relation to the interpretation of

correlations of proportions. Aitchison (1984) still felt the need to encourage researchers,

petrologists in particular, to apply the right methodology in dealing with compositional

data. Illustrations and warnings on why standard statistical techniques would fail had

been issued back then, but were largely disregarded.

According to Aitchison (1982, 1984a), it was the ‘lack of concepts of independence, lack of

a satisfactory and interpretable covariance structure and the lack of parametric classes of

distributions’ which were appropriate for the simplex, that hindered the development of

suitable methods for such data. To this end, Aitchison (1986) and Pawlowsky-Glahn and

Egozcue (2006) recognized the fact that until the early 1980s there was no clear guidance

on how to deal with compositional data.

1.2 In Search of a Family of Suitable Distributions

1.2.1 The Dirichlet Distribution

Prior to the 1980s, the only familiar class of distributions which was thought to be ap-

propriate for the space of all continuous compositions was the Dirichlet family, which is

defined as follows:

Definition 1.2.1. Let Y = (Y1, . . . , YJ)′ where YJ = 1−
J−1∑
j=1

Yj and let α = (α1, . . . , αJ)′

∈ IRJ
+. Y is said to follow the Dirichlet distribution on SJ−1 with parameter α if its

probability density function is given by

f (y1, . . . , yJ−1|α) =
Γ (α1 + · · ·+ αJ)∏J

j=1 Γ (αj)

J∏
j=1

y
αj−1
j , (1.2)
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where (y1, . . . , yJ)′ denotes a vector of values of (Y1, . . . , YJ)′ and yj ∈ (0, 1).

Letting α+ = α1 + · · ·+ αJ , some well known properties of the Dirichlet distribution are

E (Yj) =
αj
α+

, (1.3)

Var (Yj) =
αj (α+ − αj)
α2
+ (α+ + 1)

, (1.4)

and for j 6= j
′

Cov
(
Yj , Yj′

)
=

−αjαj′
α2
+ (α+ + 1)

(1.5)

Corr
(
Yj , Yj′

)
= −

√√√√ αjαj′

(α+ − αj)
(
α+ − αj′

) . (1.6)

Gueorguieva et al. (2008) and Maier (2014) are examples of researchers that have used

Dirichlet regression models to model compositional response variables. Focusing on (1.5)

and (1.6), it may however be noted that the correlation structure of the Dirichlet distri-

bution is completely negative. The Dirichlet distribution would thus not be able to cater

for non-negative correlations in the data, should any be present.

Also, the Dirichlet distribution inherits an independence structure through its own def-

inition. Correlations between components (Y1, . . . , YJ) arise solely through the closure

operation. As per Aitchison (1982), if a composition Y is assumed to follow a Dirichlet

distribution, then Y may be considered to be the result of a closure operation performed on

independent gamma distributed random variables, each having the same scale parameter.

Particularly due to this independence structure, Connor and Mosimann (1969), Darroch

and James (1978), James and Mosimann (1980), Barndorff-Nielsen and Jørgensen (1991),

Rayens and Srinivasan (1994), Gupta and Richards (1987, 1991, 1992, 1995), Aitchison

(2003b, p. 305-306), amongst others, attempted to find generalizations of the Dirichlet

class of distributions which could also accomodate the dependence between variables. As

per Aitchison (2003b, p. 305), finding a ‘tractable parametric class which contains the

Dirichlet distribution but which also caters for significant departure from its strong inde-

pendence properties’ is still considered an open problem. The flexible Dirichlet distribution

(Ongaro and Migliorati, 2013), ‘obtained by normalizing a correlated basis formed by a

mixture of independent gamma random variables’ and of which the Dirichlet distribution

is a special case, is promising in the fact that it allows for a more flexible dependence struc-

ture whilst retaining the same mathematical and compositional properties of the Dirichlet

distribution. (For more detail on these properties refer to Ongaro and Migliorati (2013).)

As per Migliorati et al. (2016), the flexible Dirichlet ‘displays a dependence structure that

is substantially richer’ than the generalized Dirichlet distribution (Connor and Mosimann,

1969), the simplex distribution (Barndorff-Nielsen and Jørgensen, 1991) and the multi-

variate Liouville distribution (Gupta and Richards, 1987, 1991, 1992, 1995) and ‘a greater
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tractability than the generalized Liouville distribution’ (Rayens and Srinivasan, 1994).

Migliorati et al. (2016) also state that through its mixture structure, the flexible Dirichlet

distribution may be used to model various features of a compositional data set, ‘including

unimodal and multimodal cases’. However Migliorati et al. (2016) recommend to develop

‘more flexible structured mixture models’ which are ‘still inferentially tractable’.

1.2.2 The Logistic Normal Distribution

As an alternative to modeling the compositional data directly in the simplex, a parametric

class of distributions which could cater for the dependence structure between the parts of

the compositions but which could also make the transition from the the positive real line

to the whole real line possible was devised. McAlister (1879) realized that if he consid-

ered a normally distributed random variable, by taking its exponent, a useful distribution

(the lognormal) would be induced on the positive real line. Throughout the 20th cen-

tury, especially following the work on variance-stabilizing transformations for analysis of

variance, the general Box-Cox transformation (Box and Cox, 1964) and other work on

transformations to normality continued to emerge. In spite of this, it was only in the early

1980s that a new method based on McAlister’s (1879) idea of inducing a distribution on

an ‘awkward’ space, from another distribution defined on a more familiar space, by using

a transformation between the two spaces, was devised.

Prior to the 1980s, the logistic-normal distribution had already been used in areas like

Bayesian analysis for the description of a prior and posterior distribution of multino-

mial probabilities (Lindley, 1964), logistic disciminant analysis (Anderson, 1972) and in

analyzing binary data. The application of the logistic-normal distribution to the field of

compositional data is attributed to Aitchison and Shen (1980). As per Aitchison and Shen

(1980), if the logistic transformation is applied to a (J − 1)-vector W ∈ IRJ−1, where W

follows the multivariate normal distribution, the resulting vector may be said to follow a

logistic-normal distribution.

Definition 1.2.2. For Y ∈ SJ−1 and W ∈ IRJ−1, the generalized logistic transformation,

also known as the additive logistic transformation, is given by

Yj =


exp(Wj)

1+
∑J−1

j
′
=1

exp
(
W

j
′
) if j = 1, . . . , J − 1

1

1+
∑J−1

j
′
=1

exp
(
W

j
′
) if j = J,

where for j = 1, . . . , J − 1, its inverse function is given by

Wj = log

(
Yj
YJ

)
. (1.7)

The inverse function (1.7) is known as the additive logratio (alr) transformation.
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So as to overcome the problem of analyzing compositional data, Aitchison (1982) proposed

the use of logratio transformations, amongst which is the additive logratio transformation.

If the multivariate normal distribution may be shown to be a reasonable approximation to

the distribution of the logratios W1, . . . ,WJ−1, conventional multivariate techniques may

be used on the logratio-transformed data and standard statistical analysis may then be

carried out in the real space IRJ−1. Aitchison (1982) used this idea to model the influence

of explanatory variables X1, . . . , Xp on compositional response variables: for a sample of

size n and J components,

E

[
log

(
Yij
YiJ

)]
= x

′
iβj (1.8)

where i = 1, . . . , n, j = 1, . . . , J − 1, βj is a (p+ 1)-vector of coefficients which need to be

estimated and xi is a (p+ 1)-vector of observations with xi0 = 1 since the first element

corresponds to the intercept and the remaining elements correspond to the observations

obtained by the ith case in the sample on X1, . . . , Xp.

The method of modeling the conditional expectation of logratios is appealing for a number

of reasons, including the fact that it is permutation invariant. So if any component other

than YJ is chosen as the reference component in the additive logratio, the same results

will be obtained (Aitchison, 1986, p. 96). As per Aitchison (1986, p. 96), standard

multivariate statistical procedures are all invariant under the group of permutations of

the parts 1, . . . , J of the composition.

Statisticians seemed to accept such methodology. However, transformation resistance

syndrome, as described by Aitchison (2003a), especially amongst the geological community

(refer to letters to the Editor of Mathematical Geology over the period 1988 to 2002;

Rehder and Zier (2001); Aitchison and Barceló-Vidal (2001)), still prevailed. Some of the

arguments brought up dealt with the theoretical nature of the subject. Others dealt with

the difficulty in interpreting the transformed data.

The additive logratio transformation, in particular, does in fact present some problems

related to interpretation. It is asymmetric in the parts of the composition and by changing

the denominator, a different transformation results and thus also a different interpretation

has to be given. One major shortcoming that is common to all logratio transformations

is that they may only be applied to compositions whose parts are strictly positive. If

some parts of a composition are zero, the corresponding logratios cannot be computed.

More details on methods that were developed to deal with zeros in compositional data are

provided in Section 1.3.
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1.2.3 Other Distributions

1.2.3.1 The Normal Distribution

After searching the literature using key words such as ‘percentage, proportion and fraction’,

Kieschnick and McCullough (2003) found that the majority of researchers used the normal

distribution as the conditional distribution of 2-part compositional data given a set of

explanatory variables. Since compositional data is not defined over the whole real line,

though, it can never follow a normal distribution.

Other attempts at using the normal distribution to analyze compositional data have also

been made through the use of latent variable models. Some detail and criticism on a

censored normal model and on the Butler and Glasbey (2008) latent Gaussian model will

be given in Section 1.3.2.3.

1.2.3.2 Barndorff-Nielsen and Jørgensen (1991) Simplex Distribution

Another distribution which has been used to model 2-part compositional data is the uni-

variate simplex distribution (Barndorff-Nielsen and Jørgensen, 1991). The density function

of a response variable Y which follows a univariate simplex distribution is given by

f
(
y|µ, σ2

)
=

1√
2pσ2

[
y (1− y)3

] exp

[
− 1

2σ2
d (y;µ)

]
,

for 0 < y < 1, 0 < µ < 1 and where d (y;µ) = (y − µ)2 /y (1− y)µ2 (1− µ)2 is the

unit deviance. The form of the density of the univariate simplex distribution implies

that the simplex distribution is a proper dispersion model (see Jørgensen, 1986) where

the parameters µ and σ2 correspond to the position and dispersion parameters. This

distribution is however defined on the open interval (0, 1), excluding the possibility of

analyzing compositional data with zeros.

In Section 1.5, we will see how the Barndorff-Nielsen and Jørgensen (1991) simplex distri-

bution has been used in a generalized linear modeling setup in attempt to model compo-

sitional data. Zhang (2013) made use of a multivariate version of this distribution, which

is however also not suitable to model zeros in compositional data. More details on the use

of the multivariate simplex distribution Barndorff-Nielsen and Jørgensen (1991) in Zhang

(2013) will also be given in Section 1.5.

1.2.3.3 Distributions Defined on the Hypersphere

The Kent distribution and the von Mises-Fisher distribution (for more information on these

distributions refer to (Mardia and Jupp, 2000)) are another two distributions which have
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been used to model compositional data. More specifically, the two distributions have been

used by Scealy and Welsh (2011) and Stephens (1982) respectively, to model data defined

on the hypersphere. In directional data, a direction in J dimensions may be represented

by a vector, say S, which lies on the surface of a (J − 1)-dimensional hypersphere of unit

radius and is centred at the origin. Vectors on the surface of the hypersphere satisfy

S
′
S = 1. Compositional data is turned into directional data by means of the square root

transformation, that is by letting S =
(√
Y1, . . . ,

√
YJ
)
. By the sum-to-1 constraint of

compositional data, S
′
S = 1 follows naturally.

Stephens (1982) used the von Mises-Fisher distribution to discriminate between two groups

of students. Aitchison (2008) acknowledges the fact that a ‘reasonable discrimination’ has

been achieved on using such an approach but discourages further use of such an approach

due to the simplex and the sphere being ‘topologically completely unrelated’. Mardia

(1976) also showed that the von Mises-Fisher distribution can provide a good approxi-

mation to the multinomial distribution, showing that the von Mises-Fisher distribution

inherits the restrictive correlation structure of the multinomial distribution, making the

von Mises-Fisher distribution unfit to model compositional data.

As per Scealy and Welsh (2011), the Kent distribution on the other hand, provides a

‘natural generalization’ on the von Mises-Fisher distribution, has as many parameters

as the (J − 1)-variate normal distribution, and its parameters are ‘readily interpretable’.

Some more detail on how Scealy and Welsh (2011) have successfully managed to use

the Kent distribution to model the influence of explanatory variables on compositional

response variables will be given in Section 1.3.2.4.

1.3 Analyzing Compositional Data with Zeros

Compositions with zero values may easily turn up in practice. An example which is very

frequently used in the literature is that of household expenditure where some families would

spend nothing on alcohol and cigarettes. Zeros might also be obtained in an analysis of

time allocated to different tasks with some people allocating no time to physical activity.

Furthermore, zeros might also result in an analysis of the proportion of fat, carbohydrates

and protein in food items, with no protein or fat found in sugar. It might also be of

interest to study the presence of various species in an area with some species remaining

undetected.

1.3.1 Rounded and Essential Zeros

When it comes to dealing with zeros in the data, a distinction needs to be made with

respect to the type of zero that may occur. If accuracy limitations of instruments of mea-

surements or some other physical, chemical or artificial effects prevent us from detecting

small concentrations of some part or parts of a composition, these small concentrations
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may be considered as having been erroneously recorded as zeros (Palarea-Albaladejo et al.,

2007). When this type of zero arises it is referred to as a rounded zero. Aitchison (1986, p.

268) proposed to investigate ways in which rounded zeros in compositional variables may

be replaced by some small positive value which is smaller than the smallest recordable

value. Various imputation methods for rounded zeros, amongst which are the multiplica-

tive replacement technique (Mart́ın-Fernández et al., 2003) and the modified EM algorithm

(Palarea-Albaladejo and Mart́ın-Fernández, 2008) exist in the literature. So once the zeros

in the data have been imputed, a logratio transformation may then be applied and the

transformed data is then analysed using standard statistical techniques.

Imputation may not however be used when there are essential zeros in the data. An

essential zero in a composition is a zero which may not be considered to be the result of

a limitation of the measuring instrument being used but is the result of something that is

completely absent. An essential zero might be obtained, for example, from a family whose

expediture on household appliances during a study period is nil. In some cases, it might

make sense to overcome modeling problems due to essential zeros by performing a separate

analysis of subjects/objects coming from different groups/subpopulations. Alternatively,

it might also be reasonable to amalgamate the proportions from different components

of the composition. After amalgamation of the different parts, statistical analysis may

then be carried out on the full dataset. Models that deal with the essential zero problem

have been proposed but at this stage there is still no standard procedure which should be

implemented.

1.3.2 Various Attempts at Solving the Essential Zero Problem

1.3.2.1 The Addition of a Constant to Every Observation

The first attempt at solving the essential zero problem came from Aitchison (1986). Aitchi-

son (1986, p. 271) proposed to take insight from the three-parameter lognormal model

(Aitchison and Brown, 1957) where a constant υj , j = 1, . . . , J , known or to be esti-

mated is added to every observation and the logratio transformation is then applied to

the vector C (Y + υ) rather than to C (Y). Clearly, for a dataset with a large number of

zeros, this technique will lead to substantial computational effort. Furthermore, even with

compositions with a relatively small number of parts, with the inclusion of υj , a serious

interpretation problem of the transformed data arises.

1.3.2.2 Conditional Modeling

Aitchison (1986) also suggested the alternative idea of using some form of conditional

modeling to deal with the essential zero problem. Aitchison (1986, p. 272) provides an

example where zero values arise in the first component only. A probability p is assigned

to the probability of Y1 being equal to zero. The probability of Y1 not being a zero is
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then (1− p). Conditional on Y1 = 0, the distribution for Y(1) = (Y2, . . . , YJ)′ is taken

to be the additive logistic normal distribution with parameters µ0 and Σ0. Conditional

on Y1 > 0, Y is taken to follow an additive logistic normal distribution with parameters

µ and Σ. Let fJ−1 (· |µ,Σ) denote the probability density function corresponding to Y.

The contribution to the likelihood by a compositional vector with Y1 = 0 is then

pfJ−2 (· |µ0,Σ0 )

and the contribution to the likelihood by a compositional vector with Y1 > 0 is given by

(1− p) fJ−1 (· |µ,Σ) .

Estimation of the parameters may then be carried out through maximum likelihood esti-

mation.

The setup provided by Aitchison (1986) is however a very simple one. Bacon-Shone (2003)

explains that a suitable model is one which is able to handle two problems; the first being

that of modeling the pattern of zeros for multiple components and the second being that

of modeling a composition conditional on the particular pattern of zeros which arises.

Aitchison and Kay (2003), Zadora et al. (2010) and Tsagris (2014) also propose to use

a two-step approach to model compositional data with zeros. Zadora et al. (2010) and

Tsagris (2014) first model the presence of zeros using the independent binary model

J∏
j=1

p
uj
j (1− pj)1−uj ,

where pj is the probability of obtaining a non-zero value in the jth component and uj is an

indicator function taking the value 1 if the jth component in a composition is not zero and

a value of 0 in the presence of a zero. A multivariate density function which incorporates

the model for the zeros in then adopted in the second stage.

In relevance to the nature of compositional data, the assumption of independence in the

independence binary model is completely violated. Aitchison and Kay (2003) thus impose

a hierarchical prior on the binomial parameters pj ,

pj =
exp (λj)

exp (λj) + 1
,

where the parameters (λ1, . . . , λJ) may be assumed to follow a multivariate normal dis-

tribution. As per Aitchison and Kay (2003), the issues related with making use of this

strategy are more of the computational kind with the main problem being the evaluation

of the integral in the dependent binomial case. Pertaining to the latter problem, Aitchison

and Kay (2003) expected the MCMC approach to be conducive.
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1.3.2.3 The Latent Model

Alternative attempts at modeling compositional data with zeros involved the use of latent

variable models. The Tobit model and Butler and Glasbey (2008) latent Gaussian model

are two such examples. Both models may be used in the presence of zeros. Both of them,

however, are not suitable to model compositional data. More detail about the two models

follows.

The Tobit Model

There are occasions (e.g. Agnew et al., 1995; Barclay and Smith, 1995) where the cen-

sored normal model, also known as the Tobit model, has been used to model continuous

proportions. Continuous proportions may be viewed as 2-part compositional data. For

a dataset of size n, in a Tobit model, a latent (unobservable) variable Ẏ is related to p

independent variables X1, . . . , Xp, through the linear model

Ẏi = x′iβ + Ei, i = 1, . . . , n

and the response variable Y satisfies

Yi =


0 if Ẏi ≤ 0

Ẏi if 0 < Ẏi < 1

1 if Ẏi ≥ 1

where β is a vector of unknown regression parameters and Ei are error terms which are

assumed to be independent and identically N
(
0, σ2

)
distributed.

This model may handle zeros in the data but values outside the range (0, 1) are being

treated as if they were censored. It is due to the nature of compositional data that values

beyond the range [0, 1] may never be observed.

Butler and Glasbey (2008) Latent Gaussian Model

Butler and Glasbey (2008) propose to handle zeros in compositional data by means of a

latent Gaussian model. This model is based on the assumption that compositional data

is obtained through performing a transformation on an underlying set of latent variables

Ẏ. These latent variables are assumed to follow a multivariate Gaussian distribution

with unknown parameters µ and Σ, and Ẏ is also assumed to lie on the unit hyperplane

HJ =
{

ẏ ∈ RJ : ẏ
′
1 = 1

}
. Such an assumption on Ẏ implies that the mean vector µ

and the variance-covariance matrix Σ of Ẏ must satisfy µ′1 = 1 and Σ11
′

= O, where

11
′

is a J × J matrix of ones. The chosen function which transforms Ẏ is taken to be

that which minimizes the squared Euclidean distance between Ẏ and Y, subject to the
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usual sum constraint and non-negativity of the parts of the compositions. The function

performs a Euclidean projection from a unit hyperplane onto a unit simplex. Butler and

Glasbey (2008) explain that the choice of the Euclidean transformation was motivated by

its wide use and its pleasing theoretical properties.

The assumption that the latent variables following a multivariate normal distribution

makes the estimation process relatively easy for J ≤ 3 but the authors acknowledge that

parameter estimation becomes complicated once J > 3. Also, by assuming that the

compositional data comes into existence through the multivariate normal distribution, the

principles of scale invariance and subcompositional invariance are violated. The principle

of scale invariance requires that any function of compositional data should be expressed

in terms of ratios and the principle of subcompositional invariance requires that the same

information is obtained from the components which are common to different subsets of a

composition. Butler and Glasbey (2008) thus recommend that this approach is only used

if i) other methods are not available or if they are inappropriate, ii) as a diagnostic tool for

assessment of other methods or iii) for exploratory purposes. Butler and Glasbey (2008)

also suggest to investigate the possibility of using alternative transformations.

1.3.2.4 The Square-Root Transformation

Scealy and Welsh (2011) propose an alternative approach to handle zeros in compositional

data. A brief mention of this approach has also been given in Section 1.2.3.3. It is based

on applying the square root transformation on compositional data, including zeros in the

data, so that compositional data is transformed to directional data. Stephens (1982) and

Scealy and Welsh (2011) used the square root transformation as a first step in their analysis

to model compositional data. Scealy and Welsh (2011) proceed to develop a regression

model for compositional data through the Kent distribution (Kent, 1982), by relating the

mean direction vector to linear functions of the explanatory variables. The performance

of the estimation procedure described in Scealy and Welsh (2011) is however impaired if

the majority of the transformed data is close to the boundaries of the positive orthant. So

Scealy and Welsh (2014) revise the estimation procedure described in Scealy and Welsh

(2011) and also show how the EM algorithm may be used to estimate the parameters of the

folded Kent distribution so as to deal with the problem of having a large concentration of

points close to the boundaries with a ‘relatively large variance’. The Kent regression model

as a means to model compositional data with zeros is promising but it lacks simplicity of

implementation.

1.3.2.5 The α-Transformation

Tsagris et al. (2011) propose the use of the α-transformation, a Box-Cox type of trans-

formation, which allows more flexibility in analyzing compositional data than the logra-

tio approach. The α-transformation is based on the power transformation proposed by

12



(Aitchison, 1986, p. 120).

For a composition Y and any real number α, the power transformation proposed by

Aitchison (1986) is given by

S =

(
Y α
1∑J

j=1 Y
α
j

, . . . ,
Y α
J∑J

j=1 Y
α
j

)′
. (1.9)

The α-transformation is then defined by

T =
1

α
H (JS− 1) , (1.10)

where 1 is a J-dimensional vector of ones and H is the (J − 1) × J Helmert submatrix

(Lancaster, 1965), the latter ‘obtained by removing the first row from the Helmert matrix’

(Tsagris et al., 2011).

Tsagris (2015) proposes an approach involving the α-transformation to model composi-

tional response variables, even in the presence of zeros. Tsagris (2015) calls this method

α-regression.

The steps in α-regression start by assuming that, for each case i, the conditional expecta-

tion of the compositional response variables are given by

µij =


1

1+
∑J

j
′
=1

exp
(
x
′
iβj
′
) for j = 1

exp
(
x
′
iβj

)
1+
∑J

j
′
=1

exp
(
x
′
iβj
′
) for j = 2, . . . , J.

The use of the multinomial logistic function ensures that, for each i,
J∑
j=1

µij = 1.

The conditional means and the compositional response variables for each i are then α-

transformed to get

Yiα =
1

α
H

(
J

Y α
i1∑J

j=1 Y
α
ij

− 1, . . . , J
Y α
iJ∑J

j=1 Y
α
ij

− 1

)′
and

µiα =
1

α
H

(
J

µαi1∑J
j=1 µ

α
ij

− 1, . . . , J
µαiJ∑J
j=1 µ

α
ij

− 1

)′
.

This is then followed by assuming that the α-transformed vector of response, Yiα, follows

a multivariate normal distribution with the mean vector µiα. Multivariate regression is

then used to model the whole vector of α-transformed responses Yα. The chosen value of
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α is that which minimizes twice the Kullback-Leibler divergence (Kullback, 1997), that is

KL = 2
n∑
i=1

J∑
j=1

yij log

(
yij
ŷij

)
,

where yij is the ith observation obtained on compositional Yj ‘and ŷij is the corresponding

fitted value’ (Tsagris, 2015).

The results in Tsagris (2015) show that α-regression might lead to better prediction than

when data is modeled using the standard logratio approach and this approach is also able

to handle zeros in the data. As per Tsagris (2015), however, unless the chosen value of α

is the true value, the estimator of the β parameters will not be consistent. Also, the choice

of the multivariate normal distribution to model the transformed data might not be ideal

since the α-transformation maps the data onto a subset of RJ−1, whilst the multivariate

normal distribution operates over the whole of RJ−1.

1.4 A Generalized Linear Modeling (GLM) Framework for

Compositional Data

Frequently, researchers examine the influence of selected variables on response variables

through either modeling directly the conditional expectation of the response variables or

otherwise modeling a function of the conditional expectation of the response variables. In

the case of modeling compositional response variables, the response values may vary in the

range [0,1] (vector of proportions/fractions/percentages). So if an analyst is interested in

examining how explanatory variables X1, . . . , Xp influence a compositional response vector

Y, the model used has to accommodate the relationship which arises between p predictor

variables X1, . . . , Xp and J response variables Y1, . . . , YJ such that the sum constraint

Y1 + · · ·+ YJ = 1 holds.

In Section 1.2.2 it has been mentioned how Aitchison (1982) developed the strategy of

modeling compositional response variables by performing regression modeling on the lo-

gratios of the compositions (refer to equation (1.8)). The major drawback of this technique,

however, is that it breaks down when a compositional response variable takes on an exact

value of 0.

In general, two important aspects, adapted from Kieschnick and McCullough (2003), have

to be taken note of when modeling a compositional response variable as a linear function

of explanatory variables. These are:

1. the conditional expectation should be nonlinear since it maps onto the bounded

interval [0,1]

2. the conditional variance should be a function of the mean since the variance will

approach zero as the mean approaches either boundary point.
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In this section, alternative ways of modeling compositional data, using a GLM framework,

will be presented.

1.4.1 The Two-Parameter Beta Distribution in Conjunction with a Logit-

Link Function

Based on the work of Cox (1996) who tested various link functions for regression models of

continuous proportions, Kieschnick and McCullough (2003) consider a 2-part composition

and use the logit link to specify the relationship between the conditional expectation of

Y1 and the vector of predictors X as follows:

E (Yi1) =
1

1 + exp (−x′iβ)
. (1.11)

Kieschnick and McCullough (2003) then assume that the response variable Y1 follows a

two-parameter beta distribution1. Kieschnick and McCullough (2003) give two reasons for

choosing this distribution for compositional data, the first being that it is the distribution

most often fitted to fractional response variables in prior literature, the second being that

the two-parameter beta distributions form an exponential family.

If Y1 follows a two-parameter beta distribution, its probability density function is given

by

f (y1) =
1

B (p, q)
yp−11 (1− y1)q−1 , (1.12)

where 0 ≤ y1 ≤ 1 and B (p, q) is the beta function and its expected value is given by

E (Y1) =
p

p+ q
. (1.13)

Hence, Kieschnick and McCullough (2003) relate equations (1.11) and (1.13) to obtain

q (xi) = p exp
(
−x′iβ

)
. (1.14)

Substitution of (1.14) into (1.12) then yields the conditional density function

f (y1|xi) =
1

B (p, q (xi))
yp−11 (1− y1)q(xi)−1 , (1.15)

from which the conditional expectation of Y1 may be calculated once the parameters β

and p are estimated through maximum likelihood estimation.

1The two-parameter beta distribution is a special case of the Dirichlet distribution. The Dirichlet
distribution has been defined in Section 1.2.
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This approach manages to restrict the conditional mean of a beta distributed random

variable to the interval (0, 1) and a multivariate generalization of it may be obtained by

using the Dirichlet distribution instead. However, estimates of the conditional expectation

obtained when the two-parameter beta distribution is used, are known not to be robust to

distributional failure (Papke and Wooldridge, 1996). The reason behind this follows from

the fact that the two-parameter beta distributions do not form a linear exponential fam-

ily (neither do the Dirichlet distributions) and thus, consistency of the estimator is only

guaranteed if the score equations from the beta log-likelihood are unbiased. This unbi-

asedness will only hold if the true generating process is beta but not otherwise (Gourieroux

et al., 1984). Consequently, Kieschnick and McCullough (2003) and Papke and Wooldridge

(1996) argue that a better approach to model fractional data is the quasi-likelihood ap-

proach developed by Wedderburn (1974).

1.4.2 Using a Quasi-Likelihood Approach

Only the first two moments need to be specified when using a quasi-likelihood approach and

the variance has to be a function of the mean. Wedderburn (1974) presented the theoretical

framework of quasi-likelihood estimation and used a logit link function together with a

mean-variance relationship defined by V (µi1) = µ2i1 (1− µi1)2 to model the proportion of

barley leaf area that was infected with Rhynchosporium secalis (‘leaf blotch’), where µi1 =

E (Yi1). Despite the fact that the aim in Wedderburn (1974) was not directed towards

tackling the problem of analyzing compositional data, the response variable analyzed in

the paper may be viewed as arising out of a 2-part composition. The theoretical framework

provided in this paper led the way to develop alternative ways of imposing structure on

compositional data.

Papke and Wooldridge (1996), in fact, consider a 2-part composition, model the mean-

variance relationship of Yi1 as for a Bernoulli distribution, and suppose that the explana-

tory variables influence the compositional response variable Yi1 through

E (Yi1) = G
(
x′iβ

)
, (1.16)

where G (·) is a known function which satisfies 0 < G (·) < 1. This approach can handle

any zeros that might be present in the data and also ensures that the predicted values

of Y1 given xi lie in the interval (0, 1). In fact, G is usually taken to be a cumulative

distribution function such as the logistic function G (z) = exp(z)
1+exp(z) or G (z) = Φ (z) where

Φ (·) is the cumulative distribution function for the standard normal distribution.

This approach is attractive for a number of reasons. On choosing the function G (·) such

that it satisfies 0 < G (·) < 1, the log-likelihood function is well defined, may be generalized

to cater for more than two response variables through the multinomial distribution, may

be used even if zeros are in the data and it may be easily maximized using maximum
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likelihood estimation. With respect to this, it might be argued that since a Bernoulli

likelihood function is being used, this approach might simply be thought of in terms

of maximum likelihood estimation rather than quasi-likelihood. It should however be

emphasized that it is not actually the case that a fractional response variable follows

a Bernoulli distribution. The observations making up Y1 are being treated as pseudo-

Bernoulli and since Bernoulli distributions form a linear exponential family, provided that

(1.16) holds, the quasi-likelihood estimator will be a consistent estimator of the true vector

of parameters β and it will also be
√
n-asymptotically normal, irrespective of the actual

distribution of Y1.

Now, if following the ideas of McCullagh and Nelder (1989) and Cox (1996), the logit link

was to be used to specify the relationship between the conditional expectation of Y1 and

the vector of predictors X, the conditional variance is given by

Var (Yi1) = σ2G
(
x′iβ

) (
1−G

(
x′iβ

))
(1.17)

for some variance σ2 > 0. In case of failure of (1.17), Papke and Wooldridge (1996)

propose a robust approach to estimate the standard errors.

Kieschnick and McCullough (2003) performed a comparison study on two datasets with

common predictors, between various regression models and the quasi-likelihood approach

suggested by Papke and Wooldridge (1996). The beta regression model proposed by

Kieschnick and McCullough (2003) and the quasi-likelihood approach proposed by Papke

and Wooldridge (1996) stood out as the best performing techniques. However, the beta

regression model showed a better performance when the sample size being analyzed was

small.

1.5 A Novel Generalized Estimating Equations (GEE) Ap-

proach to model Compositional Data

Since the quasi-likelihood approach relies only on the mean-variance relationship, it avoids

potential problems which may arise due to distributional misspecification. If the quasi-

score equations that need to be solved to obtain the required parameter estimates, are

linear in the response variable being modeled, then unbiasedness and consistency of the

estimator follows directly from the specification of the first moment. So a quasi-likelihood

estimator is robust to the choice of a covariance structure for all the observations obtained

on the response variable. Such robustness does not however extend to the estimated

variance-covariance matrix of the quasi-likelihood estimator. Should the wrong covariance

structure be used, the model-based standard errors obtained for the quasi-likelihood esti-

mator will be incorrect. The quasi-likelihood estimator may, in this latter case, not retain

its asymptotic efficiency (Liang and Zeger, 1986). As mentioned in the previous section, in
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the case of using quasi-likelihood estimation with a logit link function and a mean-variance

specification as per the Bernoulli distribution for 2-part compositional data, Papke and

Wooldridge (1996) devised a robust way of estimating the standard errors. Generalized es-

timating equations (Liang and Zeger, 1986) is an alternative approach which may be used

to analyze compositional data. GEE also relies on the specification of the first two mo-

ments. Additionally, it caters for the dependence between the response variables through

the specification of a ‘working’ correlation matrix and estimates obtained under a GEE

approach are robust to misspecification of the ‘working’ correlation matrix (Liang and

Zeger, 1986).

