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minerals. By analysing multi-dimensional free energy profiles, computed via a
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tation in the developed model can proceed via nonclassical pathways, where the
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into the thermodynamically preferred structure. Despite the existence of nonclas-
sical nucleation pathways, we show that the conceptual framework of classical
nucleation theory provides an adequate quantitative treatment of the nucleation
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n∗ ∈N Estimated value of the cluster size coordinate yielding the
slowest variation (drift) in 〈n(t)|n(0) = n∗〉 with t

J(A→ B) ∈ [0, ∞) Rate (probability per unit time) of transition of a particle sys-
tem from initial metastable state A to thermodynamically pre-
ferred state B

∆FCNT(n) ∈ R Free energy as a function of the cluster size coordinate in the
CNT droplet model

γCNT ∈ R Surface term coefficient of the CNT droplet model

∆µCNT ∈ R Volume term coefficient of the CNT droplet model

n∗CNT ∈ R Critical nucleus size as defined by the CNT droplet model:
n∗CNT = argmaxn{∆FCNT(n)}

JCNT ∈ [0, ∞) Value of the nucleation rate as given by CNT

c ∈ [0.5, 1] Solute anisotropic interaction strength parameter in the ex-
tended PLG model; c = 1 unless otherwise specified

Γ(a, b) Gamma distribution with shape parameter a and scale param-
eter b

N (a, b) Normal distribution with mean a and variance b

Dx ∈ [0, ∞) Diffusivity of a Brownian motion process x(t): Dx = 〈[x(t)−
〈x(t)〉]2〉/(2t)
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1

I N T R O D U C T I O N

Nucleation is one of the fundamental mechanisms governing the early stages of
first order phase transitions, and the underlying microscopic process is under-
stood as fluctuation-driven formation of microdomains of one phase within a
macroscopic domain of another [1]. Due to the small length and time scales in-
volved, at present, it is difficult to obtain detailed insight into the microscopic
kinetics of nucleation phenomena empirically, yet such insight is crucial in nu-
merous industrial applications [2]. Although significant progress in molecular
and atomistic modelling of nucleation processes has been achieved over the recent
years, open questions remain abundant even in the simplest model systems [3].

Much of the quantitative understanding of nucleation phenomena is provided
by the phenomenological framework of Classical Nucleation Theory (CNT) [4],
which employs a simple one-dimensional model in order to derive closed form
expressions for the key quantities used for characterising the nucleation processes
(Sec. 2.4). Despite introducing a considerable list of simplifying assumptions, the
CNT approach for calculating nucleation rates appears to yield estimates in good
agreement with those obtained via state of the art numerical methods. Thorough
application of the advanced numerical methods for rate estimation, however, has,
so far, only been attempted in relatively simple single component model systems.

The more complex particle systems, such as solutions of polymorphic minerals,
e.g. calcium carbonate, are thought to exhibit a richer variety of microscopic
dynamics which significantly complicate the expected nucleation mechanisms [5].
The associated phase transformation mechanisms typically fall into the category
of nonclassical nucleation (Sec. 3.1.5), where the quantitative framework of CNT is
thought to break down under the typical assumptions used in its application. Due
to the difficulties and the computational expense of numerical modelling of multi-
component systems, no quantitatively rigorous studies of nonclassical nucleation
in molecular systems have been reported to date. Consequently, the interest in
capturing nonclassical nucleation behaviours in computationally tractable models
has spiked over the recent years, forming the core of the motivation for this work.

In the present study, we will develop and analyse a novel multi-component
lattice model of anisotropic particles in solution, based largely on the combination
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of the well known Ising and Potts models as implemented in the Potts Lattice Gas
(PLG) model of Duff and Peters [6]. Employing state of the art numerical methods,
we will demonstrate the presence of nonclassical nucleation behaviours in the in-
troduced model while providing evidence for Potts-like lattice models not being
ideal candidates for modelling nonclassical nucleation pathways of polymorphic
minerals. Based on results of our application of rare event and enhanced sam-
pling methodology, we will also argue that the quantitative treatment of CNT can
adequately describe the nucleation kinetics of the introduced model over a consid-
erable range of parameter space. As an aside, we will provide detailed discussions
of the employed numerical methodology as well as relevant issues in modelling
of multi-component systems.

1.1 overview of the work

We will start by briefly outlining the relevant to this study theoretical back-
ground and the recent literature in Chapters 2 and 3, covering the key aspects
of statistical mechanics, Markov chain and reaction rate theories as well as dis-
cussing the current status of nucleation theory in the context of lattice models and
molecular simulation.

We will then move on to the discussion of equilibrium properties of the ex-
tended PLG model. In Chapter 4 we will develop the model, discuss its phase
behaviour and produce accurate estimates as well analytical expressions for the
relevant phase coexistence lines. Applying a path based enhanced sampling proto-
col in Chapter 5, we will analyse the equilibrium structures of nuclei in our model,
illustrating the potential nonclassical nucleation pathways.

In the second half of the study, we will focus on quantitative analysis of nucle-
ation kinetics. Chapter 6 will be dedicated to application of the currently popular
”seeding” method for nucleation rate estimation based, in part, on the analyti-
cal framework of CNT. The more rigorous rate calculation approaches will be
discussed in Chapter 7, where we will provide explicit quantitative treatment of
nucleation kinetics and discuss the results in the context of CNT.

Finally, in Chapter 8 will present the summary and the main conclusions of
this work, outlining the potential future research directions.
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2

T H E O R E T I C A L B A C K G R O U N D

In this chapter we will give a brief overview of the core theory relevant to studies
of phase behaviour and transitions in stochastic systems of interacting particles. A
thorough critical review of the subject would require consideration of the underly-
ing mathematical and philosophical constructs, which alone would span the entire
volume of the thesis. We will therefore restrict ourselves to a relatively naive view
of the more complex topics, e.g. dynamical systems and ergodic theory, referring
to the more in-depth literature where possible. The key purpose of this chapter is
to introduce the core concepts and notation.

2.1 equilibrium statistical mechanics

The importance of statistical mechanics lies in its success at providing a mi-
croscopic basis for the theory of equilibrium thermodynamics [7]. Although the
traditional definitions of equilibrium statistical mechanics (EQSM) may have lim-
ited use in the treatment of nonequilibrium phenomena, the theory does provide a
convenient conceptual framework on which we will rely throughout the following
sections and chapters.

The conception of statistical mechanics is commonly attributed to Maxwell,
Boltzmann and Gibbs, who put forward different, largely intuitive, justifications
for statistical treatment of molecular systems. The resultant analytical framework
faced criticism as early as 1911 [8], particularly with respect to the ”Ergodic hy-
pothesis”. Further mathematical study of the hypothesis arguably lead to the
establishment of the field of ergodic theory, where the formal mathematical basis
for EQSM is a subject of much ongoing research [9].

Despite the considerable volume of, so far, unresolved mathematical and philo-
sophical criticisms [10–12], the theory of EQSM appears successful in explaining
a wide range of physical phenomena. The traditional formulations, commonly
used in statistical physics texts [7,13–16], however, do little to highlight the under-
lying mathematical detail of EQSM. While such detail extends beyond the scope
of this work, we will attempt to cite the important considerations, since our list of
modelling assumptions begins here.
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2.1.1 State Space

In an abstract sense, a model particle system can be defined by a state space Λ
and a set of dynamical rules, expressed as a transformation T : Λ → Λ, which
describe the system’s time evolution. We use the notation T : Λ→ Λ to state that
T maps Λ on to itself, i.e. there exist σ, σ′ ∈ Λ such that σ′ = T (σ). In classical
systems under Hamiltonian or Langevin dynamics, the state space is typically
taken as the set of all possible positions and momenta of some number N of
particles in a 3 dimensional container – a subset of R3. In the case of overdamped
Langevin dynamics and systems of Brownian particles, the momenta are treated
as random and, hence, do not appear explicitly in Λ. In both cases, however, Λ
is an uncountable set of system states. A crucial distinction of the lattice models
presented in this work is that their state spaces are discrete and finite – a factor
which significantly simplifies the necessary mathematical considerations.

We can consider a d dimensional particle system on a lattice as a collection of
coordinates in Zd. However, for the majority of this work, we will focus on (hyper)
rectangular systems with a finite number, N, of lattice sites (or finite volume,
V = N). Therefore, for our purposes, a lattice is a finite subset of Zd and each
lattice site can be assigned a unique index, i ∈ {0, . . . , N − 1}. Given a set of
integer valued lattice lengths, (lj > 0 : j ∈ {1, . . . , d}, ∏d

j=1 lj = N), the conversion
between the site index, i, and its coordinate, ~x = (x1, . . . , xd), xj ∈ {0, . . . , lj − 1},
can be achieved through:

i = x1 +
d

∑
j=2

xj

j−1

∏
k=1

lk, xj =

⌊
i

∏
j−1
k=1 lk

⌋
mod lj, (2.1)

where bAc is the integral (whole) part of A, and A mod B = A − BbA/Bc (Fig.
2.1c).

Typically, each lattice site, i, possesses a state, si, which may have one, e.g.,
si ∈ {−1, 1} as in the Ising model, or multiple degrees of freedom. A collection,
σ = (s0, . . . , sN−1), of the N site states, fully specifies the microstate of the system.
The state space of the system, Λ = {σ}, is then the set of all of its possible
microstates. In our discussion of multicomponent systems of anisotropic particles,
we will extend the state space to accommodate particles’ identities and model
their orientational degrees of freedom.

2.1.2 Dynamics

With the abstract notation (Λ, T ), the time evolution of the system, σt ∈ Λ,
from some initial microstate σ0 ∈ Λ, can be expressed as: σt = T (. . . T (σ0) . . . ) =
T t(σ0). It is worth pointing out that such notation implies memorylessness of T ,
since: σt = T (σt−δt), i.e. the future state of the system depends only on its current
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(a) Ising model (d = 2). (b) Ising model (d = 3). (c) Site indexing scheme.

Figure 2.1: Examples of visualisations of system states for the Ising model in d = 2 (a) and
d = 3 (b) dimensions on, respectively,~l = (128, 128) and~l = (6, 6, 6) lattices, illustrating the
site indexing scheme for d = 3 lattice with~l = (3, 3, 3) in (c). The configurations of the Ising
model (σ ∈ {−1, 1}N) are shown with s = 1 spins represented by blue dots (a) and blue
cubes (b), omitting s = −1 spins. In (c), each lattice site is represented by a circle, labelled
by an integer i ∈ {0, . . . , N − 1}, N = 33 corresponding to the site index in accordance with
(2.1).

state and not on its history. The framework of EQSM relies on the proposition
that the macroscopic behaviour of the system, as t → ∞, can be studied with the
help of a unique time invariant probability measure P(σ). In the language of er-
godic theory, such proposition can be justified based on certain properties of T ,
notably [11]: 1) Measure preservation. 2) Ergodicity. 3) Mixing. Owing to plethora
of analytical results [11, 17], such an approach does allow a rigorous mathemati-
cal formulation of EQSM. However, as every other school of thought in statistical
mechanics [10–12], the ergodic theory formulation faces strong criticisms. For in-
stance, a peculiar property of many systems which admit EQSM treatment is that
they violate the conditions set out by the ”Ergodicity Programme” [11], casting
doubt on the explanatory power of ergodic theory with respect to EQSM [18].

In the case of Markov chains on finite discrete state spaces, e.g. the lattice mod-
els we will discuss in this work, conditions on T granting measure preservation,
ergodicity and convergence are, as we will see, relatively clear [19]. In addition,
mixing properties of finite lattice gas models have been established [20], which
implies ergodicity and convergence properties for the general class of such mod-
els. It is important to note, however, that nonergodic lattice model dynamics are
possible [21], particularly in spin glass systems [22] or under conditions of critical
slowing down [23].

2.1.3 Microscopic Quantities

A microstate of the system is usually characterised by some lower dimensional
projection of the kind: Λ → Rk. One example of such projection is the system’s
internal energy: E : Λ → R, which typically encodes the information describing
particle interactions. The chemical composition of a multicomponent system, i.e.
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a system containing particles of K distinct chemical species, is simply given by
the corresponding particle counts: Nk : Λ→N, k ∈ {1, . . . ,K}. While the precise
definitions of internal energy, E(σ), and composition, Nk(σ), for multicomponent
systems can be largely a modelling choice, the microstate probabilities, P(σ) :
Λ → (0, 1), must be assigned in such a way as to satisfy the following conditions:

1 = ∑
σ∈Λ

P(σ),

〈E〉 = E(E) = ∑
σ∈Λ

E(σ)P(σ),

〈Nk〉 = E(Nk) = ∑
σ∈Λ

Nk(σ)P(σ),

(2.2)

where 〈E〉 and 〈Nk〉 are the macroscopic averages of E and Nk respectively.

