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ABSTRACT

In this work we consider nucleation in existing and novel lattice models of parti-
cles in solution, reviewing, testing and applying the modern methodology for free
energy calculation and calculation of nucleation rates based on elements of clas-
sical nucleation, reaction rate and transition path theories. We introduce a multi-
component lattice model where, at low temperatures, the solute phase can form
three distinct solid structures, for which we accurately map the phase diagram,
discussing the relevance of the model to the study of nucleation of polymorphic
minerals. By analysing multi-dimensional free energy profiles, computed via a
path sampling based Monte Carlo protocol, we demonstrate that solute precipi-
tation in the developed model can proceed via nonclassical pathways, where the
formation of nuclei of unstable solute phases is followed by their transformation
into the thermodynamically preferred structure. Despite the existence of nonclas-
sical nucleation pathways, we show that the conceptual framework of classical
nucleation theory provides an adequate quantitative treatment of the nucleation

process in our model over a broad range of parameter space.
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INTRODUCTION

Nucleation is one of the fundamental mechanisms governing the early stages of
first order phase transitions, and the underlying microscopic process is under-
stood as fluctuation-driven formation of microdomains of one phase within a
macroscopic domain of another [1]. Due to the small length and time scales in-
volved, at present, it is difficult to obtain detailed insight into the microscopic
kinetics of nucleation phenomena empirically, yet such insight is crucial in nu-
merous industrial applications [2]. Although significant progress in molecular
and atomistic modelling of nucleation processes has been achieved over the recent
years, open questions remain abundant even in the simplest model systems [3].
Much of the quantitative understanding of nucleation phenomena is provided
by the phenomenological framework of Classical Nucleation Theory (CNT) [4],
which employs a simple one-dimensional model in order to derive closed form
expressions for the key quantities used for characterising the nucleation processes
(Sec. 2.4). Despite introducing a considerable list of simplifying assumptions, the
CNT approach for calculating nucleation rates appears to yield estimates in good
agreement with those obtained via state of the art numerical methods. Thorough
application of the advanced numerical methods for rate estimation, however, has,
so far, only been attempted in relatively simple single component model systems.
The more complex particle systems, such as solutions of polymorphic minerals,
e.g. calcium carbonate, are thought to exhibit a richer variety of microscopic
dynamics which significantly complicate the expected nucleation mechanisms [5].
The associated phase transformation mechanisms typically fall into the category
of nonclassical nucleation (Sec. 3.1.5), where the quantitative framework of CNT is
thought to break down under the typical assumptions used in its application. Due
to the difficulties and the computational expense of numerical modelling of multi-
component systems, no quantitatively rigorous studies of nonclassical nucleation
in molecular systems have been reported to date. Consequently, the interest in
capturing nonclassical nucleation behaviours in computationally tractable models
has spiked over the recent years, forming the core of the motivation for this work.
In the present study, we will develop and analyse a novel multi-component
lattice model of anisotropic particles in solution, based largely on the combination



of the well known Ising and Potts models as implemented in the Potts Lattice Gas
(PLG) model of Duff and Peters [6]. Employing state of the art numerical methods,
we will demonstrate the presence of nonclassical nucleation behaviours in the in-
troduced model while providing evidence for Potts-like lattice models not being
ideal candidates for modelling nonclassical nucleation pathways of polymorphic
minerals. Based on results of our application of rare event and enhanced sam-
pling methodology, we will also argue that the quantitative treatment of CNT can
adequately describe the nucleation kinetics of the introduced model over a consid-
erable range of parameter space. As an aside, we will provide detailed discussions
of the employed numerical methodology as well as relevant issues in modelling

of multi-component systems.

1.1 OVERVIEW OF THE WORK

We will start by briefly outlining the relevant to this study theoretical back-
ground and the recent literature in Chapters 2 and 3, covering the key aspects
of statistical mechanics, Markov chain and reaction rate theories as well as dis-
cussing the current status of nucleation theory in the context of lattice models and
molecular simulation.

We will then move on to the discussion of equilibrium properties of the ex-
tended PLG model. In Chapter 4 we will develop the model, discuss its phase
behaviour and produce accurate estimates as well analytical expressions for the
relevant phase coexistence lines. Applying a path based enhanced sampling proto-
col in Chapter 5, we will analyse the equilibrium structures of nuclei in our model,
illustrating the potential nonclassical nucleation pathways.

In the second half of the study, we will focus on quantitative analysis of nucle-
ation kinetics. Chapter 6 will be dedicated to application of the currently popular
”seeding” method for nucleation rate estimation based, in part, on the analyti-
cal framework of CNT. The more rigorous rate calculation approaches will be
discussed in Chapter 7, where we will provide explicit quantitative treatment of
nucleation kinetics and discuss the results in the context of CNT.

Finally, in Chapter 8 will present the summary and the main conclusions of

this work, outlining the potential future research directions.



2

THEORETICAL BACKGROUND

In this chapter we will give a brief overview of the core theory relevant to studies
of phase behaviour and transitions in stochastic systems of interacting particles. A
thorough critical review of the subject would require consideration of the underly-
ing mathematical and philosophical constructs, which alone would span the entire
volume of the thesis. We will therefore restrict ourselves to a relatively naive view
of the more complex topics, e.g. dynamical systems and ergodic theory, referring
to the more in-depth literature where possible. The key purpose of this chapter is
to introduce the core concepts and notation.

2.1 EQUILIBRIUM STATISTICAL MECHANICS

The importance of statistical mechanics lies in its success at providing a mi-
croscopic basis for the theory of equilibrium thermodynamics [7]. Although the
traditional definitions of equilibrium statistical mechanics (EQSM) may have lim-
ited use in the treatment of nonequilibrium phenomena, the theory does provide a
convenient conceptual framework on which we will rely throughout the following
sections and chapters.

The conception of statistical mechanics is commonly attributed to Maxwell,
Boltzmann and Gibbs, who put forward different, largely intuitive, justifications
for statistical treatment of molecular systems. The resultant analytical framework
faced criticism as early as 1911 [8], particularly with respect to the "Ergodic hy-
pothesis”. Further mathematical study of the hypothesis arguably lead to the
establishment of the field of ergodic theory, where the formal mathematical basis
for EQSM is a subject of much ongoing research [9].

Despite the considerable volume of, so far, unresolved mathematical and philo-
sophical criticisms [10-12], the theory of EQSM appears successful in explaining
a wide range of physical phenomena. The traditional formulations, commonly
used in statistical physics texts [7,13-16], however, do little to highlight the under-
lying mathematical detail of EQSM. While such detail extends beyond the scope
of this work, we will attempt to cite the important considerations, since our list of

modelling assumptions begins here.



2.1.1  State Space

In an abstract sense, a model particle system can be defined by a state space A
and a set of dynamical rules, expressed as a transformation 7 : A — A, which
describe the system’s time evolution. We use the notation 7 : A — A to state that
T maps A on to itself, i.e. there exist 0,0’ € A such that ¢’ = 7 (). In classical
systems under Hamiltonian or Langevin dynamics, the state space is typically
taken as the set of all possible positions and momenta of some number N of
particles in a 3 dimensional container — a subset of IR. In the case of overdamped
Langevin dynamics and systems of Brownian particles, the momenta are treated
as random and, hence, do not appear explicitly in A. In both cases, however, A
is an uncountable set of system states. A crucial distinction of the lattice models
presented in this work is that their state spaces are discrete and finite — a factor
which significantly simplifies the necessary mathematical considerations.

We can consider a d dimensional particle system on a lattice as a collection of
coordinates in Z?. However, for the majority of this work, we will focus on (hyper)
rectangular systems with a finite number, N, of lattice sites (or finite volume,
V = N). Therefore, for our purposes, a lattice is a finite subset of Z? and each
lattice site can be assigned a unique index, i € {0,...,N —1}. Given a set of
integer valued lattice lengths, (I; > 0:j € {1,.. .,d},H}Ll li = N), the conversion
between the site index, i, and its coordinate, ¥ = (x1,...,x4),x; € {0,...,[; — 1},
can be achieved through:

d o j-1 :
i:x1+]§xj£[lzk, xj = {Hi_ill lkJ mod I;, (2.1)
where | A] is the integral (whole) part of A, and A mod B = A — B|A/B] (Fig.
2.1C).

Typically, each lattice site, i, possesses a state, s;, which may have one, e.g.,
si € {—1,1} as in the Ising model, or multiple degrees of freedom. A collection,
o = (so,...,sn—1), of the N site states, fully specifies the microstate of the system.
The state space of the system, A = {c}, is then the set of all of its possible
microstates. In our discussion of multicomponent systems of anisotropic particles,
we will extend the state space to accommodate particles’ identities and model

their orientational degrees of freedom.

2.1.2  Dynamics

With the abstract notation (A, 7), the time evolution of the system, 0; € A,
from some initial microstate oy € A, can be expressed as: 0y = T (... T (0p)...) =
T*'(0v). It is worth pointing out that such notation implies memorylessness of T,

since: 0y = T (07_4t), 1.e. the future state of the system depends only on its current



(a) Ising model (d = 2). (b) Ising model (d = 3). (c) Site indexing scheme.
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Figure 2.1: Examples of visualisations of system states for the Ising model in d = 2 (a) and
d = 3 (b) dimensions on, respectively, [ = (128,128) and [ = (6,6,6) lattices, illustrating the
site indexing scheme for d = 3 lattice with I'=(3,3,3) in (c). The configurations of the Ising
model (¢ € {—1,1}") are shown with s = 1 spins represented by blue dots (a) and blue
cubes (b), omitting s = —1 spins. In (c), each lattice site is represented by a circle, labelled
by an integer i € {0,...,N —1}, N = 32 corresponding to the site index in accordance with

(2.1).

state and not on its history. The framework of EQSM relies on the proposition
that the macroscopic behaviour of the system, as t — oo, can be studied with the
help of a unique time invariant probability measure IP(c). In the language of er-
godic theory, such proposition can be justified based on certain properties of T,
notably [11]: 1) Measure preservation. 2) Ergodicity. 3) Mixing. Owing to plethora
of analytical results [11,17], such an approach does allow a rigorous mathemati-
cal formulation of EQSM. However, as every other school of thought in statistical
mechanics [10-12], the ergodic theory formulation faces strong criticisms. For in-
stance, a peculiar property of many systems which admit EQSM treatment is that
they violate the conditions set out by the “"Ergodicity Programme” [11], casting
doubt on the explanatory power of ergodic theory with respect to EQSM [18].

In the case of Markov chains on finite discrete state spaces, e.g. the lattice mod-
els we will discuss in this work, conditions on 7 granting measure preservation,
ergodicity and convergence are, as we will see, relatively clear [19]. In addition,
mixing properties of finite lattice gas models have been established [20], which
implies ergodicity and convergence properties for the general class of such mod-
els. It is important to note, however, that nonergodic lattice model dynamics are
possible [21], particularly in spin glass systems [22] or under conditions of critical

slowing down [23].