The GEE approach is typically used to model longitudinal data, where the working cor-

relation structure is used to cater for the correlation which arises between the responses

that are achieved over time. Song and Tan (2000), however, use the GEE approach to

estimate the parameters of a generalized linear model for longitudinal response variables

with observations falling between 0 and 1. More specifically, Song and Tan (2000) assume

that the marginal means depend on explanatory variables through a logit link function,

and the mean-variance relationship is modeled as per the simplex distribution developed

by Barndorff-Nielsen and Jørgensen (1991). Following Prentice (1988), Song and Tan

(2000) introduce a second set of estimating equations to estimate the parameters mak-

ing up the working correlation matrix. A drawback of using the simplex distribution

(Barndorff-Nielsen and Jørgensen, 1991) to analyze compositional response variables, is

that unbiasedness of the score function will fail if the assumed distribution is not the sim-

plex. This method will thus deliver consistent estimators only when the assumed distribu-

tion holds. Furthermore, a random variable following the Barndorff-Nielsen and Jørgensen

(1991) simplex distribution may only take values between 0 and 1. This method however,

inspired Zhang (2013) to use Barndorff-Nielsen and Jørgensen (1991) multivariate simplex

distribution to model compositional response variables, where the relationship between

the mean of the response variables and the explanatory variables is modeled through a

multivariate logit link. The Fisher-scoring algorithm is used to obtain maximum likeli-

hood estimates of the model parameters. Zhang (2013) performs simulation studies by

generating logistic-normally distributed and multivariate simplex distributed data. Per-

formance of the simplex model proposed by Zhang (2013) and Aitchison (1986) approach

is compared and the results obtained from the multivariate simplex model are promising.

As with Aitchison (1986) regression model, however, the simplex model does not cater for

any zeros in the data.

The GEE approach has also been used by Warton and Guttorp (2011) to model composi-

tional count data, namely multivariate abundance data. Warton and Guttorp (2011) use a

loglinear marginal modeling approach with mean-variance relationship specified as for an

overdispersed Poisson distribution or as for a negative binomial distribution. In analogy

to Aitchison (1986) approach, Warton and Guttorp (2011) choose the first component as

reference component and exploit the difference in loglinear models, log (µij) − log (µi1),

j 6= 1, to model the ‘compositional effects’, that is, the influence of the explanatory vari-
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ables on the mean response of one compositional variable in relation to the first component.

An unstructured working correlation matrix is identified as the most suitable correlation

matrix to use with multivariate abundance data. However, typically, the sample size of

multivariate abundance data is less than the number of response variables. Warton and

Guttorp (2011) expect computational issues to arise in estimating the parameters of an

unstructured working correlation matrix. An independence working correlation structure

is thus preferred and robust standard errors are obtained either through the use of Liang

and Zeger (1986) sandwich estimator or through the use of bootstrapping.

The new approach being proposed in this thesis is directed towards modeling continuous

compositional data and is also based on GEE. No detailed distributional specification will

be made for the compositional response variables and the compositions will be assumed to

be obtained through performing the closure operation (1.1) on a set of latent variables Ẏj ,

j = 1, . . . , J , with mean-variance relationship pertaining to the family of gamma distribu-

tions with constant coefficient of variation. The choice of a notional gamma distribution

as the basis of a model for compositional data bears a similarity to the method used by

Gilchrist (1982) for the specific case of J = 2; but the approach proposed by Gilchrist

(1982) is quite different, and appears to be difficult to generalize.

In a similar manner to Warton and Guttorp (2011), a loglinear model is also used in this

thesis but in this case, the loglinear model is specified for the marginal mean of each latent

variable. Generalized estimating equations are developed to estimate the parameters in the

loglinear model and through the multiplicative nature of the model, it will be shown how

this model provides an interchangeability between the latent and compositional response

variables and that the differences among the parameters relating to the latent variables

correspond to the compositional effects. By further considering that the fitted values

corresponding to the compositional response variables should also be sum-constrained, a

new system of estimating equations for compositional data is devised. This new system

will be referred to by the name hybrid system. For the special case J = 2, the hybrid

system is shown to be the same as Wedderburn’s estimating equations (Wedderburn, 1974),

which were used for the analysis of barley leaf data. A generalization of Wedderburn’s

system of estimating equations to J > 2 is then developed by constructing generalized

estimating equations for a multivariate logit model and by using a working variance-

covariance structure that is suitable for modeling compositional response variables. This

new approach, which will be referred to by the name generalized Wedderburn method, is

simple to implement via iterative least squares. It will also be shown how through this

approach the marginal means of compositional variables may be modeled directly, and

any of the problematic issues encountered by the other approaches are also avoided. In

particular, the model assumptions that are used to analyze subcompositions are consistent

with those used to analyze a full composition and this new approach may also be used

in the presence of zeros. It might be argued that the fact that the parameter estimates

obtained from analyzing a full composition using the generalized Wedderburn model are

not in general the same as those obtained when a subcomposition is analyzed presents
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a shortcoming of the model. We argue that, on the contrary, such a requirement is too

strict for use with the generalized Wedderburn approach and might even be undesirable in

general. More detail on this new approach will be given throughout the rest of the thesis.

1.6 Structure of the Thesis

This thesis is divided into six chapters.

Chapter 2 presents the theory behind the development of a multivariate logit model to

be used with continuous compositional data. Estimation of the model parameters is car-

ried out using the technique of generalized estimating equations with a working variance-

covariance structure that reflects the properties of compositional variables. Different ways

in which standard errors may be estimated are also explored and a new model-based

variance estimator which ‘borrows strength across subjects’ (Liang and Zeger, 1986) is de-

veloped. Measures which are appropriate for testing the quality of fit of the multivariate

logit model for compositional data are also presented.

As mentioned in Section 1.2.2, the standard methodology used to model compositional

response variables is that devised by Aitchison (1982, 1986). Chapter 3 will provide more

detail on Aitchison’s regression method and it will show how Aitchison’s regression model

relates to a multiplicative regression model that is introduced in Chapter 2. Despite be-

ing two different methods, Aitchison’s method and the generalized Wedderburn method

have some striking similarities of form. The formal similarities of the two approaches will

be presented in this chapter together with an in-depth study of the properties of esti-

mators obtained under the two approaches. An efficiency comparison between the GEE

estimator used under the generalized Wedderburn method and the ML estimator used

under Aitchison’s method is carried out using a small simulation study, under various

sample sizes, coefficients of variation and correlation coefficients, with compositional data

being generated through multivariate lognormally distributed latent variables. The gen-

eralized Wedderburn method and Aitchison’s method are then compared on two widely

used datasets from the compositional data literature, the Arctic Lake dataset (e.g. Aitchi-

son, 1986; Tsagris et al., 2011; Maier, 2014) and the Foraminiferal dataset (e.g. Aitchison,

1986; Palarea-Albaladejo et al., 2007; Scealy and Welsh, 2011; Tsagris, 2015).

Chapter 4 makes some comparisons with Dirichlet models. Since the Dirichlet regression

model may be specified using the same logit model that is estimated by the generalized

Wedderburn approach, in Chapter 4 we first present some theoretical background on the

Dirichlet regression model. A Dirichlet regression model is then fitted to the Arctic Lake

dataset and the resulting fit is compared to that obtained by the generalized Wedderburn

method. The estimates obtained from fitting the Dirichlet regression model to the Arctic

Lake dataset are then used to generate data for a simulation study which compares the

efficiency of the GEE estimator, used under the generalized Wedderburn approach, with
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the ML estimator used in the Dirichlet regression model.

Chapter 5 contains a brief introduction to an early development version of the cglm pack-

age. This R package may be used to fit the newly proposed generalized Wedderburn

method and Aitchison’s multivariate regression model to compositional data. It also pro-

vides basic tools for model summary and model criticism.

Finally, Chapter 6 contains a summary of the material presented in this thesis together

with some concluding comments and suggestions for further studies.
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Chapter 2

A Multivariate Generalized Linear

Model

2.1 Introduction

Amongst researchers of compositional data analysis, the method which is most likely to

be used to model the influence of predictors on compositional response variables is that

of logratio-transforming the data, assuming the distribution of the transformed data to

be the multivariate normal distribution and then proceeding with using ordinary least

squares estimation. However, as mentioned in Chapter 1, the logratio methodology fails

when dealing with zero-valued responses. Also, the logratio methodology models the mean

of the logratios, rather than the mean of the compositional response variables directly, so

interpretation of regressions based on logratios is rather indirect.

In this work, a latent multiplicative regression model (MRM) is first introduced. This

model is based on the consideration that in modeling compositional response variables,

treating the effects and errors as multiplicative on the untransformed components is more

suitable than treating them as additive. Also, rather than modeling transformed data,

the MRM transforms the model expectations, in the already-familiar way that generalized

linear models represent an alternative to data transformation prior to linear modelling.

The fact that a multiplicative model is used to model compositional data is based on the

analogy of the operation of perturbation 1 (Aitchison, 1986), which is a multiplicative

operation in the simplex, with the operation of translation 2, the latter being an additive

1

Definition 2.1.1. The perturbation between any two J-part compositions Y∗ and Y is defined by

Y∗ ⊕Y = C (Y ∗1 Y1, . . . , Y
∗
J YJ)

where ⊕ is the notation that is typically used to denote the perturbation operation and C (·) denotes the
closure operation that has been defined in (1.1).

2Consider two compositions Y and Y∗ which are related by Y = p ⊕ Y∗. Let W, P∗ and W∗
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operation in the real space.

The motivation for the MRM modeling the mean on the original scale comes from Firth

(1987, 1988), who has shown that modeling the mean on the original scale through a

multiplicative model rather than on the log-transformed data might yield better efficiency

of the estimators, as well as overcoming the aforementioned problems of the analysis of

logarithms.

The latent multiplicative regression model (MRM) is presented in Section 2.2. A brief

note on identifying the parameters of the MRM is presented in Section 2.3. Section 2.4

focuses on parameter estimation. Since only the first two moments of the latent variables

underlying the compositional response variables and no further distributional assumption

is made in the specification of the latent MRM, it will be shown how quasi-likelihood

estimation may be used to estimate the parameters in the MRM. Details on the general

technique of quasi-likelihood estimation and properties of the quasi-likelihood estimator

are provided in Section 2.4.1. Section 2.4.2 then explains how quasi-likelihood methods

may be applied to estimate the parameters in the MRM. A quasi-likelihood estimator is

robust to the specification of a covariance structure but this robustness does not extend

to the estimated variance-covariance matrix of the quasi-likelihood estimator. This draw-

back is overcome through using the technique of generalized estimating equations (GEE).

The technique of generalized estimating equations uses the mean-variance specification of

quasi-likelihood estimation but it is also able to cater for any correlation that may arise

between the observed variables by introducing a working correlation matrix. Section 2.4.3

shows how generalized estimating equations may be applied to estimate the parameters in

the multiplicative regression model. It will also be shown that the generalized least squares

estimator which is used to estimate the parameters of interest is invariant under differ-

ent dispersion and correlation parameters. Independence estimating equations with equal

dispersion parameters may thus be used to estimate the model parameters, which makes

this system of estimating the parameters very appealing. The problem with using such a

system, however, is that the sum of the estimated means is not constrained to be equal to

1. Compositional response variables are sum constrained, so their estimated means should

be constrained accordingly. An alternative new system of estimating equations, referred to

by the name hybrid is developed in Section 2.4.5. The hybrid system retains the invariance

property of the generalized least squares estimator for the parameters of interest whilst

denote J − 1-vectors whose components are the logratios defined as log
(

Yj

YJ

)
, log

(
pj
pJ

)
and log

(
Y ∗
j

Y ∗
J

)
, for

j = 1, . . . , J − 1, respectively. Then

P∗ + W∗ =

([
log

(
Y1Y

∗−1
1

YJY
∗−1
J

)
+ log

(
Y ∗1
Y ∗J

)]
, . . . ,

[
log

(
YJ−1Y

∗−1
J−1

YJY
∗−1
J

)
+ log

(
Y ∗J−1

Y ∗J

)])
= ...

=

(
log

(
Y1

YJ

)
, . . . , log

(
YJ−1

YJ

))
= W,

which is in the form of a translation in IRJ−1.
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also imposing the sum constraint on the estimated means. In Section 2.5, the estimating

equations obtained under the hybrid system when J = 2 are also shown to be the same as

Wedderburn’s estimating equations (Wedderburn, 1974), which were used for the analysis

of barley leaf data. Through this equivalence, the hybrid system for J = 2 inherits all

the desirable properties of Wedderburn’s quasi-likelihood estimator. Based on this devel-

opment, in Section 2.6 a generalization of Wedderburn’s system of estimating equations

to J > 2 is sought and developed by constructing generalized estimating equations for

a multivariate logit model. A working variance-covariance structure that is suitable for

modeling compositional response variables is then identified in Section 2.7. Different ways

in which standard errors may be estimated are explored in Section 2.8. A new estimator

of the standard errors which ‘borrows strength across subjects’ (Liang and Zeger, 1986)

is developed in Section 2.8.2. The final section first presents different measures that are

used in testing quality of fit in a typical GEE analysis. Subsequently, measures which

are appropriate for testing the quality of fit of our logit model for compositional data are

presented.

2.2 The Latent Multiplicative Regression Model (MRM)

For a latent MRM, suppose that for a sample of size n and a set of predictors X1, . . . , Xp,

the random variables Ẏij , i = 1, . . . , n, j = 1, . . . , J are latent variables that are modeled

multiplicatively as

Ẏij = mi

(
θ̇i,βj

)
Eij (2.1)

where the function mi for the ith case is defined as

mi (θ,β) = exp
(
θ + x

′
iβ
)
. (2.2)

Given values of θ̇i, βj and xi, mi

(
θ̇i,βj

)
is the conditional expectation of Ẏij which

expresses dependence on predictor variables Xk, k = 1, . . . , p, through the log link, Eij is

the error term associated with Ẏij , θ̇i is an unknown (nuisance) parameter that will need

to be estimated, βj is a (p+ 1)-vector of coefficients that also needs to be estimated, xi

is a (p+ 1)-vector with xi0 = 1 since the first element corresponds to the intercept and

the remaining elements correspond to the observations obtained by the ith case in the

sample on X1, . . . , Xp. Note that the intercept is introduced in the model since we are not

assuming that the explanatory variables X1, . . . , Xp can take some special zero value.

The error vectors Ei = (Ei1, . . . , EiJ)
′

are assumed to be independent of one another, with

E (Ei) = 1. (2.3)

Since the variance-covariance matrix of Ei is the same for all i it will be denoted by Σ̇
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and will be taken to be of the form

Σ̇ = φΩ
1
2WΩ

1
2 , (2.4)

where φ is a common dispersion parameter, Ω = diag (ω1, . . . , ωJ) with ω1, . . . , ωJ being

relative dispersion parameters attributed to the J random variables Ei1, . . . , EiJ and W
is the correlation matrix.

Letting αjj′ denote the elements in the J × J matrix W and using equations (2.1) and

(2.4), it follows that

E
(
Ẏij

)
= mi

(
θ̇i,βj

)
, Var

(
Ẏij

)
= φωj

[
mi

(
θ̇i,βj

)]2
Cov

(
Ẏij , Ẏij′

)
= φ
√
ωj
√
ωj′mi

(
θ̇i,βj

)
mi

(
θ̇i,βj′

)
αjj′ .

(2.5)

It may be noticed that the MRM is specified in terms of the variables Ẏi1, . . . , ẎiJ . At

this stage this might seem confusing, since our aim is that of modeling compositional

variables Yi1, . . . , YiJ . However, recall that compositional variables are obtained as a result

of perfoming the closure operation (1.1) on Ẏi1, . . . , ẎiJ . The variables Ẏi1, . . . , ẎiJ will thus

be considered as latent variables through which we obtain the observed compositional

variables Yi1, . . . , YiJ . To get a better insight into why the model for the latent variables

may be used to model the compositional response variables, consider the following.

Let the latent variable Ẏij and its compositional counterpart Yij be related through the

equation

Ẏij = ciYij . (2.6)

On using the closure operation (1.1), it may be noted that ci is some unknown positive

constant defined by

ci = Ẏi1 + . . .+ ẎiJ . (2.7)

Since the value of ci is related solely to case i, if its value were to change to say c∗i , the

only change in the MRM (2.1) would be in the values of the parameters
(
θ̇1, . . . , θ̇n

)
,

which are nuisance parameters. They have been introduced in model (2.1) to cater for

the rescaling of Ẏ1j , . . . , Ẏnj . So the fact that a change in ci leads to a change in the

values of
(
θ̇1, . . . , θ̇n

)
should not be considered a problem. The parameters of interest are

(β1, . . . ,βJ) and by changing the value of ci, the values of (β1, . . . ,βJ) are not affected.

An advantage of the just mentioned, is that the value of the constants c1, . . . , cn may be

taken to be any positive value of choice, including the value of unity. On taking all cis

to be equal to one, the latent variables Ẏij will be equal to the compositional variables

Yij , so in practice, the MRM (2.1) may be used to model the compositional variables Yij

directly.

The idea behind using an interchangeability between the compositional (constrained) Yij
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and the unconstrained Ẏij may be viewed as analogous to the ‘Poisson trick’ (Palmgren,

1981; Kosmidis and Firth, 2011) which gives the interchangeability of the Poisson distri-

bution and the multinomial distribution for loglinear models and multinomial logit models

respectively, since the multinomial distribution is invoked by conditioning on the observed

marginal totals for the predictors of a Poisson sampling model for a contingency table. In

the approach proposed here for compositional data, the compositional response variables

arise out of the closure operation on the latent variables and despite the fact that no de-

tailed distributional specifications will be made in this novel approach, the analogy with

a multinomial logit model may be appreciated through considering equation (2.8) which

follows shortly.

The interchangeability between Yijs and Ẏijs is also obtained in the estimation procedure.

In order to estimate the model parameters in (2.1), focus will be directed towards modeling

the mean of Ẏij through the latent multiplicative regression model defined in equations

(2.1) and (2.5). More details on this will be given in Section 2.4.3. Some issues related

with identification of the model parameters need to be discussed before delving into how

to estimate the model parameters.

2.3 Identification of the Parameters of the Latent MRM

Due to the sum constraint, when dealing with compositional data, it is the components

making up a composition taken in relation to some reference component (the ratios intro-

duced by Aitchison (1986)), that are of importance, rather than the components them-

selves. Without loss of generality, taking the last component as the reference component,

the logratios of expectations, as defined through the MRM, take the form

log
[
E
(
Ẏij

)]
− log

[
E
(
ẎiJ

)]
= (βj0 − βJ0)xi0 + (βj1 − βJ1)xi1 + · · ·+ (βjp − βJp)xip.

(2.8)

As a consequence of (2.8), without imposing any constraints on the parameters of the

latent MRM, parameter identification is only possible for differences (βjk − βJk). If any

constant is added to βj0, . . . , βjp and/or βJ0, . . . , βJp in the MRM (2.1), the distribution

of the composition will not be changed. So to achieve a 1-1 mapping between parameter

values and distributions, a reparametrization on the β parameters is needed. In Section

2.5, it will be shown that through the use of a newly developed system of estimating

equations, compositional data may actually be modeled through a logit model with the

model coefficients being the differences (βjk − βJk) and focus will be directed towards the

differences (βjk − βJk). The theoretical background that needs to be prepared prior to

that section will however be based on the full set of β parameters.

Also note that without imposing a constraint on the dispersion parameters ω1, . . . , ωJ or

φ, it will not be possible to identify all dispersion parameters. Without loss of generality,

in this thesis, ω1, . . . , ωJ will be assumed to be relative dispersion parameters which sum
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to J .

2.4 Estimating the Parameters of the Latent MRM

2.4.1 Quasi-Likelihood Estimation

Estimation of the parameters for the proposed latent MRM (2.1) may be carried out using

an adaptation of quasi-likelihood estimation. Prior to explaining how quasi-likelihood esti-

mation may be slightly modified to be used to estimate the parameters of the multiplicative

regression model, an overview of the quasi-likelihood estimation technique (Wedderburn,

1974; McCullagh, 1983; Firth, 1993b) is first presented.

Suppose that for a sample of size n, an n-vector of response variables Ẏ satisfies

E
(
Ẏ
)

= m (β) and Var
(
Ẏ
)

= φV̇ (m (β)) , (2.9)

where the random variables in Ẏ are assumed to be independent of each other, β is

a vector of unknown regression parameters that will need to be estimated and m (β)

has components mi (β), i = 1, . . . , n, where the functions mi (β) express dependence on

predictor variables Xk, k = 1, . . . , p, through a generalized linear model g (mi (β)) = x′iβ,

where g (·) is a specified link function. Thus, the function mi (β) is defined by

mi (β) = g−1
(
x
′
iβ
)
. (2.10)

Also, in (2.9), φ is the dispersion parameter and V̇ (m (β)) is a symmetric, positive-

definite matrix of known functions of unknown means mi (β) of Ẏi. Functions of the

mean that are used to make up V̇ (m (β)) may take a form which does not necessarily

correspond to that of a specific distribution. As an example of this consider the function

(mi (β))2 (1−mi (β))2, which is the variance function that is used by Wedderburn (1974)

in his study on the proportion of barley leaf area that was infected with Rhynchosporium

secalis.

Let Ḋ denote an n× (p+ 1) matrix of derivatives with components

∂mi

∂βk
=
∂mi

∂ηi

∂ηi
∂βk

=
∂mi

∂ηi
xik,

where mi stands for mi (β), ηi stands for ηi (β) and ηi (β) = x
′
iβ. Estimation of the model

parameters may then proceed by setting up the quasi-score vector

U = Ḋ′
[
Var

(
Ẏ
)]−1 (

Ẏ−m (β)
)
, (2.11)
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which yields the quasi-likelihood equations

U = Ḋ′
[
Var

(
Ẏ
)]−1 (

Ẏ−m (β)
)

= 0. (2.12)

An estimate of β is obtained through solving equations (2.12). Since φ may easily be taken

out of the equation (2.12), the estimates of β do not depend on the value of the dispersion

parameter. In fact, φ may be estimated using a moment estimator based on Pearson

residuals, at the very end, that is, once convergence has been reached in the estimates of

β.

So for quasi-likelihood estimation to be carried out, the only specifications that are required

are those of the first and second moment of the response vector. In this respect, the

appropriateness of the term ‘likelihood’ in this estimation technique’s name might be

questioned. However, Wedderburn (1974) used the term quasi-likelihood because of the

similarities between the log quasi-likelihood function and the log-likelihood function or

more specifically, in the behaviour of the vector U and that of the likelihood score vector
∂l
∂β . Effectively, under (2.9), the properties

E (U) = 0 and Var (U) = −E
(
∂U

∂β

)
= Ḋ′

[
Var

(
Ẏ
)]−1

Ḋ (2.13)

hold if U is a quasi-score function and also if it is the score vector obtained from a regular

log-likelihood function.

Additionally, asymptotic properties of consistency, normality and unbiasedness of max-

imum likelihood estimators also hold for quasi-likelihood estimators (McCullagh, 1983).

This latter property is due to the fact that first-order asymptotic theory of maximum

likelihood estimators and related inference procedures are based on properties (2.13).

Consequently, under the usual limiting conditions on the eigenvalues of Var (U) 3 and

other theoretical conditions4, the inverse of the variance-covariance matrix Var (U) plays

the same role as the Fisher information matrix for regular likelihood functions. Thus

Var
(
β̂
)
≈ [Var (U)]−1 =

(
Ḋ′
[
Var

(
Ẏ
)]−1

Ḋ
)−1

. (2.14)

Moreover, under the mean-variance specification (2.9), quasi-likelihood estimators have

been shown to maximize asymptotic efficiency amongst unbiased estimating equations that

are linear in Ẏ (Firth, 1987, 1993b). Firth (1987) has also shown that quasi-likelihood esti-

mators preserve ‘fairly high efficiency under moderate departures’ from linear exponential

family distributions.

3‘Eigenvalues of Var (U) should tend to infinity for all β in an open neighbourhood of the true parameter
point’ (McCullagh and Nelder, 1989, p. 333).

4‘Roughly speaking, as the sample size n → ∞, the quasi-score vector U should be asymptotically
normal’ (McCullagh and Nelder, 1989, p. 333).
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2.4.2 Applying Quasi-Likelihood Estimation to the MRM

In this section, it will be shown how quasi-likelihood estimation may be used to estimate

the parameters of the MRM. To be able to follow how the material presented in Section

2.4.1 will be used in this section, it should be noted that since compositional data takes the

form of an n×J matrix of observations, the n-vector of response variables Ẏ that has been

used in the previous section, will now be taken to be an nJ-vector of response variables.

More specifically, Ẏ =
(
Ẏ
′

1, . . . , Ẏ
′

n

)′
where for i = 1, . . . , n, Ẏi =

(
Ẏi1, . . . , ẎiJ

)′
. Also,

the vector of parameters that needs to be estimated will now be denoted by β+ where β+ =(
θ̇
′
,β
′
)′

; here θ̇ =
(
θ̇1, . . . , θ̇n

)′
and β is a J (p+ 1)-vector given by β =

(
β
′
1, . . . ,β

′
J

)′
,

where for (j = 1, . . . , J), βj = (βj0, . . . , βjp)
′
. Then, using (2.5), it may be seen that

E
(
Ẏ
)

= m
(
β+
)

and Var
(
Ẏ
)

= φΩV̇
(
m
(
β+
))
, (2.15)

where the random variables in Ẏ are assumed to be independent of each other, m
(
β+
)

has components mi

(
θ̇i,βj

)
where mi (θ,β) is the function defined in (2.2), V̇

(
m
(
β+
))

is an nJ × nJ variance-covariance matrix and the variances making up V̇
(
m
(
β+
))

are[
mi

(
θ̇i,βj

)]2
, so V̇

(
m
(
β+
))

is a symmetric, positive-definite matrix of known functions

of unknown means mi

(
θ̇i,βj

)
of Ẏij .

The relationship between the first two moments for the MRM, presented in (2.15), is in

the same form as that presented in (2.9). One main difference between (2.9) and (2.15)

is that for the latent MRM, the dispersion parameter is allowed to take different values

across the J components. So rather than having one dispersion parameter φ, for the latent

MRM this is generalized to the matrix φΩ, Ω being a diagonal matrix whose elements are

ω1, . . . , ωJ , that also need to be estimated.

Under the latent MRM, let Ḋ =
(
Ḋ′1, . . . , Ḋ

′
n

)′
where Ḋi is a J × (J (p+ 1) + n) matrix

whose elements are

∂mi

(
θ̇i,βj

)
∂βjk

= mi

(
θ̇i,βj

)
xik and

∂mi

(
θ̇i,βj

)
∂θ̇i

= mi

(
θ̇i,βj

)
. (2.16)

The quasi-score vector takes the form U = (U1, . . . ,UJ+1)
′
, where

• Uj , is a p + 1-vector that involves the derivatives of mi

(
θ̇i,βj

)
with respect to

(βj0, . . . , βjp), for j = 1, . . . , J ,

• UJ+1 is an n-vector that involves the derivatives of mi

(
θ̇i,βj

)
with respect to(

θ̇1, . . . , θ̇n

)
.
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The (J(p+ 1) + n) quasi-score equations based on the latent responses Ẏij are then

Ujs =
1

φωj

n∑
i=1

 Ẏij

mi

(
θ̇i,βj

) − 1

xi,s−1 = 0 for j = 1, . . . , J, s = 1, . . . , p+ 1 (2.17)

UJ+1,i =
1

φ

J∑
j=1

 1

ωj

 Ẏij

mi

(
θ̇i,βj

) − 1

 = 0 for i = 1, . . . , n. (2.18)

Now, as mentioned already, one of the advantages of using quasi-likelihood estimation to

estimate the parameters of the MRM is that it requires only the mean-variance relation-

ship to be stipulated, so it avoids potential problems in the estimators resulting due to

distributional misspecification. A crucial aspect of using such a technique to estimate the

parameters of the latent MRM, as will be shown shortly, is also that the latent variables

Ẏij in the quasi-score equations may be replaced with the compositional response variables

Yij without affecting the resulting estimates of β10, . . . , βJp.

Using (2.6), the quasi-score equation (2.17) may be written in terms of Yijs as follows:

Ujs =
1

φωj

n∑
i=1

 ciYij

mi

(
θ̇i,βj

) − 1

xi,s−1 = 0, (2.19)

where

ci = Ẏi1 + · · ·+ ẎiJ (2.20)

= exp
(
θ̇i

) [
exp

(
β
′
1xi

)
Ei1 + · · ·+ exp

(
β
′
Jxi

)
EiJ

]
.

Now, on changing scale, from ci to say c∗i ,

c∗i = exp
(
θ̇∗i

) [
exp

(
β
′
1xi

)
Ei1 + · · ·+ exp

(
β
′
Jxi

)
EiJ

]
. (2.21)

Also, on changing the scale, the value of the mean mi

(
θ̇i,βj

)
= exp

(
θ̇i + x

′
iβj

)
will also

change due to a change in the value of θ̇i. Consequently, the value of

ciYij

mi

(
θ̇i,βj

) =
exp

(
θ̇i

) [
exp

(
β
′
1xi

)
Ei1 + · · ·+ exp

(
β
′
Jxi

)
EiJ

]
Yij

exp
(
θ̇i

)
exp

(
x
′
iβj
) (2.22)

is equal to
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c∗iYij

mi

(
θ̇i,βj

) =
exp

(
θ̇∗i

) [
exp

(
β
′
1xi

)
Ei1 + · · ·+ exp

(
β
′
J−1xi

)
Ei,J−1 + EiJ

]
Yij

exp
(
θ̇∗i

)
exp

(
x
′
iβj
) , (2.23)

because of the cancellation of the terms exp (θi) and exp (θ∗i ) in equations (2.22) and (2.23)

respectively. In (2.22) and (2.23), the change that occurs in θ̇i in the numerator cancels

with the change that also occurs in the denominator.

So whichever value of ci is used,
n∑
i=1

 ciYij

mi

(
θ̇i,βj

) − 1

xi,s−1 will always have the same

value since it will always be free of θ̇i and will lead to the same estimates of β10, . . . , βJp.

It therefore follows that the value of ci may actually be set equal to 1 and in so doing the

quasi-score equations will be in terms of the observed compositional response variables Yij

rather than in terms of the unobserved Ẏij .

The quasi-score equations may also still be used if any zeros are present in the data. Also,

the quasi-score equations that result for the latent MRM are linear in Ẏij so consistency

of the estimator follow directly from the specification of the first moment. So a quasi-

likelihood estimator is robust to the choice of a covariance structure V̇
(
m
(
β+
))

under

both independence and non-independence of Ẏi1, . . . , ẎiJ . The problem with using this

estimation technique is however that robustness does not extend to the estimated variance-

covariance matrix of the quasi-likelihood estimator. Should the wrong covariance structure

be used, the model-based standard errors obtained for the quasi-likelihood estimator will

be incorrect. The quasi-likelihood estimator may in general, in this latter case, not retain

its asymptotic efficiency (Liang and Zeger, 1986).

So, if there is reason to believe that random variables Ẏi1, . . . , ẎiJ are non-independent,

a covariance structure which caters for this dependence should be used. In dealing with

latent variables Ẏij from which compositional variables Yij arise, it is more realistic to con-

sider the Ẏijs to be related. The dependence between these latent variables may be catered

for by using the technique of generalized estimating equations (GEE) which necessitates

the specification of a ‘working’ correlation matrix.

A description of how the method of generalized estimating equations (Liang and Zeger,

1986) is applied for the estimation of the parameters in the latent multiplicative model

follows. All of the advantages of using quasi-likelihood estimation will continue to hold

under the GEE framework, even if the working correlation matrix is misspecified. Let
̂

Var
(
β̂
+
)

denote the estimator of the variance-covariance matrix Var
(
β̂
+
)

achieved under

a typical GEE procedure (more detail on how to estimate standard errors will be given in

Section 2.8). The consistency of
̂

Var
(
β̂
+
)

is determined by the specification of the mean

model, not by the specification of the working correlation matrix. This makes the GEE

estimator more robust than the quasi-likelihood estimator.
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2.4.3 Applying Generalized Estimating Equations to the Latent MRM

Consider once again the proposed latent multiplicative regression model (2.5) and consider

the nJ-vector of latent variables Ẏ where Ẏ =
(
Ẏ
′

1, . . . , Ẏ
′

n

)′
. For i = 1, . . . , n, under the

generalized estimating equations (GEE) framework proposed by Liang and Zeger (1986),

the variance-covariance matrix of Ẏi is assumed to take the form

Var
(
Ẏi

)
= φA

1
2
i W (α)A

1
2
i (2.24)

where φ is the scalar dispersion parameter, Ai is a J × J diagonal matrix whose elements

are
Var(Ẏij)

φ , Var
(
Ẏij

)
being a function of the mean of Ẏij , and W (α) is a J ×J ‘working’

correlation matrix that is fully specified by the vector of parameters α.

Based on Paik (1992), the variance-covariance structure (2.24) will be slightly modified for

the latent MRM to allow unequal dispersion parameters (φω1, . . . , φωJ) for the J latent

variables Ẏ1, . . . , ẎJ . The variance-covariance structure that will be considered for the

latent MRM is thus

Var
(
Ẏi

)
= φΩ

1
2A

1
2
i W (α)A

1
2
i Ω

1
2 (2.25)

where Ω = diag (ω1, . . . , ωJ), Ai is a J × J diagonal matrix defined by

Ai = diag

([
mi

(
θ̇i,β1

)]2
, . . . ,

[
mi

(
θ̇i,βJ

)]2)
(2.26)

and W (α) is a J × J working correlation matrix where αjj = 1.

Let Ḋ =
(
Ḋ′1, . . . , Ḋ

′
n

)′
where Ḋi is a J × (J (p+ 1) + n) matrix whose elements are

∂mi

(
θ̇i,βj

)
∂βjk

= mi

(
θ̇i,βj

)
xik and

∂mi

(
θ̇i,βj

)
∂θ̇i

= mi

(
θ̇i,βj

)
, (2.27)

and let Var
(
Ẏ
)

be an nJ by nJ block diagonal matrix with variance-covariance matrices

Var
(
Ẏi

)
on the diagonal. Then, as per Liang and Zeger (1986), estimation of the latent

MRM parameters using GEE proceeds by setting up the estimating equations

Ḋ′
[
Var

(
Ẏ
)]−1 (

Ẏ−m
(
β+
))

= 0, (2.28)

where if the correlation matrix W (α) is set equal to the identity matrix, (2.28) reduce

to the quasi-likelihood equations (2.12), showing that quasi-likelihood equations may be

viewed as a special case of generalized estimating equations. The main difference be-

tween the two sets of equations lies in the specification of Var
(
Ẏ
)

. The quasi-likelihood
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equations are solved to get an estimate of β+, φ and Ω whilst the generalized estimating

equations are solved to get estimates of β+, φ, Ω and also of α.