2.1.4 Entropy and Macroscopic Quantities

The formalism of ergodic theory can, in some cases, prove the existence and
uniqueness of an ergodic probability measure P(σ), however no general crite-
ria for construction of the measure arise. The principle of entropy maximisation
serves as an additional constraint on P(σ), which happens to be sufficient to con-
struct the unique measure.

If the microstate, σ, of the system is to be treated as a stochastic variable, the
entropy, S of the system can be viewed as a measure of the uncertainty in the
system’s microstate. More specifically, entropy is a functional S : P → R of the
form:

S = −kB ∑
σ∈Λ

P(σ) ln P(σ). (2.3)

Compelling arguments for the above definition exist [24, 25], although the math-
ematical connection between the given expression and the dynamics of particle
systems is only partially understood [26]. A large body of empirical evidence,
however, shows that dynamics of particle systems lead to equilibrium states which
maximise the quantity S by adopting the Boltzmann distribution P(σ|β,~µ):

P(σ|β,~µ) = Z(β,~µ)−1 exp [−βH(σ|~µ)] , Z(β,~µ) = ∑
σ∈Λ

exp [−βH(σ|~µ)] , (2.4)

where Z(β,~µ) is termed the partition sum (or function) and H(σ|~µ) is the system’s
Hamiltonian:

H(σ|~µ) = E(σ)−
K
∑
k=1

µkNk(σ). (2.5)

In the language of the Gibbsian formulation of EQSM, the above expression
corresponds to the distribution of the grand canonical (µVT) ensemble. We will
later introduce the semigrand µVT and canonical (NVT) ensembles as particular
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subsets of the grand µVT ensemble. Quantities β = (kBT)−1 – the inverse tem-
perature – and (µk, k ∈ {1, . . . ,K}) – the reservoir chemical potential of chemical
species k – correspond to Langrange multipliers in the maximum entropy formu-
lation of EQSM [25]. In the physical sense, these quantities dictate the equilibrium
properties of the particle system, e.g. the average energy E[E|β,~µ] and composi-
tion E[Nk|β,~µ]. It is straightforward to show that the thermodynamic information,
characterising the equilibrium state of the particle system, is completely encoded
in the quantity Z(β,~µ).

2.2 markov chain monte carlo

Direct computation of the partition sum is impractical even for the simplest and
modestly sized lattice models, even if one exploits the symmetries of the system.
In studies of nonequilibrium processes we often must consider the properties of
sequences of the system’s states, i.e. trajectories. Keeping in mind the already
significant difficulty of obtaining thermodynamic information, it is clear that suffi-
cient kinetic information cannot be obtained via direct enumeration of the possible
trajectories.

Monte Carlo (MC) avoids the problem of microstate enumeration entirely. Cen-
tral to the method is the idea of sampling the target distribution P(σ|β,~µ) by
generating lattice configurations σ ∈ Λ in their correct relative proportions as dic-
tated by the target distribution. Although absolute quantities, such as the partition
sum, remain unknown, the approach can still be used to estimate various thermo-
dynamic quantities. The MC procedure is typically implemented as a Markov
chain sampler, whose stationary distribution is exactly the MC target distribution
– a property which is guaranteed by the balance conditions as discussed below.

2.2.1 Stochastic Dynamics

The dynamics of a Markov chain are defined by transition probabilities: P(σ→
σ′) : ∑σ′∈Λ P(σ → σ′) = 1, between members of the state space σ, σ′ ∈ Λ. By
Markov property, the transition probabilities are independent of the history of the
chain and we make the additional assumption that the transition probabilities are
time invariant.

For discrete systems, the time evolution can be expressed as a matrix equation:
~pm = ~pm−1P, where, using some enumeration i, j ∈ {1, . . . , |Λ|} of the possible
microstates, Pi,j = P(σi → σj) is the matrix of transition probabilities and p(i)m is
the probability of finding the chain in state σi after m MC moves. Given some
initial distribution of states ~p0, the state of the chain after m MC moves is char-
acterised by: ~pm = ~p0 ∏m

i=1 P = ~p0Pm. The chain is said to be irreducible if
there exists an integer m for which all entries of Pm are greater than zero. If
Pi,i > 0 ∀i ∈ {1, . . . , |Λ|}, the chain is also aperiodic, which, together with irre-
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ducibility, implies ergodicity and mixing properties with respect to the unique
stationary measure: ~p∗ = ~p∗P. The mixing property dictates that any initial distri-
bution ~p0 will approach the stationary distribution ~p∗ under the action of P [19].

2.2.2 Detailed Balance

The stationary distribution can be expressed in terms of the transition proba-
bilities Pi,j = P(σi → σj) by solving the eigenvalue problem: ~p∗ = ~p∗P. More
intuitively, the setting can be viewed in the form of a discrete master equation,
noting that p(i)m ∑|

Λ|
j=1 Pi,j = p(i)m :

p(i)m+1 − p(i)m =
|Λ|
∑
j=1

p(j)
m Pj,i −

|Λ|
∑
j=1

p(i)m Pi,j. (2.6)

which, after substituting ~pm+1 = ~pm = ~p∗ and noting that the stationary distri-
bution should correspond to the target distribution P(σ|β,~µ), leads to the global
balance equation for the Markov Chain Monte Carlo (MCMC) sampler of the
Boltzmann distribution:

∑
σ′∈Λ

P(σ′|β,~µ)P(σ′ → σ) = ∑
σ′∈Λ

P(σ|β,~µ)P(σ→ σ′). (2.7)

A reversible Markov chain is obtained by enforcing the detailed balance condi-
tion:

P(σ′|β,~µ)P(σ′ → σ) = P(σ|β,~µ)P(σ→ σ′), ∀σ, σ′ ∈ Λ, (2.8)

which guarantees that the dynamics of the chain at equilibrium are statistically
invariant under time reversal – a property useful for path sampling protocols.

2.2.3 Random Site Update

The microscopic dynamics of the model are specified by a set of local MC moves
– a set of random lattice site updates. A random site i is chosen and its state si is
altered to be s′i with some probability Pgen(si → s′i). Thus, from an initial lattice
configuration σ a new configuration σ′ is created with probability Pgen(σ→ σ′) =

Pgen(si → s′i). The MC move is accepted with probability Pacc(σ→ σ′), hence:

P(σ→ σ′) = Pacc(σ→ σ′)Pgen(σ→ σ′). (2.9)

Since the target probability distribution is known up to the normalising constant,
we can write the single site perturbation acceptance probability as:

Pacc(σ→ σ′) = Pacc(σ
′ → σ)

Pgen(σ′ → σ)

Pgen(σ→ σ′)
exp

{
−β

[
H(σ′|~µ)− H(σ|~µ)

]}
.

(2.10)
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For symmetric site perturbation probabilities Pgen(si → s′i) = Pgen(s′i → si), the
common choices of Pacc(σ → σ′) are respectively the Metropolis and the Glauber
functions:

Pacc(σ→ σ′) = min
{

1, e−β∆H
}

and Pacc(σ→ σ′) =
[
1 + e−β∆H

]−1
, (2.11)

with the latter sometimes written as: [1− tanh (β∆H/2)] /2, where ∆H = H(σ′|~µ)−
H(σ|~µ) [27, 28]. While the Metropolis choice may be marginally more computa-
tionally efficient, unlike the Glauber choice, it could set P(σ → σ) = 0 ∀σ ∈ Λ at
β = 0, thus breaking the aperiodicity property of the chain. Although this would
complicate the mixing properties of the chain, the associated stochastic process
would remain ergodic with respect to the Boltzmann distribution. In most dis-
crete models (except the Ising model), however, the site perturbation is chosen
at random from a discrete set of possibilities, thereby allowing a nonzero proba-
bility of leaving the state of the lattice unchanged and, hence, keeping the chain
aperiodic.

2.2.4 Important Properties

Having established the microscopic transition probabilities, we can now discuss
the statistical properties of the stochastic process σm. From the Markov property
P(σm|σm−1, . . . , σ0) = P(σm|σm−1), it follows that the probability of any trajectory
is given by:

P(σm, σm−1, . . . , σ0) = P(σ0)
m

∏
i=1

P(σi−1 → σi), (2.12)

and the Chapman–Kolmogorov equation is satisfied:

P(σm−2 → σm) = ∑
σm−1∈Λ

P(σm−2 → σm−1)P(σm−1 → σm). (2.13)

The ergodic theorem [19] for irreducible Markov chains asserts that for any
function g : Λ→ R:

lim
m→∞

1
m

m

∑
i=1

g(σi) = ∑
σ∈Λ

g(σ)P(σ), (2.14)

and, in addition, the quantity m−1 ∑m
i=1 g(σi) for large m can be shown to be a

good estimator for the average 〈g〉 by the Central Limit theorem [7].
Convergence properties of the above quantities are related to the property of

mixing. The mixing time of the Markov chain can be viewed as a lower bound
on the number of MC steps necessary for the chain to approach its stationary
distribution [19]. Away from criticality, mixing times for a broad class of lattice
models are known to be O(N ln N), where N is the number of lattice sites as

9



before [20]. In practical settings, some initial portion of a sequence of MCMC
observations is treated as the ”burn-in” period, and is, therefore, discarded as it
may not accurately represent the target distribution. The necessary duration of
the ”burn-in” period may be reduced by appropriately choosing the initial state
of the Markov chain.

At equilibrium the system is well mixed and we are, sometimes, interested
in obtaining uncorrelated samples from the Boltzmann distribution. A useful
quantity for this purpose is the autocorrelation function:

Rg(τ) =
〈g(σm)g(σm+τ)〉 − 〈g(σm)〉2
〈g2(σm)〉 − 〈g(σm)〉2

. (2.15)

Under typical conditions, the decay of Rg(τ) is exponential. As an illustration,
it is useful to consider the example of a simple lattice gas model under Glauber
dynamics, i.e. si ∈ {0, 1} ∀i ∈ {1, . . . , N} and P(si → s′i) = 0.5 ∀si, s′i ∈ {0, 1}. For
β = 0 we can ignore the spin interactions and the equilibrium spin distribution
is known: P(s) = 0.5 ∀s ∈ {0, 1}. It is straightforward to show that the spin
autocorrelation function is given by:

Rs(τ) = 4P(s(m)
i = 1, s(m+τ)

i = 1)− 1. (2.16)

Making use of the Markov property and the Chapman–Kolmogorov equation, the
joint probability can be written as:

P(s(m)
i = 1, s(m+τ)

i = 1) = P(s(m)
i = 1)P(s(m)

i → s(m+τ)
i = 1) =

1
4

[
1 +

(
1− 1

N

)τ]
,

(2.17)
henceRs(τ) =

(
1− N−1)τ

= exp
[
τ ln

(
1− N−1)] (Fig. 2.2). A decay, exp(−τ/τr),

of correlations is characterised by the relaxation time τr and correlation time τc,
with one unit of time representing N MC moves [29]:

τc =
∫ ∞

0
R(τ)dτ =

∫ ∞

0
exp(−τ/τr)dτ = τr. (2.18)

In the above example, the correlation time τc scales approximately linearly with
system size N. For finite temperatures (β > 0), the form of the autocorrelation
function is not trivial and some parameter regimes give rise to extremely long
correlation times τc/N ∝ Lz, where z is the dynamical critical exponent and L is
the linear size of the system such that N = Ld [30, 31].

Sample independence becomes important when one is concerned with higher
moments of observables computed on Λ. Standard estimators for such quantities
become biased due to temporal correlations in the sample, and elimination of bias
requires knowledge of the autocorrelation sequence [32] which is only available
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under certain conditions (e.g. β = 0). A common rule of thumb is to consider the
sample autocorrelation in relation to that of a sample of white noise. For a white
noise sequence of length u, the standard error on the autocorrelation sequence is
approximated by:

S.E. [R(τ > 0)] ≈ u−1/2. (2.19)

By keeping only every kth sample, such that Rs(kτ > 0) < u−1/2, a thinned
sample sequence is obtained, where temporal correlations are statistically indis-
tinguishable from correlations in samples of white noise [32], and hence standard
moment estimators approximately apply. Generally, however, the practice of thin-
ning is discouraged as it is unnecessary for calculation of sample means and MC
integration purposes, while sample variances and standard errors can be obtained
from multiple independent MC runs [33].