2.1.3 Microscopic Quantities

A microstate of the system is usually characterised by some lower dimensional
projection of the kind: A — RF. One example of such projection is the system’s
internal energy: E : A — IR, which typically encodes the information describing

particle interactions. The chemical composition of a multicomponent system, i.e.



a system containing particles of K distinct chemical species, is simply given by
the corresponding particle counts: N : A — N, k € {1,...,K}. While the precise
definitions of internal energy, E(c), and composition, Ni(¢), for multicomponent
systems can be largely a modelling choice, the microstate probabilities, P(c) :

A — (0,1), must be assigned in such a way as to satisfy the following conditions:

1= P(o)

oceEA
(E) = E(E) = ZAE(U)IP(U), (2.2)
(Ni) = =) Nilo
ceEA

where (E) and (Nj) are the macroscopic averages of E and Nj respectively.

2.1.4 Entropy and Macroscopic Quantities

The formalism of ergodic theory can, in some cases, prove the existence and
uniqueness of an ergodic probability measure P(c), however no general crite-
ria for construction of the measure arise. The principle of entropy maximisation
serves as an additional constraint on IP(¢), which happens to be sulfficient to con-
struct the unique measure.

If the microstate, o, of the system is to be treated as a stochastic variable, the
entropy, S of the system can be viewed as a measure of the uncertainty in the
system’s microstate. More specifically, entropy is a functional S : P — R of the

form:

= —kp Z P(c) InP(c (2.3)

geEN
Compelling arguments for the above definition exist [24, 25], although the math-
ematical connection between the given expression and the dynamics of particle
systems is only partially understood [26]. A large body of empirical evidence,
however, shows that dynamics of particle systems lead to equilibrium states which
maximise the quantity S by adopting the Boltzmann distribution IP(c|B, ji):

P(c|B, ) = Z(B, i)~ exp [-BH(c|fi)], Z(B, ) = ) exp[-pH(cli)], (24)
geEN
where Z(B, ji) is termed the partition sum (or function) and H(c|j) is the system’s

Hamiltonian:

K
H(olji) = E(0) — Y uNi(0). (2.5)
=

In the language of the Gibbsian formulation of EQSM, the above expression
corresponds to the distribution of the grand canonical (#VT) ensemble. We will
later introduce the semigrand y VT and canonical (NVT) ensembles as particular



subsets of the grand uVT ensemble. Quantities 8 = (kgT)~! - the inverse tem-
perature — and (pg, k € {1,...,K}) — the reservoir chemical potential of chemical
species k — correspond to Langrange multipliers in the maximum entropy formu-
lation of EQSM [25]. In the physical sense, these quantities dictate the equilibrium
properties of the particle system, e.g. the average energy E[E|B, ji] and composi-
tion [E[N|B, ji]. It is straightforward to show that the thermodynamic information,
characterising the equilibrium state of the particle system, is completely encoded
in the quantity Z(B, ).

2.2 MARKOV CHAIN MONTE CARLO

Direct computation of the partition sum is impractical even for the simplest and
modestly sized lattice models, even if one exploits the symmetries of the system.
In studies of nonequilibrium processes we often must consider the properties of
sequences of the system'’s states, i.e. trajectories. Keeping in mind the already
significant difficulty of obtaining thermodynamic information, it is clear that suffi-
cient kinetic information cannot be obtained via direct enumeration of the possible
trajectories.

Monte Carlo (MC) avoids the problem of microstate enumeration entirely. Cen-
tral to the method is the idea of sampling the target distribution P(c|B, #) by
generating lattice configurations ¢ € A in their correct relative proportions as dic-
tated by the target distribution. Although absolute quantities, such as the partition
sum, remain unknown, the approach can still be used to estimate various thermo-
dynamic quantities. The MC procedure is typically implemented as a Markov
chain sampler, whose stationary distribution is exactly the MC target distribution
- a property which is guaranteed by the balance conditions as discussed below.

2.2.1  Stochastic Dynamics

The dynamics of a Markov chain are defined by transition probabilities: IP(c —
') : YyeaP(c — ¢’) = 1, between members of the state space 0,0’ € A. By
Markov property, the transition probabilities are independent of the history of the
chain and we make the additional assumption that the transition probabilities are
time invariant.

For discrete systems, the time evolution can be expressed as a matrix equation:
Pm = Pm—1P, where, using some enumeration i,j € {1,...,|A|} of the possible
microstates, P;; = IP(0; — 0j) is the matrix of transition probabilities and p,(,? is
the probability of finding the chain in state ¢; after m MC moves. Given some
initial distribution of states py, the state of the chain after m MC moves is char-
acterised by: g, = pollL1 P = poP™. The chain is said to be irreducible if
there exists an integer m for which all entries of P" are greater than zero. If
P; > 0Vi € {1,...,|Al}, the chain is also aperiodic, which, together with irre-



ducibility, implies ergodicity and mixing properties with respect to the unique
stationary measure: p* = p*P. The mixing property dictates that any initial distri-

bution py will approach the stationary distribution 5* under the action of P [19].

2.2.2  Detailed Balance

The stationary distribution can be expressed in terms of the transition proba-
bilities P;; = IP(¢; — 0;) by solving the eigenvalue problem: p* = p*P. More
intuitively, the setting can be viewed in the form of a discrete master equation,
noting that p,(,? Zj‘i‘l p;= p,(,i):

A

pm+1 Z pm ji Z pm ij: (26)

which, after substituting 7,41 = pn = P* and noting that the stationary distri-
bution should correspond to the target distribution P(c|B, ji), leads to the global
balance equation for the Markov Chain Monte Carlo (MCMC) sampler of the

Boltzmann distribution:

Y., P(|B,i)P(o" = 0) =} P(o]p, i)P(0 — o). (27)
o'eA o'eA
A reversible Markov chain is obtained by enforcing the detailed balance condi-
tion:
P(d|B,#)P(¢" — o) =P(c|B,#)P(c — ¢'), Vo,0’ € A, (2.8)

which guarantees that the dynamics of the chain at equilibrium are statistically
invariant under time reversal — a property useful for path sampling protocols.

2.2.3 Random Site Update

The microscopic dynamics of the model are specified by a set of local MC moves
— a set of random lattice site updates. A random site 7 is chosen and its state s; is
altered to be s; with some probability Pgen(s; — s;). Thus, from an initial lattice
configuration ¢ a new configuration ¢’ is created with probability Pgen(c — ') =
Pgen(si — s;). The MC move is accepted with probability IP..(c — ¢”), hence:

P(0 — 0') = Pacc(0 = 0')Pgen(0 = ¢”). (2.9)

Since the target probability distribution is known up to the normalising constant,
we can write the single site perturbation acceptance probability as:

Peen(0’ — 0)
Pgen(o — o)

exp {—p [H(c'|) — H(o|f)] } .

(2.10)

]Pacc(a' — 0'/) = II)acc(a'/ — U)



For symmetric site perturbation probabilities Pgen(s; — 5;) = Pgen(s; — s;), the
common choices of P,.(0 — ¢”) are respectively the Metropolis and the Glauber

functions:
1
Pacc(0 — ¢') = min {1,6”3AH} and Pac(0 — ¢') = [1 + e’ﬁAH} , (2.11)

with the latter sometimes written as: [1 — tanh (BAH /2)| /2, where AH = H(¢’|ji) —
H(colji) [27,28]. While the Metropolis choice may be marginally more computa-
tionally efficient, unlike the Glauber choice, it could set P(c — ¢) =0 Vo € A at
B = 0, thus breaking the aperiodicity property of the chain. Although this would
complicate the mixing properties of the chain, the associated stochastic process
would remain ergodic with respect to the Boltzmann distribution. In most dis-
crete models (except the Ising model), however, the site perturbation is chosen
at random from a discrete set of possibilities, thereby allowing a nonzero proba-
bility of leaving the state of the lattice unchanged and, hence, keeping the chain
aperiodic.

2.2.4 Important Properties

Having established the microscopic transition probabilities, we can now discuss
the statistical properties of the stochastic process ;. From the Markov property
P(owm|om-1,.-.,00) = P(0mu|0m_1), it follows that the probability of any trajectory

is given by:

P (0w, 0m-1,---,00) = P(0p) H]P(U’i_l — 0), (2.12)
i=1

and the Chapman-Kolmogorov equation is satisfied:

P(0n—r2 = om) = Y, P02 = 0u-1)P(O-1 = Om). (2.13)
Um—leA
The ergodic theorem [19] for irreducible Markov chains asserts that for any
function g : A — R:

lim 1 ig(m) =) g(o)P(0), (2.14)

m=ree M =5 ceA

and, in addition, the quantity m~' Y, ¢(o;) for large m can be shown to be a
good estimator for the average (g) by the Central Limit theorem [7].
Convergence properties of the above quantities are related to the property of
mixing. The mixing time of the Markov chain can be viewed as a lower bound
on the number of MC steps necessary for the chain to approach its stationary
distribution [19]. Away from criticality, mixing times for a broad class of lattice
models are known to be O(NInN), where N is the number of lattice sites as



before [20]. In practical settings, some initial portion of a sequence of MCMC
observations is treated as the "burn-in” period, and is, therefore, discarded as it
may not accurately represent the target distribution. The necessary duration of
the "burn-in” period may be reduced by appropriately choosing the initial state
of the Markov chain.

At equilibrium the system is well mixed and we are, sometimes, interested
in obtaining uncorrelated samples from the Boltzmann distribution. A useful

quantity for this purpose is the autocorrelation function:

) = (¢(om)g(Omir)) — (g(am)>2 N
Rg(7) (2(om)) — (g(om))2 (2.15)

Under typical conditions, the decay of R¢(T) is exponential. As an illustration,

it is useful to consider the example of a simple lattice gas model under Glauber
dynamics, i.e. s; € {0,1} Vi € {1,...,N} and P(s; — s}) = 0.5 Vs;,s! € {0,1}. For
B = 0 we can ignore the spin interactions and the equilibrium spin distribution
is known: P(s) = 0.5Vs € {0,1}. It is straightforward to show that the spin

autocorrelation function is given by:
Re(1) = 4P(s\™ =1, = 1) — 1. (2.16)

Making use of the Markov property and the Chapman-Kolmogorov equation, the
joint probability can be written as:

P(s™ = 1,5 = 1) = P(s™ = DP(s™ s 6™ = 1) = [1 + (1 - 1) ] ,

! 4 N
(2.17)

hence Rs(7) = (1= N71)" =exp [tIn (1 — N7)] (Fig. 2.2). A decay, exp(—7/7),
of correlations is characterised by the relaxation time 7, and correlation time T,
with one unit of time representing N MC moves [29]:

T = /Ooo R(t)dt = /Ooo exp(—7/1)dt = 7. (2.18)

In the above example, the correlation time 7. scales approximately linearly with
system size N. For finite temperatures (§ > 0), the form of the autocorrelation
function is not trivial and some parameter regimes give rise to extremely long
correlation times 7./N o L?, where z is the dynamical critical exponent and L is
the linear size of the system such that N = L? [30,31].

Sample independence becomes important when one is concerned with higher
moments of observables computed on A. Standard estimators for such quantities
become biased due to temporal correlations in the sample, and elimination of bias
requires knowledge of the autocorrelation sequence [32] which is only available

10



under certain conditions (e.g. B = 0). A common rule of thumb is to consider the
sample autocorrelation in relation to that of a sample of white noise. For a white
noise sequence of length u, the standard error on the autocorrelation sequence is
approximated by:

SE.[R(T>0)] ~u /2 (2.19)

By keeping only every kth sample, such that Rs(kt > 0) < u~'/2, a thinned
sample sequence is obtained, where temporal correlations are statistically indis-
tinguishable from correlations in samples of white noise [32], and hence standard
moment estimators approximately apply. Generally, however, the practice of thin-
ning is discouraged as it is unnecessary for calculation of sample means and MC
integration purposes, while sample variances and standard errors can be obtained
from multiple independent MC runs [33].