For the latent MRM, let the vector of generalized estimating functions be denoted by

UGEE where UGEE =
(
UGEE′

1 , . . . ,UGEE′
J+1

)′
where

• UGEE
j , j = 1, . . . , J , is the vector of estimating functions involving the derivatives

of mi

(
θ̇i,βj

)
with respect to βj0, . . . , βjp,

• UGEE
J+1 is the vector of estimating functions involving the derivatives of mi

(
θ̇i,βj

)
with respect to θ̇1, . . . , θ̇n.

So as to proceed with deriving the estimating equations for the latent MRM, a working

correlation needs to be specified. In general, the choice of this working correlation matrix

will influence efficiency of the GEE estimator. The closer the specified correlation matrix

to the truth, the higher the efficiency of the GEE estimator. Zeger (1988) has shown that

when the correlation between the response variables is not too large, the estimator under

the independence working model is relatively efficient. Zhao et al. (1992) concur with

Zeger (1988) but also show that ‘strong dependencies in the true correlation matrix that

are not acknowledged in specifying the working correlation matrix can to lead important

loss of efficiency’. Fitzmaurice (1995) shows that efficiency of the resulting estimator may

be as low as 60% when compared to the efficiency under the correct correlation structure.

A working correlation matrix that may be deemed suitable for time-specific dependency

is the first-order autoregressive (AR-1) where elements in the correlation matrix take the

form Wjj′ = α

∣∣∣j−j′ ∣∣∣
. If there is no time-specific dependency, it is recommended to use the

exchangeable correlation structure, also known as equicorrelation or compound symmetry,

for which all off-diagonal elements are equal. When dealing with compositional data, there

is invariance in the relabeling of the different components making up the response vector Yi

so the concept of time is irrelevant in this context. A working correlation matrix that does

not cater for time-dependency should therefore be used. The exchangeable correlation

matrix, a matrix in which all correlations are taken to be equal, or an unstructured

correlation matrix, a matrix that assumes unconstrained pairwise correlations where each

correlation has to be estimated through the data, are good candidates to be used as

working correlation matrices with estimating equations for compositional data. Detail on

generalized estimating equations for the latent MRM when an unstructured correlation

matrix is used will be provided in the following section. Details for estimating equations

with the exchangeable structure follow directly from the work provided for the more general

unstructured correlation matrix.
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2.4.3.1 Estimating Equations for the Latent MRM under an Unstructured

Correlation Matrix

Let the elements of [W (α)]−1 be denoted by λjj′ , j, j
′

= 1, . . . , J . Under an unstructured

correlation matrix, the (J (p+ 1) + n) generalized estimating equations based on latent

Ẏij are

UGEEjs =
1

φ
√
ωj

J∑
j′=1

 λjj′
√ωj′

n∑
i=1

 Ẏij′

mi

(
θ̇i,βj′

) − 1

xi,s−1

 = 0 (2.29)

for j = 1, . . . , J, s = 1, . . . , p+ 1,

UGEEJ+1,i =
1

φ

J∑
j=1

 1
√
ωj

 Ẏij

mi

(
θ̇i,βj

) − 1

 J∑
j′=1

λjj′
√ωj′

 = 0 for i = 1, . . . , n. (2.30)

On using the interchangeability between the latent Ẏij and compositional Yij , the estimat-

ing equations may alternatively be represented as

UGEEjs =
1

φ
√
ωj

J∑
j′=1

 λjj′
√ωj′

n∑
i=1

 Yij′

mi

(
θi,βj′

) − 1

xi,s−1

 = 0 (2.31)

for j = 1, . . . , J, s = 1, . . . , p+ 1,

UGEEJ+1,i =
1

φ

J∑
j=1

 1
√
ωj

(
Yij

mi

(
θi,βj

) − 1

)
J∑

j′=1

λjj′
√ωj′

 = 0 for i = 1, . . . , n (2.32)

where θi, (i = 1, . . . , n), denotes the nuisance parameter attributed to using Yij instead of

Ẏij .

So as to obtain estimates of β and θ from estimating equations (2.31) and (2.32) respec-

tively, an iterative process needs to be used. It is important to note that despite the fact

that this section focuses on estimating equations using the unstructured working correla-

tion matrix, the description of a typical GEE estimating procedure which follows, holds

for any choice of a working correlation matrix.

An estimation procedure based on that of Liang and Zeger (1986), would involve finding

the initial estimate of β+ =
(
θ
′
,β
′
)′

. This is then followed by finding an estimate of α

and Ω given the current estimate of β+. Once the initial estimates of α and Ω have been

obtained, modified Fisher-scoring is then used to update the estimates of β+. At every

iteration step, β+ is estimated using the generalized least squares estimator:

β̂
+

=
(
Ḋ
′
V̇−1Ḋ

)−1
Ḋ
′
V̇−1Z (2.33)

where Z is the vector of working variates; the latter alternatively known as the modified
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dependent variable. In a typical GEE procedure, Z is worked out using

Z = Ḋβ+ + S (2.34)

where S is an nJ-vector defined by S = Ẏ−m
(
β+
)
.

Liang and Zeger (1986) refer to the iterative procedure used as modified Fisher scoring

due to taking the limiting value (as n tends to infinity) of the expectation of the derivative

of the quasi-score functions rather than the expectation of the derivative itself. Also in

line with Liang and Zeger (1986), in a typical GEE estimation procedure, estimation of

the common dispersion parameter φ is carried out once convergence for β+ is achieved,

since φ cancels out of the estimating equations (2.31) and (2.32).

The iterative procedure that will be used to estimate the MRM model parameters β+ will

be slightly different. More details on this are presented in the following sections.

2.4.3.2 Performing GLS estimation in Two Steps

In the GEE estimation procedure described in the previous section, the vector of estimates

β̂
+

is estimated through an iterative process where at each iteration, β+ is estimated

using the generalized least squares estimator β̂
+

=
(
Ḋ′V̇−1Ḋ

)−1
Ḋ′V̇−1Z. Alternatively,

however, estimation of
(
θ
′
,β
′
)

may also be carried out in two different generalized least

squares estimation steps. So at each GLS iteration of the estimating procedure, the

estimation of θ is followed by the estimation of
(
β
′
1, . . . ,β

′
J

)
. All these estimates will

then be updated during the subsequent iteration. Updating of estimates will continue

until convergence, to a specified level of tolerance, is reached.

Suppose that θ̂
0

and β̂
0

are the initial estimates of θ and β respectively. Also suppose

that the estimating functions which are used to obtain θ and β estimates at the (t+ 1)th

iteration are respectively given by f
(
θ; θ̂

t
, β̂

t
)

and g
(
β; θ̂

t+1
, β̂

t
)

. The GLS iterative

procedure being described here proceeds in this manner:

• Step 1: Obtain initial estimates θ̂
0

and β̂
0

• Step 2:

i. Solve f
(
θ; θ̂

t
, β̂

t
)

= 0 to obtain θ̂
t+1

ii. Solve g
(
β; θ̂

t+1
, β̂

t
)

= 0 to obtain β̂
t+1

• Repeat step 2 until convergence.

In general, under an unstructured working correlation matrix, we cannot be sure that

the two estimating procedures (one-step GLS and two-step GLS) will deliver the same

estimates of β, as we have not investigated the uniqueness of the estimates. However,
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as per Wedderburn (1976), under an independence working correlation structure, if esti-

mates arising out of estimating equations for a model with a log link with mean-variance

specification for the gamma distribution (as for the latent MRM) exist, they must be

unique. For the latent MRM, estimates always exist as they are obtained through the

GLS estimator. So under the independence working correlation matrix, estimates of the

parameters of the latent MRM are also unique. The uniqueness that is obtained under

an independence working correlation is all that really matters in relation to the latent

MRM. This is because as shall be seen in the following section, for the latent MRM, the

GLS estimator of the parameters of interest β, is invariant to the values of dispersion and

correlation parameters.

2.4.4 Invariance of β̂ to the Values of Dispersion and Correlation Pa-

rameters

Consider the system of estimating equations based on the general unstructured working

correlation matrix, introduced in Section 2.4.3.1. Suppose that updating of the estimates

β̂ and
̂̇
θ (similarly for θ̂) is carried out in two separate steps of each iteration. Focus will

now be directed towards deriving the expression of the GLS estimator that is used for

updating β̂ at each iteration. So the linear model (2.34) will be rewritten in terms of β

rather than in terms of β+.

Let Ḋβ denote the Jn× J (p+ 1) matrix of derivatives of mi

(
θ̇i,βj

)
with respect to the

β parameters only. The elements in Ḋβ are given by

∂mi

(
θ̇i,βj

)
∂βjk

= mi

(
θ̇i,βj

)
xik.

For ease of deriving the expression for β̂, all the terms in (2.34) will also be divided by

the respective means and the resulting terms will be rewritten by component rather than

by subject. Thus, the linear model becomes

Z∗ = Ḋ∗
′

ββ + S∗,

where Z∗ =
(
Z∗
′

(1), . . . ,Z
∗′
(J)

)′
and for i = 1, . . . , n, j = 1, . . . , J , Z∗(j) =

(
Z∗1j , . . . , Z

∗
nj

)′
,

Z∗ij = Zij/mi

(
θ̇i,βj

)
where Zij are the elements making up the vector of modified de-

pendent variables Z in (2.34). Similarly, S∗ =
(
S∗
′

(1), . . . ,S
∗′
(J)

)′
where

S∗ij =
Sij

mi

(
θ̇i,βj

) =
Ẏij

mi

(
θ̇i,βj

) − 1,
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and Ḋ∗β =
(
Ḋ∗′β,1, . . . , Ḋ∗

′
β,J

)′
is a Jn× J (p+ 1) matrix which arises out of dividing all the

terms in the matrix of derivatives Ḋβ =
(
Ḋ′β,1, . . . , Ḋ

′
β,J

)′
by the respective means giving

Ḋ∗β = IJ ⊗ X, (2.35)

where for j = 1, . . . , J , Ḋβ,j denotes the matrix of derivatives of mi

(
θ̇i,βj

)
with respect

to the β parameters corresponding to the jth component, IJ is a J × J identity matrix, ⊗
is the Kronecker product and X is the design matrix.

Furthermore, from Section 2.2, Ẏi1

mi

(
θ̇i,β1

) , . . . , ẎiJ

mi

(
θ̇i,βJ

)
′ = Ei

and Var (Ei) = Σ̇.

Let V̇∗ denote the variance-covariance matrix for all error terms Eij . The matrix V̇∗ is

equivalently the variance-covariance matrix of all the elements making up S∗. Since Σ̇ is

assumed to be the same for all i, V̇∗ is given by

V̇∗ = Σ̇⊗ In (2.36)

giving the GLS weight matrix V̇∗−1 = Σ̇
−1 ⊗ In, where In is an n× n identity matrix.

It then follows that(
Ḋ∗
′

β V̇∗−1Ḋ∗β
)−1

=
([

IJ ⊗ X
′
] [

Σ̇
−1 ⊗ In

]
[IJ ⊗ X]

)−1
=
[
Σ̇
−1 ⊗ X

′
X
]−1

= Σ̇⊗
(
X
′
X
)−1

,

so that the GLS estimator is given by

β̂ =
(
Ḋ∗
′

β V̇∗−1Ḋ∗β
)−1

Ḋ∗
′

β V̇∗−1Z∗ (2.37)

=

[
Σ̇⊗

(
X
′
X
)−1] [

IJ ⊗ X
′
] [

Σ̇
−1 ⊗ In

]
Z∗

=

[
IJ ⊗

(
X
′
X
)−1

X
′
]

Z∗

showing that the GLS estimator β̂ is invariant to the values of the correlation and disper-

sion parameters. The derivation for the above result is motivated by the familiar invariance
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property of the GLS estimator in multivariate linear regression (e.g. Mardia et al., 1979,

p. 173).

The invariance of the GLS estimator (2.37) is a very appealing property of this system of

estimating equations as on considering equal dispersion parameters and an independence

working correlation matrix, the generalized estimating equations reduce to quasi-likelihood

equations (2.17) and (2.18) with equal dispersion parameters. On using this system,

however, there is an issue which deserves attention.

From equation (2.7),
J∑
j=1

Ẏij = ci. It follows that
J∑
j=1

E
(
Ẏij

)
=

J∑
j=1

mi

(
θ̇i,βj

)
= ci.

Due to the sum constraint on the means of each case i, once estimation of the model

parameters is carried out, it is desirable to obtain fitted values that also sum to ci for

case i. This rescaling of the fitted values may indeed be carried out once the resulting

estimates of β have reached convergence in the iterative process. Alternatively, rescaling of

the fitted values may also be carried out throughout the iterative process. This alternative

strategy may be implemented by setting up a new set of estimating equations for θ̇ whilst

keeping the same estimating equations for β. From now onwards, the previous system of

estimating equations will be referred to by the name standard system. The new system of

estimating equations, to be introduced in the following section, will be referred to by the

name hybrid system.

2.4.5 A Hybrid System of Estimating Equations

The hybrid system being introduced here is an alternative system of estimating equations,

which caters for the rescaling of fitted values throughout the iterative process. The two-

step procedure explained in Section 2.4.3.2 still holds here. The only difference now

is that a different set of estimating equations is used to estimate θ̇. More specifically,

once estimates of β have been obtained through estimating equations (2.17) with equal

dispersion parameters, using generalized least squares estimation, the estimator of θ̇i will

be that which satisfies
J∑
j=1

mi

(
θ̇i, β̂j

(̂̇
θi

))
= ci. Let UHJ+1,i denote the estimating function

used to solve for θ̇i. Then, under the hybrid system, the estimate
̂̇
θi is obtained by solving

UHJ+1,i =
J∑
j=1

[
Ẏij −mi

(
θ̇i, β̂j

(̂̇
θi

))]
= 0. (2.38)

Since in practice it is the compositional response variables Yij that will be available and

because it has been shown that a change in the value of ci in (2.6) will lead to the same

estimates of β, the value of ci will be taken to be equal to one even here. Equation (2.38)

may thus be rewritten in terms of Yij by replacing Ẏij with Yij giving
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UHJ+1,i =

J∑
j=1

[
Yij −mi

(
θi, β̂j

(
θ̂i

))]
= 0. (2.39)

Seeing that under the standard and the hybrid systems of estimating equations, the β

parameters are estimated using the same estimating equations, the GLS expression used

to obtain estimates of the β parameters for the standard system, also holds under the

hybrid system.

Now due to the way that the hybrid system is set up, we have seen that once the iterative

process is ready, the estimated means for each case i sum to 1, which is indeed a desirable

property in dealing with compositional data. There is another property which makes the

hybrid system stand out even more. In the section which follows, we shall see how the

hybrid system of estimating equations for J = 2 is in fact equivalent to the system of

equations used by Wedderburn (1974) in his study on barley leaf data. In Section 2.6, we

will then develop a new method which generalizes the equivalence of the hybrid system to

estimating equations obtained through a multivariate type of logit model to the case where

J > 2. All the just mentioned makes the hybrid system a better choice, for estimating the

parameters of the latent MRM, over the standard system.

2.5 The Equivalence of the Hybrid Estimating Equations to

Wedderburn’s Estimating Equations when J = 2

Due to the fact that β̂ has been shown to be invariant to the values of dispersion and

correlation parameters, the hybrid system assumes equal dispersion parameters and inde-

pendence between Ẏijs. The system of estimating equations being considered will also be

that of an overparametrized system, where (θ1, . . . , θn) are estimated through (2.39) and

(β10, . . . , β1p, . . . , βJ0, . . . , βJp) are estimated using

Ujs =

n∑
i=1

(
Yij

mi

(
θi,βj

) − 1

)
xi,s−1 = 0 (2.40)

for j = 1, . . . , J .

Since

J∑
j=1

Yij = 1, rearranging (2.39) leads to

exp (θi) =
1

J∑
j=1

exp
(
x
′
iβj

) . (2.41)

Substituting (2.41) in (2.40) gives
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n∑
i=1

(
Yij
pij
− 1

)
xi,s−1 = 0, (2.42)

where

pij =
exp

(
x
′
iβj

)
J∑

j′=1

exp
(
x
′
iβj′

) . (2.43)

Now, for J = 2, the parameter space of interest under an overparametrized system is

made up of
(
β
′
1,β

′
2

)′
. Due to the system being overparametrized, identification of all

parameters (β10, . . . , β2p), will not be possible. Consider once again the argument on

identification posed on Pg 26 and apply it for J = 2. Since identification and thus also

interpretation is only possible for a set of contrasts for the parameters, in this case we

will take the last (second) component as reference component and we will focus on the

difference (β1 − β2). Call this difference γ. The estimating equations for γ under the

reparametrization are given by

n∑
i=1

[(
Yi1
pi1
− 1

)
−
(
Yi2
pi2
− 1

)]
xi,s−1 = 0. (2.44)

Now pi1 + pi2 = 1 and Yi1 + Yi2 = 1, so substituting for pi2 = 1− pi1, and Yi2 = 1− Yi1 in

(2.44) gives
n∑
i=1

(
Yi1 − pi1

pi1 (1− pi1)

)
xi,s−1 = 0 (2.45)

where

pi1 =
exp

(
x
′
iγ
)

1 + exp
(
x
′
iγ
) . (2.46)

The resulting system of estimating equations is the same as that achieved by Wedderburn

(1974) for the analysis of barley leaf data, in which a logit link function is used together

with a mean-variance relationship defined by V (pi1) = p2i1 (1− pi1)2.

Application to the Barley Leaf Data

The hybrid system of estimating equations with J = 2 and Wedderburn’s (1974) logit

model have been fitted to the barley leaf data analyzed in Wedderburn (1974). The barley

leaf data, available in the gnm package in R (R Core Team, 2016), gives the percentage of

leaf blotch found on 10 varieties of barley, grown at 9 different sites. So as to use the hybrid

system of estimating equations, two compositional response variables have been created,

one variable, Y1, containing the percentage ‘With Leaf Blotch’ and the other variable, Y2,

containing the percentage ‘Without Leaf Blotch’. Variety and Site are considered as the
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explanatory variables X1 and X2 respectively. The hybrid system of estimating equations

has been implemented using the newly developed cglm package. For a brief introduction

on the cglm package see Chapter 5. Wedderburn’s logit model has been fitted to the data

using family specification wedderburn in the glm function available in R. As expected, the

estimates obtained using the hybrid system and Wedderburn’s logit model are the same.

The two resulting sets of estimates match up to seven decimal places using a tolerance of

10−14. The estimates are provided in Table 2.1. In Section 2.8.2, it will also be shown how

the standard errors obtained through the hybrid system with J = 2 are also equivalent to

those obtained using Wedderburn’s logit model.

Estimate

(Intercept) -7.9224
siteB 1.3831
siteC 3.8601
siteD 3.5570
siteE 4.1079
siteF 4.3054
siteG 4.9181
siteH 5.6949
siteI 7.0676

variety2 -0.4674
variety3 0.0788
variety4 0.9541
variety5 1.3526
variety6 1.3285
variety7 2.3401
variety8 3.2626
variety9 3.1355

variety10 3.8873

Table 2.1: Barley Leaf Data Parameter Estimates

The relationship between the hybrid system and Wedderburn’s system of estimating equa-

tions makes the hybrid system very appealing, as the γ estimates achieved under the hybrid

system will inherit all the desirable properties of Wedderburn’s quasi-likelihood estimator.

Indeed though, this equivalence has so far been shown to hold only for the case J = 2.

It would be ideal if such an equivalence could be generalized to cater for the case where

J > 2. In the section which follows, a new method which generalizes the equivalence of

the hybrid system to estimating equations obtained through a multivariate type of logit

model to the case where J > 2 will be developed.
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2.6 Extending Wedderburn’s Estimating Equations to the

Case where J is Greater than 2

In view of the role played by the overparametrized system in relating the hybrid system of

estimating equations (2.42), with J = 2, and Wedderburn’s estimating equations, a gener-

alization of this relationship will be sought by once again considering an overparametrized

system for J > 2.

If an overparametrized system is considered, identification of all the β parameters of the

latent MRM will not be possible. As has been done for the case J = 2, instead of consid-

ering the hybrid system of equations (2.42) for the β parameters, the estimating equations

will be modified to estimate the difference in parameters. Taking the last component as

reference component, without loss of generality, the differences under consideration are(
(β1 − βJ) , . . . ,

(
βJ−1 − βJ

))
. Call these differences

(
γ1, . . . ,γJ−1

)
.

By considering differences in parameters, with the last component taken as reference, the

multinomial logistic model

ηij = log (pij)− log (piJ) (2.47)

= (βj0 − βJ0)xi0 + · · ·+ (βjp− βJp)xip
= γj0xi0 + · · ·+ γjpxip

is being specified since

pij =
exp

(
x
′
iβj

)
J∑

j′=1

exp
(
x
′
iβj′

) =
exp

(
x
′
i

(
βj − βJ

))
J∑

j′=1

exp
(
x
′
i

(
βj′ − βJ

)) =
exp

(
x
′
iγj

)
J∑

j′=1

exp
(
x
′
iγj′

) . (2.48)

The matrix of derivatives, Di = ∂pi
∂γ , under such a model, is given by

Di =
∂pi
∂ηi

Xi =
(
Pi − pipi

′
)
Xi (2.49)

where pi is a J-vector of proportions (pi1, . . . , piJ), γ =
(
γ
′
1, . . . ,γ

′
J−1

)′
, ηi = (ηi1, . . . , ηiJ)

′
,

Pi = diag (pi1, . . . , piJ) and Xi is a J × (J − 1) (p+ 1) defined by

Xi =

(
IJ−1 ⊗ (xi0 . . . xip)

0
′

)
.

Let U =
(
U
′
1, . . . ,U

′
J−1

)′
, where Uj is a (p+ 1)-vector that involves the derivatives of

pij with respect to (γj0, . . . , γjp), for j = 1, . . . , J − 1.
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Having identified the structure of Di, in order to construct a system of estimating equations

for J-compositional response variables, the aim now is that of identifying the implied form

of the variance-covariance matrix of Yi, call this matrix Vi, such that as per McCullagh

(1983), the system of estimating equations that may be used to estimate the parameters(
γ1, . . . ,γJ−1

)
takes the form

U =
1

φ

n∑
i=1

D′iV−i (Yi − pi) =
1

φ

n∑
i=1

X′i
(
Pi − pipi

′
)
V−i (Yi − pi) = 0, (2.50)

where a generalized inverse is invoked for Vi due to this variance-covariance matrix being

a singular matrix.

Now on comparing (2.50) with the hybrid system (2.42), we know that

(
Pi − pipi

′
)
V−i = P−1i , (2.51)

so V−i =
[
Pi − pipi

′
]+

P−1i , where
[
Pi − pipi

′
]+

is the Moore-Penrose pseudoinverse of

Pi − pipi
′

and as per Tanabe and Sagae (1992),

(
Pi − pipi

′
)+

=

(
IJ −

1

J
11
′
)
P−1i

(
IJ −

1

J
11
′
)
, (2.52)

where IJ is a J × J identity matrix, 1 is a J-vector of ones and 11
′

is a J × J matrix of

ones.

It therefore follows that

V−i =

(
IJ −

1

J
11
′
)
P−1i

(
IJ −

1

J
11
′
)
P−1i . (2.53)

Substituting (2.53) in (2.50), yields the estimating equations to be used with J-compositional

response variables

U =
1

φ

n∑
i=1

X′i
(
Pi − pipi

′
)
V−i (Yi − pi) =

1

φ

n∑
i=1

X′i
(
IJ −

1

J
11
′
)
P−1i (Yi − pi) = 0,

(2.54)

since
(
Pi − pipi

′
)(

IJ − 1
J 11

′
)
P−1i =

(
IJ − 1

J 11
′
)

and IJ − 1
J 11

′
is idempotent.

For j = 1, . . . , J − 1 and s = 0, . . . , p, the equations making up (2.54) may be shown to be

in the form

Ujs =
1

φ

n∑
i=1

Yij
pij
− 1

J

J∑
j′=1

Yij′

pij′

xis = 0. (2.55)
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In what follows, the term pij in estimating equations (2.55) (or equivalently (2.54)), will

be considered to be expressed as

pij =
exp

(
x
′
iγj

)
J∑

j′=1

exp
(
x
′
iγj′

) . (2.56)

Also, from now onwards, estimating equations for compositional data (2.54) (or equiva-

lently (2.55)), will be referred to by the name generalized Wedderburn estimating equa-

tions.

2.7 A Working Variance-Covariance Structure for Compo-

sitional Response Variables

In this section we will show that the mean-model specified under the generalized Wed-

derburn approach is related to the first order Taylor Series approximation of the mean of

Yi, and we will also define the working variance-covariance structure Vi for compositional

response variables by using the first order Taylor Series approximation of the variance of

Yij . The first order Taylor Series approximation to the mean and the variance of Yij are

presented first. For ease of notation, in the lemma and theorem which follow, the notation

mi

(
θi,βj

)
is replaced by mij .

Lemma 2.7.1. Consider the vector of latent variables Ẏi =
(
Ẏi1, . . . , ẎiJ

)′
, i = 1, . . . , n.

Let Yi be the corresponding vector of compositional variables so that its components are

given by Yij =
Ẏij

Ẏi1+···+ẎiJ
, j = 1, . . . , J . Suppose that E

(
Ẏi

)
= mi with components

(mi1, . . . ,miJ), and that Var
(
Ẏi

)
= A

1
2
i Σ̇A

1
2
i , where Ai is a diagonal matrix with elements(

m2
i1, . . . ,m

2
iJ

)
and Σ̇ is as defined in (2.4). Also, let pi = (pi1, . . . , piJ)′ where pij =

mij

mi1+···+miJ
and Pi = diag (pi1, . . . , piJ). Using a first order Taylor Series approximation

of h (ẏi) = yi around its mean vector h (mi) gives

E (Yi) = E
(
h
(
Ẏi

))
≈ pi (2.57)

and

Var (Yi) = Var
(
h
(
Ẏi

))
≈
(
Pi − pip

′
i

)
Σ̇
(
Pi − pip

′
i

)
. (2.58)

Proof. The first order Taylor Series approximation of h (ẏi) around its mean vector h (mi)

is given by

h (ẏi) ≈ h (mi) +∇h (mi) (ẏi −mi) , (2.59)
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where ∇h (mi) =
[
∂h(ẏi)
∂ẏi

]
ẏi=mi

. Thus

E
(
h
(
Ẏi

))
≈ h (mi) =

(
mi1

mi1 + · · ·+miJ
, . . . ,

miJ

mi1 + · · ·+miJ

)′
= (pi1, . . . , piJ)

′
= pi

and

Var
(
h
(
Ẏi

))
≈ ∇h (mi) Var

(
Ẏi

)
(∇h (mi))

′
.

Now ∂h(ẏi)
∂ẏi

= 1
ẏi1+···+ẏiJ

(
IJ − 1

ẏi1+···+ẏiJ ẏi1
′
)

, so

∇h (mi) =

[
∂h (ẏi)

∂ẏi

]
ẏi=mi

=
1

mi1 + · · ·+miJ

(
IJ −

1

mi1 + · · ·+miJ
mi1

′
)

=
1

mi1 + · · ·+miJ

(
IJ − pi1

′
)
.

Thus

Var
(
h
(
Ẏi

))
≈
(

1

mi1 + · · ·+miJ

)2 (
IJ − pi1

′
)

Var
(
Ẏi

)(
IJ − pi1

′
)

=
(
IJ − pi1

′
)
PiΣ̇Pi

(
IJ − pi1

′
)

=
(
Pi − pipi

′
)

Σ̇
(
Pi − pipi

′
)
.

From the Taylor Series approximation we can see that E (Yij) = pij + O (φ). Since the

estimating equations (2.54), used under the generalized Wedderburn approach, are in

terms of pij , this shows that the mean-model specified under the generalized Wedderburn

approach (E (Yij) = pij) will only be equal to the actual mean of Yij when the dispersion

parameter φ is negligible. Since there will always be some level of dispersion in the model,

the estimates that result through the generalized Wedderburn model will be different from

the estimates that would result from the multiplicative model (2.1).

By means of the first order Taylor Series approximation we also get that Var (Yi) ≈(
Pi − pip

′
i

)
Σ̇
(
Pi − pip

′
i

)
. Once again, the smaller the dispersion in the model, the

more precise is the first order Taylor Series approximation to the true variance-covariance

structure of Yi. In general, there will always be some level of dispersion in the model so

the true Var (Yi) might be approximately equal to(
Pi − pip

′
i

)
Σ
(
Pi − pip

′
i

)
, (2.60)

where Σ is some variance-covariance matrix.

Using (2.60), we thus define the working variance-covariance matrix of Yi, to be used in

the generalized Wedderburn system of estimating equations for compositional variables,
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to be

φVpi,Ω,W =
(
Pi − pip

′
i

)
Σ
(
Pi − pip

′
i

)
, (2.61)

where we write Σ in the form

Σ = φΩ
1
2WΩ

1
2 , (2.62)

with φ being a common dispersion parameter, Ω = diag (ω1, . . . , ωJ) with ω1, . . . , ωJ being

relative dispersion parameters and W a correlation matrix. Note that the parameters φ,

Ω and W used in (2.62) are different from those used in (2.4), but the same notation is

being used here for simplicity.

Now, estimating equations (2.54) are solved to get an estimate of γj , for j = 1, . . . , J − 1.

The parameter γj is βj−βJ and in Section 2.4.4 it has been shown that the β̂j is invariant

to the values of dispersion and correlation parameters. So in solving estimating equations

(2.54), for ease of computation, we can actually use Vpi,IJ ,IJ instead of Vpi,Ω,W, where

Vpi,IJ ,IJ =
(
Pi − pipi

′
)(

Pi − pipi
′
)
. (2.63)

In the theorem which follows, V−i of equation (2.53) will in fact be shown to be a generalized

inverse of Vpi,IJ ,IJ .

Theorem 2.7.1. Consider the latent variables Ẏij, (i = 1, . . . , n, j = 1, . . . , J). Let Yij be

the corresponding compositional variables Yij =
Ẏij

Ẏi1+···+ẎiJ
and suppose that E

(
Ẏij

)
= mij

and that pij =
mij

mi1+···+miJ
. Then, V−i is a generalized inverse of Vpi,IJ ,IJ =

(
Pi − pip

′
i

)
×
(
Pi − pip

′
i

)
, where V−i is as defined in (2.53), Pi = diag (pi1, . . . , piJ) and pi is the

J-vector of proportions defined by pi = (pi1, . . . , piJ)
′
.

Proof. To show that V−i is a generalized inverse of Vpi,IJ ,IJ , it is required to show that

Vpi,IJ ,IJ = Vpi,IJ ,IJV
−
i Vpi,IJ ,IJ .

Using (2.53),

V−i =

(
IJ −

1

J
11
′
)
P−1i

(
IJ −

1

J
11
′
)
P−1i ,

where IJ is a J × J identity matrix and 11
′

is a J × J matrix of ones.

Then, since (
Pi − pipi

′
)(

IJ −
1

J
11
′
)

= Pi − pipi
′
,

and(
IJ −

1

J
11
′
)
P−1i

(
Pi − pipi

′
)

=

[(
Pi − pipi

′
)
P−1i

(
IJ −

1

J
11
′
)]′

= IJ −
1

J
11
′
,
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Vpi,IJ ,IJV
−
i Vpi,IJ ,IJ =

(
Pi − pipi

′
)(

Pi − pipi
′
)[(

IJ −
1

J
11
′
)
P−1i

(
IJ −

1

J
11
′
)
P−1i

]
×
(
Pi − pipi

′
)(

Pi − pipi
′
)

=
(
Pi − pipi

′
)(

Pi − pipi
′
)
P−1i

(
IJ −

1

J
11
′
)(

Pi − pip
′
i

)
=
(
Pi − pipi

′
)(

Pi − pipi
′
)

proving the required result.

So in this section, the working variance-covariance structure to be used with composi-

tional data has been identified by means of the first order Taylor Series approximation to

Var (Yi). By using the invariance property of the estimator γ̂, we have also seen that the

matrix Vpi,IJ ,IJ may actually be used instead of Vpi,Ω,W to obtain estimates of γ where

γ =
(
γ
′
1, . . . ,γ

′
J−1

)′
. The estimates of γ arising out of the generalized Wedderburn sys-

tem of estimating equations will inherit all the desirable properties of estimates obtained

using the Liang and Zeger (1986) generalized estimating equations.

2.8 Estimating Standard Errors of γ̂

Having identified a working covariance structure that reflects the properties of composi-

tional response variables and which may be used in the generalized Wedderburn system of

estimating equations, the next step is that of developing a method to estimate standard

errors for γ. Two variance-covariance estimators will be presented:

• The first estimator is a model-based estimator. Since the same γ estimates are

obtained irrespective of the working variance-covariance structure used, a whole

family of model-based estimators may actually be defined. However, in analogy to

the multivariate regression case, where the GLS estimator is free of the variance-

covariance parameters, but the variance-covariance matrix of the estimator is not

(e.g. Mardia et al., 1979, p. 173), it is to be expected that an estimator of Var (γ̂)

which accounts for the variance-covariance structure of Yi leads to better estimated

standard errors. The model-based estimator being proposed here is thus based on

an estimator of the working variance-covariance structure φ̂V̂pi,Ω,W.