0 25 50 75 100

10−3

10−2

10−1

100

τ

R
s(

kτ
)

k = 1
k = N
k = 1
k = N
u−1/2

Figure 2.2: Sample (N = 64, u = N × 104) and analytical spin autocorrelation sequences for

whole and thinned time series s(m)
i , in a lattice gas with si ∈ {0, 1}, ∀i ∈ {1, . . . , N} and

P(si → s′i) = 0.5, ∀si, s′i ∈ {0, 1}, where u is the length of the sample sequence for both

thinned (k = N) and unthinned (k = 1) sequences. Solid lines are the plots of
(
1− N−1)kτ ,

while markers show the simulation data. The u−1/2 threshold indicates the magnitude of
the autocorrelation coefficient below which the correlations can be treated as insignificant,
according to (2.19). Here, achieving the acceptable level of correlations requires thinning by

roughly k = 10N, i.e. observations of s(m)
i , obtained at time intervals equivalent to 10 lattice

sweeps, can be treated as statistically independent.

2.2.5 Kinetic Monte Carlo

The primary motivation for use of kinetic Monte Carlo (kMC) is the need for
continuous time modelling of physical processes. The continuous time stochastic
process σ(t), t ∈ [0, ∞), σ(0) = σ0 can be viewed as a sequence of states {σm}
accompanied by a sequence of arrival times {tm ≥ 0, t0 = 0}, with transitions:

P [σ(tm+1) = σm+1|{σ(tm) = σm}] = P [σm+1, tm+1|{σm, tm}]
= P [σm+1|{σm, tm}]P [tm+1|{σm, tm}] ,

(2.20)
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conditional on the histories of the process. Note that the arrival time tm+1 is
independent of σm+1, since the time spent in σm must be independent of σm+1.
The Markov property reads [34]:

P [σ(tm+1) = σm+1|{σ(tm) = σm}] = P [σ(tm+1) = σm+1|σ(tm) = σm] , (2.21)

implying Markov properties for both {σm} and {tm}:

P [σm+1|{σm, tm}] = P [σm+1|σm, tm] , P [tm+1|{σm, tm}] = P [tm+1|σm, tm] . (2.22)

As before, we assume that the state transition probabilities are stationary with
time, hence the Markov chain is homogeneous:

P [σ(t + ∆t)|σ(t)] = P [σ(∆t)|σ(0)] . (2.23)

From the Markov property for {tm} it follows that the residence times hm+1 =

tm+1 − tm are independent, conditional on {σm}:

P [tm+1|{σm, tm}] = P [tm+1|σm, tm] = P [hm+1|{σm, hm}] = P [hm+1|σm] . (2.24)

We can consider the properties of P [hm+1|σm] by evaluating the cumulative distri-
bution:

P [σ(tm + a + b) = σm|σ(tm + a) = σm, σ(tm) = σm]

= P [hm+1 > a + b|hm+1 > a, σm] .
(2.25)

From (2.24) it is clear that the residence time hm+1 depends only on the cur-
rent state of the system and not on the elapsed time a, hence we arrive at the
memorylessness property for P [hm+1|σm]:

P [hm+1 > a + b|hm+1 > a, σm] = P [hm+1 > b|σm] . (2.26)

It can be shown that the above property is only satisfied by the exponential dis-
tribution [34]: P [h|σ] = r(σ) exp [−r(σ)h], with r(σ) > 0 being the rate at which
the system leaves the state σ. It further follows that the jumping times between
states σ, σ′ ∈ Λ are exponentially distributed with some rate r(σ → σ′) ∈ [0, ∞),
and, by examining the joint distribution of independent exponentially distributed
variables, we see that:

r(σ) = ∑
σ′∈Λ

r(σ→ σ′). (2.27)

For technical reasons, it is useful to set r(σ → σ) = 0 and define the continuous
time process via the generator Q : Qi,j = r(σi → σj), Qi,i = −r(σi), whose proper-
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ties allow one to elegantly express the dynamics of the process [34]. For practical
considerations, we will assume r(σ→ σ) ≥ 0.

Intuitively, a transition from state σ to some other state σ′ occurs if the event
σ → σ′ happens to trigger sooner than any other possible event σ → σ† ∈ Λ [35].
Applying the properties of the exponential distribution, we can, thus, relate the
transition rates of the continuous time Markov chain to the jump probabilities of
its embedded discrete time analogue [36]:

P(σ→ σ′) = r(σ→ σ′)
/

r(σ). (2.28)

Clearly, any choice of rates ν(σ → σ′) ∝ P(σ → σ′) yields the correct set of
transition probabilities, hence a continuous Markov process is uniquely specified
by either a set of transition rates r(σ → σ′) or a set of transition probabilities
P(σ→ σ′) combined with the state escape rates r(σ) [37].

Kinetic MC methods can be classified as standard (rejection, e.g. Metropolis) or
rejection-free (e.g. BLK, Gillespie). In the standard construction, an event σ → σ′

is selected uniformly on the set of possible events and accepted with probabil-
ity P(σ → σ′), with the MC time variable being updated by a randomly drawn
time increment h : P [h|σ] = r(σ) exp [−r(σ)h], regardless of acceptance or rejec-
tion of σ′. The rejection-free approach is to, effectively, compute the probability
distribution over the set of possible events and, thus, sample the event directly,
incrementing the time variable by h [38]. The two classes of algorithms can be
shown to be equivalent, in the sense that, given a set of rates r(σ), both correctly
model the physical time scale of the process [37].

2.2.6 Constant Jump Rate Kinetics

Computer simulations of general kMC models typically track the state σ of
the system as well as the value of the stochastic time variable t to sample trajec-
tories σ(t). In this work we will only consider kMC models where the escape
rates r(σ) are equal to some constant R for all σ ∈ Λ, which implies that all time
increments hm, as defined above, are independent and identically distributed. Un-
der these conditions, the stochastic time variable tm, tracking the system’s time
after m MC updates (jumps), follows the gamma distribution Γ(m, R−1), which
converges to the normal distribution with the mean mR−1 for large m and any
R ∈ (0, ∞). Thus, for any long sequence {σm} of observations of the system’s mi-
crostate, the corresponding time values {tm} can be sampled independently and
are represented sufficiently well by the averages 〈tm〉 = mR−1. In this work, we,
therefore, avoid tracking the values of tm explicitly, using instead the standard
time metric of MC sweeps (MCS): tm = mN−1, which associates one time unit
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with N Metropolis MC updates, thus tracking the stochastic process σ(t) under
the condition of r(σ) = N, ∀σ ∈ Λ.

2.3 phase transitions

A thermodynamic phase of the system can be broadly defined as some subset
A ⊆ Λ of its state space, all elements of which share common physical properties,
e.g. microscopic structure, composition or density. Any distinct phase B ⊂ Λ :
B 6= A must possess distinct physical characteristics to A and is, therefore, a set
of microscopic configurations necessarily disjoint from A. Since any equilibrium
state of the system corresponds to either one of the thermodynamically preferred
phases or a phase coexistence regime, it follows that distinct equilibrium states
possess distinct physical characteristics.

In the framework of thermodynamics, the equilibrium states of the system are
distinguished based on the macroscopic quantities, e.g. the average internal en-
ergy 〈E|β,~µ〉 and composition 〈Ni|β,~µ〉, i ∈ {1, . . . ,K}. One can, in theory, es-
tablish a complete picture of the phase behaviour of the system by evaluating
the macroscopic averages at each point (β,~µ) in the parameter space. Parame-
ter points (β∗,~µ∗), at which at least one of the macroscopic quantities exhibits a
discontinuity, correspond to points of abrupt change in the system’s equilibrium
state and are, therefore, phase transitions.

The focus of this work is primarily on the composition driven phase transitions
in multicomponent mixtures, which correspond to ~µ driven transitions in the µVT
ensemble of model systems. The relevant microscopic processes are also studied
in canonical (NVT) and isothermal–isobaric (NPT) ensembles [2], where the re-
spective driving variables are the particle density ρ and the system’s pressure P.
While all three ensembles can be realised in lattice models, in the following dis-
cussion we will consider a system in the µVT ensemble for simplicity, although
the theory we will cover can be applied to other statistical ensembles.

2.3.1 Classification

Thermodynamic quantities are typically related to derivatives of the free energy
function F (β,~µ) = −kBT ln Z(β,~µ) = 〈H|β,~µ〉 − TS(β,~µ). Modern classification
of phase transitions recognises two broad categories [39]: 1) First-order – char-
acterised by a discontinuities or divergences in first derivatives of F (β,~µ), and
2) Continuous – characterised by a discontinuities or divergences in second or
higher order derivatives of F (β,~µ) with all first-order derivatives being continu-
ous. It can be shown that, due to the functional form of Z(β,~µ), discontinuities
in the derivatives of F (β,~µ) occur only in the infinite system limit N → ∞ [40],
which makes the above treatment of phase transitions problematic from the prac-
tical point of view. The concept of ”thermodynamic limit” N → ∞ is currently a
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subject of academic debate [41] and arguments for existence of phase transitions
in finite systems exist [42].

Although the underlying microscopic mechanisms of either class of phase tran-
sitions, in general, remain only partially understood, both classes appear to exhibit
unique characteristics. So, for instance, continuous phase transitions are associ-
ated with phenomena of scale-invariance and divergence of correlation lengths,
while metastability and hysteresis typically signal the onset of first-order phase
transitions [43]. Nucleation and spinodal decomposition are thought to be the
two major microscopic mechanisms of first-order phase transitions [44].

2.3.2 Coexistence and Metastability

At equilibrium, the likelihood of observing the system in phase A at the pa-
rameter point (β,~µ) is simply given by the total equilibrium measure in A: P(σ ∈
A|β,~µ) = ∑σ′∈A P(σ′|β,~µ). For a system comprising only two phases – A and B,
the set of points (β∗,~µ∗):

P(σ ∈ A|β∗,~µ∗) = P(σ ∈ B|β∗,~µ∗), (2.29)

forms the set of phase coexistence points. Due to finite size effects, the coordinates
of coexistence points vary with system size and we typically estimate the true
coexistence points by extrapolating to the N → ∞ limit.

In some region of parameter space close to coexistence, with P(σ ∈ A|β,~µ) <
P(σ ∈ B|β,~µ), phase A may persist despite it not being thermodynamically pre-
ferred. Such a scenario is termed a metastable equilibrium with A being the
metastable state. Metastability often arises due to presence of high energetic or
entropic barriers along the kinetic pathways to transformation of phase A to phase
B. Such transformation, therefore, requires large, and hence improbable, thermal
fluctuations – rare events. A commonly observed barrier crossing phase transition
process is nucleation and growth, where microscopic droplets of a more thermody-
namically stable phase, forming and vanishing due to thermal fluctuations, must
exceed a certain critical size before continuing to grow [39].

Sufficiently far away from the coexistence point, the energetic barriers to trans-
formation of A to B become negligible or vanish completely. Under such condi-
tions, phase A is said to have reached or crossed its limit of metastability – the
spinodal point, and the barrierless transformation to phase B proceeds via spin-
odal decomposition, whereby arbitrarily small domains of a more stable phase
grow freely throughout the system [45].

Although nucleation and spinodal decomposition are two very distinct pro-
cesses, the crossover from one microscopic transition mechanism to the other does
not always occur sharply at the spinodal point [39, 45]. In addition, the limit of
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metastability of a phase is often dictated by the system’s kinetics and not thermo-
dynamics alone, making it difficult to define the spinodal point rigorously [46].
In this work, we will employ a purely heuristic view of the limit of metastability,
corresponding to the parameter point at which the frequency and magnitude of
fluctuations carrying the system away from the metastable state exceed certain
arbitrarily specified thresholds, as, for instance, shown in Ref. [6].

2.3.3 Landau Theory

Much of the intuition behind the methodology of this work originates from
Landau theory – a phenomenological treatment of phase transitions. Initially, the
approach was applied to the study of continuous phase transitions, particularly
critical phenomena, however, it has also proven useful in the context of first order
phase transitions [39].