100 ;- — é o k=
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Figure 2.2: Sample (N = 64, u = N x 10*) and analytical spin autocorrelation sequences for

whole and thinned time series sgm), in a lattice gas with s; € {0,1}, Vi € {1,...,N} and
P(s; — s:) = 0.5, Vsi,sg € {0,1}, where u is the length of the sample sequence for both

thinned (k = N) and unthinned (k = 1) sequences. Solid lines are the plots of (1 —N *1)”,

while markers show the simulation data. The u~1/2 threshold indicates the magnitude of
the autocorrelation coefficient below which the correlations can be treated as insignificant,

according to (2.19). Here, achieving the acceptable level of correlations requires thinning by

roughly k = 10N, i.e. observations of sl(m), obtained at time intervals equivalent to 10 lattice

sweeps, can be treated as statistically independent.

2.2.5 Kinetic Monte Carlo

The primary motivation for use of kinetic Monte Carlo (kMC) is the need for
continuous time modelling of physical processes. The continuous time stochastic
process o(t), t € [0,00), 0(0) = 0p can be viewed as a sequence of states {0y, }
accompanied by a sequence of arrival times {t,, > 0, ty = 0}, with transitions:

P lo(tn+1) = oms1l{o(tm) = om}] = P [Omt1, tui1 [{om, tm }]

(2.20)
=P [ont1l{om tm}] P [tms1|{om, tm}],

11



conditional on the histories of the process. Note that the arrival time t,,; is
independent of 41, since the time spent in 0, must be independent of ¢,;.
The Markov property reads [34]:

Po(tms1) = omrril{o(tn) = on}] = Po(tni1) = Onsalo(tn) = ow],  (2.21)
implying Markov properties for both {0, } and {t, }:
P [0 1{0m tm}] = P lonit|om tm], P [tmsr[{om, tm}] = P [tus1lom tu] . (2.22)

As before, we assume that the state transition probabilities are stationary with
time, hence the Markov chain is homogeneous:

P [o(t+ At)|o(t)] =P [o(At)|o(0)]. (2.23)

From the Markov property for {t,,} it follows that the residence times 1 =
tm+1 — tm are independent, conditional on {o, }:

P [ty1{om tm}] =P [twi1|Om, tw] = P [hyy1l{0m, b }] = P [hpy1]ow] . (2.24)

We can consider the properties of IP [l1,,11 |07 by evaluating the cumulative distri-
bution:
Plo(tm +a+0b) = on|o(ty +a) = Om, 0(tm) = O]

(2.25)
=P [hyt1 > a+blhy1 > a,04].

From (2.24) it is clear that the residence time h,,11 depends only on the cur-
rent state of the system and not on the elapsed time a, hence we arrive at the
memorylessness property for P [l1,,11|0m]:

P [herl >a+ b|hm+l > 4, Um] =P [herl > b|0m] . (2.26)

It can be shown that the above property is only satisfied by the exponential dis-
tribution [34]: P [h|o] = r(0) exp [—r(0)h], with r(c) > 0 being the rate at which
the system leaves the state ¢. It further follows that the jumping times between
states 0,0’ € A are exponentially distributed with some rate r(c — ¢’) € [0,0),
and, by examining the joint distribution of independent exponentially distributed
variables, we see that:

rio) =Y ric—0o). (2.27)

o'eA
For technical reasons, it is useful to set ¥(c — ¢) = 0 and define the continuous

time process via the generator Q : Q;; = r(0; — 0), Q;; = —r(0;), whose proper-

12



ties allow one to elegantly express the dynamics of the process [34]. For practical
considerations, we will assume r(c — ) > 0.

Intuitively, a transition from state ¢ to some other state ¢’ occurs if the event
o — o’ happens to trigger sooner than any other possible event o — ¢t € A [35].
Applying the properties of the exponential distribution, we can, thus, relate the
transition rates of the continuous time Markov chain to the jump probabilities of
its embedded discrete time analogue [36]:

P(o — o) = r(o — o) / r(o). (2.28)

Clearly, any choice of rates v(c — ¢’) &« P(c — ¢’) yields the correct set of
transition probabilities, hence a continuous Markov process is uniquely specified
by either a set of transition rates r(c — ¢’) or a set of transition probabilities
P(c — ¢’) combined with the state escape rates r(c) [37].

Kinetic MC methods can be classified as standard (rejection, e.g. Metropolis) or
rejection-free (e.g. BLK, Gillespie). In the standard construction, an event o — ¢’
is selected uniformly on the set of possible events and accepted with probabil-
ity P(c — ¢’), with the MC time variable being updated by a randomly drawn
time increment i : P [h|o] = r(o) exp [—r(0)h], regardless of acceptance or rejec-
tion of ¢’. The rejection-free approach is to, effectively, compute the probability
distribution over the set of possible events and, thus, sample the event directly,
incrementing the time variable by h [38]. The two classes of algorithms can be
shown to be equivalent, in the sense that, given a set of rates r(c), both correctly
model the physical time scale of the process [37].

2.2.6 Constant Jump Rate Kinetics

Computer simulations of general kMC models typically track the state ¢ of
the system as well as the value of the stochastic time variable t to sample trajec-
tories o(t). In this work we will only consider kMC models where the escape
rates r(c) are equal to some constant R for all ¢ € A, which implies that all time
increments /1, as defined above, are independent and identically distributed. Un-
der these conditions, the stochastic time variable t,, tracking the system’s time
after m MC updates (jumps), follows the gamma distribution I'(m, R~1), which
converges to the normal distribution with the mean mR~! for large m and any
R € (0,00). Thus, for any long sequence {0, } of observations of the system’s mi-
crostate, the corresponding time values {t,,} can be sampled independently and
are represented sufficiently well by the averages (t,) = mR~!. In this work, we,
therefore, avoid tracking the values of t,, explicitly, using instead the standard

time metric of MC sweeps (MCS): t,, = mN —1 which associates one time unit
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with N Metropolis MC updates, thus tracking the stochastic process o (t) under
the condition of r(¢) = N, Vo € A.

2.3 PHASE TRANSITIONS

A thermodynamic phase of the system can be broadly defined as some subset
A C A of its state space, all elements of which share common physical properties,
e.g. microscopic structure, composition or density. Any distinct phase B C A :
B # A must possess distinct physical characteristics to A and is, therefore, a set
of microscopic configurations necessarily disjoint from A. Since any equilibrium
state of the system corresponds to either one of the thermodynamically preferred
phases or a phase coexistence regime, it follows that distinct equilibrium states
possess distinct physical characteristics.

In the framework of thermodynamics, the equilibrium states of the system are
distinguished based on the macroscopic quantities, e.g. the average internal en-
ergy (E|B,#i) and composition (N;|B,#),i € {1,...,K}. One can, in theory, es-
tablish a complete picture of the phase behaviour of the system by evaluating
the macroscopic averages at each point (B, i) in the parameter space. Parame-
ter points (B*, fi*), at which at least one of the macroscopic quantities exhibits a
discontinuity, correspond to points of abrupt change in the system’s equilibrium
state and are, therefore, phase transitions.

The focus of this work is primarily on the composition driven phase transitions
in multicomponent mixtures, which correspond to i driven transitions in the uV'T
ensemble of model systems. The relevant microscopic processes are also studied
in canonical (NVT) and isothermal-isobaric (NPT) ensembles [2], where the re-
spective driving variables are the particle density p and the system’s pressure P.
While all three ensembles can be realised in lattice models, in the following dis-
cussion we will consider a system in the VT ensemble for simplicity, although

the theory we will cover can be applied to other statistical ensembles.

2.3.1 Classification

Thermodynamic quantities are typically related to derivatives of the free energy
function F (B, i) = —kgTInZ(B, ji) = (H|B, ji) — TS(B, }). Modern classification
of phase transitions recognises two broad categories [39]: 1) First-order — char-
acterised by a discontinuities or divergences in first derivatives of F (B, i), and
2) Continuous — characterised by a discontinuities or divergences in second or
higher order derivatives of F (B, ji) with all first-order derivatives being continu-
ous. It can be shown that, due to the functional form of Z(B, j), discontinuities
in the derivatives of F(p, }i) occur only in the infinite system limit N — oo [40],
which makes the above treatment of phase transitions problematic from the prac-

tical point of view. The concept of “thermodynamic limit” N — oo is currently a
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subject of academic debate [41] and arguments for existence of phase transitions
in finite systems exist [42].

Although the underlying microscopic mechanisms of either class of phase tran-
sitions, in general, remain only partially understood, both classes appear to exhibit
unique characteristics. So, for instance, continuous phase transitions are associ-
ated with phenomena of scale-invariance and divergence of correlation lengths,
while metastability and hysteresis typically signal the onset of first-order phase
transitions [43]. Nucleation and spinodal decomposition are thought to be the

two major microscopic mechanisms of first-order phase transitions [44].

2.3.2  Coexistence and Metastability

At equilibrium, the likelihood of observing the system in phase A at the pa-
rameter point (3, ji) is simply given by the total equilibrium measure in A: P(c €
AlB,H) = LyeaP(0’|B, ). For a system comprising only two phases — A and B,
the set of points (B*, ji*):

P(o € Alp*, ") = P(c € B|B", "), (2.29)

forms the set of phase coexistence points. Due to finite size effects, the coordinates
of coexistence points vary with system size and we typically estimate the true
coexistence points by extrapolating to the N — oo limit.

In some region of parameter space close to coexistence, with P(c € A|B, i) <
P(c € B|B, i), phase A may persist despite it not being thermodynamically pre-
ferred. Such a scenario is termed a metastable equilibrium with A being the
metastable state. Metastability often arises due to presence of high energetic or
entropic barriers along the kinetic pathways to transformation of phase A to phase
B. Such transformation, therefore, requires large, and hence improbable, thermal
fluctuations — rare events. A commonly observed barrier crossing phase transition
process is nucleation and growth, where microscopic droplets of a more thermody-
namically stable phase, forming and vanishing due to thermal fluctuations, must
exceed a certain critical size before continuing to grow [39].

Sufficiently far away from the coexistence point, the energetic barriers to trans-
formation of A to B become negligible or vanish completely. Under such condi-
tions, phase A is said to have reached or crossed its limit of metastability — the
spinodal point, and the barrierless transformation to phase B proceeds via spin-
odal decomposition, whereby arbitrarily small domains of a more stable phase
grow freely throughout the system [45].

Although nucleation and spinodal decomposition are two very distinct pro-
cesses, the crossover from one microscopic transition mechanism to the other does
not always occur sharply at the spinodal point [39,45]. In addition, the limit of
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metastability of a phase is often dictated by the system’s kinetics and not thermo-
dynamics alone, making it difficult to define the spinodal point rigorously [46].
In this work, we will employ a purely heuristic view of the limit of metastability,
corresponding to the parameter point at which the frequency and magnitude of
fluctuations carrying the system away from the metastable state exceed certain
arbitrarily specified thresholds, as, for instance, shown in Ref. [6].