• The second estimator is the robust Huber-White sandwich estimator proposed by

Liang and Zeger (1986), which allows for potential misspecification in the assumed

form φVpi,Ω,W.

Pan (2001b) criticizes the estimator proposed by Liang and Zeger (1986) due to the fact

that it uses residuals from one case to estimate the true variance-covariance matrix of Yi.

Pan (2001b) proceeds to propose an alternative estimator of the true variance-covariance
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matrix. Our model-based estimator will be shown to be in the same form as the estimator

in Pan (2001b) and will inherit the same desirable properties of Pan (2001b)’s estimator.

Before proceeding to give detail on the estimators just mentioned, recall that the gen-

eralized Wedderburn system of estimating equations that will be used to estimate the

parameters γ takes the form

n∑
i=1

D′iV−i (Yi − pi) = 0 (2.64)

where Di is the matrix of derivatives of pi with respect to the parameters γ, Vi is the

implied variance-covariance structure of the compositional variables, V−i is a generalized

inverse of Vi and pi is the mean vector (vector of proportions) corresponding to the

response vector Yi. A generalized inverse is being invoked for Vi, due to this matrix being

singular.

Under estimating equations (2.64) and under the assumption that the implied variance-

covariance matrix φVi is equal to the true variance-covariance matrix Var (Yi), a model-

based variance-covariance estimator of γ̂ is given by

V̂ar (γ̂)M = φ̂

(
n∑
i=1

D̂′iV̂−i D̂i

)−1
, (2.65)

where D̂i and V̂i are respectively the matrices Di and Vi estimated using γ̂ and φ̂ is the

estimated dispersion parameter.

Under estimating equations (2.64), in line with Liang and Zeger (1986), a Huber-White

sandwich estimator of Var (γ̂) is given by

V̂ar (γ̂)R =

(
n∑
i=1

D̂′iV̂−i D̂i

)−1( n∑
i=1

D̂′iV̂−i ̂Var (Yi)V̂−i D̂i

)(
n∑
i=1

D̂′iV̂−i D̂i

)−1
(2.66)

where D̂i and V̂i are as defined for equation (2.65) and ̂Var (Yi) denotes an estimator of

the true typically unknown variance-covariance matrix Var (Yi). Details on estimating

Var (Yi) will be provided shortly.

The Huber-White estimator, as the name suggests, is attributed to Huber (1967) and

White (1980). The papers by Huber (1967) and White (1982), focus on properties of

maximum likelihood estimators under model misspecification and White (1980) presents

a variance estimator for regression parameters in the presence of heteroscedasticity. It is

through the seminal work of Liang and Zeger (1986) that this estimator has been highly

popularized in the GEE framework.
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2.8.1 Model-Based Estimator in terms of V̂pi,Ω,W

Under the assumption that the variance-covariance matrix of Yi is given by φVpi,Ω,W, the

model-based estimator is given by

V̂ar (γ̂)M = φ̂

(
n∑
i=1

D̂′i
[
V̂pi,Ω,W

]−
D̂i

)−1
, (2.67)

where D̂i and V̂pi,Ω,W are evaluated at the estimates obtained using the sampled data.

Now, so as to be able to estimate the standard errors of γ̂ using estimator (2.67), an

estimator of φVpi,Ω,W is required. Let p̂i denote the estimator of pi. Given a correct

mean model specification, Liang and Zeger (1986) propose to replace Var (Yi) in the

Huber-White sandwich estimator (2.66) with (Yi − p̂i) (Yi − p̂i)
′
. Amongst other issues

(more detail will be given in Section 2.8.3), the specification of a specific structure for

the dependence of the variance-covariance structure on the mean vector is being avoided

completely in Liang and Zeger’s proposed estimator of Var (Yi). An alternative estimator

of φVpi,Ω,W which takes the dependence structure just mentioned into account and which

may thus lead to greater efficiency, is developed.

2.8.2 The Development of an Estimator of φVpi,Ω,W

Recall from (2.61) that

φVpi,Ω,W =
(
Pi − pipi

′
)

Σ
(
Pi − pipi

′
)
,

which may be rewritten as

φVpi,Ω,W =
(
Pi − pipi

′
)(

IJ −
1

J
11
′
)

Σ

(
IJ −

1

J
11
′
)(

Pi − pipi
′
)
.

Let
(
IJ − 1

J 11
′
)

Σ
(
IJ − 1

J 11
′
)

be denoted by Σ∗ so that

φVpi,Ω,W =
(
Pi − pipi

′
)

Σ∗
(
Pi − pipi

′
)
, (2.68)

where Σ∗ is free of the index i since it is assumed to be the same for all i.

Estimates of Pi and pi in (2.68) are easily worked out once estimates of γ are obtained

through the iterative procedure. An estimator for Σ∗ needs to be devised.

Since Σ∗ is the same for all i, it is natural to develop an estimator for Σ∗ which averages
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over the information obtained from all i. Let Σ̂
∗

be the estimator of Σ∗, defined as

Σ̂
∗

=
1

n

n∑
i=1

Σ̂
∗
i , (2.69)

where Σ̂
∗
i is given by

Σ̂
∗
i =

(
IJ −

1

J
11
′
)
P̂−1i (Yi − p̂i) (Yi − p̂i)

′
P̂−1i

(
IJ −

1

J
11
′
)
. (2.70)

The motivation for the expression of Σ̂
∗
i follows.

If
(
Pi − pipi

′
)+

is the Moore-Penrose pseudoinverse of Pi − pipi
′
, defined in (2.52), it

may be noted that

Σ∗ =
(
Pi − pipi

′
)+ (

Pi − pipi
′
)

Σ∗
(
Pi − pipi

′
)(

Pi − pipi
′
)+

(2.71)

=
(
Pi − pipi

′
)+

φVpi,Ω,W

(
Pi − pipi

′
)+

since
(
Pi − pipi

′
)+ (

Pi − pipi
′
)

= IJ − 1
J 11

′
and IJ − 1

J 11
′

is idempotent.

Consequently, under the assumption that φVpi,Ω,W = Var (Yi) (the true variance-covariance

matrix of Yi) and letting φVpi,Ω,W in (2.71) be estimated by (Yi − p̂i) (Yi − p̂i)
′
, equation

(2.71) leads to the estimator

Σ̂
∗
i =

(
P̂i − p̂ip̂

′

i

)+
(Yi − p̂i) (Yi − p̂i)

′
(
P̂i − p̂ip̂

′

i

)+
(2.72)

=

(
IJ −

1

J
11
′
)
P̂−1i (Yi − p̂i) (Yi − p̂i)

′
P̂−1i

(
IJ −

1

J
11
′
)
.

Now, in the generalized linear modeling framework, a Pearson residual is defined by
Yij−p̂ij√
V (p̂ij)

where p̂ij is the fitted value of Yij and V (·) is a variance function. The general idea behind

a Pearson residual is that of converting the difference Yi−pi into a vector of standardized

residuals whose mean vector and variance-covariance matrix do not depend on pi. From

the mean-model specification assumed under the generalized Wedderburn approach, we

have that E (Yi) = pi so that E (Yi − pi) = 0. From Section 2.7, the working variance-

covariance structure of Yi is given by
(
Pi − pipi

′
)

Σ
(
Pi − pipi

′
)

and

Var

((
IJ −

1

J
11
′
)
P−1i (Yi − pi)

)
=

(
IJ −

1

J
11
′
)
P−1i

(
Pi − pipi

′
)

Σ
(
Pi − pipi

′
)
P−1i

×
(
IJ −

1

J
11
′
)

=

(
IJ −

1

J
11
′
)

Σ

(
IJ −

1

J
11
′
)
,
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since
(
IJ − 1

J 11
′
)
P−1i

(
Pi − pipi

′
)

= IJ − 1
J 11

′
.

Thus, by premultiplyling Yi − pi by
(
IJ − 1

J 11
′
)
P−1i , we have achieved a random vector

whose mean vector and variance-covariance matrix are not dependent on pi, showing that

under the generalized Wedderburn approach, the Pearson residual vector should take the

form (
IJ −

1

J
11
′
)
P̂−1i (Yi − p̂i) . (2.73)

On comparing (2.70) with expression (2.73), it may thus be noted that the estimator Σ̂
∗
i

is a ‘squared Pearson residual’ matrix for case i.

Having obtained Σ̂
∗
, we then estimate φVpi,Ω,W by

φ̂V̂pi,Ω,W =
(
P̂i − p̂ip̂

′

i

) 1

n

n∑
i=1

Σ̂
∗
i

(
P̂i − p̂ip̂

′

i

)
. (2.74)

The denominator in Σ̂
∗

= 1
n

n∑
i=1

Σ̂
∗
i may also be adjusted from n to (n− (p+ 1)) to cater

for the γ coefficients being estimated through the generalized Wedderburn estimating

equations (2.64). In what follows, the estimator φ̂V̂pi,Ω,W will always be considered in

terms of the adjusted denominator.

Focusing on the case J = 2

To get a better insight into the role that (2.74) plays in the variance estimator (2.67) for

the generalized Wedderburn system, consider the case J = 2. Due to the sum-constraint,

Σ̂
∗
i =

1

4

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

(
1 −1

−1 1

)

so that

Σ̂
∗

=
1

4 (n− (p+ 1))

[
n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

](
1 −1

−1 1

)

leading to

V̂ar (γ̂)M =

[
1

(n− (p+ 1))

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

](
X
′
X
)−1

. (2.75)

For details on the derivation of (2.75), refer to Appendix A.

Now consider the model used by Wedderburn (1974) for barley leaf data, in which a

logit link function has been used together with a mean-variance relationship defined by

51



V (pi1) = p2i1 (1− pi1)2. Let V̂ar (γ̂)W denote the estimated variance under Wedderburn’s

model. The estimated variance V̂ar (γ̂)W is given by

V̂ar (γ̂)W = φ̂W

(
X
′
X
)−1

(2.76)

where φ̂W is the estimator of the dispersion parameter φW .

On comparing (2.76) with (2.75), it may be noticed that the two estimators take the same

form, with estimator (2.75) providing the explicit expression, 1
n−(p+1)

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2
,

to estimate the dispersion parameter φW . This estimator for φW is none other than the

method of moments estimator used to estimate dispersion parameters in quasi-likelihood

estimation. So, for J = 2,

• in Section 2.5 it was shown that the generalized Wedderburn system produces γ esti-

mates that are equivalent to those obtained from Wedderburn’s estimating equations

and

• from this section, it has been shown that the general method devised to estimate

standard errors under the generalized Wedderburn system, also agrees with that of

Wedderburn (1974).

It is also important to note that the newly developed estimator Σ̂
∗

is an estimator which

‘borrows strength across subjects’ (Liang and Zeger, 1986). Liang and Zeger (1986) ap-

ply such methodology in their proposed estimator for an unstructured correlation matrix

(Liang and Zeger, 1986, eq. (9)) but fail to use the same idea in the specification of an

estimator for the true variance-covariance matrix.

2.8.3 The Liang and Zeger (1986) Robust Sandwich Estimator

As mentioned in the previous section, given a correct mean model specification, Liang and

Zeger (1986) propose to estimate Var (γ̂) by using the Huber-White sandwich estimator

(2.66) where Var (Yi) is estimated by (Yi − p̂i) (Yi − p̂i)
′
. This approach leads to a robust

estimator which gives consistent estimates of the standard errors (Liang and Zeger, 1986).

Several researchers have however raised issues on the use of this sandwich estimator,

particularly for use with small sample sizes (Emrich and Piedmonte, 1992; Drum and

McCullagh, 1993; Mancl and DeRouen, 2001; Pan, 2001b; Gosho et al., 2014).

The difference between observed and fitted values tends to be smaller than the difference

between the true and fitted values (Mancl and DeRouen, 2001). So since the estimate

of Var (Yi) is defined using the residuals of only one case, it is to be expected that for

small sample sizes, the sandwich estimator underestimates V̂ar (γ̂). A downward bias in

the variance estimate leads to inflated Type I errors (Emrich and Piedmonte, 1992) and

elevated values of the robust Wald test, leading to lowered coverage probabilities of the
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corresponding confidence intervals. The robust Wald test is used for testing significance

of the model coefficients. More detail on this test will be given in Section 2.9.1.2. The

lack of accuracy used in estimating Var (Yi), also leads to an increase in variability of the

sandwich estimator. Kauermann and Carroll (2001) show a decrease in efficiency of the

sandwich estimator in comparison to a model-based estimator with Poisson and Binomial

data with known dispersion parameter. In reference to using the sandwich estimator with

small sample sizes, Drum and McCullagh (1993) state that ‘by failing to pool variances

[pooling information from all cases being considered in the study], all risk of contamination

is avoided. But the cost of protection seems high’. Drum and McCullagh (1993) go on to

state their preference for a model-based estimator of the variance, ‘unless there is enough

reason to believe that the assumed variance function is substantially incorrect’.

There is disagreement about the use of (Yi − p̂i) (Yi − p̂i)
′

as an estimator of Var (Yi) is

argued upon by other researchers (Pan, 2001b; Gosho et al., 2014). Due to the fact that

the estimator is based on residuals from one subject/object, Pan (2001b) and Gosho et al.

(2014) state that (Yi − p̂i) (Yi − p̂i)
′

is in fact neither consistent nor efficient.

Different approaches have been undertaken in order to tackle the problems associated

with Liang and Zeger’s (1986) sandwich estimator. One approach takes into account

the variability of the estimator. Fay and Graubard (2001) and Pan and Wall (2002)

constructed Wald-type tests based on the F and t distribution (instead of being based on

the chi-square or normal distribution) for testing single or multiple parameters. Another

approach takes into account of the bias of the sandwich estimator arising due to the

residuals. The aim of the latter approach is that of reducing the bias by developing a

new estimator of Var (Yi). Mancl and DeRouen (2001) suggest an estimator which is

based on the idea of reducing the bias of the residual estimator (Yi − p̂i) (Yi − p̂i)
′
. Pan

(2001b) proposes to estimate Var (Yi) by exploiting the implied structure in the working

variance-covariance matrix.

More detail on the estimator in Pan (2001b) will be given in the following section. Special

attention will be given to this estimator since with the specification of two additional

assumptions, Pan’s estimator will be shown to be more efficient than Liang and Zeger’s

estimator. It will also be shown that the variance estimator (2.74), proposed for use with

compositional data, is in the form of Pan’s estimator and the properties of Pan’s estimator

are also inherited by estimator (2.74).

2.8.4 Estimating Var (Yi) as per Pan (2001b)

In Liang and Zeger (1986), the working variance-covariance structure is assumed to be of

the form φVi = φA
1
2
i W (α)A

1
2
i , where an unstructured working correlation matrix W (α)
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is estimated using

Ŵ (α) =
1

nφ̂

n∑
i=1

Â−
1
2

i (Yi − p̂i) (Yi − p̂i)
′
Â−

1
2

i . (2.77)

Under the assumptions that the true variance-covariance structure needs to be modeled

correctly and that there is a common correlation structure W (α) amongst all cases, Pan

(2001b) proposes to estimate Var (Yi) using

̂Var (Yi) = φ̂Â
1
2
i Ŵ (α) Â

1
2
i (2.78)

where Ŵ (α) is given by estimator (2.77) leading to

̂Var (Yi) = Â
1
2

[
1

n

n∑
i=1

Â−
1
2

i (Yi − p̂i) (Yi − p̂i)
′
Â−

1
2

i

]
Â

1
2 . (2.79)

Analogous to the variance estimator (2.74), that has been proposed for use in modeling

compositional data, the estimator proposed by Pan (2001b) also ‘borrows strength across

subjects’ (Liang and Zeger, 1986) to estimate Var (Yi). Estimator (2.74) is in fact ex-

pressed in the same form as estimator (2.79), with the former estimator having the matrix

Pi − pipi
′

instead of A
1
2
i .

Since Pan’s estimator is obtained by pooling information from the different cases, Pan

(2001b) states that it is to be expected that the estimator proposed by Liang and Zeger

(1986) has lower efficiency and goes on to prove an asymptotic result showing better

efficiency for estimator (2.79). This result is presented next.

To be able to present Pan (2001b)’s result, focus is directed towards the middle part of

the sandwich estimator,
∑n

i=1

(
D̂′iV̂

−
i

̂Var (Yi)V̂−i D̂i
)

, under both Liang and Zeger (1986)’s

estimator and Pan (2001b)’s estimator. Let the two respective middle parts be denoted by

MLZ and MP respectively. Treating matrices D̂i, V̂i and Âi as fixed, Pan (2001b) shows

that asymptotically, under mild regularity conditions,

Var (vec (MLZ)) ≥ Var (vec (MP )) (2.80)

where for some matrix M, vec (M) stacks all the columns of M into one vector.

Let Liang and Zeger (1986) and Pan (2001b) sandwich estimators be denoted by V̂ar (γ̂)LZ
and V̂ar (γ̂)P respectively. Result (2.80) leads to

Var
(

vec
(

V̂ar (γ̂)LZ

))
≥ Var

(
vec
(

V̂ar (γ̂)P

))
(2.81)

showing that by sacrificing some of the robustness provided by the estimator in Liang and
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Zeger (1986), the estimator suggested by Pan (2001b) achieves higher efficiency.

By substituting the matrix A
1
2
i , in the proof for the above result presented in Pan (2001b,

p. 905), by Pi−pipi
′
, it may be shown that the result also holds for estimator (2.74). This

shows that asymptotically, the proposed estimator (2.74) estimates the standard errors of

γ̂ more efficiently than Liang and Zeger’s estimator.

Although the result has been proved for n tending to infinity, the simulation study carried

out by Pan (2001b) using sample sizes of 10 and 40, suggests that greater efficiency for Pan

(2001b) estimator holds even under small sample sizes. Also, as per Pan (2001b), using

(2.79) as an estimator of the true variance-covariance matrix yields a consistent estimator

of Var (γ̂). Gosho et al. (2014) propose to carry out a degrees of freedom correction, so as

to achieve an unbiased estimator of Var (Yi). This is the same correction that has been

mentioned in conjunction with the variance estimator (2.74).

2.9 Testing the Quality of Fit of the Model

Once a model is fit to a data set, the goodness of fit of the model needs to be checked.

Techniques for model testing and model selection in the context of modeling independent

data, as in generalized linear modeling, are widely available (McCullagh and Nelder, 1989,

p. 33-40). One particular measure that is typically used for model comparison of nested

models in generalized linear modeling is the difference in deviance. The deviance is defined

as −2× the log-likelihood ratio of the model being tested (reduced model) versus the full

model (also known as saturated model, since this model has as many parameters as the

size of the sample being considered). Information criteria, such as AIC and BIC are also

used for testing of models fitted to non-correlated data. These latter criteria may also be

used with non-nested models. Other measures which may be used to test the quality of fit

of a generalized linear model include the Wald test, the score test and residuals. The Wald

test statistic and the score statistic are used to either test for significance of the model

coefficients or to test for significance of sets of contrasts between the model coefficients. On

testing for significance of the rth model coefficient, (r = 1, . . . , p+ 1), the null hypothesis

takes the form H0 : βr = 0. On testing for significance of a set of contrasts, the null

hypothesis takes the form H0 : Lβ = 0 for some (q × (p+ 1)) matrix L, with q ≤ p.

In the context of generalized estimating equations, testing for lack of fit becomes more

complicated since only the first two moments and a working correlation structure are

specified. The just mentioned difference in deviance and the information criteria rely on

the full specification of the likelihood function. The score statistic and the Wald statistic

are based on the score function, which is again only available under the specification of

the likelihood function. Measures used to test quality of fit of a model when GEE is used

will be described in Section 2.9.1. Section 2.9.2 will then give detail on those measures

that are deemed to be suitable for testing quality of fit of the multivariate logit model for
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compositional data.

Note that in this introductory part of this section and also in Section 2.9.1, the notation

β is used to represent a general set of model coefficients. In Section 2.9.2, the notation

will be changed in accordance with the multivariate logit model.

2.9.1 Testing the Quality of Fit of the Model when GEE is Used

Despite the fact that a quasi-score function has many properties that are similar to the

score function arising out of a regular likelihood function (more detail on this has been

provided in Section 2.4.1), there is a property which the quasi-score function might not

satisfy. The score function is by definition the derivative of the log-likelihood function with

respect to the model parameters. This also works the other way round. The log-likelihood

function can be achieved by integrating the score function with respect to the parameters.

However, unless the matrix of derivatives ∂U
∂β is symmetric, the line integral of the quasi-

score function will depend on the path chosen (McCullagh, 1990, p. 284). Only if the line

integral is path independent can there be a unique quasi-log likelihood function. Without a

unique quasi-log likelihood function,‘it is difficult to distinguish good roots from bad roots’

(Li and McCullagh, 1994), especially in the case where the estimating equations have mul-

tiple roots. As per Li and McCullagh (1994), ‘a quasi-score function frequently fails to have

a symmetric derivative matrix.’ McLeish and Small (1992) developed a method in which

the likelihood ratio is projected onto the linear space spanned by the product of inde-

pendent observations, {y1 −m1 (β) , . . . , yn −mn (β)}. McLeish and Small (1992) showed

that if the quasi log-likelihood function exists, the logarithm of the projection leads to first

order equivalent inferences to those obtained from the quasi log-likelihood function. Li

(1993) also makes use of projections, and obtains a deviance function which approximates

the quasi log-likelihood ratio. Li and McCullagh (1994) proposed a method of projecting

the quasi-score function onto a class of estimating functions that satisfy the symmetric

property in the derivatives ∂U
∂β , yielding a unique integral for the projected quasi-score.

Hanfelt and Liang (1995) then developed an approximate likelihood ratio for regular unbi-

ased estimating equations (generalized estimating equations fall into this class) using two

different methods; the first based on a quasi-likelihood approach and the second based on

projections. The two methods use only information that is required to set up the estimat-

ing equations. The quasi-likelihood approach involves a line-integral over the parameter

space of the estimating equations. The projection approach works by projecting the log-

likelihood ratio onto the space spanned by a linear combination of estimating equations.

If the estimating equations used are quasi-score equations, this projection method reduces

to the projection likelihood ratio devised by Li (1993) for use with quasi-likelihood esti-

mation. Hanfelt and Liang (1995) have also shown that asymptotically correct hypothesis

tests are achieved with either one of the two approaches used to approximate the likeli-

hood ratio, irrespective of the path of integration chosen for the quasi-likelihood approach

and intermediate points needed to work out the projection based approach. Despite being
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promising, to my knowledge, this area of research has not been developed enough to pro-

duce tools that could be used for testing quality of fit of a model whose coefficients have

been estimated using generalized estimating equations/quasi-likelihood estimation.

The statistic that appears to be the most widely used for model selection when using

generalized estimating equations is the QIC (Pan, 2001a).

2.9.1.1 The Quasi Information Criterion (QIC)

The QIC is an information criterion, analogous to the AIC, but which is modified so that

it makes use of i) the quasi-likelihood function under the working independence model, ii)

the estimates of the model coefficients under the chosen working correlation matrix and

iii) the robust variance estimator proposed by Liang and Zeger (1986).

Under the working assumption of independence for all cases i and for all response variables

j, Pan (2001a) first presents the log quasi-likelihood function Q (β, IJ ,y1, . . . ,yn):

Q (β, IJ ,y1, . . . ,yn) =

n∑
i=1

J∑
j=1

Q (β, IJ ;Yij) . (2.82)

The QIC is then defined as

QIC(W) = −2Q
(
β̂ (W) ; IJ ,y1, . . . ,yn

)
− 2trace

([
̂

Var
(
β̂
)
M

]−1 ̂
Var

(
β̂
)
R

)
, (2.83)

where

• Q
(
β̂ (W) ; IJ ,y1, . . . ,yn

)
is the log quasi-likelihood function (2.82) evaluated at

estimates of β obtained under the working correlation structure W,

•
̂

Var
(
β̂
)
M

is the model-based variance estimator φ̂
(∑n

i=1 D̂
′
iV̂
−1
i D̂i

)−1
where Di

is the matrix of derivatives with elements ∂mi (β) /∂βk, (k = 1, . . . , p+ 1), Vi is

the ‘working’ variance-covariance matrix, D̂i and V̂i are the estimates of Di and

Vi respectively, evaluated using the β estimates obtained under an independence

working correlation structure,

•
̂

Var
(
β̂
)
R

is the robust variance estimator proposed by Liang and Zeger (1986).

The QIC may be used for both variable selection and working correlation matrix selection.

The model yielding the smallest QIC is deemed to be the best fitting model. Hin and Wang

(2009) suggested using a modified version of the QIC, the so-called CIC, which makes use

of the second term in the QIC only. Hin and Wang (2009) show that the CIC leads

to improvement in the choice of the working correlation structure. Gosho et al. (2011)

considered improved versions of QIC and CIC for choosing the best working correlation
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structure. The improved versions make use of alternative robust variance estimators than

the one suggested by Liang and Zeger (1986). In the analysis carried out by Gosho

et al. (2011), it was shown that the modified versions of QIC and CIC based on Pan

(2001b) variance estimator had the best overall performance in selecting the best working

correlation structure.

Under a GEE framework, it is also possible to test for significance of model coefficients

by means of four tests - a generalized version of the Wald test statistic, a ‘working’ Wald

statistic, a generalized version of the score statistic and a ‘working’ score statistic. These

test statistics are presented in Rotnizky and Jewell (1990). Boos (1992) discusses these

tests from a general perspective.

2.9.1.2 The Generalized Wald Tests

The null hypothesis being tested under the four tests is the same as for the standard

Wald and score test. The simplest hypothesis to test is as follows. Suppose that we wish

to test the null hypothesis H0 : β(1) = β0 where β(1) is an r-vector and subset of the

(p+ 1)-vector of model coefficients β, and β0 denotes the r-vector of values assigned to

β(1) under H0.

The Generalized Wald Statistic

The generalized Wald statistic is given by

TW =
(
β̂
(1)
− β0

)′ [ ̂
Var

(
β̂
(1)
)
R

]−1 (
β̂
(1)
− β0

)
, (2.84)

where
̂

Var
(
β̂
(1)
)
R

is the (r × r) submatrix of Liang and Zeger (1986) robust variance-

covariance matrix for β̂.

Since as per Liang and Zeger (1986), the GEE estimator β̂ is asymptotically multivariate

normal, then under H0, TW is chi-square distributed with r degrees of freedom.

As per Rotnizky and Jewell (1990), the estimation of Var
(
β̂
(1)
)
R

might be unstable in

the presence of a small sample size n with a large number of repeated observations for each

case i: ‘the test sizes are inflated and the corresponding confidence intervals have lower

coverage probabilities’ (Guo et al., 2005). Other issues related to using Liang and Zeger’s

sandwich estimator have been mentioned in Section 2.8.3. The bias-corrected variance

estimator proposed by Mancl and DeRouen (2001) and the variance estimator proposed

by Pan (2001b) provide alternative means of estimating Var
(
β̂
(1)
)

.
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The ‘Working’ Wald Statistic

Under the assumption that the working correlation structure is the true correlation struc-

ture, Rotnizky and Jewell (1990) propose to use the modified ‘working’ Wald statistic T ∗W
as an alternative to the generalized version of the Wald test statistic. The statistic T ∗W is

defined by

T ∗W =
(
β̂
(1)
− β0

)′ [ ̂
Var

(
β̂
(1)
)
M

]−1 (
β̂
(1)
− β0

)
, (2.85)

where
̂

Var
(
β̂
(1)
)
M

is the (r × r) submatrix of the model-based variance estimator for β̂,

φ̂
(∑n

i=1 D̂
′
iV̂
−1
i D̂i

)−1
. Under mild regularity conditions and provided that the marginal

mean model specification is correct, Rotnizky and Jewell (1990, Theorem 1) proved that

T ∗W =
r∑
j=1

c2jχ
2
j + op (1) , (2.86)

where χ2
j (j = 1, . . . , r) are independent chi-square distributed random variables with 1

degree of freedom and c1 ≥ . . . ≥ cr are the eigenvalues of Q = Q−10 Q1 + or×r(1) with

Q0 =

n∑
i=1

D̃
′
iV−1i D̃−1i ,

Q1 =
n∑
i=1

D̃
′
iV−1i Var (Yi)V−1i D̃−1i ,

where

D̃
′
i =

 D(1)
i − D(2)

i

(∑n
i=1D

(2)′

i V−1i D(2)
i

)−1 (∑n
i=1D

(2)′

i V−1i D(1)
i

)
, for r < p+ 1

Di for r = p.


Here D(1)

i is the J×r matrix making up the first r columns in Di, D
(2)
i is the J×((p+ 1)− r)

matrix making up the last ((p+ 1)− r) columns in Di and or×r(1) is an r × r matrix

with o(1) elements as n tends to infinity. If a sequence of random variables Xn satisfies

Xn = op (1), then Xn converges to zero in probability as n tends to infinity. If a sequence

of random variables Xn satisfies Xn = o (1), then Xn tends to 0 as n tends to infinity.

Note that the last two sentences define standard asymptotic notation.

If the chosen working correlation structure is the true correlation structure, Q reduces to

IJ . So cj = 1 for all j and thus T ∗W becomes asymptotically chi-square distributed with r

degrees of freedom.

Now as per Rotnizky and Jewell (1990), a major disadvantage of the Wald test statistic

is that it is not invariant to nonlinear transformations of the model coefficients. In such

a situation, the generalized score statistic and the ‘working’ score test statistic are bet-

59



ter alternatives to the two Wald test statistics presented in this section. The generalized

score statistic and the ‘working’ score test statistic are both invariant to differentiable

transformations of the model coefficients (Rotnizky and Jewell, 1990). So focus will now

be directed towards the generalized score statistic and the ‘working’ score test statistic.

However, since typically only linear transformations of the model coefficients are required

for testing for significance of model coefficients in the multivariate logit model for com-

positional data, both Wald and score tests may be considered in analyzing compositional

data sets.

2.9.1.3 The Generalized Score Tests

Let β =
(
β(1)′ ,β(2)′

)′
where β(1) and β(2) are an r-vector and a ((p+ 1)− r)-vector of

parameters respectively. Also let

U
(
β(1),β(2)

)
=

(
U(1)

(
β(1),β(2)

)′
,U(2)

(
β(1),β(2)

)′)′
,

where U
(
β(1),β(2)

)
is the (p+ 1)-vector of estimating functions for β, U(1)

(
β(1),β(2)

)
is made up of the estimating functions corresponding to β(1), whilst U(2)

(
β(1),β(2)

)
is

made up of the estimating functions corresponding to β(2).

The Generalized Score Test Statistic

For the generalized score test statistic, once again suppose that we wish to test the null

hypothesis H0 : β(1) = β0 where β0 denotes the r-vector of values assigned to β(1) under

H0. The generalized score test proceeds by solving U(2)
(
β(1),β(2)

)
= 0 to get an estimate

of β(2). Let this estimate be denoted by β̂
(2)

. The test statistic is then given by

TS = U(1)
(
β0, β̂

(2)
)
V̂−10 U(1)

(
β0, β̂

(2)
)
, (2.87)

where

V̂0 =

([
̂

Var
(
β̂
(1)
)−1
M

][
̂

Var
(
β̂
(1)
)
R

][
̂

Var
(
β̂
(1)
)−1
M

])
β=
(
β0,β̂

(2)
)

in which
̂

Var
(
β̂
(1)
)
M

is the model-based estimator defined for T ∗W and
̂

Var
(
β̂
(1)
)
R

is

Liang and Zeger (1986) robust variance-covariance estimator defined for TW .

As per Rotnizky and Jewell (1990), under mild regularity conditions and provided that the

marginal mean model specification is correct, TS is chi-square distributed with r degrees

of freedom under H0.

Due to similar computational instability as for the Wald tests, Rotnizky and Jewell (1990)

also propose the use of the ‘working’ score statistic T ∗S .
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The ‘Working’ Score Test Statistic

The ‘working’ score test statistic T ∗S is defined by

T ∗S = U(1)
(
β0, β̂

(2)
)[ ̂

Var
(
β̂
(1)
)
M

]
β=
(
β0,β̂

(2)
)U(1)

(
β0, β̂

(2)
)
, (2.88)

where

[
̂

Var
(
β̂
(1)
)
M

]
β=
(
β0,β̂

(2)
) is the (r × r) submatrix of the model-based estimator

for β̂, evaluated under H0.

The distribution of the statistic T ∗S is also presented in Rotnizky and Jewell (1990). Rot-

nizky and Jewell (1990, Theorem 2) show that

T ∗S = T ∗W + op (1) . (2.89)

2.9.2 Testing Quality of Fit using Generalized Wedderburn Estimating

Equations

The generalized Wedderburn estimating equations proposed in this thesis, fall under a

GEE framework. In a typical GEE analysis, as mentioned in the previous section, once

the model parameters are estimated, use is made of measures such as the QIC proposed by

Pan (2001a) or an adaptation of it, so as to choose the best working correlation structure

amongst a number of candidates. The QIC may also be used to check which explanatory

variables are to be retained in the model.

In Section 2.4.4, it has been shown that the estimates obtained using the generalized Wed-

derburn approach are invariant to the values of the dispersion and correlation parameters.

Thus, the steps that are undertaken to test the quality of fit of a model obtained under

the generalized Wedderburn approach, will not involve choosing the best working correla-

tion structure. Focus is directed towards checking which model coefficients are significant

and towards checking the resulting residuals. Details on the former are presented in the

subsequent section. The Pearson residual has already been presented in Section 2.8.2. In

Section 3.6, a distance measure which may be used to check the goodness of fit of a model

fitted to compositional data and which is based on the Pearson residual is proposed. The

reason for showing further material related to the Pearson residual in Section 3.6 is that

Chapter 3 gives detail about the method developed by Aitchison (1982, 1986) to model

compositional response data and provides some formal similarities in Aitchison’s method

and the generalized Wedderburn method. The residuals and distance measures proposed

for use under the generalized Wedderburn approach will thus be presented in Section 3.6

in relation to the residuals and distance measure used under Aitchison’s approach.