Central to Landau theory is the concept of the order parameter: λ : Λ → Rk –
some lower dimensional, often scalar, projection of the state space of the system.
A well chosen order parameter quantifies the microscopic state of the system in
such a fashion as to allow the various phases of the system to be quantitatively dis-
tinguished. The thermodynamics of a phase transition are modelled by assuming
the functional form of the partition function to be:

Z(β,~µ) = exp [−βF (β,~µ)] =
∫

Rk
dλ exp [−βFL(λ|β,~µ)] , (2.30)

in the vicinity of the phase transition, with FL(λ|β,~µ) being the Landau free en-
ergy which is assumed to be a smooth function. Choosing λ to be a small valued
quantity around the phase transition, one writes down a truncated Taylor expan-
sion of the free energy in powers of λ, keeping only the terms of the expansion
which are consistent with the symmetries of λ in the given system. The integral is
assumed to be sharply peaked at the minima of FL(λ|β,~µ), leading to an expres-
sion for Z(β,~µ) in terms of the coefficients of the Taylor expansion of FL(λ|β,~µ),
whose (β,~µ) dependence can be established empirically [13, 47, 48].

The analytical framework gives little insight into the kinetics of the phase tran-
sition process, but, despite its bold assumptions and poor predictive power, it does
adequately illustrate the concepts of phase coexistence, metastability and spinodal
point.

2.3.4 Coarse-graining via Order Parameter

The concept of order parameter is frequently employed in computational physics
methodology for study of phase behaviour and kinetics of phase transitions in
model particle systems. Instead of obtaining a phenomenological expression for
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the partition function, one typically estimates the probability distribution P(λ|β,~µ)
of the order parameter:

P(λ′|β,~µ) = ∑
σ∈Λ

δλ(σ),λ′P(σ|β,~µ) =
1

Z(β,~µ) ∑
σ∈Λ

δλ(σ),λ′ exp [−βH(σ|~µ)] , (2.31)

where δλ(σ),λ′ is the Kronecker delta function which restricts the sum over state
space to configurations yielding λ(σ) = λ′.

Certain choices of λ lead to straightforward expressions relating P(λ|β,~µ) to
thermodynamic quantities. Using, for instance, the energy of the configuration
as the order parameter, i.e. λ(σ) = E(σ), in the canonical (NVT) ensemble, i.e.
keeping the composition of the system fixed: Nk = const ∀k ∈ {1, . . . ,K}, we
obtain:

P(E|β) = e−βE

Z(β)
Ω(E), Z(β) =

∫

R
dEΩ(E)e−βE, Ω(E′) = ∑

σ∈Λ
δE(σ),E′ . (2.32)

where Ω(E) is termed the degeneracy of E, i.e. the density of states in energy.
Noting that P(E|β = 0) ∝ Ω(E) yields Z(β) ∝

∫
R

dEP(E|0)e−βE, which provides
a means of, for example, estimating the system’s entropy S(β) and heat capacity
C(β):

S(β) =
∂

∂T
[kBT ln Z(β)] , C(β) =

1
kBT2

∂2

∂β2 [ln Z(β)] , (2.33)

at all points along β based on the information about the system at infinite temper-
ature β = 0. In fact, the probability distribution of a coupled quantity, in this case
E, can be reweighted between any two finite parameter values (β, β′) via:

P(E|β)
P(E|β′) ∝ exp[−∆βE], (2.34)

where ∆β = β − β′. We will cover the practical approach to the reweighting
property of the Boltzmann distribution in more detail in Chapter 4.

The coordinates of temperature driven phase transitions can be determined by
locating discontinuities of C(β). While a similar approach can be formulated for
other choices of λ(σ), e.g. λ(σ) = Nk(σ), in the case of arbitrary λ it may be
more appropriate to study the system’s phase behaviour by considering P(λ|β,~µ).
Defining basinsA,B ⊂ Rk as portions of the order parameter space corresponding
to phases A and B respectively, we can estimate the coexistence points (β∗,~µ∗) of
A and B via: ∫

A
dλP(λ|β∗,~µ∗) =

∫

B
dλP(λ|β∗,~µ∗), (2.35)

assumingA and B are disjoint, in which case the above expression follows directly
from (2.29). The task of defining order parameters satisfying A ∩ B = ∅ poses
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significant difficulties for many model systems [49]. In addition, employing an
order parameter as a coarse-grained description of the system is subject to various
practical considerations, particularly in study of the system’s kinetics, which we
will discuss in detail.

2.3.5 Theories of Reaction Kinetics

The decay of the metastable state in a first-order phase transition is commonly
modelled as an activated process, where the system undergoes an activation stage,
i.e. fluctuation driven crossing of the energetic barrier (nucleation), followed by
transformation stage (growth). If the duration of the activation stage is much
shorter than the lifetime of the metastable state, i.e. activation occurs sponta-
neously, the activation process can be viewed as a rare event.

Under this condition of clear separation of timescales, the system has sufficient
time to reachieve metastable equilibrium between subsequent unsuccessful acti-
vation ”attempts”. Thus, any given activation attempt retains no memory of the
history of the system, and the equation (2.26) applies to the distribution of sys-
tem’s residence times τA = τfp in metastable state A, where τfp is the time of first
arrival into the stable state B [50]. Hence, the distribution of first passage times
τfp is Poissonian:

P
(
τfp|β,~µ

)
= J(A→ B|β,~µ) exp

[
−J(A→ B|β,~µ)τfp

]
, (2.36)

where J(A→ B|β,~µ) = 〈τfp〉−1, is the probability per unit time of occurrence of a
transition from phase A to phase B.

The conceptual treatment of activated processes often resembles that of the
theory of gas-phase and solution reaction kinetics, where the motion of the sys-
tem through its configuration space during a chemical reaction is captured by a
reactive pathway through the system’s potential energy surface [51, 52]. While
this energetics centred view remains useful for treatment of systems with small
numbers of important degrees of freedom, the formalism of transition path theory
(TPT) provides a more general and rigorous framework for treatment of activated
processes [53]. Within TPT, the reaction process is represented by a kinetically and
energetically informed statistical ensemble of the system’s trajectories, which can
be visualised as a complex set of reactive channels through the high dimensional
configuration space of the system.

Under the assumptions of ergodic [Eq. (2.14)], Markov [Eq. (2.21)] and equi-
librium (stationarity) properties of the system, TPT is readily applicable to the
continuous time processes covered in section 2.2.5 [54]. In order to study the mi-
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croscopic mechanism of the transition, TPT defines the backward and forward
committor functions q−σ and q+σ for every σ ∈ Λ as:

q−σ = P[τ−A (σ) < τ−B (σ)], q+σ = P[τ+
A (σ) > τ+

B (σ)], (2.37)

where τ−C (σ) and τ+
C (σ) are, respectively, the first backward and forward hitting

times of subset C ⊂ Λ by the, respectively, backward and forward trajectories
σ̃(t) : σ̃(0) = σ and σ(t) : σ(0) = σ, defined as:

τ−C (σ) = inf{t > 0 : σ̃(t) ∈ C}, τ+
C (σ) = inf{t > 0 : σ(t) ∈ C}. (2.38)

By the reversibility property [Eq. (2.8)], i.e. the statistical equivalence of σ(t) and
σ̃(t), we can state that a generic trajectory σ(t), passing through the state σ at
some time t′, has visited A more recently than B with probability q−σ and will
arrive at B before visiting A again with probability q+σ . Recalling that the equilib-
rium probability of σ(t) visiting state σ is P(σ), one can derive the equilibrium
probability distribution P(σ) of system configurations in the ensemble of reactive
trajectories:

P(σ) ∝ q−σ P(σ)q+σ . (2.39)

Further noting that the probability per unit time of the system jumping from state
σ to state σ′ is given by r(σ → σ′) [Eq. (2.28)], it is possible to show that the
reactive probability current J (σ → σ′) flowing from A to B along the transition
σ→ σ′ is given by:

J (σ→ σ′) =





P(σ)r(σ→ σ′)q−σ q+σ′ if σ 6= σ′,

0 otherwise,
(2.40)

and satisfies the conservation property:

∑
σ′∈Λ

[
J (σ→ σ′)−J (σ′ → σ)

]
= 0, ∀σ ∈ Λ \ (A ∪ B). (2.41)

To facilitate an intuitive understanding of the ensemble of reactive trajectories
it is useful to consider the system and its microscopic kinetics in the form of a
graph G(Λ, Ψ), where every microstate σ ∈ Λ of the system is represented by
a node and a directed edge ψσ,σ′ ∈ Ψ is drawn with weight r(σ → σ′) between
pairs of nodes σ, σ′ ∈ Λ : σ 6= σ′ for which r(σ → σ′) > 0. By this construction,
any walk, i.e. arbitrary alternating sequence of nodes and edges respecting the
direction of each edge, through G constitutes a generic trajectory of the system.
The ensemble of reactive trajectories is a subset of these walks, which we can
construct by considering the subgraph GR(Λ, Ψ′) ⊂ G whose directed edges ψ′σ,σ′
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form the subset of those of G, drawn with weight J +(σ→ σ′) under the condition
J +(σ→ σ′) > 0, where:

J +(σ→ σ′) = max{J (σ→ σ′)−J (σ′ → σ), 0}. (2.42)

Since J +(σ → σ′) is the effective reactive current through the edge ψσ,σ′ , not-
ing that the only sources and sinks of reactive current in GR are respectively the
groups of nodes A and B, the total probability per unit time of the reaction can be
written as the sum of weights J +(σ → σ′) of edges connecting the nodes in A to
the rest of GR:

J(A→ B|β,~µ) = ∑
σ∈A

∑
σ′∈Λ
J +(σ→ σ′|β,~µ), (2.43)

where the restriction to the specified set of edges is implicit, since J +(σ→ σ′) = 0
for all σ, σ′ ∈ A by definition of q+σ . In Eq. (2.43) the set of edges connecting the
groups of nodes A and Λ \ A corresponds to a dividing surface in the language
of transition state theory (TST), with the total effective reactive current from A to
B expressed as the sum of all effective currents leaving A through the dividing
surface, i.e. the boundary of A in this case. Any subset of edges Ψ∗ ⊂ Ψ′ is a
valid choice of a dividing surface if removal of Ψ∗ from GR partitions GR into two
subgraphs GA(ΛA, ΨA), GB(ΛB, ΨB) with A ⊆ ΛA and B ⊆ ΛB = (Λ \ ΛA). By
properties of J +(σ → σ′), one can show that the total reactive current through
the edges Ψ∗ leading from GA to GB yields J(A → B), hence the reaction rate is
invariant under the choice of the dividing surface, so long as the product (B) and
reactant (A) states are well defined.

A conceptually equivalent result to (2.43) can be obtained within the frame-
work of TST [55], though TPT offers a more general and exhaustive treatment of
the reaction process by considering the flow of J +(σ→ σ′) through the whole of
the state space rather than the dividing surface alone [53]. While a rigorous appli-
cation of the TPT can grant a complete understanding of the reaction mechanism,
it requires estimation of q−σ and q+σ over a considerable portion of the state space,
which has, so far, only been attempted in the context of simple systems [56, 57].
At present, studies of reaction kinetics in complex systems rely on less general ap-
proaches which can be understood as approximations to TPT. A common feature
of many of such approaches is the attempt to model the microscopic kinetics of
the system over the course of the reaction as motion of a reaction coordinate (RC)
– an order parameter capturing the relevant to the reaction degrees of freedom of
the system.
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A coarse grained effective free energy surface of the system can be constructed
from the equilibrium probability distribution of any order parameter:

F(λ|β,~µ) = −kBT ln P(λ|β,~µ), (2.44)

where F(λ|β,~µ) is termed the free energy of λ, despite not having an explicit link
to either the Landau free energy or the thermodynamic potential F (β,~µ). In a
scenario where the system undergoes a transformation from phase A to phase B,
we expect the surface F(λ|β,~µ) to present at least two basins: a local minimum
corresponding to the metastable state A and a global minimum corresponding
to the stable state B. For various choices of kinetics of the order parameter, the
activation rate of the reaction can be expressed in the form:

J(A→ B|β,~µ) ∝ exp [−β∆F(A→ B|β,~µ)] , (2.45)

with ∆F(A → B|β,~µ) being the activation energy of the process [58]. In the sim-
ple case where basins A and B are separated by a single free energy barrier, the
activation energy is given by the height of the barrier relative to the minimum of
free energy in basin A:

∆F(A→ B|β,~µ) = F(λ∗|β,~µ)− F(λA|β,~µ), (2.46)

where λA is the point minimising F(λ|β,~µ) in the basin corresponding to phase A
and λ∗ is the value of the order parameter maximising F(λ|β,~µ) along a suitably
chosen path from A to B through the order parameter space. The set of configura-
tions realising the order parameter value λ∗ is referred to as the set of transition
states (activated complexes). Combining the above, the expression for the activa-
tion rate J(A → B|β,~µ) takes a form similar to the expression for the rate of state
transition in a Markov process (2.28):

J(A→ B|β,~µ) = υ(β,~µ)
P(λ∗|β,~µ)
P(λA|β,~µ)

, (2.47)

with υ(β,~µ) being the kinetic prefactor.
Theoretical justifications for (2.45) and (2.46) typically invoke extensive assump-

tions regarding the microscopic kinetics of the reaction process. Specifically, to
derive (2.45) one assumes that the projection of the system’s kinetics in the con-
figuration space Λ on to the low dimensional coordinate λ yields an evolution
λ(t) which is well described by a variant of the Langevin equation over the course
of the reaction [58]. As we will see in Chapter 3, it is not, in general, clear to
what extent this assumption must be satisfied in order to qualify (2.45) as a rea-
sonable approximation for complex systems. In addition, there exists no rigorous
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procedure for construction of reaction coordinates in complex systems, although
various methods for assessment of order parameters as candidate RCs have been
proposed [59, 60].