2.3.3 Landau Theory

Much of the intuition behind the methodology of this work originates from
Landau theory — a phenomenological treatment of phase transitions. Initially, the
approach was applied to the study of continuous phase transitions, particularly
critical phenomena, however, it has also proven useful in the context of first order
phase transitions [39].

Central to Landau theory is the concept of the order parameter: A : A — RF -
some lower dimensional, often scalar, projection of the state space of the system.
A well chosen order parameter quantifies the microscopic state of the system in
such a fashion as to allow the various phases of the system to be quantitatively dis-
tinguished. The thermodynamics of a phase transition are modelled by assuming
the functional form of the partition function to be:

2(8,7) = exp [-BF (B = [ dAexp[-PRAIB T, (230

in the vicinity of the phase transition, with F (A|B, ji) being the Landau free en-
ergy which is assumed to be a smooth function. Choosing A to be a small valued
quantity around the phase transition, one writes down a truncated Taylor expan-
sion of the free energy in powers of A, keeping only the terms of the expansion
which are consistent with the symmetries of A in the given system. The integral is
assumed to be sharply peaked at the minima of F (A|B, i), leading to an expres-
sion for Z(B, ji) in terms of the coefficients of the Taylor expansion of F (A|B, fi),
whose (B, i) dependence can be established empirically [13,47, 48].

The analytical framework gives little insight into the kinetics of the phase tran-
sition process, but, despite its bold assumptions and poor predictive power, it does
adequately illustrate the concepts of phase coexistence, metastability and spinodal
point.

2.3.4 Coarse-graining via Order Parameter

The concept of order parameter is frequently employed in computational physics
methodology for study of phase behaviour and kinetics of phase transitions in

model particle systems. Instead of obtaining a phenomenological expression for
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the partition function, one typically estimates the probability distribution IP(A|B, j)
of the order parameter:

P(N|B, i) =} or@) WP (o]B, i) ): Sno) v exp [=BH(c|H)],  (231)
SV ’ (TEA
where ) ) 1 is the Kronecker delta function which restricts the sum over state
space to configurations yielding A(c) = A'.

Certain choices of A lead to straightforward expressions relating P(A|B, i) to
thermodynamic quantities. Using, for instance, the energy of the configuration
as the order parameter, i.e. A(c) = E(0), in the canonical (NVT) ensemble, i.e.
keeping the composition of the system fixed: Ny = constVk € {1,...,K}, we
obtain:

e PE
P(EI) = 55 0(E), Z(p) = [ AEQE)N ™, Q) = L broer (232)

where Q)(E) is termed the degeneracy of E, i.e. the density of states in energy.
Noting that P(E|B = 0) « Q(E) yields Z(B) « [ dEP(E|0)ePE, which provides

a means of, for example, estimating the system’s entropy S(p) and heat capacity

c(p): a o
S(6) = 57 s TINZ(B)], C(B) = pogm InZ(B)],  @39)

at all points along B based on the information about the system at infinite temper-
ature p = 0. In fact, the probability distribution of a coupled quantity, in this case
E, can be reweighted between any two finite parameter values (B, ) via:

P(E[B)
]P(E"B/) chxp[—A,BE], (2~34)

where AB = B — p'. We will cover the practical approach to the reweighting

property of the Boltzmann distribution in more detail in Chapter 4.

The coordinates of temperature driven phase transitions can be determined by
locating discontinuities of C(p). While a similar approach can be formulated for
other choices of A(0), e.g. A(0) = Ni(0), in the case of arbitrary A it may be
more appropriate to study the system’s phase behaviour by considering IP(A|B, ji).
Defining basins A, B C R* as portions of the order parameter space corresponding
to phases A and B respectively, we can estimate the coexistence points (B*, ji*) of
A and B via:

/AdMP(AIﬁ*,ﬁ*) = [ aAP(IB" i), (235)

assuming A and B are disjoint, in which case the above expression follows directly
from (2.29). The task of defining order parameters satisfying A N B = @ poses
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significant difficulties for many model systems [49]. In addition, employing an
order parameter as a coarse-grained description of the system is subject to various
practical considerations, particularly in study of the system’s kinetics, which we

will discuss in detail.

2.3.5 Theories of Reaction Kinetics

The decay of the metastable state in a first-order phase transition is commonly
modelled as an activated process, where the system undergoes an activation stage,
i.e. fluctuation driven crossing of the energetic barrier (nucleation), followed by
transformation stage (growth). If the duration of the activation stage is much
shorter than the lifetime of the metastable state, i.e. activation occurs sponta-
neously, the activation process can be viewed as a rare event.

Under this condition of clear separation of timescales, the system has sufficient
time to reachieve metastable equilibrium between subsequent unsuccessful acti-
vation “attempts”. Thus, any given activation attempt retains no memory of the
history of the system, and the equation (2.26) applies to the distribution of sys-
tem’s residence times 74 = Tf, in metastable state A, where Ty, is the time of first
arrival into the stable state B [50]. Hence, the distribution of first passage times

Tfp is Poissonian:

P (tip|B, 1) = J(A — BIB, ji) exp [—](A = BB, ji) Tip] , (2.36)

where J(A — BB, ji) = (1gp) !, is the probability per unit time of occurrence of a
transition from phase A to phase B.

The conceptual treatment of activated processes often resembles that of the
theory of gas-phase and solution reaction kinetics, where the motion of the sys-
tem through its configuration space during a chemical reaction is captured by a
reactive pathway through the system’s potential energy surface [51,52]. While
this energetics centred view remains useful for treatment of systems with small
numbers of important degrees of freedom, the formalism of transition path theory
(TPT) provides a more general and rigorous framework for treatment of activated
processes [53]. Within TPT, the reaction process is represented by a kinetically and
energetically informed statistical ensemble of the system’s trajectories, which can
be visualised as a complex set of reactive channels through the high dimensional
configuration space of the system.

Under the assumptions of ergodic [Eq. (2.14)], Markov [Eq. (2.21)] and equi-
librium (stationarity) properties of the system, TPT is readily applicable to the
continuous time processes covered in section 2.2.5 [54]. In order to study the mi-
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croscopic mechanism of the transition, TPT defines the backward and forward

committor functions g, and g} for every o € A as:

9s =Pty (0) <75 ()], g7 =Pt (o) > 75 (0)], (237)

where 72 (0) and 1 (o) are, respectively, the first backward and forward hitting
times of subset C C A by the, respectively, backward and forward trajectories
7(t) : 7(0) = o and o(t) : 0(0) = o, defined as:

1o (0) =inf{t > 0:5(t) € C}, 1l (0)=inf{t >0:0(t) € C}. (2.38)

By the reversibility property [Eq. (2.8)], i.e. the statistical equivalence of o (t) and
7 (t), we can state that a generic trajectory o(t), passing through the state o at
some time #/, has visited A more recently than B with probability g, and will
arrive at B before visiting A again with probability g . Recalling that the equilib-
rium probability of o () visiting state ¢ is IP(¢), one can derive the equilibrium
probability distribution P(c) of system configurations in the ensemble of reactive

trajectories:
P(0) o< gz P(0)qs - (2:39)

Further noting that the probability per unit time of the system jumping from state
o to state ¢’ is given by r(c — ¢’) [Eq. (2.28)], it is possible to show that the
reactive probability current (¢ — ¢’) flowing from A to B along the transition

o — o’ is given by:

P — o )gzqgh if !
j(o_ N 0_/) — (0’)7’((7 o )[’](T qU o # o (2'40)
0 otherwise,
and satisfies the conservation property:
Y [Je—=d)=T( —0)] =0 VoeA\(AUB). (2.41)

o'eA

To facilitate an intuitive understanding of the ensemble of reactive trajectories
it is useful to consider the system and its microscopic kinetics in the form of a
graph G(A,¥), where every microstate ¢ € A of the system is represented by
a node and a directed edge ¢, € ¥ is drawn with weight (¢ — ¢’) between
pairs of nodes 0,0’ € A : ¢ # ¢ for which r(¢ — ¢’) > 0. By this construction,
any walk, i.e. arbitrary alternating sequence of nodes and edges respecting the
direction of each edge, through G constitutes a generic trajectory of the system.
The ensemble of reactive trajectories is a subset of these walks, which we can
construct by considering the subgraph Gr(A,¥') C G whose directed edges v,
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form the subset of those of G, drawn with weight J* (¢ — ¢’) under the condition
J (o — ') >0, where:

T (o —d)=max{J(¢c =) - T( — 0),0}. (2.42)

Since J* (0 — ¢’) is the effective reactive current through the edge ¢, ., not-
ing that the only sources and sinks of reactive current in Gg are respectively the
groups of nodes A and B, the total probability per unit time of the reaction can be
written as the sum of weights J (¢ — ¢’) of edges connecting the nodes in A to
the rest of Gg:

J(A—=Blg )=} Y, JT"(oc—7IB i) (2.43)

ceA T’ e

where the restriction to the specified set of edges is implicit, since 7 * (0 — ¢’) =0
for all 0,0’ € A by definition of g;. In Eq. (2.43) the set of edges connecting the
groups of nodes A and A\ A corresponds to a dividing surface in the language
of transition state theory (TST), with the total effective reactive current from A to
B expressed as the sum of all effective currents leaving A through the dividing
surface, i.e. the boundary of A in this case. Any subset of edges ¥* C ¥’ is a
valid choice of a dividing surface if removal of ¥* from Gg partitions Gg into two
subgraphs Ga(Aa, ¥a), Gp(Ap, ¥p) with A C Ay and B C Agp = (A\ Aa). By
properties of J* (¢ — ¢’), one can show that the total reactive current through
the edges ¥* leading from G4 to Gg yields J(A — B), hence the reaction rate is
invariant under the choice of the dividing surface, so long as the product (B) and
reactant (A) states are well defined.

A conceptually equivalent result to (2.43) can be obtained within the frame-
work of TST [55], though TPT offers a more general and exhaustive treatment of
the reaction process by considering the flow of J* (¢ — ¢’) through the whole of
the state space rather than the dividing surface alone [53]. While a rigorous appli-
cation of the TPT can grant a complete understanding of the reaction mechanism,
it requires estimation of g, and g} over a considerable portion of the state space,
which has, so far, only been attempted in the context of simple systems [56, 57].
At present, studies of reaction kinetics in complex systems rely on less general ap-
proaches which can be understood as approximations to TPT. A common feature
of many of such approaches is the attempt to model the microscopic kinetics of
the system over the course of the reaction as motion of a reaction coordinate (RC)
— an order parameter capturing the relevant to the reaction degrees of freedom of
the system.
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A coarse grained effective free energy surface of the system can be constructed
from the equilibrium probability distribution of any order parameter:

F(AlB, f1) = —KksTInP(A|B, ), (2.44)

where F(A|B, ji) is termed the free energy of A, despite not having an explicit link
to either the Landau free energy or the thermodynamic potential F(B,). In a
scenario where the system undergoes a transformation from phase A to phase B,
we expect the surface F(A|B, ji) to present at least two basins: a local minimum
corresponding to the metastable state A and a global minimum corresponding
to the stable state B. For various choices of kinetics of the order parameter, the
activation rate of the reaction can be expressed in the form:

J(A — BB, ji) o< exp [-BAF(A — BB, )], (2.45)

with AF(A — B|B, ji) being the activation energy of the process [58]. In the sim-
ple case where basins A and B are separated by a single free energy barrier, the
activation energy is given by the height of the barrier relative to the minimum of
free energy in basin A:

AF(A — BB, i) = F(A"[B, i) — F(AalB, ), (2.46)

where A 4 is the point minimising F(A|B, ji) in the basin corresponding to phase A
and A* is the value of the order parameter maximising F(A|B, ji) along a suitably
chosen path from A to B through the order parameter space. The set of configura-
tions realising the order parameter value A* is referred to as the set of transition
states (activated complexes). Combining the above, the expression for the activa-
tion rate J(A — B|p, ji) takes a form similar to the expression for the rate of state
transition in a Markov process (2.28):

(A BIB. ) = v(p. ) g 47

with v(B, ji) being the kinetic prefactor.