61



2.9.2.1 Testing Quality of Fit of Nested Models

Testing for goodness of fit of nested models under the generalized Wedderburn approach

may be carried out using the ‘working’ Wald statistic T ∗W and the ‘working’ score statistic

T ∗S developed by Rotnizky and Jewell (1990). As mentioned earlier, a score test is preferred

over a Wald test due to the score test being invariant to nonlinear transformations of the

model. Since identification of the model coefficients of the multivariate logit model relies

on choosing a set of contrasts between the coefficients, the invariance to reparametrization

of a score test is a very important and appealing property. Typically though, linear

transformations of the model coefficients are required for testing for significance of model

coefficients in the multivariate logit model, making both Wald and score tests suitable to

test the quality of fit of the multivariate logit model. The statistics T ∗W and T ∗S are chosen

over TW and TS due to their computational simplicity, as mentioned in Rotnizky and Jewell

(1990), and also due to the availability of the model-based variance estimator (2.67) which

has been developed to cater for the specific variability in compositional variables.

Under the generalized Wedderburn approach, the null hypothesis being tested is H0 :

γ(1) = γ0 where γ(1) is a subset of the (J − 1) (p+ 1)-vector of model coefficients γ and

γ0 denotes the vector of values assigned to γ(1) under H0.

The ‘Working’ Wald Statistic T ∗W under the Generalized Wedderburn Ap-

proach

Under the assumption that the working correlation structure is the true correlation struc-

ture and under the generalized Wedderburn approach, the statistic T ∗W is given by

T ∗W =
(
γ̂(1) − γ0

)′ [ ̂
Var

(
γ̂(1)

)
M

]−1 (
γ̂(1) − γ0

)
(2.90)

where
̂

Var
(
γ̂(1)

)
M

is the (r × r) submatrix of the model-based estimator (2.67) for γ̂.

As per Rotnizky and Jewell (1990), if the chosen working correlation structure is the

true correlation structure, T ∗W is asymptotically chi-square distributed with r degrees of

freedom.

The ‘Working’ Score Statistic T ∗S under the Generalized Wedderburn Approach

Using (2.54), the estimating functions for γ, in conjunction with the working variance-
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covariance matrix φVpi,Ω,W =
(
Pi − pipi

′
)

Σ
(
Pi − pipi

′
)

, T ∗S becomes

T ∗S =

[
n∑
i=1

X′i
(
P̂i − p̂ip̂

′

i

) [
φ̂V̂pi,Ω,W

]−
(Yi − p̂i)

]′ [
̂

Var
(
γ̂(1)

)
M

]
γ=(γ0,γ̂(2))

(2.91)

×

[
n∑
i=1

X′i
(
P̂i − p̂ip̂

′

i

) [
φ̂V̂pi,Ω,W

]−
(Yi − p̂i)

]

where

[
̂

Var
(
γ̂(1)

)
M

]
γ=(γ0,γ̂(2))

is the (r × r) submatrix of the model-based estimator

(2.67) evaluated under H0 and φVpi,Ω,W is estimated as described in Section 2.8.2.

Analogous to the ‘working’ Wald statistic, as per Rotnizky and Jewell (1990), if the chosen

working correlation structure is the true correlation structure, T ∗S is asymptotically chi-

square distributed with r degrees of freedom.

2.9.2.2 The Non-Suitability of Pan’s QIC Criterion

Despite its popularity and ease of implementation, Pan’s QIC may not be used under the

generalized Wedderburn approach. As seen in equation (2.83), Pan’s QIC relies on the

specification of a log quasi-likelihood function. In this thesis, an attempt at obtaining a

log quasi-likelihood function suitable for use with the generalized Wedderburn estimating

equations is made. Details of why it is impossible to obtain such a function, are presented

shortly.

Details on the Non-Existence of a Log Quasi-Likelihood Function

Let us first consider the case J = 2. We will show that this case is special, in that there does

exist a log quasi-likelihood function when J = 2. Unfortunately though, as will be shown,

this existence property does not extend to values of J greater than 2. In the special case

J = 2, we will show here that the Wedderburn estimating equations minimize a deviance

function that can be written intriguingly as a linear combination of the familiar gamma

and Poisson deviance functions. This turns out, though, to be more of an interesting

curiosity than a route to a more general result.

Consider the deviance functions dG (yij , p̂ij) and dP (yij , p̂ij), corresponding to the gamma

and Poisson distribution respectively, with p̂ij being the estimator of pij . So

dG (yij , p̂ij) = 2

[
− log

(
yij
p̂ij

)
+

(yij − p̂ij)
p̂ij

]
(2.92)

and

dP (yij , p̂ij) = 2

[
yij log

(
yij
p̂ij

)
− (yij − p̂ij)

]
. (2.93)

63



Also consider the function d (yij , pij) defined by

d (yij , pij) = dG (yij , pij) + 2dP (yij , pij) .

For case i, let

d+ (yi,pi) =

2∑
j=1

d (yij , pij) ,

so that

d+ (yi,pi) = d (yi1, pi1) + d (1− yi1, 1− pi1) .

Differentiating d+ (yi,pi) with respect to pi1 leads to

∂d+

∂pi1
= −2

(
yi1 − pi1

p2i1 (1− pi1)2

)
, (2.94)

which is −2× the quasi-score function corresponding to a response variable Yi1 with mean

pi1 and a mean-variance relationship defined by V (pi1) = p2i1 (1− pi1)2. So the func-

tion
n∑
i=1

d+ (yi,pi) may actually serve as a log quasi-likelihood function for Wedderburn’s

(1974) estimating equations.

For J = 2, it may also be shown that the Pearson chi-square statistic for the gamma dis-

tribution added to twice the Pearson chi-square statistic for the Poisson distribution is the

same as to the Pearson chi-square statistic achieved under the mean-variance specification

used in Wedderburn (1974). Details follow:

n∑
i=1

2∑
j=1

[
(yij − pij)2

p2ij
+ 2

(yij − pij)2

pij

]
=

n∑
i=1

[
(yi1 − pi1)2

p2i1
+

(1− yi1 − (1− pi1))2

(1− pi1)2
(2.95)

+2

(
(yi1 − pi1)2

pi1
+

(1− yi1 − (1− pi1))2

1− pi1

)]

=
n∑
i=1

(yi1 − pi1)2

p2i1 (1− pi1)2
.

The relationships relating the deviance functions and Pearson chi-square statistics for the

gamma and Poisson distribution to Wedderburn’s (1974) mean-variance specification, do

not however generalize to cater for J > 2. On using the estimating function Ujs, defined

in (2.55), for j 6= j
′

and j, j
′

= 1, . . . , J − 1, it may be shown that

∂Ujs
∂γj′k

6=
∂Uj′k
∂γjs

, (2.96)
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showing that the matrix of derivatives is not symmetric. For the generalized Wedderburn

estimating equations, the quasi log-likelihood function is thus not uniquely defined. The

proof showing that the matrix of derivatives is not symmetric is presented in Appendix B.
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Chapter 3

The Relationship between the

Generalized Wedderburn Model

and Aitchison (1982, 1986)

Regression Model

3.1 Introduction

As mentioned in Section 1.2.2, the standard methodology used to model compositional

response variables is that devised by Aitchison (1982, 1986), which involves taking one

compositional variable as reference component, taking the logratios of the response vari-

ables with respect to the chosen reference component and then proceeding to model the

influence of the explanatory variables on the transformed response variables using linear

regression analysis. If no zeros are present in the compositional variables and with the

assumption that the logratios are multivariate normally distributed, the model coefficients

are estimated using maximum likelihood estimation. Maximum likelihood estimators are

well understood and have desirable properties under the model.

Whilst the generalized Wedderburn approach models compositional data on the original

scale through the multivariate logit model, in Section 3.3 it will be shown how the approach

developed by Aitchison (1982, 1986) may be viewed as an additive model which has been

obtained as a result of taking the logarithm on both sides of the multiplicative model

(2.1). Although the two approaches are both related to the multiplicative model (2.1),

the two approaches estimate different mean models. Detail of why the two approaches

estimate different mean models is presented in Section 3.4. The two approaches do however

have some striking similarities of form. The formal similarities of the two approaches are

presented in Section 3.5. Section 3.6 presents residuals and a distance measure (Aitchison,

1992) that may be used to check the goodness of fit of a model fitted to compositional
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data. A distance measure based on the Pearson residuals achieved under the generalized

Wedderburn approach is also developed. An in-depth study of the properties of estimators

obtained under the two methods is then made in Section 3.7.

Due to the fact that the generalized Wedderburn method and Aitchison’s method estimate

different mean models, efficiency comparisons between the estimators used to estimate the

model coefficients do not in general make sense. A comparison of efficiency between the two

estimators may however be undertaken if the true values of the model coefficients corre-

sponding to the explanatory variables are set equal to zero in both models simultaneously.

Such a null-effects situation will be considered in Section 3.8 where a small simulation

study is carried out to compare the efficiency of the GEE estimator to that of the MLE

under various sample sizes, coefficients of variation and correlation coefficients, with com-

positional data being generated through multivariate lognormally distributed Ẏi. Under

the generalized Wedderburn approach, two different estimates of the variance-covariance

matrix Var (γ̂) are also obtained for each sample; the model-based estimator (2.67) with

φ̂V̂pi,Ω,W computed using (2.74) and the robust estimator of Liang and Zeger (1986) de-

scribed in Section 2.8.3. This is done in order to be able to compare the performance of two

estimators under various sample sizes, coefficients of variation and correlation coefficients.

The generalized Wedderburn method and Aitchison’s method are then compared on two

widely used datasets from the compositional data literature, the Arctic Lake dataset (e.g.

Aitchison, 1986; Tsagris et al., 2011; Maier, 2014) and the Foraminiferal dataset (e.g.

Aitchison, 1986; Palarea-Albaladejo et al., 2007; Scealy and Welsh, 2011; Tsagris, 2015),

in Sections 3.9 and 3.10 respectively.

3.2 The Multiplicative Regression Model (MRM)

Recall that for a sample of size n and a set of predictors X1, . . . , Xp, the random variables

Ẏij , i = 1, . . . , n, j = 1, . . . , J are modeled multiplicatively as

Ẏij = mi

(
θ̇i,βj

)
Eij , (3.1)

where the function mi for the ith case is defined as

mi (θ,β) = exp
(
θ + x

′
iβ
)
, (3.2)

the error vectors Ei = (Ei1, . . . , EiJ)
′

are assumed to be independent of one another,

E (Ei) = 1 and Var (Ei) = Σ̇ = φΩ
1
2WΩ

1
2 with φ being a common dispersion parameter,

Ω = diag (ω1, . . . , ωJ) with ω1, . . . , ωJ being relative dispersion parameters, and W is an

unknown correlation matrix.

67



If αjj′ denotes the typical element in the J × J correlation matrix W, it follows that

E
(
Ẏij

)
= mi

(
θ̇i,βj

)
,

Var
(
Ẏij

)
= φωj

[
mi

(
θ̇i,βj

)]2
,

Cov
(
Ẏij , Ẏij′

)
= φ
√
ωj
√
ωj′mi

(
θ̇i,βj

)
mi

(
θ̇i,βj′

)
αjj′ .

(3.3)

The multiplicative model (3.1) motivates two distinct ways of estimating the model pa-

rameters. One approach models the response variables on the original scale through the

multiplicative model whilst the other approach makes use of the additive model that is

obtained as a result of taking the logarithm on both sides of the multiplicative model.

For compositional response variables, in the previous chapter we have seen how the first

approach leads to the generalized Wedderburn method where E (Yij) is modeled using a

multivariate logit model. The second approach leads to Aitchison’s regression analysis of

logratios, modeling E (log (Yij/YiJ)), if component J is taken as the reference component.

A short introduction on Aitchison’s logratio method has been given in Section 1.2.2. More

details on Aitchison’s method and the way this approach relates to the multiplicative

regression model (3.1) and the generalized Wedderburn method, are given in Sections 3.3,

3.4 and 3.5.

3.3 Aitchison (1982, 1986) Regression Model

Consider the following definition which gives the details upon which the Aitchison (1982,

1986) modeling strategy for compositional data is based.

Definition 3.3.1. (Aitchison, 1986) Let Yi be a J-part compositional vector for case i

and suppose that Wi =
(

log
(
Yi1
YiJ

)
, . . . , log

(
Yi,J−1

YiJ

))′
= F log (Yi) follows a multivariate

normal distribution with mean vector Fζi and variance covariance matrix FΨF′, where F
is the (J − 1)×J matrix [IJ−1,−1J−1], IJ−1 being a (J − 1)× (J − 1) identity matrix and

1J−1 being a (J − 1)-vector of ones. Then

1. the J-vector of latent variables Ẏi, in the positive space IRJ
+, follows a multivariate

lognormal distribution with parameters ζi and Ψ,

2. the J-part composition Yi follows an additive logistic normal distribution with pa-

rameters Fζi and FΨF′.

If as per Definition 3.3.1, Ẏi follows a multivariate lognormal distribution with parameters

ζi and Ψ, then, log
(
Ẏi

)
follows a multivariate normal distribution with mean vector ζi

and variance covariance matrix Ψ. Letting the diagonal elements of Ψ be denoted by ψ2
j
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and its off-diagonal elements be denoted by ψjj′ ,
(
j, j
′

= 1, . . . , J
)

, j 6= j
′
, the variance-

covariance matrix FΨF′ is given by

FΨF
′

=


ψ2
1 − 2ψ1J + ψ2

J . . . ψ1,J−1 − ψ1,J − ψJ−1,J + ψ2
J

. . .
...

ψ2
J−1 − 2ψJ−1,J + ψ2

J

 (3.4)

where F =


1 0 . . . 0 −1
...

. . .
...

0 . . . 0 1 −1

.

Additionally, if ζi = (ζi1, . . . , ζiJ)
′
, then

E
(
Ẏij

)
= exp

(
ζij +

1

2
ψ2
j

)
, (3.5)

Var
(
Ẏij

)
=
(
exp

(
ψ2
j

)
− 1
)

exp
(
2ζij + ψ2

j

)
,

and through the use of the moment generating function of the multivariate normal distri-

bution,

Cov
(
Ẏij , Ẏij′

)
= mi

(
θ̇i,βj

)
mi

(
θ̇i,βj′

)(
exp

(
ψjj′

)
− 1
)
. (3.6)

Then, on relating equations (3.5) and (3.6) with (3.3), the latter obtained under the latent

multiplicative regression model, we have that

ζij = log
(
mi

(
θ̇i,βj

))
− 1

2
ψ2
j , (3.7)

φωj = exp(ψ2
j )− 1, (3.8)

ψ2
j = log(φωj + 1) (3.9)

and

ψjj′ = log
(
φj
√
ωj
√
ωj′αjj′ + 1

)
. (3.10)

Also, as per Definition 3.3.1, the vector of logratios Wi =
(

log
(
Yi1
YiJ

)
, . . . , log

(
Yi,J−1

YiJ

))′
is

assumed to follow a multivariate normal distribution with mean vector Fζi and variance-

covariance matrix FΨF′ . Using (3.7) and (3.2), the components making up Fζi are given
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by

E

[
log

(
Yij
YiJ

)]
= ζij − ζiJ

=

(
log
(
mi

(
θ̇i,βj

))
− 1

2
ψ2
j

)
−
(

log
(
mi

(
θ̇i,βJ

))
− 1

2
ψ2
J

)
=

(
θ̇i + x

′
iβj −

1

2
log(φωj + 1)

)
−
(
θ̇i + x

′
iβJ −

1

2
log(φωJ + 1)

)
=
(
θ̇i + x

′
iβ
∗
j

)
−
(
θ̇i + x

′
iβ
∗
J

)

where, for j = 1, . . . , J , β∗j =
(
β∗j0, βj1, . . . , βjp

)′
and β∗j0 = βj0 − 1

2 log(φωj + 1).

Consequently

E
(

log
(
Ẏij

))
− E

(
log
(
ẎiJ

))
= E (log (Yij))− E (log (YiJ)) (3.11)

=
(
θ̇i + x

′
iβ
∗
j

)
−
(
θ̇i + x

′
iβ
∗
J

)
= x

′
i

(
β∗j − β∗J

)
= x

′
iγ
∗
j ,

where γ∗j =
(
γ∗j0, γj1, . . . , γjp

)′
with γ∗j0 = γj0 − 1

2 log
(
φωj+1
φωJ+1

)
.

The steps in (3.11) explain the relationship that is modeled when using Aitchison’s logratio

method. Except for a change in notation for the model coefficients, the equation which

results from (3.11) is exactly the same as equation (1.8). In Chapter 1, Aitchison’s method

has been presented in terms of β as unless otherwise stated, throughout the thesis, β is

the notation that is used to represent a general vector of model coefficients.

The steps in (3.11) also lead to

E
(

log
(
Ẏij

))
= θ̇i + x

′
iβ
∗
j . (3.12)

Based on (3.11) and (3.12) it may thus be noticed that, given some sample data, Aitchison’s

method may be viewed as being the result of fitting a standard linear model to each log-

transformed compositional variable (or equivalently to each log-transformed latent variable

Ẏij), choosing a reference component and thus proceeding to take the differences in the

resulting estimates with respect to the chosen reference component.

More specifically, Aitchison’s method is based on taking logs on both sides of equation
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(3.1). This leads to

log
(
Ẏij

)
= log

(
mi

(
θ̇i,βj

))
+ log (Eij) (3.13)

= log
(
mi

(
θ̇i,βj

))
+ log (Eij)− E (log (Eij)) + E (log (Eij))

= log
(
mi

(
θ̇i,βj

))
+ E (log (Eij)) + E∗ij

where E∗ij = log (Eij)−E (log (Eij)). Clearly E
(
E∗ij

)
= 0. Assume that E∗ij are indepen-

dent and identically distributed amongst cases i for every component j. Then

E
(

log
(
Ẏij

))
= log

(
mi

(
θ̇i,βj

))
+ E (log (Eij)) (3.14)

= θ̇i + [βj0 + E (log (Eij))]xi0 + βj1xi1 + · · ·+ βjpxip

= θ̇i + x
′
iβ
∗
j

which is the same as equation (3.12).

So whilst the generalized Wedderburn method models compositional data on the original

scale through the multivariate logit model, the method developed by Aitchison (1982,

1986) may be viewed as an additive model which has been obtained as a result of taking

the logarithm of the multiplicative model. One point worth mentioning at this stage is

that despite the correspondence of the two approaches with the multiplicative regression

model, the two approaches are based on different mean models which lead to different

parameter estimates. Also, although Aitchison (1982, 1986) associates the modeling of the

logratios with the multivariate normal distribution, Aitchison’s approach may actually be

used on any set of logratios, irrespective of their distribution. This is because, on using

Aitchison’s approach, estimation of the model parameters is carried out by means of the

method of ordinary least squares. So, unless otherwise specified, the discussion about

Aitchison’s method which follows, will be more general than that presented by Aitchison

(1982, 1986). More detail is provided in the following sections.

3.4 The Differences between the Generalized Wedderburn

Model and Aitchison (1982, 1986) Model

In general, estimation of the parameters of a multiplicative model is carried out by ei-

ther considering the model for the response variable on the original scale or by otherwise

considering the model based on a log-transformed response variable. Except for the in-

tercept, the two methods estimate the same set of parameters (e.g. Firth, 1988). Despite

being related to the same multiplicative model, the generalized Wedderburn method and

Aitchison’s method are however two different methods which estimate two different sets

of model parameters.
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More specifically, in Section 2.7 it was shown that under the generalized Wedderburn

approach,

E (Yij) = E

(
Ẏij

Ẏi1 + · · ·+ ẎiJ

)
≈ pij =

E
(
Ẏij

)
E
(
Ẏi1

)
+ · · ·+ E

(
ẎiJ

) , (3.15)

and in the generalized Wedderburn estimating equations (2.55), the relationship between

E (Yij) and pij is taken to be exact rather than approximate as in (3.15).

Under the generalized Wedderburn approach

E (Yij) = pij =
mi

(
θ̇i,βj

)
J∑

j′=1

mi

(
θ̇i,βj′

) =
exp

(
x
′
iβj

)
J∑

j′=1

exp
(
x
′
iβj′

) , (3.16)

which, under reparametrization, leads to

E (Yij) = pij =
exp

(
x
′
iγj

)
J∑

j′=1

exp
(
x
′
iγj′

) . (3.17)

The γ estimates obtained through (3.17) are thus different from the estimates obtained

for the corresponding parameters in Aitchison’s regression model. In view of the Taylor

Series approximation, the differences between the two sets of parameters (except for the

intercept) only diminish as the dispersion φ goes to zero.

3.5 The Formal Similarities between the Generalized Wed-

derburn Model and Aitchison (1982, 1986) Model

Despite being two different methods which estimate two different mean models, Aitchison’s

approach and the generalized Wedderburn approach share a number of similarities of form.

3.5.1 The Generalized Wedderburn Model

The generalized Wedderburn approach has been developed by specifying the mean-variance

relationship of latent variable Ẏij to be as for a family of gamma distributions with constant

coefficient of variation together with a log link function to model log
(
E
(
Ẏij

))
= θi +

x
′
iβj directly. In Section 2.4.2, it has also been shown that the estimating equations for

β1, . . . ,βJ are given by
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n∑
i=1

(
Yij

mi

(
θi,βj

) − 1

)
xi,s−1 = 0 for j = 1, . . . , J, s = 1, . . . , p+ 1. (3.18)

Note that the same γ estimates will be achieved if either estimating equations (3.18)

or estimating equations (2.55) are used under the generalized Wedderburn approach. If

estimating equations (3.18) are used, the γ estimates are achieved through an iterative

process which involves the estimation of both θ and β, until convergence is achieved. If

estimating equations (2.55) are used, an iterative process still has to be used but no θ

parameters need to be estimated. Focus here is directed towards estimating equations

(3.18) due to the similarities that will be drawn between this set of estimating equations

and the estimating equations that are used in Aitchison’s method.

On using estimating equation (3.18), if β̂ is the estimator of β =
(
β
′
1, . . . ,β

′
J

)′
, in Section

2.4.4 we have seen that β̂ is the ordinary least squares estimator

β̂ =

[
IJ ⊗

(
X
′
X
)−1

X
′
]

Z∗, (3.19)

where IJ is a J × J identity matrix, X is the design matrix and Z∗ =
(
Z∗
′

(1), . . . ,Z
∗′
(J)

)′
is the vector of working variates. For i = 1, . . . , n, j = 1, . . . , J , Z∗(j) =

(
Z∗1j , . . . , Z

∗
nj

)′
where

Z∗ij = log
(
mi

(
θ̂i, β̂j

))
+

 Yij

mi

(
θ̂i, β̂j

) − 1

 . (3.20)

In the equation just provided, mi

(
θ̂i, β̂j

)
denotes the fitted value of mi

(
θi,βj

)
. It should

be noted that at convergence mi

(
θ̂i, β̂j

)
= p̂ij where p̂ij is the estimator of pij (see

equation (3.16)).

3.5.2 Aitchison’s Model

The estimating equations which correspond to (3.14) are given by

n∑
i=1

[
log
(
Ẏij

)
− log

(
mi

(
θ̇i,β

∗
j

))]
xi,s−1 = 0 for j = 1, . . . , J, s = 1, . . . , p+ 1

(3.21)

where log
(
mi

(
θ̇i,β

∗
j

))
= log

(
mi

(
θ̇i,βj

))
+ E (log (Eij)).

Since log
(
Ẏij

)
− log

(
mi

(
θ̇i,β

∗
j

))
= log (Yij) − log

(
mi

(
θi,β

∗
j

))
, estimating equations

(3.21) may be rewritten as

n∑
i=1

[
log (Yij)− log

(
mi

(
θi,β

∗
j

))]
xi,s−1 = 0 for j = 1, . . . , J, s = 1, . . . , p+1, (3.22)
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where (3.22) are ordinary least squares equations for compositional variables Yij . Under

the assumption that log (Yij) is normally distributed with mean log
(
mi

(
θi,β

∗
j

))
and with

constant variance across all cases i for each component j, the estimating equations (3.22)

may also be considered to be maximum likelihood equations.

In contrast with the generalized Wedderburn approach, Aitchison’s approach delivers the

estimates of the β parameters in one evaluation step. If β∗ =
(
β∗
′

1 , . . . ,β
∗′
J

)′
, its esti-

mator β̂∗, achieved under Aitchison’s approach, is however also an ordinary least squares

estimator. The estimator β̂∗ is given by

β̂∗ =

[
IJ ⊗

(
X
′
X
)−1

X
′
]

Z∗, (3.23)

where IJ is a J × J identity matrix, X is the design matrix and Z∗ =
(
Z∗
′

(1), . . . ,Z
∗′
(J)

)′
is the vector of working variates. For i = 1, . . . , n, j = 1, . . . , J , Z∗(j) =

(
Z∗1j , . . . , Z

∗
nj

)′
where in this case,

Z∗ij = log (Yij) . (3.24)

A further similarity in the two methods will be noticed once the variance-covariance matrix

of the γ parameters is derived, under the two approaches, in Section 3.7.

From the working variates (3.20) and (3.24), used under the two different methods, it may

however be appreciated why, of these two approaches, only the generalized Wedderburn

approach can still be used if any zeros are present in the compositional response variables.

The generalized Wedderburn approach is also preferable for interpretation purposes, as

this approach models E (Yij) directly.

3.6 Residuals and Distance Measures based on the Two

Models

3.6.1 Residuals and Distance Measure based on Aitchison’s Model

As seen in the previous section, estimates under Aitchison’s approach are obtained using

ordinary least squares. Thus, for i = 1, . . . , n, j = 1 . . . , J , the residuals are given by

log (Yij)− log
(
p̂∗ij
)
, (3.25)

where p̂∗ij is the fitted value of Yij . The fitted values p̂∗ij are obtained on exponentiating and

rescaling the fitted values mi

(
θ̂i, β̂

∗
j

)
obtained from fitting a standard linear regression

model to the components of log (Y).
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Alternatively, a centred version of the residuals (3.25) may be used, giving

R∗ij = log

(
Yij
p̂∗ij

)
− 1

J

J∑
j′=1

log

(
Yij′

p̂∗
ij′

)
. (3.26)

In analyzing the Arctic Lake dataset and the Foraminiferal dataset in Sections 3.9 and

3.10 respectively, use is made of the centred residual R∗ij . Preference is given to the centred

residuals as, for all j and s, these residuals satisfy

n∑
i=1

R∗ijxis = 0, (3.27)

and so they are orthogonal to the columns of the design matrix X. Furthermore, these

centred residuals will be shown to be directly related to the distance measure developed

by Aitchison (1992). This distance measure may be used to check the goodness of fit of a

model fitted to compositional data. Moreover, recall from Pg 50 that the Pearson residual

used under the generalized Wedderburn approach also involves a centering operation and

a distance measure based on Pearson residual will also be developed in Section 3.6.2.

As per Aitchison (1992), the distance between two compositions Y and Y∗, ∆ (Y,Y∗),

should be measured by considering the difference in the logratios of the two compositions

as follows:

∆ (Y,Y∗) =


J∑

j′′=1

J∑
j=1︸︷︷︸
j<j′′

[
log

(
Yj
Yj′′

)
− log

(
Y ∗j
Y ∗
j′′

)]2


1
2

. (3.28)

The distance measure ∆ (Y,Y∗) adheres to a number of criteria, which are line with the

requirements of the geometrical structure of the simplex SJ−1. The following list is an

adaptation of the criteria mentioned in Aitchison (1992, p. 374). The distance measure

∆ (Y,Y∗)

• is positive if compositions Y and Y∗ are not equivalent

• is equal to zero if Y = aY∗ for any a ∈ R+

• allows interchangeability of compositions so that ∆ (Y,Y∗) = ∆ (Y∗,Y)

• is scale invariant so that ∆ (aY, a∗Y∗) = ∆ (Y,Y∗) for every a, a∗ ∈ R+

• is perturbation invariant so that ∆ (p⊕Y,p⊕Y∗) = ∆ (Y,Y∗) for every pertur-

bation p (the perturbation operation has been defined in Definition 2.1.1)

• is permutation invariant so that ∆ (PY,PY∗) = ∆ (Y,Y∗) for every matrix of per-

mutations P

• satisfies subcompositional dominance so that ∆ (Y,Y∗) ≥ ∆ (Ys,Y∗s), where Ys
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and Y∗s are subcompositions of Y and Y∗ respectively. A subcomposition is a

‘composition in a simplex of lower dimension than that of the full composition’

(Aitchison, 1986, p. 34).

In considering the goodness of fit of a model, the distance of interest is that between the

matrix of compositional data Y and its corresponding fitted values. Let the fitted values

be denoted by P̂∗. Aitchison’s distance measure is then given by

∆
(
Y, P̂∗

)
=


J∑

j′′=1

J∑
j=1︸︷︷︸
j<j′′

n∑
i=1

[
log

(
Yij
Yij′′

)
− log

(
p̂∗ij
p̂∗
ij′′

)]2


1
2

. (3.29)

Now, (3.29) may alternatively be rewritten as

∆
(
Y, P̂∗

)
=


J∑

j′′=1

J∑
j=1︸︷︷︸
j<j′′

n∑
i=1

[
log

(
Yij
p̂∗ij

)
− log

(
Yij′′

p̂∗
ij′′

)]2


1
2

(3.30)

=

J J∑
j=1

n∑
i=1

log

(
Yij
p̂∗ij

)
− 1

J

J∑
j′=1

log

(
Yij′

p̂∗
ij′

)2
1
2

=

J J∑
j=1

n∑
i=1

R∗2ij

 1
2

,

showing that the centred residuals R∗ij may indeed be used to provide a measure of fit of

a model that has been fitted to compositional data. The proof showing that the first two

lines in (3.30) are equal is presented in Appendix C.

3.6.2 Residuals and Distance Measure based on the Generalized Wed-

derburn Method

When the generalized Wedderburn method is used, in (2.73) we have seen that the Pearson

residual takes the form

Rij =
Yij
p̂ij
− 1

J

J∑
j′=1

Yij′

p̂ij′
. (3.31)

Analogous to the centred residuals R∗ij , from estimating equations (2.55) it may be noticed

that the Pearson residuals (3.31) are also the working residuals and that, for all j and s,

76



they also satisfy
n∑
i=1

Rijxis = 0, (3.32)

meaning that the Pearson residuals are also orthogonal to the columns of the design matrix

X.

The fact that under the generalized Wedderburn approach, the Pearson residuals are

equivalent to the working residuals is appealing as this is a generalization of the equiv-

alence of the Pearson and working residuals for the model used by Wedderburn (1974)

for J = 2. Another correspondence involving the Pearson residuals and the model used

by Wedderburn (1974) may be obtained by considering the Pearson chi-square statistic.

Focusing on the special case J = 2, let Ri denote the vector of Pearson residuals for case

i. Then, for J = 2, Ri is given by

Ri =
1

2

Yi1 − p̂i1
p̂i1 (1− p̂i1)

(
1

−1

)
.

For J = 2, the Pearson chi-square statistic is thus given by

1

4

n∑
i=1

[
(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2
+

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

]
=

1

2

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2
,

which is half the value of the Pearson chi-square statistic obtained by Wedderburn (1974).

To understand why the Pearson chi-square statistic obtained using the generalized Wed-

derburn method is half that obtained by Wedderburn (1974), we turn our attention to

the asymptotic variance-covariance matrices of γ̂ obtained for J = 2 under the general-

ized Wedderburn method and the model used by Wedderburn (1974). The asymptotic

variance-covariance matrix obtained using the model in Wedderburn (1974) is given by

Var (γ̂) = φW

(
X
′
X
)−1

. (3.33)

For a J-part composition, if the true variance-covariance matrix of Yi is taken to be

φVpi,Ω,W, the asymptotic variance-covariance matrix obtained under the generalized Wed-

derburn method is given by FΣF′⊗
(
X′X

)−1
. This result will be derived in Section 3.7.2.2.

For J = 2 and under the assumption that the true variance-covariance matrix of Yi is

given by φVpi,IJ ,IJ , the asymptotic variance-covariance matrix for γ̂ reduces to

Var (γ̂) = 2φ
(
X
′
X
)−1

. (3.34)

On comparing (3.34) with (3.33) it may thus be noticed that the asymptotic variance-

covariance matrices achieved under the generalized Wedderburn method and the method

used in Wedderburn (1974) are of the same form but they have different dispersion param-
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eters. The dispersion parameter used in the generalized Wedderburn method is half the

dispersion parameter used in Wedderburn (1974). Now, in the quasi-likelihood estimation

framework, the dispersion parameter is typically estimated using the Pearson chi-square

statistic. Since the dispersion parameters that correspond to the two methods differ by

a factor of two, the corresponding Pearson chi-square statistics will also differ by a fac-

tor of two, explaining why the Pearson chi-square statistic obtained using the generalized

Wedderburn method is half that based on Wedderburn (1974).

In this section, let P̂ denote the matrix of fitted values. A multivariate version of the

Pearson chi-square statistic may be computed by squaring and summing the Pearson

residuals Rij for all i and j. This leads to the the newly proposed directed distance

measure ∆
(
Y, P̂

)
to be used to check goodness of fit of a model fitted to compositional

data and which is based on the generalized Wedderburn method. The measure ∆
(
Y, P̂

)
is computed as

∆
(
Y, P̂

)
=

J n∑
i=1

J∑
j=1

R2
ij

 1
2

, (3.35)

where the square root has been introduced so that this distance measure has a similar

meaning to the distance measure developed by Aitchison (1992).