2.4 nucleation theory

Modern studies of nucleation phenomena continue to refer back to the theo-
retical developments of the early-to-mid 20

th century, collectively termed Classi-
cal Nucleation Theory (CNT). Although developed independently, CNT follows
largely the same reasoning as the conventional reaction rate theory [58] and, there-
fore, suffers from the same drawbacks.

Assuming that the transformation from the metastable phase A to the stable
phase B proceeds via formation of microscopic nuclei or droplets of the stable
phase, we first argue that nucleus size plays the key role in the kinetics of the
process. Further assuming that a nucleus can be precisely defined as a compact,
typically spherical, aggregate of particles, and the nucleus size is given simply by
the number of particles n in the aggregate, we attempt to coarse grain the kinetics
of the process via a master equation for n.

2.4.1 Homogeneous Nucleation Rate

We model the formation of a droplet of size n in a homogeneous medium, i.e.
a system free of impurities and other preferential nucleation sites, as a process
of uncorrelated attachment of monomers. Thus, we ignore the details of particle
motion, particle depletion and the possibility of attachment of dimers and larger
aggregates. Denoting the time dependent distribution of nuclei sizes as Pn(t) (n ≥
1) and the nucleus size dependent rates of monomer attachment and detachment
as J+n and J−n respectively (J−1 = 0), we write down the master equation as:

d
dt

Pn(t) = P′n(t) = J+n−1Pn−1(t) + J−n+1Pn+1(t)− (J+n + J−n )Pn(t), (2.48)

which is analogous to the equation for the birth-death process. Assuming the dis-
tribution of nuclei sizes is quasi–stationary over the course of the phase transition,
we set P′n(t) = 0 and define the overall probability flux JCNT as:

JCNT = J+n−1Pn−1 − J−n Pn = J+n Pn − J−n+1Pn+1, (2.49)

which is equivalent to stating that there is a steady state size independent rate
JCNT of formation of nuclei. The equilibrium distribution P(n) 6= Pn of nucleus
sizes is recovered by setting JCNT = 0, yielding:

P(n)
P(1)

=
n−1

∏
i=1

J+i
J−i+1

= exp {−β [F(n)− F(1)]} = exp [−β∆F(n)] , (2.50)
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via the detailed balance condition, which relates the rate coefficients of the master
equation to the cluster free energy F(n). While it is possible to obtain a closed
form expression for JCNT in terms of attachment and detachment rates from (2.49)
[61], a more straightforward approach is to substitute: J−n+1 = J+n P(n)

/
P(n + 1),

obtaining:

JCNT

J+n P(n)
=

Pn

P(n)
− Pn+1

P(n + 1)
⇒ JCNT

nmax

∑
n=1

1
J+n P(n)

=
P1

P(1)
− Pnmax

P(nmax)
, (2.51)

by summing equations (2.49) up to an arbitrary value n = nmax.
To make further progress we are forced to introduce a number of crude approxi-

mations. Truncating the quasi–stationary distribution Pn by setting limn→∞ Pn
/

P(n) =
0, we arrive at:

JCNT = P1

(
∞

∑
n=1

1
J+n

exp [β∆F(n)]

)−1

, (2.52)

which can be approximated as a Gaussian integral by Taylor expanding ∆F(n)
about an assumed sharp peak at the critical cluster size n∗. Additionally treating
J+n ≈ J+∗ as a constant, we arrive at the classical nucleation rate expression:

JCNT = ρJ+∗ Z exp [−β∆F(n∗)] , Z =

[
− β

2π

∂2∆F(n)
∂n2

∣∣∣∣
n=n∗

] 1
2

, (2.53)

where ρ = P1 is the monomer concentration, J+∗ is the rate of monomer attachment
to the critical cluster, Z is the Zeldovich factor and the (β,~µ) dependencies of
ρ, J∗+, Z and ∆F(n) are implicit [4].

2.4.2 Droplet Free Energy

A phenomenological expression: ∆FCNT(R) = bAR − aVR, for the free energy
as a function of the radius R of a spherical droplet can be obtained by means of
thermodynamic considerations [4], where AR and VR are, respectively, the surface
area and the volume of the droplet, and the coefficients a and b are, respectively,
the volume and surface formation free energies of nuclei of phase B in the medium
of phase A. For compact, e.g. spherical or cubic, nuclei of characteristic length
R, it is straightforward to show that the number of monomers in the nucleus is
related to R via: R ∝ n1/3 [4,62], hence the expression for ∆FCNT(n) is often written
in the form:

∆FCNT(n) = γCNTn2/3 − n∆µCNT, (2.54)

where γCNT and ∆µCNT are temperature and saturation dependent scalars related
to, respectively, the free energetic cost per unit area of formation of an interface
between the nucleus of B in the medium of phase A, and the free energetic gain
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per additional monomer of phase B. In cases where the shape of the nucleus
is known, the coefficient γCNT can be written in terms of the interfacial surface
tension, i.e. surface formation free energy per unit area, and the nucleus shape
factor, i.e. the approximate contribution of a single monomer to the surface area
of the nucleus. Generally, the droplet shape is not known a priori, thus, to avoid
additional assumptions, we will keep the shape factor implicit in γCNT.

Both γCNT and ∆µCNT are often inferred from the bulk properties of A and B, i.e.
γCNT is approximated as the surface tension of a macroscopic planar interface of
A and B, while ∆µCNT is taken as the difference per monomer of phase B between
the free energies of the system in state B and in state A – the difference between
the chemical potentials of B and A. This treatment assumes curvature indepen-
dence of the interfacial free energy, and unambiguous definitions of monomer and
nucleus of phase B, all of which, along with the general applicability of bulk phase
properties to microscopic nuclei, are problematic in practice.

The mathematical simplicity of Eq. (2.54), however, offers a number of testable
predictions and provides a means of nucleation rate estimation based largely on
the thermodynamic properties of the system. The maximum of FCNT(n) occurs at
the critical nucleus size n∗CNT:

n∗CNT =

[
2γCNT

3∆µCNT

]3

⇒ ∆FCNT(n∗CNT) =
4γ3

CNT

27 (∆µCNT)
2 =

1
2

n∗CNT∆µCNT, (2.55)

leading to the relations: n∗CNT ∝ (∆µCNT)
−3 and FCNT(n∗CNT) ∝ (∆µCNT)

−2. Noting
that:

ZCNT =

[
− β

2π

∂2∆FCNT(n)
∂n2

∣∣∣∣
n=n∗CNT

] 1
2

=

[
β

9π
γCNT(n∗CNT)

−4/3
] 1

2

, (2.56)

we obtain the expression for JCNT in terms of ∆µCNT:

JCNT =
1
3

ρJ+∗ (n
∗
CNT)

−2/3 exp

[
−β

4γ3
CNT

27 (∆µCNT)
2

]√
γCNTβπ−1. (2.57)

Assuming the attachment rate J+∗ is proportional to the surface area of the nucleus,
i.e. J+∗ ∝ (n∗CNT)

2/3 [63], and the monomer density is related to the chemical poten-
tial difference: ln ρ ∝ β∆µCNT, one can argue that there is an approximately linear
relationship between ln JCNT − β∆µCNT and (β∆µCNT)

−2 at fixed temperature [2].
In light of the numerous assumptions and simplifications implicit in Eq. (2.54) it

is not surprising that the predictive capability of the expression is, as we shall dis-
cuss in Chapter 3, highly sensitive to the microscopic properties of the system. Nu-
merous criticisms, modifications and corrections to the classical expression have
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been put forward, reaching various degrees of improvement [4]. Alternative ex-
pressions for the droplet formation free energy can also be found in the more
recent literature [64–66], and improvements over Eq. (2.54) have been reported for
various systems [67–72], yet the classical formula remains widely in use.

2.4.3 Cluster Size as Order Parameter and Reaction Coordinate

In the Section 2.3 we have considered order parameters as projections of the
configuration space on to some lower dimensional coordinate. In practice, this
definition also applies to the cluster order parameter: we typically define n(σ) as
the number of particles in the largest nucleus present in the system in microstate
σ, which conflicts with the CNT definition of P(n) [73].

In the context of CNT, we treat P(n = 1) as the concentration of monomers in
the system – the population of particle clusters of size 1. Employing the projection
n(σ) leads to P[n(σ) = 1] giving the probability of observing a microstate of
the system in which the largest cluster of particles contains exactly one particle.
Since configurations with n(σ) = 1 may contain more than one cluster of n = 1,
clearly P(n = 1) 6= P[n(σ) = 1]. The same reasoning applies for cluster sizes
n : 1 < n < n†, where n† is system size dependent, which follows the intuition
that, in sufficiently small systems, occurrence of multiple clusters of size n : n ≥ n†

is extremely unlikely, and P(n|n ≥ n†) ≈ P[n(σ)|n(σ) ≥ n†].
In practice, accurate evaluation of P(n) is limited to a narrow range of small

nuclei – unlike the case for P[n(σ)]. Thus the system size must be chosen to not
only accurately model the nucleation process, i.e. avoid percolation effects for
clusters of size n : n > n∗, but also allow accurate computation of P(n|n ≤ n†).

It is also worth pointing out that in spatially continuous systems the defini-
tion of n(σ) can be ambiguous and, in general, it is not always clear whether a
given definition is kinetically relevant [74]. On the other hand, a kinetically rele-
vant choice of n(σ) may not be compatible with the CNT framework, which may
contribute to the quantitative discrepancies between nucleation theory and simula-
tion [75]. Arguably, even in spatially discrete systems, e.g. the Ising model [1, 76],
the appropriate definition of the nucleus size metric remains a subject of debate.

2.4.4 Limitations of the Classical Theory

So far, we have discussed CNT in the context of a transition between two well
defined thermodynamic states A (reactant) and B (product) in a spatially homo-
geneous system, where we have modelled the transition as a one-step process, i.e.
direct nucleation of the product phase B. Many complex systems exhibit poly-
morphism, i.e. existence of multiple, often comparably thermodynamically stable,
forms of the product phase B, giving rise to more involved multi-step activation
pathways.
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Two extensions to the one-step model have been put forward to account for the
possibility of intermediate states along the phase transition process, namely:

1. The Ostwald conjecture: intermediate states appear in the order of their
relative thermodynamic stability, i.e. the next appearing state is closest in
free energy to the previous.

2. The Stranski-Totomanov conjecture: transitions between intermediate states
occur in the order of the heights of corresponding free energetic barriers, i.e.
the next appearing state is separated from the previous by the lowest free
energy barrier.

Although these conjectures appear to hold in some cases, both are without any
rigorous theoretical basis and cannot be viewed as universal rules, as it has been
demonstrated that thermodynamic information alone is not always sufficient to
determine the transition pathway [77, 78].