Theoretical justifications for (2.45) and (2.46) typically invoke extensive assump-
tions regarding the microscopic kinetics of the reaction process. Specifically, to
derive (2.45) one assumes that the projection of the system’s kinetics in the con-
figuration space A on to the low dimensional coordinate A yields an evolution
A(t) which is well described by a variant of the Langevin equation over the course
of the reaction [58]. As we will see in Chapter 3, it is not, in general, clear to
what extent this assumption must be satisfied in order to qualify (2.45) as a rea-
sonable approximation for complex systems. In addition, there exists no rigorous
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procedure for construction of reaction coordinates in complex systems, although
various methods for assessment of order parameters as candidate RCs have been
proposed [59, 60].

2.4 NUCLEATION THEORY

Modern studies of nucleation phenomena continue to refer back to the theo-
retical developments of the early-to-mid 20'" century, collectively termed Classi-
cal Nucleation Theory (CNT). Although developed independently, CNT follows
largely the same reasoning as the conventional reaction rate theory [58] and, there-
fore, suffers from the same drawbacks.

Assuming that the transformation from the metastable phase A to the stable
phase B proceeds via formation of microscopic nuclei or droplets of the stable
phase, we first argue that nucleus size plays the key role in the kinetics of the
process. Further assuming that a nucleus can be precisely defined as a compact,
typically spherical, aggregate of particles, and the nucleus size is given simply by
the number of particles 7 in the aggregate, we attempt to coarse grain the kinetics

of the process via a master equation for 7.

2.4.1  Homogeneous Nucleation Rate

We model the formation of a droplet of size n in a homogeneous medium, i.e.
a system free of impurities and other preferential nucleation sites, as a process
of uncorrelated attachment of monomers. Thus, we ignore the details of particle
motion, particle depletion and the possibility of attachment of dimers and larger
aggregates. Denoting the time dependent distribution of nuclei sizes as P, (t) (n >
1) and the nucleus size dependent rates of monomer attachment and detachment
as ], and ], respectively (J; = 0), we write down the master equation as:

d

CRu) = Ph0) = [ 1 Paa(D) + Ty P () = O 4 TP, (249

which is analogous to the equation for the birth-death process. Assuming the dis-
tribution of nuclei sizes is quasi—stationary over the course of the phase transition,
we set P (t) = 0 and define the overall probability flux Jonr as:

Jont = Ji_1Pu1 = Jn Pu = J; P — J o1 Pust, (2.49)

which is equivalent to stating that there is a steady state size independent rate
Jent of formation of nuclei. The equilibrium distribution IP(n) # P, of nucleus

sizes is recovered by setting Jont = 0, yielding:

=

(1’1) n—1 ]+

®

=exp{—p[F(n) — F(1)]} = exp [-BAF(n)], (2.50)

)

Jin

Il
—_
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via the detailed balance condition, which relates the rate coefficients of the master
equation to the cluster free energy F(n). While it is possible to obtain a closed
form expression for Jcnt in terms of attachment and detachment rates from (2.49)
[61], a more straightforward approach is to substitute: ], = J;P(n)/P(n+1),

obtaining:
]CNT Pl’l Pl’l"rl oy 1 Pl anax
— — :> prd —_— Y 2.51
PG " B0 PmbD) T L TR TR Pl 25

by summing equations (2.49) up to an arbitrary value 1 = nmax.
To make further progress we are forced to introduce a number of crude approxi-
mations. Truncating the quasi-stationary distribution P, by setting lim,_,, P /IP(1) =

0, we arrive at:

(o]

-1
Jont = P4 <Z ]1+ exp [5AF(n)]) , (2.52)

n=1Jn
which can be approximated as a Gaussian integral by Taylor expanding AF(n)

about an assumed sharp peak at the critical cluster size n*. Additionally treating
-~ JI as a constant, we arrive at the classical nucleation rate expression:

02AF
Jont = pJi Zexp [-BAF(n*)], Z = [_leranz(”)

) ] , (2.53)

where p = P; is the monomer concentration, ;" is the rate of monomer attachment
to the critical cluster, Z is the Zeldovich factor and the (B, i) dependencies of
p, ], Z and AF(n) are implicit [4].

2.4.2 Droplet Free Energy

A phenomenological expression: AFcnt(R) = bAg — aVg, for the free energy
as a function of the radius R of a spherical droplet can be obtained by means of
thermodynamic considerations [4], where Ar and Vz are, respectively, the surface
area and the volume of the droplet, and the coefficients a and b are, respectively,
the volume and surface formation free energies of nuclei of phase B in the medium
of phase A. For compact, e.g. spherical or cubic, nuclei of characteristic length
R, it is straightforward to show that the number of monomers in the nucleus is
related to R via: R o« n'/3 [4,62], hence the expression for AFcnr (1) is often written
in the form:

2/

AFent(n) = yentn®’® — nApenr, (2.54)

where ycnt and Apent are temperature and saturation dependent scalars related
to, respectively, the free energetic cost per unit area of formation of an interface

between the nucleus of B in the medium of phase A, and the free energetic gain
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per additional monomer of phase B. In cases where the shape of the nucleus
is known, the coefficient ycnT can be written in terms of the interfacial surface
tension, i.e. surface formation free energy per unit area, and the nucleus shape
factor, i.e. the approximate contribution of a single monomer to the surface area
of the nucleus. Generally, the droplet shape is not known a priori, thus, to avoid
additional assumptions, we will keep the shape factor implicit in ycnT.

Both ycnt and Apent are often inferred from the bulk properties of A and B, i.e.
YcNT is approximated as the surface tension of a macroscopic planar interface of
A and B, while Aucnr is taken as the difference per monomer of phase B between
the free energies of the system in state B and in state A — the difference between
the chemical potentials of B and A. This treatment assumes curvature indepen-
dence of the interfacial free energy, and unambiguous definitions of monomer and
nucleus of phase B, all of which, along with the general applicability of bulk phase
properties to microscopic nuclei, are problematic in practice.

The mathematical simplicity of Eq. (2.54), however, offers a number of testable
predictions and provides a means of nucleation rate estimation based largely on
the thermodynamic properties of the system. The maximum of Fonr(71) occurs at
the critical nucleus size niyr:

2yCNT
3AucNT

[N P T e
CNT nCNT = _ = 7”CNT ,uCNT/ 2.55
27 (Auent)? 2

neNT = [
leading to the relations: n¢yp « (AyCNT)_3 and Font(nény) o (Apent) 2. Noting
that:

1

3> AFent(n : ENTAL
P ﬂ = £'YCNT(”CNT) w3, (2.56)
N=NeNT o

Zent = [_271 32

we obtain the expression for Jcnt in terms of Apcnr:

I o« \—2/3 49Nt 1
= o] (n —p——NT__ L. )
Jont 3P] (nent) ™" exp ‘527(AVCNT)2 YontB (2.57)

Assuming the attachment rate ] is proportional to the surface area of the nucleus,
ie. [} o (n&y7)?/? [63], and the monomer density is related to the chemical poten-
tial difference: Inp o BAucnr, one can argue that there is an approximately linear
relationship between In Jent — BApcnt and (,BA;{CNT)*z at fixed temperature [2].
In light of the numerous assumptions and simplifications implicit in Eq. (2.54) it
is not surprising that the predictive capability of the expression is, as we shall dis-
cuss in Chapter 3, highly sensitive to the microscopic properties of the system. Nu-

merous criticisms, modifications and corrections to the classical expression have
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been put forward, reaching various degrees of improvement [4]. Alternative ex-
pressions for the droplet formation free energy can also be found in the more
recent literature [64-66], and improvements over Eq. (2.54) have been reported for
various systems [67-72], yet the classical formula remains widely in use.

2.4.3 Cluster Size as Order Parameter and Reaction Coordinate

In the Section 2.3 we have considered order parameters as projections of the
configuration space on to some lower dimensional coordinate. In practice, this
definition also applies to the cluster order parameter: we typically define n(c) as
the number of particles in the largest nucleus present in the system in microstate
o, which conflicts with the CNT definition of IP(n) [73].

In the context of CNT, we treat IP(n = 1) as the concentration of monomers in
the system — the population of particle clusters of size 1. Employing the projection
n(c) leads to P[n(c) = 1] giving the probability of observing a microstate of
the system in which the largest cluster of particles contains exactly one particle.
Since configurations with n(c) = 1 may contain more than one cluster of n = 1,
clearly P(n = 1) # P[n(c) = 1]. The same reasoning applies for cluster sizes

n:1<n<n', where nt

is system size dependent, which follows the intuition
that, in sufficiently small systems, occurrence of multiple clusters of sizen : n > nt
is extremely unlikely, and P(n|n > n') ~ P[n(c)|n(c) > nt].

In practice, accurate evaluation of IP(n) is limited to a narrow range of small
nuclei — unlike the case for P[n(c)]. Thus the system size must be chosen to not
only accurately model the nucleation process, i.e. avoid percolation effects for
clusters of size n : n > n*, but also allow accurate computation of IP(n|n < n').

It is also worth pointing out that in spatially continuous systems the defini-
tion of n(c) can be ambiguous and, in general, it is not always clear whether a
given definition is kinetically relevant [74]. On the other hand, a kinetically rele-
vant choice of n(c) may not be compatible with the CNT framework, which may
contribute to the quantitative discrepancies between nucleation theory and simula-
tion [75]. Arguably, even in spatially discrete systems, e.g. the Ising model [1, 76],
the appropriate definition of the nucleus size metric remains a subject of debate.

2.4.4 Limitations of the Classical Theory

So far, we have discussed CNT in the context of a transition between two well
defined thermodynamic states A (reactant) and B (product) in a spatially homo-
geneous system, where we have modelled the transition as a one-step process, i.e.
direct nucleation of the product phase B. Many complex systems exhibit poly-
morphism, i.e. existence of multiple, often comparably thermodynamically stable,
forms of the product phase B, giving rise to more involved multi-step activation
pathways.
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Two extensions to the one-step model have been put forward to account for the

possibility of intermediate states along the phase transition process, namely:

1. The Ostwald conjecture: intermediate states appear in the order of their
relative thermodynamic stability, i.e. the next appearing state is closest in
free energy to the previous.

2. The Stranski-Totomanov conjecture: transitions between intermediate states
occur in the order of the heights of corresponding free energetic barriers, i.e.
the next appearing state is separated from the previous by the lowest free

energy barrier.

Although these conjectures appear to hold in some cases, both are without any
rigorous theoretical basis and cannot be viewed as universal rules, as it has been
demonstrated that thermodynamic information alone is not always sufficient to
determine the transition pathway [77,78].