The distance measure ∆
(
Y, P̂

)
adheres to all the properties of a distance measure listed by

Aitchison (1992), except for the interchangeability of the compositions Yi and p̂i and the

property of subcompositional dominance. The lack of interchangeability in the distance

measure ∆
(
Y, P̂

)
should not however be viewed as a problem, as to check the goodness of

fit of a model it makes sense to check how far is a vector of fitted values p̂i from the vector

of compositions Yi but not vice versa. The requirement for subcompositional dominance

is too strict for use with the generalized Wedderburn approach. Under the generalized

Wedderburn approach, the model assumptions that are used to analyze subcompositions

are consistent with those used to analyze a full composition. For example, for some

reference component J , the logits log (E (Yij) /E (YiJ)) are all modeled as x
′
iγ if either

a full composition or a subcomposition is analyzed. However, the parameter estimates

that are obtained from analyzing a full composition are not in general the same as those

obtained when a subcomposition is analyzed. This property might be considered by some

to be a shortcoming of the model. We however argue that the value of say Yi2 being

irrelevant to inference about E (Yi1) /E (Yi3) when considering a three-part composition is

hard to justify and might even be undesirable in general. Consider the following example

in terms of logratios in relation to this argument.

Suppose that, for i = 1, . . . , n, compositions (Yi1, Yi2, Yi3)
′

are independently logistic nor-

mally distributed with the special mean structure E (log (Yi1/Yi3)) = E (log (Yi2/Yi3)) =

µ. This example, despite being quite unrealistic as a model to be used with real life

data, shows that optimal estimation of µ combines the sample means of log (Yi1/Yi3) and

log (Yi2/Yi3), thus making use of information from all parts of the composition. The adop-
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tion of subcompositional dominance as a general principle in the analysis of compositional

data is therefore unwarranted.

3.7 Properties of Estimators under the Two Models

Since the generalized Wedderburn method is being proposed as an alternative to Aitchi-

son’s approach to model the influence of explanatory variables on compositional response

variables, particularly when there are zeros in the data, it is important for us to study

the properties of the estimators used in the two approaches. Focus is directed towards

the difference in the β parameters (γ
′
1, . . . ,γ

′
J−1), taking the last component as reference

component.

3.7.1 Properties of Estimators under Aitchison’s Model

Let β̂∗j be the estimator of β∗j . Using (3.13) and (3.14),

log
(
Ẏ(j)

)
= θ̇ + Xβ∗j + E∗(j)

where Ẏ(j) =
(
Ẏ1j , . . . , Ẏnj

)′
, θ̇ =

(
θ̇1, . . . , θ̇n

)′
and E∗(j) = (E1j , . . . , Enj)

′
. It is assumed

that for E∗i = (E∗i1, . . . , E
∗
iJ)
′
, E (E∗i ) = 0 and Var (E∗i ) = Ψ. The expectation E

(
E∗(j)

)
is thus also equal to 0, from which it follows that

E
(
β̂∗j

)
=
(
X
′
X
)−1

X
′
E
(

log
(
Ẏ(j)

))
=
(
X
′
X
)−1

X
′
[
θ̇ + Xβ∗j

]
= β∗j +

(
X
′
X
)−1

X
′
θ̇.

So β̂∗j is not an unbiased estimator of β∗j but because of the fact that the bias
(
X′X

)−1
X′ θ̇

is constant between components j, then

E
(
γ̂∗j

)
= E

(
β̂∗j

)
− E

(
β̂∗J

)
(3.36)

= β∗j − β∗J
= γ∗j ,

showing that γ̂∗j is an unbiased estimator of γ∗j . Thus, under Aitchison’s approach and for

(j = 1, . . . , J − 1), γ̂∗j0, γ̂j1, . . . , γ̂jp are unbiased estimators of γ∗j0, γj1, . . . , γjp respectively.

Focus will next be directed towards obtaining an expression for Var (γ̂∗), where γ∗ =(
γ∗
′

1 , . . . ,γ
∗′
J−1

)′
, γ∗j =

(
γ∗j0, γj1, . . . , γjp

)′
for j = (1, . . . , J − 1) and γ̂∗ is the estimator
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of γ∗.

So as to better understand the setup that will be used to obtain the variance-covariance

matrix of γ̂∗, it is important to appreciate the fact that the estimate γ̂∗j may be obtained

in two ways. It is either obtained by solving separately for β̂
∗
j and β̂

∗
J , and then taking

their differences. Otherwise, γ̂∗j may also be obtained directly, by using linear regression

modeling on the adjusted vector of working variates

W(j) = Z∗(j) − Z∗(J), (3.37)

where W(j) = (W1j , . . . ,Wnj)
′

and for i = 1, . . . , n,

Wij = log

(
Yij
YiJ

)
. (3.38)

In order to obtain Var (γ̂∗), we will focus on the latter procedure. So consider the (J − 1)-

vector of logratios

Wi =

(
log

(
Yi1
YiJ

)
, . . . , log

(
Yi,J−1
YiJ

))′
= F log (Yi) = F log

(
Ẏi

)
(3.39)

where the variance-covariance matrix of log
(
Ẏi

)
is Ψ. On modeling the logratios Wi

directly, we can estimate the vector of parameters γ∗ by means of the generalized least

squares estimator

γ̂∗ =
(

(IJ−1 ⊗ X)
′
(Var (W))−1 (IJ−1 ⊗ X)

)−1
(IJ−1 ⊗ X)

′
(Var (W))−1 W

where W =
(
W
′

(1), . . . ,W
′

(J−1)

)′
, W(j) = (W1j , . . . ,Wnj)

′
for (j = 1, . . . , J − 1) and

Var (W) = Var (Wi)⊗ In

= Var
(
F log

(
Ẏi

))
⊗ In

= FVar
(

log
(
Ẏi

))
F
′ ⊗ In

= FΨF
′ ⊗ In.

Thus

γ̂∗ =

(
(IJ−1 ⊗ X)

′
((

FΨF
′
)−1
⊗ In

)
(IJ−1 ⊗ X)

)−1
(IJ−1 ⊗ X)

′
((

FΨF
′
)−1
⊗ In

)
W

=

[
IJ−1 ⊗

(
X
′
X
)−1

X
′
]

W (3.40)
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and the variance-covariance matrix of γ̂∗ is given by

Var (γ̂∗) =

(
IJ−1 ⊗

(
X
′
X
)−1

X
′
)

Var (W)

(
IJ−1 ⊗

(
X
′
X
)−1

X
′
)′

=

(
IJ−1 ⊗

(
X
′
X
)−1

X
′
)(

FΨF
′ ⊗ In

)(
IJ−1 ⊗

(
X
′
X
)−1

X
′
)′

= FΨF
′ ⊗
(
X
′
X
)−1

. (3.41)

Now, despite stating that γ∗ is estimated using the GLS estimator (3.40), it should be

noted that the estimator γ̂∗ is actually free of the variance-covariance matrix Var (W).

The presented GLS estimator may thus also be called an OLS estimator. The variance-

covariance matrix Var (γ̂∗) is however not free of Var (W). The invariance of the estimator

γ̂∗ to the variance-covariance Var (W) under Aitchison’s approach, is directly analogous to

the invariance of the estimator γ̂ to the working variance-covariance structure used under

the generalized Wedderburn approach (refer to Section 2.4.4). The invariance property of

these estimators is analogous to the well-established invariance property of GLS estimators

in multivariate linear regression (e.g. Mardia et al., 1979, p. 173).

It is also important to mention that since γ̂∗ is a GLS estimator, γ̂∗ is the best (in

terms of the variance) linear unbiased estimator in the class of all linear and unbiased

estimators. The estimator γ̂∗ is also consistent and asymptotically multivariate normal

with mean vector γ∗ and variance-covariance matrix FΨF′ ⊗
(
X′X

)−1
. If the error vector

E∗i is multivariate normally distributed, γ̂∗ is multivariate normally distributed with mean

vector γ∗ and variance-covariance matrix FΨF′ ⊗
(
X′X

)−1
. If the multivariate normality

assumption of the error vectors holds, γ̂∗ is also fully efficient.

3.7.2 Properties of Estimators under the Generalized Wedderburn Model

3.7.2.1 General Properties of the Estimators

As has been mentioned at the end of Section 2.7, since γ̂ is a GEE estimator, it inherits

the properties of GEE estimators as in Liang and Zeger (1986). The estimator γ̂ is thus

asymptotically unbiased with a bias of order O
(
1
n

)
(McCullagh, 1983). It is optimal

(has the smallest generalized variance) in the class of linear unbiased estimating equations

(McCullagh, 1983). It is also consistent and asymptotically multivariate normal with

mean vector γ and variance-covariance matrix FΣF′ ⊗
(
X′X

)−1
, where Σ is as defined in

equation (2.62). The derivation to show that the asymptotic variance-covariance matrix

Var (γ̂) = FΣF′ ⊗
(
X′X

)−1
is given in the following section.
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3.7.2.2 Derivation of the Model-Based Asymptotic Variance-Covariance Ma-

trix Var (γ̂)

From Section 2.7, φVpi,Ω,W =
(
Pi − pip

′
i

)
Σ
(
Pi − pip

′
i

)
, where φVpi,Ω,W is the work-

ing variance-covariance structure assumed under the generalized Wedderburn model. If

φVpi,Ω,W is assumed to be the true variance-covariance matrix of Yi, then

Var (γ̂) = φ

(
n∑
i=1

D
′
iV−pi,Ω,W

Di

)−1
, (3.42)

where Di is as defined on Pg 42.

In order to avoid dealing with singular matrices in the derivation, Var (γ̂) will be reex-

pressed as

Var (γ̂) = φ

(
n∑
i=1

[Di]
′

F

[
Vpi,Ω,W

]−1
F

[Di]F

)−1
,

where

[Di]F = F
(
Pi − pipi

′
)
Xi

and

φ
[
Vpi,Ω,W

]
F

= F
(
Pi − pip

′
i

)
Σ
(
Pi − pip

′
i

)
F
′
.

The matrix F is the (J − 1)× J matrix of contrasts defined in Definition 3.3.1, [Di]F is a

(J − 1) (p+ 1)×(J − 1) matrix which applies contrasts on the matrix of derivatives Di, and[
Vpi,Ω,W

]
F

is a (J − 1)×(J − 1) matrix which applies contrasts on the variance-covariance

matrix of Yi. The use of contrasts in this situation removes the redundancy attributed to

the sum-to-one constraint of the proportions (pi1, . . . , piJ) in the matrix of derivatives and

the redundancy attributed to the sum-to-one constraint of the compositional response

variables in the variance-covariance matrix of Yi. By removing the redundancy it is

thus possible to derive the expression of Var (γ̂) by using inverses rather than generalized

inverses.

Hence

Var (γ̂) =

(
n∑
i=1

X
′
i

(
Pi − pipi

′
)
F
′
[
F
(
Pi − pip

′
i

)
Σ
(
Pi − pip

′
i

)
F
′
]−1

(3.43)

×F
(
Pi − pipi

′
)
Xi
)−1

.

Now, the rows of F form a basis for the subspace of all contrasts in RJ since the rows of F
sum to 0 and the rows are linearly independent of each other. The matrix F

(
Pi − pipi

′
)

also has rows which form a basis for the same subspace of contrasts in RJ . The latter

follows since the rows of F
(
Pi − pipi

′
)

also sum to 0 and are linearly independent. Proofs

for the latter two properties may be found in Appendix D.
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Since the rows of F and the rows of F
(
Pi − pipi

′
)

each form a basis for the same subspace,

then from standard linear algebra it follows that there must exist an invertible (J − 1)×
(J − 1) matrix, say Gi, such that

F
(
Pi − pipi

′
)

= GiF. (3.44)

Substituting GiF for F
(
Pi − pipi

′
)

in (3.43) leads to

Var (γ̂) =

(
n∑
i=1

X
′
iF
′
G
′
i

[
GiFΣF

′
G
′
i

]−1
GiFXi

)−1
(3.45)

=

(
n∑
i=1

X
′
iF
′
[
FΣF

′
]−1

FXi

)−1

=

([
FΣF

′
]−1
⊗ X

′
X
)−1

= FΣF
′ ⊗
(
X
′
X
)−1

where X is the design matrix.

The final expression in (3.45) shows that the asymptotic variance-covariance matrix of

γ̂ under the generalized Wedderburn model is in the same form as that obtained using

Aitchison’s regression model (refer to equation (3.41)).

3.8 Comparison of Asymptotic Efficiency under the Two

Models

Aitchison’s model and the generalized Wedderburn model may both be used to analyze

the influence of explanatory variables on compositional response variables. In Section 3.4,

however, it has been shown that the two approaches are based on two different mean

models, meaning that they estimate different parameters. Nevertheless, if the response

variables do not exhibit any dependency on explanatory variables X1, . . . , Xp, that would

correspond to the corresponding model coefficients being equal to zero in both models

simultaneously.

On using Aitchison’s approach, if the logratios are multivariate normally distributed, the

ordinary least squares estimator, γ̂∗, of the model coefficients may equivalently be called

the maximum likelihood estimator. Maximum likelihood estimators are well understood

and have desirable properties under the model.

Given a correct specification of the mean, the GEE estimator γ̂, achieved through the

generalized Wedderburn approach is consistent and asymptotically unbiased. A GEE

estimator may not however be as efficient as the maximum likelihood estimator used in
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Aitchison’s approach under the assumption of multivariate normality of the logratios. It

is thus of interest to compare how the efficiency of the GEE estimator fares in relation to

the maximum likelihood estimator used in Aitchison’s approach.

A comparison of efficiency of the estimators is carried out by means of a small simulation

study with null effects. The data is generated using Aitchison’s model with 3-part composi-

tional response variables and a standard normally distributed continuous random variable

as the explanatory variable. The coefficients corresponding to the continuous variable are

taken to be zero. The simulation study considers the comparison of efficiency for these co-

efficients in relation to varying sample sizes, coefficients of variation
√
φωj , (j = 1, . . . , J)

and correlations Corr
(
Ẏj , Ẏj′

)
= αjj′ , (j 6= j

′
).

3.8.1 The Simulation Setup

One hundred thousand samples are generated for each combination of sample size, coef-

ficients of variation and correlation. Three different sample sizes (60, 180 and 600), two

different sets of coefficients of variation ((5%, 5%, 20%) and (30%, 30%, 60%)) and three

different correlations (independence, 0.3 and 0.7) are considered in this simulation study.

Compositional data is generated by considering that if log
(
Ẏi

)
follows a multivariate

normal distribution with mean vector ζi and variance covariance matrix Ψ, then Ẏi follows

a multivariate lognormal distribution with parameters ζi and Ψ and taking the closure

of Ẏi leads to the vector of compositional response variables Yi. Knowing the values of

mi

(
θ̇i,βj

)
, coefficients of variation and correlations, the values of the parameters ζi and

Ψ are calculated through equations (3.7), (3.8), (3.9) and (3.10).

The coefficients of variation and correlations are taken to be fixed at the values used

in the simulation study. The values for mi

(
θ̇i,βj

)
= exp

(
θ̇i + x

′
iβj

)
used for the data

generation procedure are obtained by fixing a set of β and θ̇ parameters. The β parameters

are taken to be β10 = 0.14, β20 = 0.02, β30 = 0.04, β11 = 0, β21 = 0, β31 = 0. The vector

θ̇ is generated using the standard normal distribution.

By taking the third component as reference component, the true γ parameters are calcu-

lated by taking the difference βj − β3, j 6= 3, leading to the values shown in Table 3.1,

where γ11 and γ21 are set equal to 0.

Component 1 Component 2

Intercept 0.1 −0.02
x 0 0

Table 3.1: Table of True γ Parameters

Once ζi and Ψ are calculated, the 3-part compositional data is then generated. Since

Ẏi are taken to follow a multivariate lognormal distribution, the compositional response

variables will not contain any zeros.
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Once the data generating procedure and the true γ parameter values are set, the simulation

study may be carried out. For each generated sample of data, estimates using Aitchison’s

approach are obtained by fitting the linear model

E (log (Yij)) = β∗j0 + βj1xi (3.46)

for each of the three components. Estimates γ̂∗j are obtained by taking the difference

β̂
∗
j − β̂3, j 6= 3, and the resulting fitted values are exponentiated and rescaled so that they

adhere to the sum-to-1 constraint.

For each generated sample, estimates using the generalized Wedderburn approach are

obtained through an iterative process. The linear model

E

log
(
mi

(
θ̂i, β̂j

))
+

 Yij

mi

(
θ̂i, β̂j

) − 1

 = βj0 + βj1xi (3.47)

is used to obtain the β estimates. The initial value for each θi is taken to be 0 and the initial

values of mi

(
θ̂i, β̂j

)
, (i = 1, . . . , n, j = 1, . . . , J) are taken to be the fitted values obtained

from (3.46). The initial estimates of θ1, . . . , θn are updated once the initial values of

mi

(
θ̂i, β̂j

)
, (i = 1, . . . , n, j = 1, . . . , J), are obtained. The initial values of mi

(
θ̂i, β̂j

)
are

hence rescaled and used in the linear model (3.47) to obtain updated values of mi

(
θ̂i, β̂j

)
.

This leads to another update in the estimates of θ1, . . . , θn which is used to once again

obtain rescaled values of mi

(
θ̂i, β̂j

)
and the procedure is repeated until convergence is

achieved. The convergence criterion used in the simulation study is∣∣∣mi

(
θ̂t+1
i , β̂

t+1

j

)
−mi

(
θ̂ti , β̂

t

j

)∣∣∣ < ε (3.48)

where t denotes the iteration number and ε is a predefined level of tolerance. In this study,

ε is set to be equal to 10−8 and for convergence to be achieved, the convergence criterion

(3.48) has to be satisfied for all i and j. Having achieved convergence, estimates γ̂j are

obtained by taking the difference β̂j − β̂3, j 6= 3.

Under the generalized Wedderburn approach, two different estimates of the variance-

covariance matrix Var (γ̂) are obtained for each sample; the model-based estimator (2.67)

with φ̂V̂pi,Ω,W worked out using (2.74) and the robust estimator of Liang and Zeger (1986)

described in Section 2.8.3. This is done in order to be able to compare the performance

of the two estimators under various sample sizes, coefficients of variation and correlation

coefficients. Such a comparison may be entertained by computing the sample variance for

each γ parameter using the γ estimates obtained from the generated samples.

Also for every sample and for both the model-based and robust variance estimators, con-

fidence intervals for each of the γ parameters are computed using the estimated standard

errors. The estimated standard errors are obtained by taking the square root of the di-

agonal elements of the model-based and robust estimates of Var (γ̂). For every sample
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and every parameter, note is taken of the number of times the true parameter values lie

within the confidence intervals obtained throughout. At the end of the simulation study,

the coverage probability for every parameter is estimated for both the model-based and

robust variance estimator. The empirical coverage probability will be compared with the

nominal 95% level. This exercise is also carried out to investigate the performance of the

two variance estimators. The coverage probabilities that are closest to 95% are achieved

by the better performing variance estimator.

Summarization of the Simulation Results

The estimates that are obtained at the end of the simulation are:

• the biases achieved under the two approaches together with their standard error

• the variance of the γ estimates achieved under the two approaches together with the

corresponding standard error

• the average of the estimated Var (γ̂) using both model-based and robust variance es-

timators, under the generalized Wedderburn approach, together with their standard

error

• coverage probabilities for every non-intercept γ parameter using both model-based

and robust variance estimators under the generalized Wedderburn approach.

Since interest lies in the non-intercept parameters, all the results obtained from the sim-

ulation study will focus on the coefficients γ11 and γ21. To get an idea of the typical

simulated datasets that are used in this study, refer to Appendix E. The ternary diagrams

presented in Appendix E have been obtained using the first generated sample for each

combination of sample size, correlation coefficient and coefficients of variation.

3.8.2 Simulation Results

The results obtained from the simulation study will be presented in this section. We will

start by presenting the resulting γ estimates achieved under the two models together with

the corresponding estimated biases and their standard error. Scatter plots of Generalized

Wedderburn estimates versus Aitchison estimates for γ11 and γ21 for all the combinations

of sample size, correlation and coefficients of variation are presented in Appendix F. The

scatter plots show estimates that fall along the line y = x across all conditions. As

expected, the points on the scatter plots are more dispersed when a high coefficient of

variation is used.

Estimates obtained for the different sample sizes are displayed in Tables 3.2, 3.3 and 3.4.

By looking at Table 3.2, it may be noticed that in relation to the estimated biases achieved

with the generalized Wedderburn method, the majority of the standard errors achieved are

quite large, showing that if any bias is present, it is not detectable for a simulation of size
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105. The results do however show some significant downward bias when a sample of size

60 is used together with high coefficients of variation (30%, 30%, 60%) and a correlation

of 0.3 or 0.7 in conjunction with the generalized Wedderburn method.

Table 3.3 and Table 3.4 show no evidence of bias when samples of size 180 and 600 are

used in conjunction with the generalized Wedderburn method. As expected, no bias has

been achieved throughout all conditions, when Aitchison’s regression model has been used.

From Tables 3.2, 3.3 and 3.4 it is also worth pointing that there is barely any difference

between the standard errors achieved under the two different approaches across all sample

sizes. Some of the standard errors achieved using the generalized Wedderburn approach

are actually slightly smaller. The variances from which these standard errors are computed

are presented in Tables 3.5, 3.6 and 3.7. The variances obtained using the generalized Wed-

derburn method are very similar to those achieved using Aitchison’s approach, with the

variances achieved using the generalized Wedderburn approach being sometimes slightly

smaller. The GEE estimator thus manages to achieve the same or even slightly better effi-

ciency than the ML estimator across all sample sizes and across all conditions considered.

This behaviour might seem quite surprising, particularly when a sample as large as 600 is

used and knowing that the ML estimator is well renowned for being a uniformly minimum

variance unbiased estimator asymptotically. An explanation of why the GEE estimator

may actually attain better efficiency than the ML estimator follows.

In Section 3.7.2.2 it has been shown that the asymptotic variance-covariance matrix Var (γ̂)

is given by FΣF′ ⊗
(
X′X

)−1
where F is the matrix of contrasts, X is the design matrix

and Σ = φΩ
1
2WΩ

1
2 . The variance-covariance matrix of γ̂∗ achieved using Aitchison’s

approach is given by Var (γ̂∗) = FΨF′ ⊗
(
X′X

)−1
. Due to similarity of form of the two

variance-covariance matrices, as a measure of relative efficiency of the GEE estimator with

respect to the ML estimator, we can direct our attention towards the matrices Σ and Ψ .

As explained in Section 3.8.1, in this simulation study the data generation is based on

Ψ, where Ψ has been chosen such that its diagonal elements are equal to log (1 + φωj)

and its off-diagonal elements are equal to log
(

1 + φ
√
ωj
√ωj′αjj′

)
, j 6= j

′
, where φωj and

φ
√
ωj
√ωj′αjj′ are respectively the diagonal and off-diagonal elements of Σ̇ and Σ̇ is as

defined in Section 3.2.

If it was the case that Σ̇ = Σ, then the comparison of efficiency being undertaken here

would be a direct generalization of Firth (1988, eq. (4)). Let us reexpress Firth (1988, eq.

(4)) in terms of modeling compositional response variables. If the latent variable Ẏij is

assumed to follow a lognormal distribution with parameters ζij and ψ2
j = log (1 + φωj), the

efficiency of the quasi-likelihood estimator obtained by modeling the data on the original

scale using the multiplicative model, versus the maximum likelihood estimator obtained by

modeling the data on the log-scale is given by log (1 + φωj) /φωj , with the quasi-likelihood

estimator always losing some of the efficiency in comparison to the maximum likelihood

estimator. On generalizing this property to modeling the full set of compositional variables,
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it might seem that a similar loss of efficiency for the GEE estimator should also be obtained.

This does not however hold true for our case. As explained in Section 2.7, the generalized

Wedderburn method relies on the specification of a specific working variance-covariance

structure for the compositional variables which is in terms of Σ, and Σ and Σ̇ can only

be equal to each other if there is no dispersion in the model, which is very unrealistic.

In this particular simulation study, E (Yij) = pij = pj since the proportions pij , for

component j, are the same for all cases i. The true distribution of Yi is thus the same

for all i. We can get a good estimate of the true variance-covariance matrix Var (Yi) by

finding the average of the variance-covariance matrices obtained from all the generated

samples. Then, by using the assumed form of the variance-covariance matrix of Yi under

the generalized Wedderburn method, that is,

Var (Yi) =
(
Pi − pipi

′
)

Σ
(
Pi − pipi

′
)
, (3.49)

we can obtain an estimate of Σ, using

Σ̂ =
(
Pi − pipi

′
)+ ̂Var (Yi)

(
Pi − pipi

′
)+

, (3.50)

where pi is the vector of known proportions (0.358, 0.318, 0.324) obtained using equation

(3.17) with the values of the γ parameters taken to be the true parameter values shown

in Table 3.1 and the values in xi being those used in the design matrix in the simulation

study, Pi = diag (0.358, 0.318, 0.324),
(
Pi − pipi

′
)+

is the Moore-Penrose pseudoinverse

of Pi − pipi
′

and ̂Var (Yi) is an estimate of the true variance-covariance matrix of Yi.

The estimated variance-covariance matrix which resulted from the 105 datasets that were

generated using samples of size 180 with coefficients of variation (30%, 30%, 60%) and

correlation 0.7 is given by  0.0033 0.0000 -0.0033

0.0000 0.0028 -0.0028

-0.0033 -0.0028 0.0061

 , (3.51)

leading to

Σ̂ =

 0.0255 0.0003 -0.0285

0.0003 0.0278 -0.0276

-0.0285 -0.0276 0.0585

 . (3.52)

Using coefficients of variation (30%, 30%, 60%) and correlation 0.7, the matrix Ψ is given

by

Ψ =

0.090 0.063 0.126

0.063 0.090 0.126

0.126 0.126 0.360

 . (3.53)
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The fact the GEE estimators under the generalized Wedderburn approach may achieve

better efficiency than ML estimators using Aitchison’s approach may then be noticed by

comparing the variances inside Σ̂ with the corresponding values in Ψ. The variances in

Σ̂ are clearly smaller than those in Ψ.

Besides studying how the estimates obtained under the generalized Wedderburn approach

compare to those obtained using Aitchison’s approach, it is also of interest to study how the

model-based variance estimator and the robust variance estimator compare to each other

in estimating the variance of the γ estimates under the generalized Wedderburn approach.

As mentioned previously, to be able to do such a comparison, the sample variance for

each γ parameter using the γ estimates obtained from the generated samples has to be

computed. The model-based, robust and the estimated sample variance obtained under the

generalized Wedderburn approach are summarized in Tables 3.8, 3.9 and 3.10. The model-

based variance estimates V̂ar (γ̂)M are closer on average to the sample variances V̂ar (γ̂)

than are the corresponding robust estimates V̂ar (γ̂)LZ , across all conditions. The model-

based and robust variance estimates become closer with an increase in sample size. With

regard to the standard errors of the variance estimates, the majority of the standard errors

of the robust estimator are higher than those corresponding to the model-based estimator

across all sample sizes. Overall, the standard errors of the two variance estimators are

in agreement with equation (2.81) which states that the variance of the robust estimator

is greater than or equal to the variance of the model-based estimator as the sample size

increases. The findings in this simulation study also agree with the simulation results

obtained by Pan (2001b). Pan (2001b) shows that the model-based variance estimator is

a more efficient estimator even for smaller sample sizes.

The coverage probabilities computed using the model-based and robust variance estimators

are presented in Table 3.11. The values shown in this table show the overall superiority of

the model-based estimator being proposed in this thesis over the robust estimator. From

Tables 3.8, 3.9 and 3.10 it may be seen that the robust variance estimator underestimates

the sample variance throughout. Consequently, the coverage probabilities obtained using

the robust variance estimator do not manage to reach 95%. The model-based estimator

does lose some efficiency with decreasing sample size but even its lowest coverage prob-

ability, 94.32%, achieved with samples of size 60, independence and high coefficients of

variation, is still very close to 95%. The coverage probabilities of the model-based esti-

mator are in fact either 95% or very close to it across all conditions. The same cannot be

said for the robust estimator.

3.9 Analyzing the Arctic Lake Dataset

The Arctic Lake dataset (see Table 3.12, Data 5 from Appendix D of Aitchison (1986)) is

one of the most widely used datasets in compositional data literature (e.g. Aitchison, 1986;

Tsagris et al., 2011; Maier, 2014). For this reason, in this section we will illustrate how
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the generalized Wedderburn approach compares with Aitchison’s approach in modeling

this dataset.

No. Sand Silt Clay Depth No. Sand Silt Clay Depth

1 0.78 0.20 0.03 10.40 21 0.10 0.54 0.37 47.10
2 0.72 0.25 0.03 11.70 22 0.17 0.48 0.35 48.40
3 0.51 0.36 0.13 12.80 23 0.10 0.55 0.34 49.40
4 0.52 0.41 0.07 13.00 24 0.05 0.55 0.41 49.50
5 0.70 0.26 0.04 15.70 25 0.03 0.45 0.52 59.20
6 0.66 0.32 0.01 16.30 26 0.11 0.53 0.36 60.10
7 0.43 0.55 0.02 18.00 27 0.07 0.47 0.46 61.70
8 0.53 0.37 0.10 18.70 28 0.07 0.50 0.43 62.40
9 0.15 0.54 0.30 20.70 29 0.04 0.45 0.51 69.30
10 0.32 0.41 0.27 22.10 30 0.07 0.52 0.41 73.60
11 0.66 0.28 0.06 22.40 31 0.05 0.49 0.46 74.40
12 0.70 0.29 0.01 24.40 32 0.04 0.48 0.47 78.50
13 0.17 0.54 0.29 25.80 33 0.07 0.52 0.41 82.90
14 0.11 0.70 0.20 32.50 34 0.07 0.47 0.46 87.70
15 0.38 0.43 0.19 33.60 35 0.07 0.46 0.47 88.10
16 0.11 0.53 0.36 36.80 36 0.06 0.49 0.45 90.40
17 0.18 0.51 0.31 37.80 37 0.06 0.54 0.40 90.60
18 0.05 0.47 0.48 36.90 38 0.02 0.48 0.49 97.70
19 0.16 0.50 0.34 42.20 39 0.02 0.48 0.50 103.70
20 0.32 0.45 0.23 47.00

Table 3.12: The Arctic Lake Dataset

The Arctic Lake data is made up of 39 compositions of sediments samples recorded at

different water depths (in metres). The compositional variables are sand, silt and clay and

the corresponding compositions give the proportion of the three constituents by weight.

Prior to proceeding with showing results obtained with the two different modeling strate-

gies, a ternary diagram of the compositional variables will be presented so as to obtain a

better understanding of the data being analyzed.

Figure 3.1 gives the ternary diagram of the compositions in the Arctic Lake dataset in

relation to the depth at which the samples have been taken. The ternary diagram is a unit-

length equilateral triangle which provides a convenient way of presenting 3-part composi-

tions in a plot. A composition whose proportions are all the same will give rise to a point in

the ternary diagram with equal distances from the sides opposite the three vertices. Con-

sider for example one of the compositions in the Arctic Lake dataset, (0.704, 0.29, 0.006)

for the components sand, silt and clay respectively. Such a point would be at a distance of

0.704 from the side opposite the vertex for sand, 0.29 from the side opposite the vertex for

silt and 0.006 from the side opposite the vertex for clay. In Figure 3.1, this point is the one

closest to the bottom edge joining sand and silt. Despite having some of the proportions

close to zero, the Arctic lake dataset has no zeros.
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Figure 3.1: A Ternary Diagram showing Arctic Lake Compositional Data in Relation to Depth

The depths at which the samples were taken vary from 10.4m to 103.7m with an average

of 48.04m. The relationship of the compositions with Depth in Figure 3.1 is expressed by

using three different colours for the compositions: blue, black and red. The compositions

marked blue are those which have been obtained at a level below the 33rd percentile

of Depth. The compositions marked black are those which have been obtained at a level

between the 33rd percentile and the 67th percentile of Depth. The remaining compositions,

obtained at the deepest water levels, are marked in red. From Figure 3.1 it may be

noticed that those samples that were obtained at the deepest water levels (marked in red)

all contained a very small proportion of sand, giving a good indication of a relationship

between Depth and the compositions.

Having obtained an initial feel for the data, we may now proceed to analyze the results

obtained by using Aitchison’s regression model and the generalized Wedderburn model.

Results for Aitchison’s regression model and the generalized Wedderburn model are ob-

tained using the newly developed cglm package (see Chapter 5). Clay is taken as the

reference component in the analysis and both models are fitted using log(Depth) as ex-

planatory variable as per Aitchison (1986, p. 165).

The estimates obtained from using the two different approaches on the Arctic Lake dataset
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are presented in Table 3.13. Recall from Section 3.4 that the two approaches estimate

different mean models. Yet, from Table 3.13, it may be noticed that the estimates of

the model coefficients obtained under the two methods are actually quite similar to each

other. Also, the two sets of standard errors achieved using the generalized Wedderburn

approach are not appreciably different from each other.

Aitchison Generalized Wedderburn

Parameters Estimates Standard Estimates Model-Based Robust
Error Standard Standard

Error Error

Intercept1 9.697 1.004 8.665 0.764 0.737
Intercept2 4.805 0.623 3.789 0.404 0.468

Log Depth1 −2.743 0.269 −2.477 0.205 0.181
Log Depth2 −1.096 0.167 −0.864 0.108 0.113

Table 3.13: Table of Estimates and their Standard Errors Obtained using Aitchison’s approach
and the Generalized Wedderburn approach on the Arctic Lake Dataset

For a further comparison of the performance of the two methods, the two measures of

fit described in Section 3.6 have been applied to the Arctic Lake dataset. The resulting

distance measures are presented in Table 3.14. The distance measure that is more in

line with the generalized Wedderburn approach shows that the generalized Wedderburn

approach provides a better fit (6.88) to the Arctic Lake dataset than Aitchison’s approach

(8.15). As expected, Aitchison’s distance measure is slightly more in favour of the fit

provided by Aitchison’s regression model (8.94).