By modifying the interfacial free energy term to account for the reduced surface
area of the nucleus due to contact with an impurity, the CNT framework has also
been extended to facilitate studies of heterogeneous nucleation, i.e. nucleation in
systems with spacial heterogeneities [2, 4]. Growing evidence, however, suggests
that such an approach is not always adequate, and the variations in surface prop-
erties and chemical composition of impurities may strongly affect the kinetics of
nucleation [79]. Considering the abundance of complex nucleation mechanisms,
e.g. pre-nucleation clusters and multi-step nucleation [5,80], along with the preva-
lence of systematic errors and unphysical predictions of CNT [4,81], it is clear that
CNT can serve as, at best, a theoretical basis for more detailed system specific
theories rather than a general predictive theory of nucleation processes.
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3

R E C E N T D E V E L O P M E N T S

Having introduced the core concepts of nucleation theory we will now discuss
the current state of the art in computational study of condensation, freezing and
solution precipitation processes. We will start by reviewing the recent studies of
nucleation kinetics in MC and molecular dynamics (MD) models of several phys-
ical systems, e.g. colloidal suspensions, noble gasses and solutions. Following a
brief outline of the computational methodology, we will explore the current status
of atomistic and molecular simulation in relation to theory and experiment. In the
second half of the chapter, our discussion will move towards studies of nucleation
in lattice models.

3.1 nucleation in atomistic and molecular models

A number of approaches to atomistic and molecular modelling of physical sys-
tems exist. A common feature to all of them is that the system of interest is
represented by a collection of N particles in a finite, often cubic, volume with pe-
riodic boundaries, yielding a model with a minimum of 3N degrees of freedom.
Additional degrees of freedom may be introduced due to particle anisotropy, inclu-
sion of particle inertia, and/or inclusion of energy and volume fluctuations (”ther-
mostatting” and ”barostatting” in MD). Particle interactions are modelled by pair
or many-body potentials, typically calibrated empirically or semi-empirically to
accurately capture the thermodynamic and transport properties of the modelled
system. Time evolution and appropriate sampling of the desired statistical ensem-
ble are achieved by Metropolis style MC moves or integration of the appropriate
equations of motion for MD and Langevin dynamics (LD) [7].

3.1.1 Selected Systems

Although a great number of atomistic and molecular model systems have been
developed, quantitative studies of nucleation kinetics enabling comparison of ex-
perimental observations and theoretical predictions are rare. While a number of
model systems have been studied, at present we find only four classes of models
whose nucleation kinetics have been considered extensively by multiple research
groups and via multiple approaches:
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1. Crystallisation of hard spherical colloids – isotropic particles interacting via
hard-core repulsion or modifications thereof.

2. Condensation, deposition, and crystallisation transitions in the Lennard-
Jones (LJ) model – system of point particles interacting via the pairwise
Lennard-Jones potential.

3. Ice nucleation in water models – namely TIP4P/2005 [82], TIP4P/Ice [83]
and mW [84].

4. Precipitation from solution in Tosi-Fumi [85], Smith-Dang [86] and Joung-
Cheatham [87] models of sodium chloride (NaCl).

Although the four classes of models are deemed accurate enough approximations
to their physical counterparts to allow comparison between nucleation kinetics
in experiment and simulation, they are not free from criticisms. The LJ system,
for instance, is considered, in many respects, a reasonable approximation to the
system of liquid argon (Ar), yet it is known to significantly misrepresent the bulk
viscosity of the fluid [88]. The hard-core repulsion of the hard sphere (HS) pair
potential is difficult to realise in an experimental setting [89]. In addition particle
polydispersity and hydrodynamic interactions are typically ignored in conven-
tional HS models, yet are thought to affect the transport properties of the physical
systems [3]. Accurately capturing the thermodynamics and transport properties
of the more complex physical systems in models for which statistical treatment
is amenable remains a substantial challenge, and performance of the commonly
used interatomic potentials for modelling of such systems as water [90] and aque-
ous solution of NaCL [91, 92] is still lacking in this respect.

Several less extensive nucleation studies have been carried out on models of
charged colloids [93, 94], anisotropic colloids [95, 96], molten silica [97] and sil-
icon [98], offering quantitative assessment of CNT. By comparison, qualitative
studies of nucleation kinetics are much more numerous, and we cannot hope to
cover a representative portion of these in this review. Instead, we will address the
common topics of nucleation from solution by reviewing some of the archetypical
systems, namely calcium carbonate (CaCO3), NaCl and natural gas hydrates [2].

3.1.2 Overview of Methodology for Studies of Nucleation Kinetics

A wide range of rare event simulation methods have been applied to the study
of nucleation kinetics over the recent years [99, 100]. The vast majority of these
loosely fall into the following four categories:

1. Direct/Brute force – characterisation of nucleation kinetics based on direct
observation of nucleation events, e.g. mean first passage time (MFPT) for-
malism [101].

28



2. Indirect/CNT based – measurement of nucleation rates based on equations
of CNT, e.g. umbrella sampling (US) [63] and the ”seeding” method [102].

3. Path based – study of nucleation kinetics via sampling of reactive trajectories
or their segments, e.g. transition path sampling (TPS) [103], forward flux
sampling (FFS) [104], transition interface sampling (TIS) [105].

4. Free energy surface (FES) based – characterisation of nucleation pathways
via complete or partial reconstruction of the FES in the coarse grained space
of collective variables, e.g. metadynamics [106, 107] and string method [108,
109].

Each of the four classes of methods have their advantages and drawbacks. Brute
force methods, for example, offer a simple approach to characterisation of the
nucleation process, which, unlike all other methods, do not rely on the notion
of a reaction coordinate to a large extent. Direct calculations of MFPT, however,
are only feasible at conditions where nucleation events are sufficiently frequent to
allow adequate collection of statistics. Such conditions correspond to parameter
regions of short lived metastability of the reactant phase A, i.e. far away from
coexistence of A and the product phase B.

The remaining three groups of methods are applicable over a wider range of
parameter space, but employ the concept of a reaction coordinate and additional
assumptions. Methods based on CNT aim to estimate the terms of Eqs. (2.53)
and (2.54) from free energy calculations and kinetic properties of the assumed
reaction coordinate, thereby producing estimates of nucleation rates and barrier
heights. Metadynamics and related methods attempt to obtain a projection of the
FES on to a low dimensional coordinate space by introducing a history dependent
bias into the energetics of the system or computing the local gradient of the FES.
Based on the resultant thermodynamic information, various low dimensional ki-
netic models of the transition can be explored, potentially yielding quantitative
insight.

Path based methods attempt to achieve a purely kinetic treatment of the transi-
tion process by sampling energetically unbiased trajectories through the system’s
state space. With the exception of TPS, all methods of this category enhance the
sampling of rare events by indirectly guiding the system’s kinetics along a, typ-
ically, one dimensional order parameter in a ratchet-like or milestoning manner.
The choice of the guiding order parameter is often argued to play a weak role in
the observed kinetics, though it is difficult to provide a rigorous justification for
such arguments.

At present a detailed systematic comparison of the above rare event methods is
lacking, although a reasonable degree of agreement between a selection of meth-
ods has been reported in various models [93, 96, 97, 110–112]. Due to their relative
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simplicity, MFPT and CNT based methods have been overwhelmingly popular in
nucleation literature, while among the more advanced approaches there is a clear
preference towards FFS at present. We will return to the subject of rare event
methodology for a detailed discussion in Chapter 7.

3.1.3 Quantitative Comparison of Simulation and Experiment

Direct comparison of results of simulation and experiment in complex systems
remains a major challenge due to the stark differences in the capabilities of the two
methods of study. Recent advancements in imaging and simulation techniques,
however, provided the opportunity for direct comparisons of computational and
empirical studies of HS [89], LJ [113], water [3] and NaCl [114] systems. Large
deviations between rate measurements via simulation and experiment have been
widely reported for the four systems, and no general consensus regarding their
origin has been established so far, although various contributing factors have been
discussed.

Disagreement between computational and experimental studies of the HS sys-
tem at conditions far away from liquid-solid coexistence is relatively small (factor
of 102) and is attributed to statistical uncertainties in nucleation rate measurement
and determination of the packing fraction – values of the single parameter gov-
erning the thermodynamic state of the ideal HS system – in experiment [115].
At lower packing fractions, i.e. closer to coexistence, however, the discrepancies
are much greater [110, 111], suggesting existence of systematic errors in rate esti-
mates due to simulation. Recently, roles of several modelling assumptions, made
in computational studies of HS, have been examined, including effects of parti-
cle polydispersity [110], plasticity [111], sedimentation [116] and hydrodynamic
interactions [117], showing some promise in resolving the existing disagreements.

The situation in LJ and NaCL systems is less clear due to the lack of computa-
tional and experimental studies at comparable parameter values. While indirect
comparison can be achieved by extrapolating the computational measurements,
performed at high supersaturations and undercoolings, into regions of parameter
space probed by experiment, the resultant data have been shown to be highly
sensitive to the choice of the necessary analytical models leading to spectacu-
lar discrepancies up to a factor of 1026 [69], although the role of uncertainties
in experimental approach is not clear. The more recent study of freezing of LJ
fluids [113] demonstrated reasonable qualitative consistency with previous inves-
tigations as well as remarkable agreement with two experimental measurements
in close proximity to the considered parameter points. Results of the few available
computational studies of NaCl at realistic conditions range from drastic disagree-
ment [114] (in the case of precipitation from aqueous solution) to remarkable con-
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sistency [118] (in the case of nucleation from the melt) with experiment, though
the quantity of reference data is scarce.

In the case of water models, discrepancies are common not only between simu-
lation and experiment [3] but also among computational studies utilizing the same
interatomic potentials and rate measurement procedures, as can be seen from a
comparison of Refs. [119, 120] and [121]. Despite criticism of models’ accuracy
in capturing water thermodynamics [122], realistic computational nucleation rate
estimates have been reported [123, 124], although the accuracy of these is debat-
able [3].

3.1.4 Quantitative Comparison of Simulation and Theory

Quantitative studies have compared CNT predictions given by Eqs. (2.53) and (2.54)
with results of explicit nucleation rate and free energy calculations respectively.
Despite the widespread criticism of CNT assumptions [3, 89], the rate estimation
approach based on Eq. (2.53), as pioneered by Auer and Frenkel [125] in their
study of nucleation in the HS model, has received largely favourable reviews over
the recent years, as summarised in Table 3.1.

Study Model Methods

Filion et al. [110] HS US, MFPT, FFS
Filion et al. [111] WCA potential [126] US, MFPT, FFS
Mithen et al. [93] Gaussian core [127] US, FFS

Ni and Dijkstra [96] Hard colloidal dumbbells US, MFPT
Malek et al. [128] LJ US, MFPT

Saika-Voivod et al. [97] BKS silica [129] US, MFPT

Table 3.1: Listing of studies quantitatively comparing the nucleation rate estimation ap-
proach of Auer and Frenkel [125], i.e. Eq. (2.53) parametrised by explicit estimates of the
free energy barrier (via US) and the kinetic prefactor, with other rate calculation methods.
All listed studies report good agreement between the employed methods to within statistical
errors.

Universal agreement between rare event methods, however, is not present. Dis-
crepancies between results of TIS, FFS and related methods were reported in a
study of a one-dimensional system [130]. Very recently, Jungblut and Delago [131]
demonstrated the subtle effects of structural relaxation between consecutive nu-
cleation attempts in the LJ system on MFPT based rate estimates, concluding
that discrepancies between rate estimation methods, in specific systems or con-
ditions, may arise due to the non-Markovian nature of the transition process. It
is frequently highlighted in the literature that rate estimates can be highly sen-
sitive to minor implementation details [132] as well as the choice of the order
parameter. Critical surveys of the existing methods and systematic evaluations of
performance of different implementations are still lacking.
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A wide range of studies have addressed the accuracy of Eq. (2.54) in describ-
ing nuclei formation free energies. Direct comparisons (Table 3.2) with explicitly
computed free energy barriers to nucleation show that the functional form of the
CNT expression, although qualitatively reasonable, can yield erroneous estimates
of barrier heights and sizes of critical nuclei. While certain qualitative predic-
tions, e.g. scaling of nucleation rates, barrier heights and critical nuclei sizes with
driving force to nucleation, appear to hold in many cases [112, 133–135], the pre-
dictive power of Eq. (2.54) is widely regarded as poor when employing reasonable
estimates of the bulk surface free energy coefficient γCNT [98, 107, 128, 136]. Ap-
plicability of well defined macroscopic values of γCNT and ∆µCNT to microscopic
nuclei is frequently challenged on the basis of nuclei anisotropy and compressibil-
ity as well as curvature and diffuse nature of nucleus surface [137, 138], yielding
an abundance of corrections and alternatives to Eq. (2.54). More recently [75], it
was pointed out that the commonly employed choice of order parameter, used in
identifying microscopic nuclei and calculating their sizes, implicitly leads to a def-
inition of nucleus interface with the surrounding medium, which may not corre-
spond exactly to the thermodynamic definition implied in Eq. (2.54), contributing
at least partially to the frequently reported discrepancies between microscopically
and macroscopically estimated values of γCNT and ∆µCNT.