By modifying the interfacial free energy term to account for the reduced surface
area of the nucleus due to contact with an impurity, the CNT framework has also
been extended to facilitate studies of heterogeneous nucleation, i.e. nucleation in
systems with spacial heterogeneities [2,4]. Growing evidence, however, suggests
that such an approach is not always adequate, and the variations in surface prop-
erties and chemical composition of impurities may strongly affect the kinetics of
nucleation [79]. Considering the abundance of complex nucleation mechanisms,
e.g. pre-nucleation clusters and multi-step nucleation [5,80], along with the preva-
lence of systematic errors and unphysical predictions of CNT [4,81], it is clear that
CNT can serve as, at best, a theoretical basis for more detailed system specific
theories rather than a general predictive theory of nucleation processes.
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RECENT DEVELOPMENTS

Having introduced the core concepts of nucleation theory we will now discuss
the current state of the art in computational study of condensation, freezing and
solution precipitation processes. We will start by reviewing the recent studies of
nucleation kinetics in MC and molecular dynamics (MD) models of several phys-
ical systems, e.g. colloidal suspensions, noble gasses and solutions. Following a
brief outline of the computational methodology, we will explore the current status
of atomistic and molecular simulation in relation to theory and experiment. In the
second half of the chapter, our discussion will move towards studies of nucleation

in lattice models.

3.1 NUCLEATION IN ATOMISTIC AND MOLECULAR MODELS

A number of approaches to atomistic and molecular modelling of physical sys-
tems exist. A common feature to all of them is that the system of interest is
represented by a collection of N particles in a finite, often cubic, volume with pe-
riodic boundaries, yielding a model with a minimum of 3N degrees of freedom.
Additional degrees of freedom may be introduced due to particle anisotropy, inclu-
sion of particle inertia, and/or inclusion of energy and volume fluctuations (”ther-
mostatting” and “barostatting” in MD). Particle interactions are modelled by pair
or many-body potentials, typically calibrated empirically or semi-empirically to
accurately capture the thermodynamic and transport properties of the modelled
system. Time evolution and appropriate sampling of the desired statistical ensem-
ble are achieved by Metropolis style MC moves or integration of the appropriate

equations of motion for MD and Langevin dynamics (LD) [7].

3.1.1  Selected Systems

Although a great number of atomistic and molecular model systems have been
developed, quantitative studies of nucleation kinetics enabling comparison of ex-
perimental observations and theoretical predictions are rare. While a number of
model systems have been studied, at present we find only four classes of models
whose nucleation kinetics have been considered extensively by multiple research

groups and via multiple approaches:
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1. Crystallisation of hard spherical colloids — isotropic particles interacting via
hard-core repulsion or modifications thereof.

2. Condensation, deposition, and crystallisation transitions in the Lennard-
Jones (L]J) model — system of point particles interacting via the pairwise
Lennard-Jones potential.

3. Ice nucleation in water models — namely TIP4P /2005 [82], TIP4P/Ice [83]
and mW [84].

4. Precipitation from solution in Tosi-Fumi [85], Smith-Dang [86] and Joung-
Cheatham [87] models of sodium chloride (NaCl).

Although the four classes of models are deemed accurate enough approximations
to their physical counterparts to allow comparison between nucleation kinetics
in experiment and simulation, they are not free from criticisms. The L] system,
for instance, is considered, in many respects, a reasonable approximation to the
system of liquid argon (Ar), yet it is known to significantly misrepresent the bulk
viscosity of the fluid [88]. The hard-core repulsion of the hard sphere (HS) pair
potential is difficult to realise in an experimental setting [89]. In addition particle
polydispersity and hydrodynamic interactions are typically ignored in conven-
tional HS models, yet are thought to affect the transport properties of the physical
systems [3]. Accurately capturing the thermodynamics and transport properties
of the more complex physical systems in models for which statistical treatment
is amenable remains a substantial challenge, and performance of the commonly
used interatomic potentials for modelling of such systems as water [go] and aque-
ous solution of NaCL [91,92] is still lacking in this respect.

Several less extensive nucleation studies have been carried out on models of
charged colloids [93, 94], anisotropic colloids [95,96], molten silica [97] and sil-
icon [98], offering quantitative assessment of CNT. By comparison, qualitative
studies of nucleation kinetics are much more numerous, and we cannot hope to
cover a representative portion of these in this review. Instead, we will address the
common topics of nucleation from solution by reviewing some of the archetypical

systems, namely calcium carbonate (CaCOz3), NaCl and natural gas hydrates [2].

3.1.2  Querview of Methodology for Studies of Nucleation Kinetics
A wide range of rare event simulation methods have been applied to the study
of nucleation kinetics over the recent years [99, 100]. The vast majority of these

loosely fall into the following four categories:

1. Direct/Brute force — characterisation of nucleation kinetics based on direct
observation of nucleation events, e.g. mean first passage time (MFPT) for-

malism [101].
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2. Indirect/CNT based — measurement of nucleation rates based on equations
of CNT, e.g. umbrella sampling (US) [63] and the “seeding” method [102].

3. Path based — study of nucleation kinetics via sampling of reactive trajectories
or their segments, e.g. transition path sampling (TPS) [103], forward flux

sampling (FFS) [104], transition interface sampling (TIS) [105].

4. Free energy surface (FES) based — characterisation of nucleation pathways
via complete or partial reconstruction of the FES in the coarse grained space

of collective variables, e.g. metadynamics [106, 107] and string method [108,
109].

Each of the four classes of methods have their advantages and drawbacks. Brute
force methods, for example, offer a simple approach to characterisation of the
nucleation process, which, unlike all other methods, do not rely on the notion
of a reaction coordinate to a large extent. Direct calculations of MFPT, however,
are only feasible at conditions where nucleation events are sufficiently frequent to
allow adequate collection of statistics. Such conditions correspond to parameter
regions of short lived metastability of the reactant phase A, i.e. far away from
coexistence of A and the product phase B.

The remaining three groups of methods are applicable over a wider range of
parameter space, but employ the concept of a reaction coordinate and additional
assumptions. Methods based on CNT aim to estimate the terms of Egs. (2.53)
and (2.54) from free energy calculations and kinetic properties of the assumed
reaction coordinate, thereby producing estimates of nucleation rates and barrier
heights. Metadynamics and related methods attempt to obtain a projection of the
FES on to a low dimensional coordinate space by introducing a history dependent
bias into the energetics of the system or computing the local gradient of the FES.
Based on the resultant thermodynamic information, various low dimensional ki-
netic models of the transition can be explored, potentially yielding quantitative
insight.

Path based methods attempt to achieve a purely kinetic treatment of the transi-
tion process by sampling energetically unbiased trajectories through the system’s
state space. With the exception of TPS, all methods of this category enhance the
sampling of rare events by indirectly guiding the system’s kinetics along a, typ-
ically, one dimensional order parameter in a ratchet-like or milestoning manner.
The choice of the guiding order parameter is often argued to play a weak role in
the observed kinetics, though it is difficult to provide a rigorous justification for
such arguments.

At present a detailed systematic comparison of the above rare event methods is
lacking, although a reasonable degree of agreement between a selection of meth-
ods has been reported in various models [93,96,97,110-112]. Due to their relative
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simplicity, MFPT and CNT based methods have been overwhelmingly popular in
nucleation literature, while among the more advanced approaches there is a clear
preference towards FFS at present. We will return to the subject of rare event
methodology for a detailed discussion in Chapter 7.

3.1.3 Quantitative Comparison of Simulation and Experiment

Direct comparison of results of simulation and experiment in complex systems
remains a major challenge due to the stark differences in the capabilities of the two
methods of study. Recent advancements in imaging and simulation techniques,
however, provided the opportunity for direct comparisons of computational and
empirical studies of HS [89], L] [113], water [3] and NaCl [114] systems. Large
deviations between rate measurements via simulation and experiment have been
widely reported for the four systems, and no general consensus regarding their
origin has been established so far, although various contributing factors have been
discussed.

Disagreement between computational and experimental studies of the HS sys-
tem at conditions far away from liquid-solid coexistence is relatively small (factor
of 10%) and is attributed to statistical uncertainties in nucleation rate measurement
and determination of the packing fraction — values of the single parameter gov-
erning the thermodynamic state of the ideal HS system — in experiment [115].
At lower packing fractions, i.e. closer to coexistence, however, the discrepancies
are much greater [110,111], suggesting existence of systematic errors in rate esti-
mates due to simulation. Recently, roles of several modelling assumptions, made
in computational studies of HS, have been examined, including effects of parti-
cle polydispersity [110], plasticity [111], sedimentation [116] and hydrodynamic
interactions [117], showing some promise in resolving the existing disagreements.

The situation in L] and NaCL systems is less clear due to the lack of computa-
tional and experimental studies at comparable parameter values. While indirect
comparison can be achieved by extrapolating the computational measurements,
performed at high supersaturations and undercoolings, into regions of parameter
space probed by experiment, the resultant data have been shown to be highly
sensitive to the choice of the necessary analytical models leading to spectacu-
lar discrepancies up to a factor of 10% [69], although the role of uncertainties
in experimental approach is not clear. The more recent study of freezing of L]
fluids [113] demonstrated reasonable qualitative consistency with previous inves-
tigations as well as remarkable agreement with two experimental measurements
in close proximity to the considered parameter points. Results of the few available
computational studies of NaCl at realistic conditions range from drastic disagree-

ment [114] (in the case of precipitation from aqueous solution) to remarkable con-
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sistency [118] (in the case of nucleation from the melt) with experiment, though
the quantity of reference data is scarce.

In the case of water models, discrepancies are common not only between simu-
lation and experiment [3] but also among computational studies utilizing the same
interatomic potentials and rate measurement procedures, as can be seen from a
comparison of Refs. [119, 120] and [121]. Despite criticism of models” accuracy
in capturing water thermodynamics [122], realistic computational nucleation rate
estimates have been reported [123, 124], although the accuracy of these is debat-
able [3].

3.1.4 Quantitative Comparison of Simulation and Theory

Quantitative studies have compared CNT predictions given by Egs. (2.53) and (2.54)
with results of explicit nucleation rate and free energy calculations respectively.
Despite the widespread criticism of CNT assumptions [3,89], the rate estimation
approach based on Eq. (2.53), as pioneered by Auer and Frenkel [125] in their
study of nucleation in the HS model, has received largely favourable reviews over

the recent years, as summarised in Table 3.1.