Distance Measure
Aitchison Generalized Wedderburn

Model Aitchison 8.94 8.15
Generalized Wedderburn 9.15 6.88

Table 3.14: Table of Distance Measures achieved using Aitchison’s approach and the Generalized
Wedderburn approach on the Arctic Lake Dataset

A ternary diagram with fitted values obtained for each method is shown in Figure 3.2.

The fitted values obtained under the generalized Wedderburn approach are closer to most

of the Arctic Lake compositions, with the fitted line achieved under Aitchison’s approach

seemingly being pulled towards the compositions with parts close to zero.

Using Cook’s distance with a threshold of 4/n = 0.103, three compositions have been

identified as being influential under Aitchison’s approach; compositions 6, 12 and to a

lesser extent 18. The influential points are marked in red in the two plots in Figure 3.3,

with compositions 6 and 12 being tagged in both plots. Compositions 6 and 12 correspond

to the leftmost two points at the bottom of the ternary diagram (refer to Figure 3.2). These

two compositions have a proportion of clay that is very close to zero.
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Figure 3.2: A Ternary Diagram showing the fitted lines achieved under Aitchison’s approach and
Generalized Wedderburn approach using the Arctic Lake Dataset

The generalized Wedderburn residuals and Aitchison residuals (see Section 3.6) are also

computed for all three constituents. The residuals obtained for each method give three

marginal views of a two-dimensional residual vector, so there is some redundancy. We are

showing plots for all three constituents for each method for reasons of symmetry. Figures

3.4 and 3.5 display the generalized Wedderburn residuals and Aitchison residuals plotted

against Log Depth. The resulting plots reveal no signs of mean-model misspecification

and no sign of heteroscedasticity. Composition 12 however stands out once again from the

rest by giving a slightly lower Aitchison residual value (−2.14) on the constituent Clay.

This composition is marked in red in the respective figure.
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Figure 3.3: Cook’s Distances Plots obtained using Aitchison’s approach for the Arctic Lake
Dataset
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Figure 3.4: Plots of Generalized Wedderburn Residuals fitted against Log Depth for the Arctic
Lake Dataset
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Figure 3.5: Plots of Aitchison Residuals fitted against Log Depth for the Arctic Lake Dataset

The Shapiro-Wilk test was performed on all six sets of residuals. The p-values obtained for

the generalized Wedderburn residuals for Sand and Clay, 0.77 and 0.71 respectively, show

that we do not have strong evidence against the two sets of residuals being normally dis-

tributed. The Aitchison residuals corresponding to Sand are also reasonably approximated

by the normal distribution with a p-value of 0.46. On the other hand, there is enough

evidence to reject normality for the remaining sets of residuals. The normal QQ plots ob-

tained for the generalized Wedderburn residuals and Aitchison residuals (see Figures 3.6

and 3.7) in fact do show deviation from normality for the two sets of residuals pertaining

to Silt and strong deviations from normality for the Aitchison residuals obtained for Clay.

The three points at the bottom left hand corner of the QQ plot for Clay correspond to

compositions 6, 7 and 12 with composition 12 being the composition closest to the bottom

left hand corner. By looking at the Arctic Lake dataset (see Appendix 3.12), it may be

noted that Compositions 6, 7 and 12 all have a relatively low value of Clay.
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Figure 3.6: Normal QQ Plot of Generalized Wedderburn Residuals for the Arctic Lake Dataset

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

● ● ●
● ●

●●

−2 −1 0 1 2

−
2

−
1

0
1

2

Aitchison QQ Plot for Sand

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●● ● ●● ●●●
●●

● ●
● ●

−2 −1 0 1 2

−
2

−
1

0
1

2

Aitchison QQ Plot for Silt

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●●
●

●
●●

● ●●●
●

●●

−2 −1 0 1 2

−
2

−
1

0
1

2

Aitchison QQ Plot for Clay

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 3.7: Normal QQ Plot of Aitchison Residuals for the Arctic Lake Dataset
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3.10 Analyzing the Foraminiferal Dataset

The Foraminiferal dataset (see Table 3.15, Data 34 from Appendix D of Aitchison (1986))

is another dataset that is widely used in compositional data literature (e.g. Aitchison,

1986; Palarea-Albaladejo et al., 2007; Scealy and Welsh, 2011; Tsagris, 2015) particularly

because this dataset contains zeros. As mentioned before, the generalized Wedderburn

approach may be used even if there are zeros in the data. Aitchison’s logratio approach

may only be used if the zeros in the data are considered to be rounded zeros (see Section

1.3.1). If so, the zeros in the data may be replaced by imputed values prior to the logratio

transformation.

In this section we will assume that the zeros in the Foraminiferal dataset are rounded

zeros. The modified EM algorithm (Palarea-Albaladejo et al., 2007; Palarea-Albaladejo

and Mart́ın-Fernández, 2008) will be used to impute the zeros in the data by means of

the function impRZalr in the R package robCompositions. Aitchison’s regression model

will then be fitted to the imputed dataset. The generalized Wedderburn approach will

be used on the dataset with zeros as well as the imputed dataset. This example will

serve as a further illustration of how Aitchison’s approach compares with the generalized

Wedderburn approach and will also serve as a kind of sensitivity analysis for the generalized

Wedderburn approach.

The Foraminiferal data is made up of 30 compositions of foraminifer, a single-celled marine

microorganism, with the compositions being recorded at different water depths (in metres)

with depth varying from 1m to 30m. The compositional variables considered in this dataset

are Neogloboquadrina atlantica (Na), Neogloboquadrina pachyderma (Np), Globorotalia

obesa (Go) and Globigerinoides triloba (Gt). Five of the compositions contain a zero value

for either Go or Gt. As per Scealy and Welsh (2011), it is possible that the proportions

recorded for observation 24 on Go and Gt ‘have been swapped by mistake’ (see Table

3.15). We agree with such a remark. In this analysis we will thus proceed as suggested by

Scealy and Welsh (2011) and swap the values for Go and Gt for observation 24.

Ternary diagrams for this dataset are presented in Figure 3.8. Since the number of parts

in the foraminiferal compositions is four, a matrix of ternary diagrams for different sub-

compositions is displayed. As for the Arctic lake dataset, the colour chosen for each com-

position in the ternary diagrams is in accordance with Depth. The compositions marked

blue are those which have been obtained at a level below the 33rd percentile of Depth.

The compositions marked black are those which have been obtained at a level between the

33rd percentile and the 67th percentile of Depth. The remaining compositions, obtained

at the deepest water levels, are marked in red. From the ternary diagrams involving the

constituent Gt, that is the ternary diagram at the top right and the two ternary diagrams

at the bottom, it may be noticed that there seems to be a tendency for small values of Gt

to be obtained at the deepest water levels, giving an indication of a relationship between

the compositions and Depth. This relationship may also be corroborated by looking at
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the last two columns of the data in Table 3.15.

Proportions

Sample Number Na Np Go Gt Depth
(in metres)

1 0.74 0.19 0.03 0.04 1
2 0.58 0.29 0.01 0.12 2
3 0.58 0.19 0.22 0.01 3
4 0.61 0.28 0.08 0.03 4
5 0.82 0.13 0.02 0.03 5
6 0.48 0.38 0.01 0.13 6
7 0.59 0.38 0.00 0.03 7
8 0.76 0.12 0.09 0.03 8
9 0.81 0.12 0.04 0.03 9
10 0.68 0.23 0.05 0.04 10
11 0.72 0.20 0.04 0.04 11
12 0.62 0.27 0.09 0.02 12
13 0.45 0.25 0.29 0.01 13
14 0.66 0.25 0.06 0.03 14
15 0.85 0.13 0.01 0.01 15
16 0.75 0.09 0.15 0.01 16
17 0.69 0.25 0.00 0.06 17
18 0.76 0.10 0.11 0.03 18
19 0.66 0.29 0.01 0.04 19
20 0.66 0.24 0.06 0.04 20
21 0.50 0.46 0.00 0.04 21
22 0.65 0.25 0.05 0.05 22
23 0.60 0.35 0.02 0.03 23
24 0.40 0.27 0.01 0.32 24
25 0.60 0.10 0.30 0.00 25
26 0.60 0.10 0.29 0.01 26
27 0.59 0.39 0.01 0.01 27
28 0.58 0.39 0.01 0.02 28
29 0.61 0.34 0.02 0.03 29
30 0.39 0.49 0.12 0.00 30

Table 3.15: The Foraminiferal Dataset with Proportions: Na: Neogloboquadrina Atlantica,
Np: Neogloboquadrina Pachyderma, Go: Globorotalia Obesa, Gt: Globigerinoides
Triloba

Prior to proceeding with showing results obtained with the two different modeling strate-

gies, some detail on the modified EM algorithm is given. As for the standard EM algo-

rithm, the modified EM algorithm is based on a complete dataset augmented with missing

data. The alr transformed raw data without zeros makes up the complete part of the data.

The zeros in the data are defined as missing data that needs to be imputed. The first

component (Na) is chosen as reference for the Foraminiferal dataset. As for the standard

EM algorithm, the complete data is assumed to follow a multivariate normal distribution

with some mean vector and variance-covariance matrix, and the imputation procedure
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Figure 3.8: A Matrix of Ternary Diagrams for the Foraminiferal Subcompositions in Relation to
Depth

involves the two steps of expectation and maximization. In the modified EM algorithm,

however, the expectation step is modified so as to take into account of the alr-transformed

detection limit of the compositions. Once a completed dataset is obtained, the data is

back transformed to the simplex by means of the inverse alr transformation.

The reasons for choosing the modified EM algorithm for imputing the Foraminiferal

dataset are various. As per Palarea-Albaladejo et al. (2007), the technique caters for

the fact that the imputed values must be lower than the given detection limit, it is in-

dependent of the selected divisor in the alr transformation and ‘the covariance structure

of the parts without zeros is preserved’ following imputation. It is also ‘coherent with

the basic operations and the vector space structure of the simplex’, that is, it is subcom-

position invariant, perturbation invariant and power transformation invariant. For more

detail on these invariance properties refer to Palarea-Albaladejo et al. (2007, p. 633).

The modified EM algorithm particularly outperforms other imputation techniques used

for compositional data when the number of zeros is large. It may however also be used in
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the presence of small number of zeros, as is the case with the Foraminiferal dataset.

We can now move onto fitting Aitchison’s regression model to the imputed dataset and to

use the generalized Wedderburn approach with both raw and imputed dataset. Following

Scealy and Welsh (2011) and Tsagris (2015), modelling of this data is carried out by

considering Depth as the explanatory variable. The estimates that resulted from fitting

the three models are presented in Tables 3.16 and 3.17.

Generalized Wedderburn Without Imputation

Parameters Estimates Model-Based Robust
Standard Standard

Error Error

Intercept1 2.430 0.284 0.311
Intercept2 1.170 0.258 0.252
Intercept3 −0.151 0.635 0.643

Depth1 0.039 0.016 0.016
Depth2 0.061 0.015 0.016
Depth3 0.074 0.036 0.036

Table 3.16: Table of Estimates and their Standard Errors Obtained using the Generalized Wed-
derburn approach on the Foraminiferal Dataset Without Imputation

Aitchison Estimates Generalized Wedderburn

Parameters Estimates Standard Estimates Model-Based Robust
Error Standard Standard

Error Error

Intercept1 2.734 0.270 2.472 0.271 0.312
Intercept2 1.420 0.254 1.212 0.239 0.244
Intercept3 −0.333 0.702 −0.099 0.616 0.638

Depth1 0.032 0.015 0.035 0.015 0.015
Depth2 0.051 0.014 0.056 0.013 0.014
Depth3 0.052 0.040 0.069 0.035 0.035

Table 3.17: Table of Estimates and their Standard Errors Obtained using Aitchison’s approach
and the Generalized Wedderburn approach on the Foraminiferal Dataset With Im-
putation

From the results in Tables 3.16 and 3.17 it may be noticed that there are only slight differ-

ences in the estimates of the model coefficients obtained using the generalized Wedderburn

approach for the data with imputation and without. Minor differences may also be noticed

in the resulting model-based and robust standard errors obtained under the generalized

Wedderburn approach for the data with and without imputation. The fact that the results

are so similar could be the result of having only five zeros in the dataset. Although the

robust standard errors are more variable in repeated sampling, for this particular dataset,

they are not appreciably different from the model-based ones. The estimates of the model

coefficients and the corresponding standard errors obtained using Aitchison’s approach are

also similar to those obtained under the generalized Wedderburn method.
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The two measures of fit described in Section 3.6 have also been applied to the Foraminiferal

dataset. The resulting distance measures are presented in Table 3.18. The distance mea-

sure that is more in line with the generalized Wedderburn approach strongly favours the

generalized Wedderburn approach. By looking at yij/p̂ij − 1 for all i and for all j in

the Foraminiferal dataset, we find that the main contributors for such a relatively large

distance measure are compositions 3, 13, 24, 25, 26 and to a lesser extent composition

16. By looking at the data in Table 3.15, it may be noticed that these compositions all

have relatively large values of the component Go and small values in the component Gt,

in comparison to the other compositions.

Distance Measure
Aitchison Generalized Wedderburn

Aitchison 16.41 25.03
Model Generalized Wedderburn

17.52 14.33
Imputed

Generalized Wedderburn
NA 14.67

Not Imputed

Table 3.18: Table of Distance Measures achieved using Aitchison’s approach and the Generalized
Wedderburn approach on the Foraminiferal Dataset

From Table 3.18 it may also be noticed that there is barely any difference in the gener-

alized Wedderburn distance measures obtained for the generalized Wedderburn approach

using data with (14.33) or without imputation (14.67). This similarity follows from the

fact that the analysis of the two datasets led to very similar results. As expected, Aitchi-

son’s distance measure favours the fit provided by Aitchison’s regression model (16.41).

Aitchison’s distance obtained when the generalized Wedderburn approach is used with

imputed data (17.52) is only slightly larger than the distance achieved when Aitchison’s

regression model is used (16.41). Since Aitchison’s measure is based on logratios, it could

not be computed without imputing the data.

The generalized Wedderburn residuals and Aitchison residuals (see Section 3.6) have also

been computed for all the four parts for the imputed dataset. Figures 3.9 and 3.10 display

the two sets of residuals plotted against Depth. The resulting plots reveal no signs of

mean-model misspecification and no sign of heteroscedasticity. Compositions 3 and 13,

however, give slightly higher generalized Wedderburn residuals (2.36 and 2.32 respectively)

than the remaining compositions, on the component Go. These two residuals are marked

in red in the respective plot in Figure 3.9.
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Figure 3.9: Plots of Generalized Wedderburn Residuals fitted against Depth for the Foraminiferal
Dataset

The Shapiro-Wilk test was performed on all eight sets of residuals obtained for the imputed

dataset. The resulting p-values show that all sets of Aitchison residuals and all sets of

generalized Wedderburn residuals, except for generalized Wedderburn residuals for Go (p-

value 0.0009) are reasonably approximated by the normal distribution. The normal QQ

plots obtained for the generalized Wedderburn residuals for Go do in fact show strong

deviations from normality, with the main contributors being compositions 3, 6, 13, 16, 21,

24, 25 and 26. On looking at the Foraminiferal dataset (see Table 3.15), it may be noticed

that in comparison with the other values of Go, these compositions have either a very low

or a very high value of Go.

In actual fact, neither the generalized Wedderburn model nor Aitchison’s regression model

performs very well in explaining the variability in the Foraminiferal compositions. Figures

3.13 and 3.14 display the fitted lines obtained for the generalized Wedderburn method and

Aitchison’s method when focusing on two subcompositions. Figure 3.13 shows the ternary
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Figure 3.10: Plots of Aitchison Residuals fitted against Depth for the Foraminiferal Dataset

diagram with fitted lines for Np, Go and Gt and Figure 3.14 shows the ternary diagram

with fitted lines for Na, Np and Go. From these figures, it may be noticed that the fitted

values obtained through the generalized Wedderburn model and Aitchison’s regression

model differ quite substantially and the fit obtained by each method is very poor. The

percentage variability explained in the compositions by including the variable Depth in

the model using either the generalized Wedderburn model or Aitchison’s regression model

are in fact 18% and 6% respectively, which are both very low. These percentages have

been obtained by computing 1−205.32/249.87 = 0.18 and 1−269.27/285.07 = 0.06, where

205.32 and 249.87 are the squared generalized Wedderburn distance measures obtained by

using the generalized Wedderburn approach with Depth and without Depth in the model,

and 269.27 and 285.07 are the squared Aitchison distance measures obtained by using

Aitchison’s regression model with Depth and without Depth in the model.
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Figure 3.11: Normal QQ Plot of Generalized Wedderburn Residuals for the Foraminiferal Dataset
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Figure 3.12: Normal QQ Plot of Aitchison Residuals for the Foraminiferal Dataset
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Chapter 4

Further Empirical Study of the

Generalized Wedderburn Method

As has been mentioned in Section 1.2.1, the Dirichlet distribution is one of the famil-

iar classes of distributions that has been used to model continuous compositional data.

Problems faced when using a Dirichlet distribution to model the influence of explanatory

variables on compositional response variables have also been mentioned in Section 1.2.1.

The Dirichlet regression model may however be specified using the same logit model that

is estimated by the generalized Wedderburn approach. Also, the parameters in a Dirichlet

regression model are estimated using maximum likelihood estimation. These two proper-

ties make the Dirichlet model attractive for use in a simulation study which compares the

efficiency of the GEE estimator, used under the generalized Wedderburn approach, with

the maximum likelihood estimator used in the Dirichlet regression model.

Theoretical background on the Dirichlet regression model will be given in Section 4.1. In

Section 4.2, a Dirichlet regression model will be fitted to the Arctic Lake dataset (Data 5

from Appendix D of Aitchison (1986)). In Section 4.3, the setup for a simulation study

based on the estimates obtained in Section 4.2 for the Arctic Lake dataset is presented.

The results obtained from the simulation study are then discussed in Section 4.4.

4.1 The Dirichlet Regression Model

Detail on the probability density function of a Dirichlet distributed random vector Y

together with the mean and the variance-covariance structure underlying the family of

Dirichlet distributions has been provided in Section 1.2.1. The detail provided in Sec-

tion 1.2.1 pertain to what is known as the ‘common parametrization’ of the Dirichlet

distribution. So as to be able to compare the estimates obtained from a Dirichlet Re-

gression model with those obtained from the generalized Wedderburn method, focus will

be directed towards the ‘alternative parametrization’ of the Dirichlet distribution (Maier,
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2014).

In the alternative parametrization, a new set of parameters pj , (j = 1, . . . , J), are defined

such that

E (Yj) = pj (4.1)

and the parameter α+ (defined as in Section 1.2.1) models the precision in the model. A

high precision ‘centres the density around the expected’ mean vector whilst a low precision

pushes the distribution of the points ‘towards the sides and corners of the simplex’ SJ−1

(Maier, 2014).

The conversion of pj back into the common parametrization in terms of αj , is carried out

using

αj = α+pj . (4.2)

The probability density function of a Dirichlet distributed random vector Y under the

alternative parametrization is thus given by

f (y1, . . . , yJ−1|p, α+) =
Γ
(∑J

j=1 α+pj

)
∏J
j=1 Γ (α+pj)

J∏
j=1

y
α+pj−1
j , (4.3)

where p = (p1, . . . , pJ)
′
.

The variance of Yj under the alternative parametrization becomes:

Var (Yj) =
pj (1− pj)
α+ + 1

, (4.4)

and for j 6= j
′

Cov
(
Yj , Yj′

)
= −

pjpj′

α+ + 1
. (4.5)

Then, fitting of a Dirichlet regression model under the alternative parametrization is

carried out by specifying a set of equations for the parameters pj and an equation for the

precision parameter α+. Taking the last component as reference component, in a Dirichlet

regression model based on the alternative parametrization, the means are modeled using

pij =


exp
(
x
′
iγj

)
∑J

j
′
=1

exp
(
x
′
iγj
′
) if j = 1, . . . , J − 1

1∑J

j
′
=1

exp
(
x
′
iγj
′
) if j = J.

(4.6)

where γj are the model coefficients that need to be estimated and xi denotes the vector

of observations obtained by the ith case on explanatory variables X1, . . . , Xp. The logit

link is chosen so as to ensure that the fitted means p̂ij are sum-constrained to 1 for each

i. For the purpose of the analysis that will be carried out in the sections which follow, α+
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is modeled by an intercept only model leading to the same estimate of α+ for all i.

So the multinomial logit strategy used to fit a Dirichlet regression model is the same as

that used under the generalized Wedderburn approach (see equation (2.56)). Three main

differences in the estimates achieved from the two different models may however be pointed

out:

• Estimates in the Dirichlet regression model are obtained using maximum likelihood

estimation whilst estimates in the generalized Wedderburn approach are obtained

using generalized estimating equations. The desirable properties of maximum likeli-

hood estimators are well known and understood. Through fitting a Dirichlet regres-

sion model and using the generalized Wedderburn approach on data simulated from

a Dirichlet regression model it would be possible to compare how the efficiency of

the GEE estimator fares in relation to the maximum likelihood estimator used in a

Dirichlet regression model. Details on a simulation study which focuses on such an

aspect are given in Sections 4.3 and 4.4.

• The Dirichlet regression model and the generalized Wedderburn model are based on

two different variance-covariance structures. On using the generalized Wedderburn

approach with data simulated through a Dirichlet model, it is to be expected that the

model-based estimator ̂Var (γ̂)M fares badly in relation to Liang and Zeger (1986)

robust counterpart ̂Var (γ̂)LZ (described in Section 2.8.3). Whilst the estimates

obtained through GEE under the generalized Wedderburn approach are invariant

to the choice of the ‘working’ variance-covariance structure (see Section 2.4.4), the

model-based estimator ̂Var (γ̂)M (2.67) relies on the estimation of φVpi,Ω,W where

φVpi,Ω,W is the first order Taylor series approximation of the true variance-covariance

matrix Var (Yi) (see Section 2.7).

• Since the family of Dirichlet distributions is not a linear exponential family of distri-

butions (Gourieroux et al., 1984), estimates achieved through a Dirichlet regression

model are in general consistent only if there is no distributional misspecification. The

GEE estimator is consistent provided that the marginal mean model specification is

correct.

4.2 Fitting a Dirichlet Regression Model to the Arctic Lake

Dataset

As mentioned in Section 3.9, the Arctic Lake dataset is a widely used dataset in compo-

sitional data literature making it an appealing dataset to use for comparison of various

models that are typically used with compositional data. We have already analyzed the

Arctic Lake dataset using Aitchison’s approach and the generalized Wedderburn approach

in Section 3.9, with log(Depth) as explanatory variable. A Dirichlet regression model un-

der the alternative parametrization, also using log(Depth) as the explanatory variable and
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J = 3 as reference component, will now also be fitted to the Arctic Lake dataset. The

fitting of a Dirichlet model to the Arctic Lake dataset serves two purposes:

• to analyze how the fit of the Dirichlet model compares with the fit provided by

Aitchison’s approach and the generalized Wedderburn approach

• to use the resulting estimates of the model coefficients to perform a simulation study

(details of which are presented in the subsequent section) with data generated from

a Dirichlet model.

The Dirichlet model is fitted by means of the R package DirichletReg (Version 0.6-2). The

estimates of the model coefficients and their standard errors are given in Table 4.1.

Parameters Estimates Standard Error

Intercept1 8.39 0.69
Intercept2 3.89 0.58

Log Depth1 −2.38 0.19
Log Depth2 −0.88 0.15

Table 4.1: Table of Estimates and their Standard Errors Obtained from fitting a Dirichlet Re-
gression Model to the Arctic Lake Dataset

The estimates in Table 4.1 are similar to those achieved using the generalized Wedderburn

approach (see Table 3.13). On the other hand, there is quite a difference between the

estimates in Table 4.1 and those achieved from fitting Aitchison’s method (see Table

3.13). This result was to be expected since the model fitted in Aitchison’s approach is a

model for different means from those fitted in the Dirichlet regression and the generalized

Wedderburn method. On inspecting the ternary diagram in Figure 4.1 it may also be

noted that the fitted lines resulting from the Dirichlet regression model and from the

generalized Wedderburn model are closer to each other and seem to fit the majority of

the compositions better than Aitchison’s method does. The distance measures based on

Aitchison’s approach and the generalized Wedderburn approach have also been computed

for the fitted Dirichlet regression model. The resulting two values are 9.21 and 6.89

respectively, which are very close to the values achieved under the generalized Wedderburn

approach (see Table 3.14).

We shall now see how the maximum likelihood estimates, obtained from fitting a Dirichlet

regression model to the Arctic Lake dataset, are used to generate data for a simulation

study which compares the performance of the GEE estimator with the ML estimator after

fitting a Dirichlet regression model.

4.3 The Simulation Setup

Due to the form of the probability density function of the Dirichlet distribution (1.2)

(or equivalently (4.3)), the generation of a dataset from this distribution requires the
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Figure 4.1: A Ternary Diagram showing the fitted Lines achieved under Dirichlet Regression,
Aitchison’s Method and the Generalized Wedderburn Method using the Arctic Lake
Dataset

knowledge of the values of the parameters α1, . . . , αJ . The DirichletReg package facilitates

the generation of data from a Dirichlet model by making the matrix of α estimates available

as part of the output obtained after a Dirichlet regression model is fitted to a dataset. The

generation of the 3-part compositional response variables used to perform the simulation

study in this section, makes use of the α matrix that resulted after fitting the Dirichlet

regression model to the Arctic Lake dataset and the specification of a sample of size 39.

Recall that 39 is the sample size in the Arctic Lake dataset.

The Dirichlet model has been used to generate 100,000 sets (samples) of compositional re-

sponse variables. The model (4.6) has been fit on every generated sample with log(Depth)

(from the Arctic Lake dataset) as explanatory variable. Maximum likelihood estimates

of the model coefficients have been obtained by means of the DirichletReg package. GEE

estimates have been obtained by means of the package cglm.

Summarization of the Simulation Results

The estimates that are obtained at the end of the simulation are:
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• the average of the resulting γ estimates achieved under both estimation techniques

• the biases achieved under the two techniques together with their standard error

• the variance of the γ estimates achieved under the two techniques together with the

corresponding standard error

• the average of the estimated Var (γ̂) using both model-based and robust variance es-

timators, under the generalized Wedderburn approach, together with their standard

error

Since no special zero structure has been imposed in the model, the intercept parameter does

not bear much interest. Focus will thus be directed towards the non-intercept parameters.

So all the results obtained from the simulation study will focus on the coefficients γ11 and

γ21, the coefficients corresponding to the explanatory variable log(Depth).

4.4 Results obtained from the Simulation Study

The first aspect to be studied in this simulation study is the estimated bias that was

obtained under the two estimation techniques. Results for the estimated bias together

with the corresponding estimated standard errors are shown in Table 4.2.

Dirichlet Estimates Generalized Wedderburn

Parameter Mean Bias Standard Mean Bias Standard
×102 ×102 ×102 Error ×102 ×102 Error

×102 ×102

γ11 = −238 −239.376 −1.300 0.059 −241.897 −3.821 0.074
γ21 = −88 −88.433 −0.399 0.048 −89.844 −1.810 0.060

Table 4.2: Table of Estimates, Estimated Bias and Estimated Standard Error of the Bias achieved
using MLE and GEE on Dirichlet simulated data based on estimates from the Arctic
Lake dataset with a sample of size 39 and a simulation of size 105

From Table 4.2 it may be noticed that both estimation techniques led to some bias in

the resulting estimates. On considering that the desirable property of unbiasedness of

maximum likelihood estimators holds as n→∞, the bias obtained in this simulation study,

based on a sample of size 39, was to be expected. The property of asymptotic unbiasedness

of GEE estimators is well known (Liang and Zeger, 1986). Limited literature is however

available on performance of GEE estimators when the sample size used is small. Paul et al.

(2013) developed a bias-corrected GEE estimator based on the bias corrective measure used

to correct the order 1
n bias for maximum likelihood estimators (see Cox and Snell, 1968).

Paul et al. (2013) use the bias correction in conjunction with longitudinal binary response

data and conclude that for small sample sizes, the bias-corrected GEE estimator ‘shows

superior performance in terms of bias and efficiency’ in comparison to the standard GEE

estimator. Paul and Zhang (2014) developed another bias-adjusted GEE estimator based
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on a bias preventive measure used to correct the bias for maximum likelihood estimators

(see Firth, 1993a). Using simulations, Paul and Zhang (2014) show that particularly for

samples of size ≤ 50, the two bias-adjusted estimators show ‘improvement in bias, mean

square error, standard error and length of confidence intervals of the estimates’. The bias

obtained by the GEE estimator in our simulation study when using a sample of size 39,

seems to suggest that the bias-adjusted estimators used in Paul et al. (2013) and Paul

and Zhang (2014) might be worth investigating when using the generalized Wedderburn

approach with small sample sizes.

Also, the absolute values of the bias obtained by estimating the parameters using gener-

alized estimating equations are larger than those obtained by using maximum likelihood

estimation and from Table 4.3 it may be noticed that the estimated variances achieved

under MLE are appreciably smaller than those achieved using GEE. The relative efficien-

cies of the two parameters are in fact 0.63 and 0.66 respectively, showing that the GEE

estimator lost around 1/3 of the efficiency when compared to the maximum likelihood

estimator in this simulation study. Since GEE estimators are obtained as a result of

the specification of the marginal distribution of the compositional variables rather than

through the specification of the joint likelihood function, it is however to be expected that

the ML estimator fares better than the GEE estimator.

Dirichlet Regression Estimates Generalized Wedderburn

Parameter Variance Standard Error Variance Standard Error
×102 ×102 ×102 ×102 ×102

γ11 = −238 3.487 0.016 5.555 0.025
γ21 = −88 2.333 0.010 3.555 0.016

Table 4.3: Table of Variance Estimates together with their Estimated Standard Errors achieved
using MLE and GEE on Dirichlet simulated data based on Estimates from the Arctic
Lake dataset with a sample of size 39 and a simulation of size 105

Seeing that the Dirichlet model is based on a different variance-covariance structure from

the one considered in the generalized Wedderburn approach, it is not surprising to see

that the Liang and Zeger (1986) robust estimator fares better at estimating the variance

of the GEE estimator than the model-based estimator in this case (refer to Table 4.4).

From the results in Table 4.4 it may also be noticed that both the model-based and Liang

and Zeger (1986) robust estimator exhibit some downward bias in estimating the actual

variance of the estimators. Issues related to the use of Liang and Zeger (1986) robust

estimator with small sample sizes have been mentioned in Section 2.8.3. The downward

bias, in particular, achieved by the robust estimator in analyzing small sample sizes is well

documented (e.g. Emrich and Piedmonte, 1992; Drum and McCullagh, 1993; Mancl and

DeRouen, 2001; Pan, 2001b; Gosho et al., 2014).
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Chapter 5

The cglm Software Package

5.1 Introduction

This chapter briefly describes an early, development version of a public package for the

R statistical computing environment (RCore Team, 2016). The cglm package is the joint

work of David Firth and Fiona Sammut. The package can be added to an R installation

by

> devtools::install_bitbucket("davidfirth/cglm")

and made available in the standard way to the current R session by

> library(cglm)

At the time of writing this description, in September 2016, the package has fully

functional but rudimentary facilities for specifying and fitting the Generalized Wedderburn

and Aitchison multivariate regression models, as well as basic tools for model summary

and model criticism. A more complete version of the package, which generalizes (to include

compositional-response regressions) most of the capabilities of R’s standard glm function

and associated methods, is planned for publication via the Comprehensive R Archive

Network by early 2017.

5.2 Model Specification and Fitting

The core of the cglm package is the cglm function itself, whose operation mimics that of

glm from R’s standard stats package. The full documentation for the cglm function can

be found via help(cglm). Here we illustrate the use of cglm to fit models to the 39 Arctic

Lake sediment compositions given in Aitchison (1986). The data are provided in the cglm

package as a 4-column matrix whose first three columns give the compositions; the fourth

column is the depth variable.

> data(ArcticLake)

> head(ArcticLake)
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sand silt clay depth

1 77.5 19.5 3.0 10.4

2 71.9 24.9 3.2 11.7

3 50.7 36.1 13.2 12.8

4 52.2 40.9 6.6 13.0

5 70.0 26.5 3.5 15.7

6 66.5 32.2 1.3 16.3

The compositions all sum approximately to 100:

> sediments <- ArcticLake[, c("sand", "silt", "clay")]

> rowSums(sediments)

1 2 3 4 5 6 7 8 9 10

100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0

11 12 13 14 15 16 17 18 19 20

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

21 22 23 24 25 26 27 28 29 30

100.0 100.0 100.0 100.5 100.0 100.0 100.0 100.0 100.0 99.9

31 32 33 34 35 36 37 38 39

100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0 100.0

5.2.1 Generalized Wedderburn Model

The default action of the cglm function is to specify and fit a Generalized Wedderburn

logit model. For the dependence of sediment composition upon log(depth), as summarized

in Table 3.13:

> logdepth <- log(ArcticLake[, "depth"])

> gw_model <- cglm(sediments ~ logdepth, ref = 3)

The model-formula specification is as for glm. The additional ref argument specifies which

component will be (arbitrarily) taken to be the reference component in the model; here

the third component (clay) has been chosen. The default choice is ref = 1.