In light of the above, it is fair to conclude that the limited capacity of CNT, in
prediction of rates of homogeneous nucleation in molecular models, is largely at-
tributable to the difficulty of obtaining precise estimates for nuclei formation free
energies based solely on the thermodynamic properties of the models. Consider-
ing the questionable accuracy of the present methodology, it is not clear whether
the quantitative framework of CNT can be completely ruled out as adequate, de-
spite the mounting evidence against the framework’s underlying assumptions.
Particularly striking evidence in favour of the CNT formalism was recently pro-
vided by Espinosa et al., who have shown that the ”seeding” approach [102] to
nucleation rate estimation, which wholly relies on Eqs. (2.53) and (2.54), can yield
remarkable agreement with the previously reported direct measurements across a
wide range of parameter space in various models [112].

3.1.5 Nonclassical Nucleation

The classical caricature of the phase transition process, where compact nuclei
of the stable phase appear and grow in the medium of the metastable phase, does
not fully capture the detail of nucleation processes in even the simplest molecular
models [3, 144]. An overwhelming number of studies report that the qualitative
character of the transition processes is more involved, and a variety of intricate
multi-stage nucleation pathways have been observed in a range of systems, in-
cluding HS, LJ, water, NaCl, CaCO3 and natural gas hydrates [2,3,5,80,145]. Such
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Study Model Methods

Filion et al. [110] HS US
Jungblut and Delago [139] LJ TIS, PPTIS [140]

Lundrigan and Saika-Voivod [141] LJ US, MFPT [142]
Saika-Voivod et al. [97] ∗ BKS silica [129] US

Valeriani et al. [143] ∗ Tosi-Fumi NaCL US
Cuetos and Dijkstra [95] Colloidal hard rods US

Table 3.2: Listing of studies quantitatively comparing the CNT form [Eq. (2.54)] of the free
energy barrier with explicit free energy calculations. Studies marked with asterisk (∗) report
exceptionally good fits of Eq. (2.54) to explicitly computed barrier data. The remaining
studies report that the CNT expression produces reasonable qualitative trends but yields
substantial quantitative discrepancies.

processes typically do not comply with the standard assumptions of CNT regard-
ing, for example, free energy barrier shapes and internal structures of nuclei, and,
for this reason, are commonly referred to as ”nonclassical” in the recent literature.

Both computational and experimental studies report evidence of amorphous
precursor pathways to crystallisation in HS systems, where, prior to emergence
of the stable face-centred cubic (fcc) structure, the colloidal suspension appears to
exhibit formation of dense positionally disordered domains, which subsequently
mature into random hexagonal close-packed (rhcp) stackings [146, 147]. Transi-
tion mechanisms involving metastable intermediate states were also identified in
LJ [148], Yukawa [77], Gaussian core [93] and other particle systems, revealing
a broad range of possible kinetic pathways to crystallisation, e.g. dissolution-
recrystallisation, cross-nucleation and solid-state transformation. How such evi-
dent departure from the CNT model reflects in the quantitative metrics is, how-
ever, not clear as we do not find any studies reporting breakdown of Eq. (2.53), as
applied by Auer and Frenkel, for one-component particle systems (see Table 3.1).

Consequently, it is not surprising that nonclassical nucleation mechanisms are
abundant in more complex systems. Amorphous and metastable intermediates
are widely reported in studies of multi-step crystallisation pathways in models
of NaCl [149], CaCO3 [150] and gas hydrates [151]. Particularly topical are the
various system specific phenomena, such as dehydration of the amorphous pre-
cursor [152] and existence and role of pre-nucleation clusters [153] in precipitation
of calcite from solution. At present, computational studies of nucleation from so-
lution cannot examine directly the complete kinetic pathways to crystallisation at
realistic conditions, due to the long timescales of solution relaxation, prohibitive
system size requirements for simulation of realistic supersaturations as well as ab-
sence of methodology for modelling of open systems eliminating effects of solute
depletion [2]. Meanwhile, experimental verification of computational findings re-
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mains a challenge due to the limitations of the modern microscopy and scattering
techniques [3], though indirect evidence continues to emerge [154].

In this work we will explore lattice models of anisotropic particles in solution,
where solute nuclei undergo structural transformations from low to high internal
orientational order over the course of growth limited solute crystallisation path-
ways. Such behaviour falls into the broad category of multi-stage nucleation and
will be considered as nonclassical throughout this work.

3.2 nucleation in lattice models

It has been well documented that fundamental physical phenomena and pro-
cesses can sometimes be captured by models including minimal physical detail,
to which the Ising model is an excellent example in the field of statistical physics.
Due to their remarkable simplicity, lattice models provide a platform for in depth
exploration of generic nucleation mechanisms as well as system specific features
at a greatly reduced computational expense. Additionally, the simplistic view of
particle interactions offers an intuitive means to tune the model thermodynamics
and phase behaviour, possibly utilising the body of analytical results available for
some of the well established models. In the context of nucleation from solution,
the relevant order parameters and initial system configurations can be constructed
with relative ease. As we will see in this section, despite their simplicity, minimal
models display a rich array of phase transition behaviours often challenging the
established theoretical framework.

3.2.1 The Ising Model

Numerous studies have considered the Ising lattice gas as a simple model of
vapour-to-liquid nucleation or precipitation from solution. In this model, each
site of the simple square or simple cubic lattice represents either a vapour/solvent
particle (s′i = −1 – spin ”down”) or a liquid/solute particle (s′i = 1 – spin ”up”).
For a given configuration σ′ ∈ Λ′ = {−1, 1}N , the Hamiltonian is typically written
as: HI(σ

′) = −∑{(i,j)} s′is
′
j − h ∑N

k=1 s′k, where the first sum carries over all pairs
(i, j) of nearest neighbouring lattice sites and h represents the strength of particle
interaction with an external field.

For consistency with the later chapters, we write the above Hamiltonian in the
equivalent form:

HI(σ) = − ∑
{(i,j)}

Ksi ,sj −
1

∑
k=0

µkNk, K =

[
1 −1
−1 1

]
, Nk =

N

∑
i=1

δsi ,k, (3.1)

where we replace the spins s′i ∈ {−1, 1} with si = (s′i + 1)/2 and the pairwise
interactions are given by the zero-based indexed symmetric matrix K. Noting
that ∑N

k=1 s′k = N1 − N0 and N1 + N0 = N, the field interaction strength h can
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be related to the chemical potentials µ0, µ1 of respectively the solvent and solute
particle reservoirs via:

2hN1 − hN = (µ1 − µ0)N1 − µ0N = ∆µN1 − µ0N. (3.2)

hence, without loss of generality, we can take µ0 = h and, therefore, ∆µ = 2h.
The (β, ∆µ) phase diagrams of the model are well known in dimensions d = 2, 3

(Fig. 3.1a). A typical phase diagram consists of a single coexistence line ∆µ = 0,
separating the vapour and liquid phases, which terminates at a system dimension
dependent critical point kBT = kBTc(d). Beyond the critical point, the mecha-
nisms of phase transformation no longer admit nucleation theoretic treatment.
Within some region of ∆µ > 0 close to ∆µ = 0 and T < Tc the vapour phase is
metastable and nucleation of the liquid phase occurs. In addition to the ferromag-
netic transition, the interface roughening transition, marking the gradual change
between the regimes of cubical (T < TR) and spherical (T > TR) equilibrium crys-
tal shapes [155], is known to occur at TR : 0.5Tc < TR < 0.6Tc (for d ∈ {2, 3}) [156].

The Ising model presents an ideal testbed for CNT since most of the important
macroscopic quantities, e.g. bulk surface tension, phase chemical potential differ-
ence at coexistence and Tc(d), are known exactly or are well approximated. Fur-
thermore, the simplicity of the Hamiltonian allows for implementation of highly
efficient MC codes.

(a)

0

Tc

(i) (ii)

∆µ

T

(b) Solvent rich (c) Solute rich

Figure 3.1: Schematic phase diagram for the Ising model in (a), and typical configurations
of the two low temperature equilibrium states in (b) and (c) for d = 2, ~l = (32, 32). In (a),
the solvent rich and solute rich regions are labelled (i) and (ii) respectively, and the solvent-
solute coexistence line is shown in blue, with the critical point marked by a blue circle. In (b)
and (c), the solute (spin ”up”) sites si = 1 are shown as blue squares, while the solvent (spin
”down”) si = 0 sites are omitted.

3.2.2 Microscopic Kinetics

The spin-flip kinetics (e.g. Glauber dynamics) have been a popular choice in
studies of Ising models since they provide a reasonable microscopic model for
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magnetisation and condensation processes as well as avoid global depletion of
liquid particles (solute) during formation and growth of the nucleus, thus keep-
ing the ∆µ constant over the course of the phase transformation process. In the
context of a model of a solution, such kinetics, however, do not realistically treat
particle transport or the effects of local solute depletion/augmentation due to par-
ticle attachment/detachment from the forming nucleus. The widely used single
spin alternative – the local spin exchange (e.g. Kawasaki dynamics [157]) – al-
lows spins to perform random walks on the lattice, effectively modelling particle
diffusion. Pure Kawasaki dynamics does conserve particle counts and, therefore,
suffers from the global solute depletion effects. Although various methods have
been proposed to overcome these [158], as we will discuss in Chapter 7, accurate
modelling of nucleation in the Ising system under realistic particle transport re-
mains a challenge due to difficulties in modelling of particle density fluctuations
of open systems.

It is well known that both choices of kinetics lead to breakdown of the Markov
assumption on n(t) – the stochastic process governing the evolution of the nucleus
– as made by CNT [159, 160]. Unlike under Kawasaki dynamics, the behaviour of
n(t) under spin-flip dynamics appears approximately Markovian on a sufficiently
long time scale [160]. While the consequences of the non-Markovian nature of n(t)
are still to be studied, earlier works [161,162] have pointed out that the short time
cluster kinetics of the Ising model under Kawasaki dynamics can be captured with
surprising accuracy by (2.48) using explicit estimates of the cluster size dependent
coefficients J+n , J−n . To our knowledge, however, the full nucleation kinetics in the
Ising model under Kawasaki dynamics have not been studied in detail.

3.2.3 Homogeneous Nucleation in Ising Models

In absence of advanced methods for study of rare events, early MC simulations
of nucleation in Ising models were largely restricted to conditions of high super-
saturation, where the nucleation rates are relatively high. Under these conditions,
the entire process of the phase transition is observable in a typical MC trajectory
and nucleation rates can be estimated directly by computing the FPT distribu-
tions. The majority of these studies considered Glauber or equivalent spin-flip
dynamics in d ∈ {2, 3} systems evaluating the quality of the central prediction
of CNT: ln JCNT ∝ (β∆µ)−d+1. Despite the possibility of systematic errors due to
nonstationarity, i.e. rapid decay of the metastable state [163], and effects of cluster
coagulation [164–166], an overall reasonable agreement with the CNT prediction
was widely reported [163, 167–172].

Studies focusing on the functional form of the expression for the free energy
(2.54) reached less favourable conclusions. Simulations of liquid droplets in equi-
librium with pure vapour showed that the average surface areas of small clusters
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obey a different scaling to the usual n1−1/d [173]. Although some evidence for cubi-
cal shapes of nuclei for T < TR is present [172], the validity of the compact nucleus
assumption and the role of the roughening transition are questionable since for
T > TR rough and anisotropic critical nuclei were reported [174–176]. Estimates of
surface free energies of liquid clusters in coexistence with saturated vapour were
also found to deviate from the CNT prediction [177, 178]. Explicit computations
of droplet free energies, via thermodynamic integration in the constrained droplet
size ensemble, suggested that (2.54) lacks a temperature dependent ln n term in
d = 2 dimensions as well as a n1/3 term in d = 3 dimensions [179,180]. Similar cor-
rections were also proposed to explain brute force estimates of equilibrium cluster
size distributions [181] and results of umbrella sampling calculations [66,175,176].
However, excellent fits of the classical expression to brute force estimates of ∆F(n)
have been reported in d = 2 dimensions [182], leaving the overall status of (2.54)
inconclusive.