Study Model Methods
Filion et al. [110] HS US, MFPT, FFS
Filion et al. [111] WCA potential [126] US, MFPT, FFS
Mithen et al. [93] Gaussian core [127] US, FFS
Ni and Dijkstra [96]  Hard colloidal dumbbells US, MFPT
Malek et al. [128] L] Us, MFPT
Saika-Voivod et al. [97] BKS silica [129] US, MFPT

Table 3.1: Listing of studies quantitatively comparing the nucleation rate estimation ap-
proach of Auer and Frenkel [125], i.e. Eq. (2.53) parametrised by explicit estimates of the
free energy barrier (via US) and the kinetic prefactor, with other rate calculation methods.
All listed studies report good agreement between the employed methods to within statistical
17075,

Universal agreement between rare event methods, however, is not present. Dis-
crepancies between results of TIS, FFS and related methods were reported in a
study of a one-dimensional system [130]. Very recently, Jungblut and Delago [131]
demonstrated the subtle effects of structural relaxation between consecutive nu-
cleation attempts in the L] system on MFPT based rate estimates, concluding
that discrepancies between rate estimation methods, in specific systems or con-
ditions, may arise due to the non-Markovian nature of the transition process. It
is frequently highlighted in the literature that rate estimates can be highly sen-
sitive to minor implementation details [132] as well as the choice of the order
parameter. Critical surveys of the existing methods and systematic evaluations of

performance of different implementations are still lacking.
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A wide range of studies have addressed the accuracy of Eq. (2.54) in describ-
ing nuclei formation free energies. Direct comparisons (Table 3.2) with explicitly
computed free energy barriers to nucleation show that the functional form of the
CNT expression, although qualitatively reasonable, can yield erroneous estimates
of barrier heights and sizes of critical nuclei. While certain qualitative predic-
tions, e.g. scaling of nucleation rates, barrier heights and critical nuclei sizes with
driving force to nucleation, appear to hold in many cases [112,133-135], the pre-
dictive power of Eq. (2.54) is widely regarded as poor when employing reasonable
estimates of the bulk surface free energy coefficient ycnt [98, 107, 128, 136]. Ap-
plicability of well defined macroscopic values of ycnt and Apcent to microscopic
nuclei is frequently challenged on the basis of nuclei anisotropy and compressibil-
ity as well as curvature and diffuse nature of nucleus surface [137,138], yielding
an abundance of corrections and alternatives to Eq. (2.54). More recently [75], it
was pointed out that the commonly employed choice of order parameter, used in
identifying microscopic nuclei and calculating their sizes, implicitly leads to a def-
inition of nucleus interface with the surrounding medium, which may not corre-
spond exactly to the thermodynamic definition implied in Eq. (2.54), contributing
at least partially to the frequently reported discrepancies between microscopically
and macroscopically estimated values of ycnt and Apenr.

In light of the above, it is fair to conclude that the limited capacity of CNT, in
prediction of rates of homogeneous nucleation in molecular models, is largely at-
tributable to the difficulty of obtaining precise estimates for nuclei formation free
energies based solely on the thermodynamic properties of the models. Consider-
ing the questionable accuracy of the present methodology, it is not clear whether
the quantitative framework of CNT can be completely ruled out as adequate, de-
spite the mounting evidence against the framework’s underlying assumptions.
Particularly striking evidence in favour of the CNT formalism was recently pro-
vided by Espinosa et al., who have shown that the “seeding” approach [102] to
nucleation rate estimation, which wholly relies on Egs. (2.53) and (2.54), can yield
remarkable agreement with the previously reported direct measurements across a

wide range of parameter space in various models [112].

3.1.5 Nonclassical Nucleation

The classical caricature of the phase transition process, where compact nuclei
of the stable phase appear and grow in the medium of the metastable phase, does
not fully capture the detail of nucleation processes in even the simplest molecular
models [3,144]. An overwhelming number of studies report that the qualitative
character of the transition processes is more involved, and a variety of intricate
multi-stage nucleation pathways have been observed in a range of systems, in-
cluding HS, L], water, NaCl, CaCOs3 and natural gas hydrates [2,3,5,80,145]. Such
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Study Model Methods

Filion et al. [110] HS Us
Jungblut and Delago [139] LJ TIS, PPTIS [140]
Lundrigan and Saika-Voivod [141] L] US, MFPT [142]
Saika-Voivod et al. [97] * BKS silica [129] UsS
Valeriani et al. [143] * Tosi-Fumi NaCL uUS
Cuetos and Dijkstra [95] Colloidal hard rods UsS

Table 3.2: Listing of studies quantitatively comparing the CNT form [Eq. (2.54)] of the free
energy barrier with explicit free energy calculations. Studies marked with asterisk () report
exceptionally good fits of Eq. (2.54) to explicitly computed barrier data. The remaining
studies report that the CNT expression produces reasonable qualitative trends but yields
substantial quantitative discrepancies.

processes typically do not comply with the standard assumptions of CNT regard-
ing, for example, free energy barrier shapes and internal structures of nuclei, and,
for this reason, are commonly referred to as “nonclassical” in the recent literature.
Both computational and experimental studies report evidence of amorphous
precursor pathways to crystallisation in HS systems, where, prior to emergence
of the stable face-centred cubic (fcc) structure, the colloidal suspension appears to
exhibit formation of dense positionally disordered domains, which subsequently
mature into random hexagonal close-packed (rhcp) stackings [146, 147]. Transi-
tion mechanisms involving metastable intermediate states were also identified in
LJ [148], Yukawa [77], Gaussian core [93] and other particle systems, revealing
a broad range of possible kinetic pathways to crystallisation, e.g. dissolution-
recrystallisation, cross-nucleation and solid-state transformation. How such evi-
dent departure from the CNT model reflects in the quantitative metrics is, how-
ever, not clear as we do not find any studies reporting breakdown of Eq. (2.53), as
applied by Auer and Frenkel, for one-component particle systems (see Table 3.1).
Consequently, it is not surprising that nonclassical nucleation mechanisms are
abundant in more complex systems. Amorphous and metastable intermediates
are widely reported in studies of multi-step crystallisation pathways in models
of NaCl [149], CaCOs3 [150] and gas hydrates [151]. Particularly topical are the
various system specific phenomena, such as dehydration of the amorphous pre-
cursor [152] and existence and role of pre-nucleation clusters [153] in precipitation
of calcite from solution. At present, computational studies of nucleation from so-
lution cannot examine directly the complete kinetic pathways to crystallisation at
realistic conditions, due to the long timescales of solution relaxation, prohibitive
system size requirements for simulation of realistic supersaturations as well as ab-
sence of methodology for modelling of open systems eliminating effects of solute
depletion [2]. Meanwhile, experimental verification of computational findings re-
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mains a challenge due to the limitations of the modern microscopy and scattering
techniques [3], though indirect evidence continues to emerge [154].

In this work we will explore lattice models of anisotropic particles in solution,
where solute nuclei undergo structural transformations from low to high internal
orientational order over the course of growth limited solute crystallisation path-
ways. Such behaviour falls into the broad category of multi-stage nucleation and
will be considered as nonclassical throughout this work.

3.2 NUCLEATION IN LATTICE MODELS

It has been well documented that fundamental physical phenomena and pro-
cesses can sometimes be captured by models including minimal physical detail,
to which the Ising model is an excellent example in the field of statistical physics.
Due to their remarkable simplicity, lattice models provide a platform for in depth
exploration of generic nucleation mechanisms as well as system specific features
at a greatly reduced computational expense. Additionally, the simplistic view of
particle interactions offers an intuitive means to tune the model thermodynamics
and phase behaviour, possibly utilising the body of analytical results available for
some of the well established models. In the context of nucleation from solution,
the relevant order parameters and initial system configurations can be constructed
with relative ease. As we will see in this section, despite their simplicity, minimal
models display a rich array of phase transition behaviours often challenging the
established theoretical framework.

3.2.1  The Ising Model

Numerous studies have considered the Ising lattice gas as a simple model of
vapour-to-liquid nucleation or precipitation from solution. In this model, each
site of the simple square or simple cubic lattice represents either a vapour/solvent
particle (s, = —1 — spin “down”) or a liquid/solute particle (s; = 1 — spin "up”).
For a given configuration ¢’ € A’ = {—1,1}¥, the Hamiltonian is typically written
as: Hi(0") = — Yy )y sis; — hY ) | s,, where the first sum carries over all pairs
(1,]) of nearest neighbouring lattice sites and h represents the strength of particle
interaction with an external field.

For consistency with the later chapters, we write the above Hamiltonian in the
equivalent form:

1

1
HI(U) = Z KS,‘,S]‘ - Z ]’lkal K = [ 1
k=0 -

-1 N
- 1 7 Nk = Zési,k/ (31)
{6} i=1

where we replace the spins s, € {—1,1} with s; = (s] +1)/2 and the pairwise
interactions are given by the zero-based indexed symmetric matrix K. Noting
that Z,If:l s; = N1 — Np and N; + Ny = N, the field interaction strength 1 can
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be related to the chemical potentials pg, 11 of respectively the solvent and solute
particle reservoirs via:

2hN; — hN = (u1 — po) N1 — poN = AuN;j — poN. (3.2)

hence, without loss of generality, we can take yg = h and, therefore, Ay = 2h.

The (B, Ap) phase diagrams of the model are well known in dimensions d = 2,3
(Fig. 3.1a). A typical phase diagram consists of a single coexistence line Ay = 0,
separating the vapour and liquid phases, which terminates at a system dimension
dependent critical point kgT = kgT.(d). Beyond the critical point, the mecha-
nisms of phase transformation no longer admit nucleation theoretic treatment.
Within some region of Ay > 0 close to Ay = 0 and T < T, the vapour phase is
metastable and nucleation of the liquid phase occurs. In addition to the ferromag-
netic transition, the interface roughening transition, marking the gradual change
between the regimes of cubical (T < Tr) and spherical (T > Tr) equilibrium crys-
tal shapes [155], is known to occur at Tg : 0.5T, < Tg < 0.6T (for d € {2,3}) [156].

The Ising model presents an ideal testbed for CNT since most of the important
macroscopic quantities, e.g. bulk surface tension, phase chemical potential differ-
ence at coexistence and T,(d), are known exactly or are well approximated. Fur-
thermore, the simplicity of the Hamiltonian allows for implementation of highly
efficient MC codes.

(a) (b) Solvent rich (c) Solute rich

Tef---n---- .

Ap

Figure 3.1: Schematic phase diagram for the Ising model in (a), and typical configurations
of the two low temperature equilibrium states in (b) and (c) for d = 2, I= (32,32). In (a),
the solvent rich and solute rich regions are labelled (i) and (ii) respectively, and the solvent-
solute coexistence line is shown in blue, with the critical point marked by a blue circle. In (b)
and (c), the solute (spin “up”) sites s; = 1 are shown as blue squares, while the solvent (spin
”"down”) s; = 0 sites are omitted.

3.2.2  Microscopic Kinetics

The spin-flip kinetics (e.g. Glauber dynamics) have been a popular choice in

studies of Ising models since they provide a reasonable microscopic model for
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magnetisation and condensation processes as well as avoid global depletion of
liquid particles (solute) during formation and growth of the nucleus, thus keep-
ing the Au constant over the course of the phase transformation process. In the
context of a model of a solution, such kinetics, however, do not realistically treat
particle transport or the effects of local solute depletion/augmentation due to par-
ticle attachment/detachment from the forming nucleus. The widely used single
spin alternative — the local spin exchange (e.g. Kawasaki dynamics [157]) — al-
lows spins to perform random walks on the lattice, effectively modelling particle
diffusion. Pure Kawasaki dynamics does conserve particle counts and, therefore,
suffers from the global solute depletion effects. Although various methods have
been proposed to overcome these [158], as we will discuss in Chapter 7, accurate
modelling of nucleation in the Ising system under realistic particle transport re-
mains a challenge due to difficulties in modelling of particle density fluctuations
of open systems.

It is well known that both choices of kinetics lead to breakdown of the Markov
assumption on n(t) — the stochastic process governing the evolution of the nucleus
—as made by CNT [159,160]. Unlike under Kawasaki dynamics, the behaviour of
n(t) under spin-flip dynamics appears approximately Markovian on a sufficiently
long time scale [160]. While the consequences of the non-Markovian nature of n(t)
are still to be studied, earlier works [161,162] have pointed out that the short time
cluster kinetics of the Ising model under Kawasaki dynamics can be captured with
surprising accuracy by (2.48) using explicit estimates of the cluster size dependent
coefficients [}, J,,. To our knowledge, however, the full nucleation kinetics in the

Ising model under Kawasaki dynamics have not been studied in detail.