> gw_model

Call:

cglm(formula = sediments ~ logdepth, ref = 3)

Coefficients:

sand silt clay

(Intercept) 8.6649 3.7890 0.0000

logdepth -2.4767 -0.8642 0.0000
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5.2.2 Aitchison-type Model

The corresponding multivariate linear regression of logratios (see also Table 3.13), again

relative to the component specified via the ref argument, is achieved by using the addi-

tional argument method = "logy.fit":

> Ait_model <- cglm(sediments ~ logdepth, ref = 3,

+ method = "logy.fit")

> Ait_model

Call:

cglm(formula = sediments ~ logdepth, method = "logy.fit", ref = 3)

Coefficients:

sand silt clay

(Intercept) 9.697 4.805 0.000

logdepth -2.743 -1.096 0.000

The currently available options for the method argument are "logy.fit" as here for the

multivariate linear regression with logratios of the data, and the default "gw.fit" which

implements the Generalized Wedderburn model.

The fitted totals agree with those found in the data. For example

> ## Compare the fitted totals below with those found above for

> ## the sediments data

> round(rowSums(fitted(Ait_model)) - rowSums(sediments), 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.3 Standard Errors and the summary Method

The vcov.cglm method estimates the variance-covariance matrix of the regression pa-

rameter estimates. This is the usual model-based variance-covariance matrix. For the

generalized Wedderburn model the robust, ‘sandwich’-type estimator can be specified in-

stead via the argument type = "robust".

> vcov(gw_model)

(Intercept)_sand logdepth_sand

(Intercept)_sand 0.58425607 -0.15398423

logdepth_sand -0.15398423 0.04194471

(Intercept)_silt 0.24152910 -0.06365646
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logdepth_silt -0.06365646 0.01733977

(Intercept)_clay 0.00000000 0.00000000

logdepth_clay 0.00000000 0.00000000

(Intercept)_silt logdepth_silt

(Intercept)_sand 0.24152910 -0.06365646

logdepth_sand -0.06365646 0.01733977

(Intercept)_silt 0.16336482 -0.04305579

logdepth_silt -0.04305579 0.01172823

(Intercept)_clay 0.00000000 0.00000000

logdepth_clay 0.00000000 0.00000000

(Intercept)_clay logdepth_clay

(Intercept)_sand 0 0

logdepth_sand 0 0

(Intercept)_silt 0 0

logdepth_silt 0 0

(Intercept)_clay 0 0

logdepth_clay 0 0

The resulting standard errors, computed as square roots of diagonal entries in the

variance-covariance matrix, are conveniently displayed through the summary.cglm method.

For example, here with the ‘robust’ standard errors as shown in Table 3.13:

> summary(gw_model, vcov_type = "robust")

Call :

cglm(formula = sediments ~ logdepth, ref = 3)

Residuals :

sand silt clay

Min -0.92080 -0.424500 -0.83530

1Q -0.28590 -0.065290 -0.24490

Median -0.07401 0.009065 -0.02435

3Q 0.26700 0.073970 0.18580

Max 1.09200 0.586900 0.95060

Coefficients :

sand / clay :

Estimate St. err

(Intercept) 8.665 0.7365

logdepth -2.477 0.1809

silt / clay :

Estimate St. err
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(Intercept) 3.7890 0.4684

logdepth -0.8642 0.1128

5.4 Model Residuals

The result of applying residuals() to a cglm model object is a matrix with the same

dimensions as the response matrix. The residual row sums are zero, and projections onto

columns of the model matrix are all null:

> res <- residuals(gw_model)

> head(res)

sand silt clay

1 0.2029363 -0.06036295 -0.14257334

2 0.1972738 0.04847321 -0.24574698

3 -0.5965236 -0.17730003 0.77382368

4 -0.2526709 0.27702057 -0.02434964

5 0.4626519 -0.06152271 -0.40112919

6 0.4878510 0.12220909 -0.61006010

> summary(rowSums(res))

Min. 1st Qu. Median Mean 3rd Qu.

-1.665e-16 0.000e+00 0.000e+00 -2.135e-18 0.000e+00

Max.

8.327e-17

> crossprod(res, gw_model$x)

(Intercept) logdepth

sand 3.204064e-10 1.015552e-09

silt 1.873365e-10 3.557543e-10

clay -5.077430e-10 -1.371307e-09

These can be equivalently thought of as working residuals or Pearson (standardized) resid-

uals. They are suitable for plotting for diagnostic purposes against such quantities as the

fitted values, or candidate predictor variables not included in the model, or normal quan-

tiles. For example:

> par(mfrow = c(2,3))

> fit <- fitted(gw_model)

> for (component in colnames(res)) {

+ plot(fit[, component], res[, component], xlab = "fitted value",

+ ylab = "residual", main = component)

+ }
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> for (component in colnames(res)) {

+ qqnorm(res[, component], xlab = "Normal quantiles",

+ ylab = "residual quantiles", main = component)

+ }
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The sum-to-zero property of the residuals needs to be kept in mind when looking at

such plots: in this application, for example, there are just two residual degrees of freedom

per observation, not three.

5.5 Still to be Added

In due course, the finished cglm package will include the full set of methods that correspond

to standard methods available for glm objects. The current version of the package has

error-generating place-holders for the most important of these:

plot.cglm <- function (x, ...) .NotYetImplemented()

predict.cglm <- function (object, ...) .NotYetImplemented()

add1.cglm <- function (object, scope, ...) .NotYetImplemented()

anova.cglm <- function (object, ...) .NotYetImplemented()

confint.cglm <- function (object, parm, level = 0.95, ...) {

.NotYetImplemented() }

cooks.distance.cglm <- function (model, ...) .NotYetImplemented()

drop1.cglm <- function (object, scope, ...) .NotYetImplemented()

effects.cglm <- function (object, ...) .NotYetImplemented()

influence.cglm <- function (model, ...) .NotYetImplemented()

rstandard.cglm <- function (model, ...) .NotYetImplemented()
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rstudent.cglm <- function (model, ...) .NotYetImplemented()

update.cglm <- function (object, ...) .NotYetImplemented()

deviance.cglm <- function (object, ...) .NotYetImplemented()

The plot() method, for example, will include residual plots like those shown above.

Most of the other methods listed here are similarly straightforward to implement. (The

deviance method is a notable exception: its definition and documentation need special

care, in light of the lack of a deviance function that is minimized by the generalized

Wedderburn quasi-likelihood equations.)
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Chapter 6

Conclusion

6.1 Summary of the Thesis Results

The main aim of this thesis is that of developing a model for the influence of explanatory

variables on continuous compositional response variables. In Chapter 2, a multivariate

logit model which may be used to model compositional data even if zeros are present in

the data has been developed. This multivariate logit model generalizes an elegant method

that was suggested previously by Wedderburn (1974) for the analysis of leaf blotch data

in the special case of J = 2. In contrast to the logratio modeling approach devised by

Aitchison (1982, 1986), the multivariate logit model used under the generalized Wedder-

burn approach models E (Yij) directly. The estimation of the parameters in this model

is carried out using the technique of generalized estimating equations. This technique

relies on the specification of a working correlation/variance-covariance structure. An ap-

propriate working variance-covariance structure, φVpi,Ω,W, which caters for the variability

arising in compositional data has been achieved (see equation (2.61)). The form of this

working variance-covariance structure is based on the first order Taylor series approxima-

tion to the variance-covariance matrix of the composition Yi where the components in Yi

are obtained as a result of taking the closure operation (1.1) on the corresponding latent

variables Ẏij . These latent variables are assumed to have a mean-variance relationship

that generalizes the notion of a constant coefficient of variation.

As per Liang and Zeger (1986), the GEE estimator that is used to estimate the param-

eters of the multivariate logit model is actually a GLS estimator that has been shown

to be invariant to the values of the correlation and dispersion parameters in the work-

ing variance-covariance structure (see Section 2.4.4). The invariance property of these

estimators is analogous to the well-established invariance property of GLS estimators in

multivariate linear regression (e.g. Mardia et al., 1979, p. 173). So in solving the estimat-

ing equations to obtain estimates of the model coefficients in the multivariate logit model,

the ‘independence’ working variance-covariance structure Vpi,IJ ,IJ , defined in (2.63), may

be used instead of φVpi,Ω,W for computational simplicity. Also, due to the invariance prop-
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erty and the fact that the estimating equations used under the generalized Wedderburn

method (2.54), are linear and unbiased, the GEE estimator achieves full efficiency (has

minimal generalized variance) across a wide class of potential dispersion and correlation

matrices for the compositional response variables (McCullagh, 1983). Just as with any

other GEE estimator, the GEE estimator used in the generalized Wedderburn method

is also asymptotically unbiased and consistent, provided that the marginal mean model

specification is correct.

In an analogy to the multivariate regression case, where the GLS estimator is free of the

variance-covariance parameters but the variance-covariance matrix of the estimator is not,

in Section 3.7.2.2 it has been shown that the asymptotic variance-covariance matrix of the

GEE estimator is also a function of the correlation and dispersion parameters. A model-

based variance estimator which takes into account of the variability of compositional data

has thus been developed (see Section 2.8.2). Since the true variance-covariance matrix

of Yi is typically unknown, the model-based variance estimator proposed in this thesis

‘borrows strength across subjects’ (Liang and Zeger, 1986) by means of the ‘squared

Pearson residual’ matrix for each i, to estimate the true variance-covariance matrix of

Yi. The idea of pooling information from all the subjects to estimate Var (Yi) has also

be used by Pan (2001b). Our proposed variance estimator is in fact in the same form

as Pan’s estimator and so it also inherits the properties of the estimator proposed by

Pan (2001b). By using the assumptions that the assumed variance-covariance structure is

correct and that there is a common correlation across all cases i, the estimator proposed by

Pan (2001b) lacks a degree of robustness when compared to the robust variance estimator

proposed by Liang and Zeger (1986), but Pan’s estimator has been proved to achieve

greater efficiency asymptotically. Simulation studies carried out by Pan (2001b) suggest

that greater efficiency for Pan’s model-based estimator holds even for small sample sizes.

Our model-based variance estimator has also been shown to be a direct generalization

of the variance estimator used by Wedderburn (1974): the general method devised to

estimate standard errors under the generalized Wedderburn approach agrees exactly with

that of Wedderburn (1974) for the special case J = 2 (see Section 2.8.2).

In this thesis, the model-based variance estimator developed for use with the general-

ized Wedderburn approach has been studied empirically in a variety of situations. The

model-based and robust variance estimates obtained when the Arctic Lake dataset and

the Foraminiferal dataset were analyzed in Sections 3.9 and 3.10 respectively, were not

appreciably different. In the small simulation study in which 105 compositional datasets

were generated through a Dirichlet model (see Section 4.4), the robust variance estima-

tor fared better at estimating the variance of the GEE estimator than the model-based

estimator. The fact that the Liang and Zeger (1986) robust estimator achieved better

estimates than the model-based estimator was however not surprising, since the Dirichlet

model from which the data has been generated, is based on a different variance-covariance

structure than the one considered in the generalized Wedderburn approach.
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A comparison between the model-based and robust variance estimator was also car-

ried out in another small simulation study in which 105 compositional datasets were

generated through multivariate lognormally distributed Ẏ using three different sample

sizes (60, 180 and 600), two different sets of coefficients of variation ((5%, 5%, 20%) and

(30%, 30%, 60%)), and three different correlations (independence, 0.3 and 0.7) (see Section

3.8.2). In this case, the model-based estimator being proposed in this thesis showed overall

superiority over the robust estimator. The robust variance estimator underestimated the

sample variance throughout. Consequently, the coverage probabilities obtained using the

robust variance estimator were smaller than the nominal 95%. The coverage probabilities

of the model-based estimator were much better, very close to 95% across all conditions.

The results obtained for the model-based estimator in this study agree with the theoretical

and simulation results obtained by Pan (2001b).

The simulation study with compositional data generated using the multivariate lognormal

distribution was also carried out to compare the efficiency of the GEE estimator with that

of the ML estimator used in the regression model devised by Aitchison (1982, 1986). In

Chapter 3, the generalized Wedderburn method and Aitchison’s regression method have

been shown to share a number of formal similarities including the form of the estimator

used, the form of the variance-covariance matrix of their respective estimator, the center-

ing operation in the respective residuals. The two methods are also both related to the

multiplicative model defined for the latent variables Ẏij . Aitchison’s regression method

has in fact been shown to be an additive model which is obtained as a result of taking the

logarithm of the multiplicative model (see Section 3.3). However, since under the general-

ized Wedderburn method, the mean-model specified for compositional Y is not the actual

mean of Y but a first order Taylor series approximation to it, the generalized Wedderburn

method and Aitchison’s regression method estimate different mean models (see Section

3.4). In spite of this, efficiency comparisons between the estimators used in the two differ-

ent models could still be undertaken if the truth from which the simulation datasets were

generated was considered to have no dependence on the explanatory variables. In this

way, the generalized Wedderburn method and Aitchison’s method both had to estimate

model coefficients whose true value is 0. What stood out in this simulation study is the

fact that the variances obtained using the generalized Wedderburn method resulted to be

either very similar to those achieved using Aitchison’s approach or even slightly smaller.

The GEE estimator was found to achieve the same or even slightly better efficiency than

the ML estimator across all sample sizes and across all conditions considered. This be-

haviour might seem quite surprising, particularly when a sample as large as 600 is used and

knowing that the ML estimator is well renowned for being a uniformly minimum variance

unbiased estimator asymptotically. A theoretical explanation of why the GEE estimator

may obtain better efficiency than the ML estimator has been presented in Section 3.8.2.

This explanation is based on a comparison of the variance-covariance matrix of the ML es-

timator used in Aitchison’s method with an estimate of the asymptotic variance-covariance

matrix of the GEE estimator used in the generalized Wedderburn method.
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Further to the just mentioned, a part of this thesis was also dedicated to devise various

measures that may be used for model criticism of the generalized Wedderburn method. In

a typical GEE analysis, Pan’s Quasi Information Criterion (Pan, 2001a) is used for both

variable selection and working correlation matrix selection. Due to the invariance property

of the GEE estimator used in the generalized Wedderburn approach, the steps that are

undertaken to check the quality of fit of the model do not involve choosing the best working

correlation structure. With regards to variable selection, despite its popularity and ease of

implementation, Pan’s Quasi Information Criterion may not be used under the generalized

Wedderburn approach. Pan’s QIC (see equation (2.83)) relies on the specification of a log

quasi-likelihood function. On using the estimating function Ujs, defined in (2.55), for

j 6= j
′

and j, j
′

= 1, . . . , J − 1, it may be shown that ∂Ujs/∂γj′k 6= ∂Uj′k/∂γjs. Since

the matrix of derivatives is not symmetric, the quasi log-likelihood function under the

generalized Wedderburn method is thus not uniquely defined.

Testing whether model coefficients should be removed from the multivariate logit model

or not may be carried out using the working Wald statistic (Rotnizky and Jewell, 1990) in

conjunction with the model-based variance estimator proposed in this thesis (see Section

3.6.2). An alternative test statistic which tests whether model coefficients should be

introduced in the multivariate logit model, and which also makes use of the model-based

variance estimator proposed in this thesis, has also been presented. This test statistic,

also due to Rotnizky and Jewell (1990), is the working score statistic. For detail on the

two test statistics see Section 2.9.2.1.

Pearson residuals for the generalized Wedderburn method and a distance measure ∆
(
Y, P̂

)
which is based on Pearson residuals have also been developed in this thesis. A correspon-

dence between the method devised by Wedderburn (1974) for J = 2 and the generalized

Wedderburn method could once again be seen in the fact that the Pearson residuals ob-

tained under the generalized Wedderburn are the same as the working residuals. Besides,

the Pearson chi-square statistic computed using the Pearson residuals obtained under

the generalized Wedderburn approach with J = 2 is exactly proportional to the Pearson

chi-square statistic obtained under the model used by Wedderburn (1974).

The directed distance measure ∆
(
Y, P̂

)
may be used to check how close are the fitted

values to the compositional response data. Aitchison (1992, p. 374) listed a number of

criteria that should be satisfied by a distance measure used with compositions (see Pg 75).

The distance measure ∆
(
Y, P̂

)
satisfies nearly all of these criteria, except for interchange-

ability of compositions and subcompositional dominance. The lack of interchangeability

of the distance measure ∆
(
Y, P̂

)
should not however be viewed as a problem as to check

the goodness of fit of a model it makes sense to check how far is a vector of fitted values

p̂i from the vector of compositions Yi but not vice versa. The requirement for subcompo-

sitional dominance might be deemed too strict for use with the generalized Wedderburn

approach. The parameter estimates that are obtained from analyzing a full composition

under the generalized Wedderburn approach are not in general the same as those obtained
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when a subcomposition is analyzed. However, the model assumptions that are used to

analyze subcompositions are consistent with those used to analyze a full composition. For

example, for some reference component J , the logits log (E (Yij) /E (YiJ)) are all modeled

as x
′
iγ if either a full composition or a subcomposition is analyzed.

6.2 Further Work

• Investigate small sample bias-adjustment of the GEE estimator used to estimate the

model coefficients of the multivariate logit model.

In the simulation study carried out with compositional data being obtained as a

result of performing the closure operation on multivariate lognormally distributed

Ẏ, some significant downward bias was achieved by the GEE estimator when the

generalized Wedderburn method has been used with samples of size 60 in conjunction

with high coefficients of variation (30%, 60%, 60%) and a correlation of 0.3 or 0.7.

In the simulation study where samples of size 39 have been generated through a

Dirichlet model it could also be noticed that the GEE estimator exhibited some

bias. The property of asymptotic unbiasedness of GEE estimators is well known

(Liang and Zeger, 1986). Limited literature is however available on performance

of GEE estimators when the sample size used is small. The bias obtained by the

GEE estimator in the two simulation studies, seems to suggest that the bias-adjusted

estimators used in Paul et al. (2013) and Paul and Zhang (2014) might be worth

investigating when using the generalized Wedderburn approach with small sample

sizes.

• Perform a simulation study to compare the efficiency of the GEE estimator under

the generalized Wedderburn approach with the ML estimator used to estimate the

model coefficients of the Dirichlet regression model when the variance-covariance

structure underlying the Dirichlet model is more complicated than a homogeneous

variance model.

• Compare the performance of the multivariate logit model with other recently pro-

posed strategies available for modeling compositional data, such as the Kent regres-

sion model of Scealy and Welsh (2011), the multivariate simplex model of Zhang

(2013) and the α-regression method of Tsagris (2015).

• Study the performance of the multivariate logit model in the presence of a high

percentage of zeros in the data.

• Consider extensions of the generalized Wedderburn method to ordered compositional

response and to compositions with a hierarchical structure.

• Complete and polish the cglm package and its documentation, for publication on

CRAN as a contributed package for the R language.
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Appendix A

Deriving the Model-Based Estimator V̂ar (γ̂)M for J = 2 (see Section 2.8.1)

The model-based estimator V̂ar (γ̂)M for J = 2 is given by

V̂ar (γ̂)M =

[
1

n− (p+ 1)

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

](
X
′
X
)−1

. (A.1)

The derivation of the above result starts by considering the form of Σ̂
∗
i .

The estimator Σ̂
∗
i for J = 2 is given by

Σ̂
∗
i =

1

4

(
1 −1

−1 1

)(
1
p̂i1

0

0 1
p̂i2

)(
Yi1 − p̂i1
Yi2 − p̂i2

)(
Yi1 − p̂i1, Yi2 − p̂i2

)( 1
p̂i1

0

0 1
p̂i2

)(
1 −1

−1 1

)

=
1

4

 Yi1
p̂i1
− Yi2

p̂i2

−
(
Yi1
p̂i1
− Yi2

p̂i2

)(Yi1
p̂i1
− Yi2

p̂i2
, −

(
Yi1
p̂i1
− Yi2

p̂i2

))

=
1

4

 (Yi1−p̂i1)2

p̂2i1(1−p̂i1)
2 −

(
(Yi1−p̂i1)2

p̂2i1(1−p̂i1)
2

)
−
(

(Yi1−p̂i1)2

p̂2i1(1−p̂i1)
2

)
(Yi1−p̂i1)2

p̂2i1(1−p̂i1)
2


=

1

4

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

(
1 −1

−1 1

)
,

since
Yi1
pi1
− Yi2
pi2

=
Yi1
pi1
− 1− Yi1

1− pi1
=

Yi1 − pi1
pi1 (1− pi1)

.

Then

Σ̂
∗

=
1

n− (p+ 1)

n∑
i=1

Σ̂
∗
i =

1

4 (n− (p+ 1))

[
n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

](
1 −1

−1 1

)
. (A.2)
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The substitution of (A.2) in (2.74), leads to

φ̂ ̂Vp
i
′ ,Ω,W =

(
1 −1

−1 1

)[
p̂2
i′1

(
1− p̂i′1

)2
4 (n− (p+ 1))

[
n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

](
1 −1

−1 1

)](
1 −1

−1 1

)
(A.3)

=
p̂2
i′1

(
1− p̂i′1

)2
4 (n− (p+ 1))

[
n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

(
4 −4

−4 4

)]

=
p̂2
i′1

(
1− p̂i′1

)2
n− (p+ 1)

[
n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

(
1 −1

−1 1

)]
.

Using the estimator of (2.49) and substituting (A.3) in (2.67) gives the required expression:

V̂ar (γ̂)M =

 n∑
i′=1

p̂2
i
′
1

(
1− p̂i′1

)2X′
i′

(
1 −1

−1 1

)
(A.4)

×

[
p̂2
i′1

(
1− p̂i′1

)2
n− (p+ 1)

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

(
1 −1

−1 1

)]−(
1 −1

−1 1

)
Xi′

−1

=
1

n− (p+ 1)

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

 n∑
i′=1

X′
i′

(
1 −1

−1 1

)
Xi′

−1

=

[
1

n− (p+ 1)

n∑
i=1

(Yi1 − p̂i1)2

p̂2i1 (1− p̂i1)2

](
X
′
X
)−1

,

since (
1 −1

−1 1

)(
1 −1

−1 1

)−(
1 −1

−1 1

)
=

(
1 −1

−1 1

)
.
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Appendix B

Proof to show that the Matrix of Derivatives is not Symmetric (see Section

2.9.2.2)

It is required to show that for j 6= j
′′

∂Ujs
∂γj′′k

6=
∂Uj′′k
∂γjs

.

Proof. From (2.55),

Ujs =
n∑
i=1

Yij
pij
− 1

J

J∑
j′=1

Yij′

pij′

xis

=

n∑
i=1

Yij exp
(
−x

′
iγj

)
− 1

J

J∑
j′=1

Yij′ exp
(
−x

′
iγj′

) J∑
j′′′=1

exp
(
x
′
iγj′′′

)xis
so,

∂Ujs
∂γj′′k

=
n∑
i=1

Yij exp
(
−x

′
iγj

)
− 1

J

J∑
j′=1

Yij′ exp
(
−x

′
iγj′

) exp
(
x
′
iγj′′

)
xik

xis
+

n∑
i=1

− 1

J
Yij′′ exp

(
−x

′
iγj′′

)
(−xik)

J∑
j′′′=1

exp
(
x
′
iγj′′′

)xis
=

n∑
i=1

 Yij

exp
(
x
′
i

(
γj − γj′′

)) − 1

J

 J∑
j′=1

Yij′

exp
(
x
′
i

(
γj′ − γj′′

)) − Yij′′

pij′′

xikxis.
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Similarly,

Uj′′k =
n∑
i=1

Yij′′
pij′′

− 1

J

J∑
j′=1

Yij′

pij′

xik

=
n∑
i=1

Yij′′ exp
(
−x

′
iγj′′

)
− 1

J

J∑
j′=1

Yij′ exp
(
−x

′
iγj′

) J∑
j′′′=1

exp
(
x
′
iγj′′′

)xik

∂Uj′′k
∂γjs

=
n∑
i=1

Yij′′ exp
(
−x

′
iγj′′

)
− 1

J

J∑
j′=1

Yij′ exp
(
−x

′
iγj′

) exp
(
x
′
iγj

)
xis

xik
+

n∑
i=1

− 1

J
Yij exp

(
−x

′
iγj

)
(−xis)

J∑
j′′′=1

exp
(
x
′
iγj′′′

)xik
=

n∑
i=1

 Yij′′

exp
(
x
′
i

(
γj′′ − γj

)) − 1

J

 J∑
j′=1

Yij′

exp
(
x
′
i

(
γj′ − γj

)) − Yij
pij

xisxik,
which is not equal to ∂Ujs/∂γj′′k as required.
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Appendix C

Proof to show Equality of Distance Measures (see Section 3.6.1)

It is required to show that

J∑
j′′=1

J∑
j=1︸︷︷︸
j<j′′

n∑
i=1

[
log

(
Yij
p̂∗ij

)
− log

(
Yij′′

p̂∗
ij′′

)]2

= J
J∑
j=1

n∑
i=1

log

(
Yij
p̂∗ij

)
− 1

J

J∑
j′=1

log

(
Yij′

p̂∗
ij′

)2

.

Proof. From Section 3.6.1,

R∗ij = log

(
Yij
p̂∗ij

)
− 1

J

J∑
j′=1

log

(
Yij′

p̂∗
ij′

)
,

and

J∑
j=1

R∗ij = 0. Also,
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J∑
j′′=1

J∑
j=1︸︷︷︸
j<j′′

[
log

(
Yij
p̂∗ij

)
− log

(
Yij′′

p̂∗
ij′′

)]2

=
J∑

j′′=1

J∑
j=1︸︷︷︸
j<j′′

log

(
Yij
p̂∗ij

)
− 1

J

J∑
j′=1

log

(
Yij′

p̂∗
ij′

)

− log

(
Yij′′

p̂∗
ij′′

)
+

1

J

J∑
j′=1

log

(
Yij′

p̂∗
ij′

)2

=
J∑

j′′=1

J∑
j=1︸︷︷︸
j<j′′

(
R∗ij −R∗ij′′

)2
.

Then

J∑
j=1

J∑
j′′=1︸︷︷︸
j<j′

(
R∗ij −R∗ij′′

)2
=

1

2

J∑
j=1

J∑
j′′=1︸︷︷︸
j 6=j′′

(
R∗ij −R∗ij′′

)2

=
1

2

J∑
j=1

J∑
j′′=1

(
R∗ij −R∗ij′′

)2

=
1

2

J∑
j=1

J∑
j′′=1

(
R∗2ij +R∗2

ij′′
− 2R∗

ij′′
R∗ij

)

=
1

2

J J∑
j′′=1

R∗2ij + J
J∑
j=1

R∗2
ij′′


= J

J∑
j=1

R∗2ij ,

as required.
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Appendix D

Proof to show that the Row Vectors of F
(
Pi − pipi

′
)

Sum to Zero and are

Linearly Independent (see Section 3.7.2.2)

Proof.

Part 1. Let the column vectors of
(
Pi − pipi

′
)

be represented by C(j), (j = 1, . . . , J),

where C(j) = (C1j , . . . , CJj)
′
.Then

F
(
Pi − pipi

′
)

=
(
FC(1), . . . ,FC(J)

)
and since interest lies in the sum of the rows of F

(
Pi − pipi

′
)

, we turn our attention to

F
J∑
j=1

C(j). Now, for any given row j
′
,
(
j
′

= 1, . . . , J
)

,

J∑
j=1

Cj′j = pij′ − pij′
J∑
j=1

pij = 0

since

J∑
j=1

pij = 1.

It therefore follows that

J∑
j=1

C(j) = 0 leading to F
J∑
j=1

C(j) = 0, showing that the row sums

of F
(
Pi − pipi

′
)

are all equal to zero.

Part 2. Let the row vectors of F be represented by F
′
j∗ , (j∗ = 1, . . . , J − 1), where F j∗ =

(Fj∗1, . . . , Fj∗J)
′
. Then, the elements in F

(
Pi − pipi

′
)

are given by

[
F
(
Pi − pipi

′
)]

j∗j
= F

′
j∗C(j),

and the j∗th row vector of F
(
Pi − pipi

′
)

is given by
(
F
′
j∗C(1), . . . ,F

′
j∗C(J)

)
.
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Now, to show that the row vectors of F
(
Pi − pipi

′
)

are linearly independent, we need to

show that any linear combination of the row vectors is equal to 0 only if the coefficients

are equal to 0.

For any given coefficients u1, . . . , uJ−1, uj∗ ∈ R, the linear combinations of interest are:

u1


F
′
1C(1)

...

F
′
1C(J)

+ · · ·+ uJ−1


F
′
J−1C(1)

...

F
′
J−1C(J)

 = 0. (D.1)

The linear combinations (D.1) may be reexpressed as
C(1)

(
u1F

′
1 + · · ·+ uJ−1F

′
J−1

)
...

C(J)

(
u1F

′
1 + · · ·+ uJ−1F

′
J−1

)
 = 0. (D.2)

Under the assumption that the proportions making up the elements Cj′j are not equal to

zero and given that the rows of F are linearly independent, it is only possible for the linear

combinations in (D.2) to be equal to zero if the coefficients u1, . . . , uJ−1 are equal to 0,

showing that the J − 1 rows of F
(
Pi − pipi

′
)

are indeed linearly independent.
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Appendix E

Ternary Diagrams of Simulated Datasets for Combinations of Sample Size,

Correlation and Coefficients of Variation (see Section 3.8)
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(a) Ternary Diagram for the First Gen-
erated Sample of size 60 assum-
ing independence and coefficients of
variation (5%, 5%, 20%)
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(b) Ternary Diagram for the First Gen-
erated Sample of size 60 assum-
ing independence and coefficients
of variation (30%, 30%, 60%)
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(c) Ternary Diagram for the First Gen-
erated Sample of size 60 assuming
correlation 0.3 and coefficients of
variation (5%, 5%, 20%)
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(d) Ternary Diagram for the First Gen-
erated Sample of size 60 assuming
correlation 0.3 and coefficients of
variation (30%, 30%, 60%)
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(e) Ternary Diagram for the First Gen-
erated Sample of size 60 assuming
correlation 0.7 and coefficients of
variation (5%, 5%, 20%)
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(f) Ternary Diagram for the First Gen-
erated Sample of size 60 assuming
correlation 0.7 and coefficients of
variation (30%, 30%, 60%)

Figure E.1: Ternary Diagrams of the First Generated Sample of Size 60 assuming different Cor-
relations and Coefficients of Variation
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(a) Ternary Diagram for the First Gen-
erated Sample of size 180 assum-
ing independence and coefficients of
variation (5%, 5%, 20%)
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(b) Ternary Diagram for the First Gen-
erated Sample of size 180 assum-
ing independence and coefficients
of variation (30%, 30%, 60%)
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(c) Ternary Diagram for the First Gen-
erated Sample of size 180 assum-
ing correlation 0.3 and coefficients
of variation (5%, 5%, 20%)
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(d) Ternary Diagram for the First Gen-
erated Sample of size 180 assum-
ing correlation 0.3 and coefficients
of variation (30%, 30%, 60%)
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(e) Ternary Diagram for the First Gen-
erated Sample of size 180 assum-
ing correlation 0.7 and coefficients
of variation (5%, 5%, 20%)
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(f) Ternary Diagram for the First Gen-
erated Sample of size 180 assum-
ing correlation 0.7 and coefficients
of variation (30%, 30%, 60%)

Figure E.2: Ternary Diagrams of the First Generated Sample of Size 180 assuming different
Correlations and Coefficients of Variation
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(a) Ternary Diagram for the First Gen-
erated Sample of size 600 assum-
ing independence and coefficients of
variation (5%, 5%, 20%)
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(b) Ternary Diagram for the First Gen-
erated Sample of size 600 assum-
ing independence and coefficients
of variation (30%, 30%, 60%)
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(c) Ternary Diagram for the First Gen-
erated Sample of size 600 assum-
ing correlation 0.3 and coefficients
of variation (5%, 5%, 20%)
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(d) Ternary Diagram for the First Gen-
erated Sample of size 600 assum-
ing correlation 0.3 and coefficients
of variation (30%, 30%, 60%)
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(e) Ternary Diagram for the First Gen-
erated Sample of size 600 assum-
ing correlation 0.7 and coefficients
of variation (5%, 5%, 20%)
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(f) Ternary Diagram for the First Gen-
erated Sample of size 600 assum-
ing correlation 0.7 and coefficients
of variation (30%, 30%, 60%)

Figure E.3: Ternary Diagrams of the First Generated Sample of Size 600 assuming different
Correlations and Coefficients of Variation
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Appendix F

Scatter Plots of Generalized Wedderburn Estimates versus Aitchison

Estimates for γ11 and γ21 for Combinations of Sample Size, Correlation and

Coefficients of Variation (see Section 3.8.2)
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Figure F.1: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a sim-
ulation size of 105, samples of size 60, assuming independence, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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Figure F.2: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a sim-
ulation size of 105, samples of size 60, assuming correlation 0.3, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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Figure F.3: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a sim-
ulation size of 105, samples of size 60, assuming correlation 0.7, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively

151



Figure F.4: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a sim-
ulation size of 105, samples of size 180, assuming independence, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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Figure F.5: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a simu-
lation size of 105, samples of size 180, assuming correlation 0.3, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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Figure F.6: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a simu-
lation size of 105, samples of size 180, assuming correlation 0.7, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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Figure F.7: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a sim-
ulation size of 105, samples of size 600, assuming independence, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively

155



Figure F.8: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a simu-
lation size of 105, samples of size 600, assuming correlation 0.3, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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Figure F.9: Scatter Plots of Generalized Wedderburn versus Aitchison Estimates using a simu-
lation size of 105, samples of size 600, assuming correlation 0.7, and coefficients of
variation (5%, 5%, 20%) and (30%, 30%, 60%) in the upper and lower panes respec-
tively
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