3.2.3 Homogeneous Nucleation in Ising Models

In absence of advanced methods for study of rare events, early MC simulations
of nucleation in Ising models were largely restricted to conditions of high super-
saturation, where the nucleation rates are relatively high. Under these conditions,
the entire process of the phase transition is observable in a typical MC trajectory
and nucleation rates can be estimated directly by computing the FPT distribu-
tions. The majority of these studies considered Glauber or equivalent spin-flip
dynamics in d € {2,3} systems evaluating the quality of the central prediction
of CNT: In Jont o (BAM)~9F1. Despite the possibility of systematic errors due to
nonstationarity, i.e. rapid decay of the metastable state [163], and effects of cluster
coagulation [164-166], an overall reasonable agreement with the CNT prediction
was widely reported [163,167-172].

Studies focusing on the functional form of the expression for the free energy
(2.54) reached less favourable conclusions. Simulations of liquid droplets in equi-

librium with pure vapour showed that the average surface areas of small clusters
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obey a different scaling to the usual nl=1/d |

173]. Although some evidence for cubi-
cal shapes of nuclei for T < Ty is present [172], the validity of the compact nucleus
assumption and the role of the roughening transition are questionable since for
T > Tg rough and anisotropic critical nuclei were reported [174-176]. Estimates of
surface free energies of liquid clusters in coexistence with saturated vapour were
also found to deviate from the CNT prediction [177, 178]. Explicit computations
of droplet free energies, via thermodynamic integration in the constrained droplet
size ensemble, suggested that (2.54) lacks a temperature dependent Inn term in

d = 2 dimensions as well as a n!/3

term in d = 3 dimensions [179,180]. Similar cor-
rections were also proposed to explain brute force estimates of equilibrium cluster
size distributions [181] and results of umbrella sampling calculations [66,175,176].
However, excellent fits of the classical expression to brute force estimates of AF(n)
have been reported in d = 2 dimensions [182], leaving the overall status of (2.54)
inconclusive.

Rate calculation methods relying on the basic elements of CNT have been
explored. By examining the temperature and h dependence of eyt in (2.52),
Vehkaméki and Ford developed a method of nucleation rate calculation based
on estimates of critical cluster size and system’s excess internal energy due to
presence of a critical cluster [165]. Brendel et al. [182] considered an alternative
approach to the master equation (2.48), expressing the nucleation rate in terms of
the cluster size distribution and cluster attachment/detachment rates. Both meth-
ods produced rate estimates which were in reasonable agreement with available
FPT based data.

More recently the Ising model has seen application of the rare event method-
ology, results of which appear to further support the general CNT framework.
Results of a transition path sampling study [174] suggest that the CNT gives a
reasonable estimate of the transmission coefficient, however the parameter de-
pendence of this quantity was not examined. Ryu and Cai [175, 176] reported
excellent agreement over a broad range of parameter space between nucleation
rate estimates obtained via forward flux sampling and those given by (2.53), using

explicitly computed cluster attachment rates and free energy barriers.

3.2.4 The Potts Model

The Potts model can be thought of as a generalisation of the Ising model to arbi-
trary number Q > 2 of site states ¢; € {1,...,Q}, with the following Hamiltonian:

Q N
HP(U) = - Z 5%0/]‘ - Z hy Z5qi,k/ (3-3)
160} k=1 i=1

where {(i,j)} is the set of all nearest neighbouring lattice site pairs and hj is
the strength of an applied external magnetic field of along the spin “direction” k.

37



Written in this form, the Hamiltonian is equivalent to a Q-component lattice gas,
although often the one-field regime h = hyp« > 0, = 0Vk # g* is considered in
the literature. Generally, the above definition gives rise to two equilibrium states:
(1) The low energy “ordered” state, where all spins assume some common value
g € {1,...,Q} (Fig. 3.2¢); (2) The high entropy “disordered” state, where no
long range order among spin values exists, i.e. spins assume random values in
{1,...,Q} (Fig. 3.2b).

The model exhibits a temperature driven order-disorder phase transition which
is believed to be first order for Q > 5,d = 2 and Q > 3, d = 3 [183]. Although
the general phase diagram of the one-field model is not known exactly, reasonable
numerical estimates for large Q in d = 2 exist (Fig. 3.2a) and qualitatively similar
form can be expected in d = 3 [184]. The order-disorder coexistence line is the
line T*(h > 0|d, Q) of first order phase transitions, terminating at the critical point
[he(d,Q), Te(d, Q)]. At zero field, the transition temperature is known exactly for
d = 2 [184] and is approximately estimated via the mean-field approach in d = 3
for Q > 3 [185]:

T(02,024) = In(1+ VQ) !, T'(03,023) =35 Q-] G

At present, existence of metastable states in the vicinity of T* (h,d, Q) continues
to be debated, and the lifetimes of the metastable states are thought to be system
size dependent [186, 187]. Thus, in contrast to the field driven transition of the
Ising model, the kinetics of the order-disorder transition in the Potts model cannot
be quantified unambiguously, though the system size dependence of nucleation
rates or free energy barriers has not been studied.

In the vicinity of the line iy = 0,k € {1,...,Q} below the order-disorder
transition temperature — the line of coexistence points for the Q ordered phases —
various field driven nucleation scenarios occur. Studies of nucleation kinetics over
the course of field driven transitions in the Potts model have been carried out in
d = 2 dimensions under spin-flip dynamics. Rutkevich reported good qualitative
agreement of mean FPT estimates with the CNT prediction in the model with hj =
0,k € {1,3,...,Q} [188]. Sanders et al. explored “multi-step” and competitive
nucleation scenarios by including interactions between differently valued spins
[189]. For this purpose, the Hamiltonian takes the equivalent to (3.1) form, with
K being a Q x Q symmetric matrix with entries K;; = 1, i € {1,...,Q}. Ina
Q = 3 setting with Kjo = Ky3 > 0, K3 < 0and 0 = Iy < hy < h3, Sanders
et al. showed that ordered phase g = 2 has a nonzero probability of nucleating
from phase g = 1 before nucleation of phase g = 3 takes place, thus pointing out
the need for probabilistic interpretation of the Ostwald and Stranski-Totomanow
conjectures, particularly in the regime where the free energy barriers to nucleation
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(a) (b) Disorder (¢) Order

Figure 3.2: Schematic phase diagram (adapted from [184]) for the Potts model in (a), and
typical configurations of the two equilibrium states in (b) and (c) for d = 2, I'= (32, 32),Q=
24, hj = 0Vk # g*. The three regions of (a) are: (i) Disordered state; (ii) Ordered state rich
in spin values q*; (iii) Ordered state poor in spin values g*. In (b) and (c), lattice sites are
represented by square markers with each spin value g; € {1, ..., Q} assigned one of Q = 24
colours. The critical point (h., T;) is marked by a green circle.

of competing phases are comparable. Okamoto et al. employed a similar approach

to model nucleation of polymorphic minerals from solution [190].

3.2.5 The Potts Lattice Gas Model

In order to explore mechanisms of crystal nucleation via amorphous precur-
sors, several lattice models of anisotropic particles were formulated by combining
elements of the Ising and Potts models [6,191,192]. In this work we will extend the
Potts lattice gas (PLG) model of Duff and Peters [6,193], where solvent (s; = 0) and
solute (s; = 1) particles are anisotropic, with their orientational degrees of free-
dom represented by an integer g; € {1,...,Q}. In addition to the usual (isotropic)
nearest neighbour interaction, orientationally aligned, i.e. q; = g;, neighbouring

particles i and j in the PLG model receive an energetic bonus As, s, thus:
1
HPLG(U) = - Z |:KS,‘,S]‘ + (Sqi,quS,',Sji| - Z ]’lka/ (35)
(@)} k=0

where K and A are 2 x 2 matrices specifying the strengths of isotropic and anisotropic
interaction between particles. For Q > 3 in d = 3 and:

10 0 0
K_[01 , A_[()1], (3.6)
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we expect three distinct equilibrium states: (1) Solvent rich (low f); (2) Amorphous
solute (low B, high f); (3) Crystalline solute (high B, high f); where we define the
fugacity ratio f as:

f=exp[B(11 — po)] = exp [BAY], (3.7)

where Ay is the difference between the chemical potentials of the solute and sol-

vent reservoirs. At present, the (B, f) phase diagrams of the model have not been

(a) (b) Amorphous nucleus. (c) Crystalline nucleus.

T f----- : |

Figure 3.3: Schematic phase diagram for the PLG model in (a), and configurations of nuclei
in coexistence with solvent in (b) and (c) ford = 3, [ = (8,8, 8), Q = 24 with K and A given
by (3.6). The three regions in (a) are: (i) Amorphous solute rich (Fig. 3.2b); (ii) Crystalline
solute rich (Fig. 3.2c); (iii) Solvent rich (Fig. 3.1b). Lattice configurations in (b) and (c) were
obtained via standard NVT MC at T = 0.7 and T = 0.3 respectively. Solute (s; = 1) lattice
sites i are represented by cubes, assigned one of Q colours according to the value of g;.

reported, however, based on the behaviours of Ising and Potts models, we can
expect the sketch given in Fig. 3.3a to capture the key elements.

Nucleation of crystalline solute from supersaturated solvent in the PLG model
under spin-flip dynamics was studied by means of free energy calculations. Duff
and Peters [6] computed two dimensional free energy landscapes as functions of
largest solute cluster size and its degree of internal orientational order at condi-
tions where the ordered solute phase is thermodynamically stable in bulk. They
showed that, at conditions sufficiently close to coexistence of ordered and disor-
dered solute phases, amorphous solute nuclei (Fig. 3.3b) are thermodynamically
more stable than crystalline nuclei (Fig. 3.3¢), and hence the amorphous precur-
sor nucleation pathway is thermodynamically viable. Whitelam and Hedges stud-
ied conceptually analogous models in two dimensions by mean field and simula-
tion [78,192], also noting the existence of amorphous precursor pathways. Using
FFS, they showed that close to the crossover regime, where the free energy bar-
riers along the “direct” and amorphous precursor pathways are comparable, the
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mobility of particles” orientational degrees of freedom can dictate the nucleation
pathway [78].

More recently, the kinetics of nucleation in the d = 3 PLG model were stud-
ied under conditions where Kog = Kj1, Aop = A1 and Ap ~ 0, modelling
the scenario of competitive crystallisation from a binary melt at eutectic composi-
tion [158]. Results of mean FPT calculations were reported to be in good qualita-
tive agreement with CNT for a combination of Kawasaki and spin-flip dynamics.

3.2.6  Other Models

Soisson and Martin [166] studied kinetics of substitutional solid solution pre-
cipitation under vacancy diffusion in an Ising-like lattice model. They estimated
the nucleation rates by measuring the rates of postcritical cluster formation at high
supersaturations, showing good qualitative agreement with CNT. Jorge et al. used
a multicomponent lattice gas system to model crystallisation of zeolite from clear
solution, qualitatively reproducing experimental observations [191].

Kinetics in lattice models with spatially anisotropic interactio