Rate calculation methods relying on the basic elements of CNT have been
explored. By examining the temperature and h dependence of JCNT in (2.52),
Vehkamäki and Ford developed a method of nucleation rate calculation based
on estimates of critical cluster size and system’s excess internal energy due to
presence of a critical cluster [165]. Brendel et al. [182] considered an alternative
approach to the master equation (2.48), expressing the nucleation rate in terms of
the cluster size distribution and cluster attachment/detachment rates. Both meth-
ods produced rate estimates which were in reasonable agreement with available
FPT based data.

More recently the Ising model has seen application of the rare event method-
ology, results of which appear to further support the general CNT framework.
Results of a transition path sampling study [174] suggest that the CNT gives a
reasonable estimate of the transmission coefficient, however the parameter de-
pendence of this quantity was not examined. Ryu and Cai [175, 176] reported
excellent agreement over a broad range of parameter space between nucleation
rate estimates obtained via forward flux sampling and those given by (2.53), using
explicitly computed cluster attachment rates and free energy barriers.

3.2.4 The Potts Model

The Potts model can be thought of as a generalisation of the Ising model to arbi-
trary number Q ≥ 2 of site states qi ∈ {1, . . . , Q}, with the following Hamiltonian:

HP(σ) = − ∑
{(i,j)}

δqi ,qj −
Q

∑
k=1

hk

N

∑
i=1

δqi ,k, (3.3)

where {(i, j)} is the set of all nearest neighbouring lattice site pairs and hk is
the strength of an applied external magnetic field of along the spin ”direction” k.
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Written in this form, the Hamiltonian is equivalent to a Q-component lattice gas,
although often the one-field regime h = hq∗ > 0, hk = 0 ∀k 6= q∗ is considered in
the literature. Generally, the above definition gives rise to two equilibrium states:
(1) The low energy ”ordered” state, where all spins assume some common value
q ∈ {1, . . . , Q} (Fig. 3.2c); (2) The high entropy ”disordered” state, where no
long range order among spin values exists, i.e. spins assume random values in
{1, . . . , Q} (Fig. 3.2b).

The model exhibits a temperature driven order-disorder phase transition which
is believed to be first order for Q ≥ 5, d = 2 and Q ≥ 3, d = 3 [183]. Although
the general phase diagram of the one-field model is not known exactly, reasonable
numerical estimates for large Q in d = 2 exist (Fig. 3.2a) and qualitatively similar
form can be expected in d = 3 [184]. The order-disorder coexistence line is the
line T∗(h ≥ 0|d, Q) of first order phase transitions, terminating at the critical point
[hc(d, Q), Tc(d, Q)]. At zero field, the transition temperature is known exactly for
d = 2 [184] and is approximately estimated via the mean-field approach in d = 3
for Q ≥ 3 [185]:

T∗(0|2, Q ≥ 4) = [ln(1 +
√

Q)]−1, T∗(0|3, Q ≥ 3) = 3
Q− 2
Q− 1

[ln(Q− 1)]−1. (3.4)

At present, existence of metastable states in the vicinity of T∗(h, d, Q) continues
to be debated, and the lifetimes of the metastable states are thought to be system
size dependent [186, 187]. Thus, in contrast to the field driven transition of the
Ising model, the kinetics of the order-disorder transition in the Potts model cannot
be quantified unambiguously, though the system size dependence of nucleation
rates or free energy barriers has not been studied.

In the vicinity of the line hk = 0, k ∈ {1, . . . , Q} below the order-disorder
transition temperature – the line of coexistence points for the Q ordered phases –
various field driven nucleation scenarios occur. Studies of nucleation kinetics over
the course of field driven transitions in the Potts model have been carried out in
d = 2 dimensions under spin-flip dynamics. Rutkevich reported good qualitative
agreement of mean FPT estimates with the CNT prediction in the model with hk =

0, k ∈ {1, 3, . . . , Q} [188]. Sanders et al. explored ”multi-step” and competitive
nucleation scenarios by including interactions between differently valued spins
[189]. For this purpose, the Hamiltonian takes the equivalent to (3.1) form, with
K being a Q × Q symmetric matrix with entries Ki,i = 1, i ∈ {1, . . . , Q}. In a
Q = 3 setting with K1,2 = K1,3 > 0, K2,3 < 0 and 0 = h1 < h2 ≤ h3, Sanders
et al. showed that ordered phase q = 2 has a nonzero probability of nucleating
from phase q = 1 before nucleation of phase q = 3 takes place, thus pointing out
the need for probabilistic interpretation of the Ostwald and Stranski-Totomanow
conjectures, particularly in the regime where the free energy barriers to nucleation
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(a)

0 hc

Tc

(ii)

(i)

(iii)

hq∗

T

(b) Disorder (c) Order

Figure 3.2: Schematic phase diagram (adapted from [184]) for the Potts model in (a), and
typical configurations of the two equilibrium states in (b) and (c) for d = 2, ~l = (32, 32), Q =
24, hk = 0 ∀k 6= q∗. The three regions of (a) are: (i) Disordered state; (ii) Ordered state rich
in spin values q∗; (iii) Ordered state poor in spin values q∗. In (b) and (c), lattice sites are
represented by square markers with each spin value qi ∈ {1, . . . , Q} assigned one of Q = 24
colours. The critical point (hc, Tc) is marked by a green circle.

of competing phases are comparable. Okamoto et al. employed a similar approach
to model nucleation of polymorphic minerals from solution [190].

3.2.5 The Potts Lattice Gas Model

In order to explore mechanisms of crystal nucleation via amorphous precur-
sors, several lattice models of anisotropic particles were formulated by combining
elements of the Ising and Potts models [6,191,192]. In this work we will extend the
Potts lattice gas (PLG) model of Duff and Peters [6,193], where solvent (si = 0) and
solute (si = 1) particles are anisotropic, with their orientational degrees of free-
dom represented by an integer qi ∈ {1, . . . , Q}. In addition to the usual (isotropic)
nearest neighbour interaction, orientationally aligned, i.e. qi = qj, neighbouring
particles i and j in the PLG model receive an energetic bonus Asi ,sj , thus:

HPLG(σ) = − ∑
{(i,j)}

[
Ksi ,sj + δqi ,qj Asi ,sj

]
−

1

∑
k=0

µkNk, (3.5)

where K and A are 2× 2 matrices specifying the strengths of isotropic and anisotropic
interaction between particles. For Q ≥ 3 in d = 3 and:

K =

[
1 0
0 1

]
, A =

[
0 0
0 1

]
, (3.6)
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we expect three distinct equilibrium states: (1) Solvent rich (low f ); (2) Amorphous
solute (low β, high f ); (3) Crystalline solute (high β, high f ); where we define the
fugacity ratio f as:

f = exp [β(µ1 − µ0)] = exp [β∆µ] , (3.7)

where ∆µ is the difference between the chemical potentials of the solute and sol-
vent reservoirs. At present, the (β, f ) phase diagrams of the model have not been

(a)

β∆µc

Tc

(ii)

(i)(iii)

β∆µ

T

(b) Amorphous nucleus. (c) Crystalline nucleus.

Figure 3.3: Schematic phase diagram for the PLG model in (a), and configurations of nuclei
in coexistence with solvent in (b) and (c) for d = 3, ~l = (8, 8, 8), Q = 24 with K and A given
by (3.6). The three regions in (a) are: (i) Amorphous solute rich (Fig. 3.2b); (ii) Crystalline
solute rich (Fig. 3.2c); (iii) Solvent rich (Fig. 3.1b). Lattice configurations in (b) and (c) were
obtained via standard NVT MC at T = 0.7 and T = 0.3 respectively. Solute (si = 1) lattice
sites i are represented by cubes, assigned one of Q colours according to the value of qi.

reported, however, based on the behaviours of Ising and Potts models, we can
expect the sketch given in Fig. 3.3a to capture the key elements.

Nucleation of crystalline solute from supersaturated solvent in the PLG model
under spin-flip dynamics was studied by means of free energy calculations. Duff
and Peters [6] computed two dimensional free energy landscapes as functions of
largest solute cluster size and its degree of internal orientational order at condi-
tions where the ordered solute phase is thermodynamically stable in bulk. They
showed that, at conditions sufficiently close to coexistence of ordered and disor-
dered solute phases, amorphous solute nuclei (Fig. 3.3b) are thermodynamically
more stable than crystalline nuclei (Fig. 3.3c), and hence the amorphous precur-
sor nucleation pathway is thermodynamically viable. Whitelam and Hedges stud-
ied conceptually analogous models in two dimensions by mean field and simula-
tion [78, 192], also noting the existence of amorphous precursor pathways. Using
FFS, they showed that close to the crossover regime, where the free energy bar-
riers along the ”direct” and amorphous precursor pathways are comparable, the
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mobility of particles’ orientational degrees of freedom can dictate the nucleation
pathway [78].

More recently, the kinetics of nucleation in the d = 3 PLG model were stud-
ied under conditions where K0,0 = K1,1, A0,0 = A1,1 and ∆µ ≈ 0, modelling
the scenario of competitive crystallisation from a binary melt at eutectic composi-
tion [158]. Results of mean FPT calculations were reported to be in good qualita-
tive agreement with CNT for a combination of Kawasaki and spin-flip dynamics.

3.2.6 Other Models

Soisson and Martin [166] studied kinetics of substitutional solid solution pre-
cipitation under vacancy diffusion in an Ising-like lattice model. They estimated
the nucleation rates by measuring the rates of postcritical cluster formation at high
supersaturations, showing good qualitative agreement with CNT. Jorge et al. used
a multicomponent lattice gas system to model crystallisation of zeolite from clear
solution, qualitatively reproducing experimental observations [191].

Kinetics in lattice models with spatially anisotropic interactions were explored
as models of polymer aggregation and formation of amyloid fibrils, qualitatively
reproducing experimental observations [194–196]. Various other lattice systems
modelling thermodynamics and microscopic behaviour of polymer chains exist,
however these will not be covered here.

Nucleation rates were recently measured in lattice systems by considering the
kinetics of the nucleus without explicitly modelling the surrounding medium
[197, 198]. In such models, nuclei kinetics are specified by saturation and par-
ticle interaction dependent attachment and detachment rates. While reasonable
qualitative agreement was shown with CNT for Ising-like particle interactions,
anomalous saturation dependence of nucleation rates was observed in the case of
spatially anisotropic interactions [199].

3.2.7 Heterogeneous Nucleation

Lattice models have served as tools for exploration of mechanisms of heteroge-
neous nucleation. Although we will not consider heterogeneous systems in this
work, for completeness, we will give a short overview of the relevant literature
here.

A number of studies have been carried out on the Ising model. Page and Sear
investigated nucleation in porous media by introducing a smooth surface with a
shallow rectangular pit into an otherwise homogeneous d = 2 Ising system [200].
They showed that nucleation in a rectangular pore occurs as a two step process,
with the total rate of the process varying nonmonotonically with pore width, al-
lowing the pore geometry to be optimised to give maximum process rate. Sear
considered the effect of impurity size on nucleation rate, modelling the impurity
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as a line of w ∈ {1, . . . , 6} ”up” spins and showing that presence of even the
smallest w = 1 impurity already gives a factor 2× 104 increase in nucleation rate
in comparison to a homogeneous system [201]. Nucleation on rough impurities
in the Ising model was recently shown to give rise to nonexponential cumulative
distribution of nucleation times [202]. Winter et al. employed a novel method of
calculation of interfacial tensions, based on estimates of chemical potential in pres-
ence of a nucleus, demonstrating that the relationship between homogeneous and
heterogeneous (smooth surface) interfacial tensions for varying contact angles is in
line with theoretical predictions [203,204]. Nucleation on the surface was also stud-
ied under conditions where the system undergoes a crossover between regimes of
surface nucleation followed by surface growth and surface nucleation followed by
bulk growth [205]. Despite the change in the mechanism of phase transformation,
the nucleation rate was found to vary smoothly over the parameter range where
the crossover occurs.

The multi-component lattice gas analogue of the Potts model was used to il-
lustrate the role of wetting in multi-step nucleation scenarios. It was shown that
under conditions where a metastable phase interacts more favourably with im-
purities than the thermodynamically preferred phase, the former can nucleate
ahead of the latter despite both having comparable solvent interfacial tensions
[206]. Furthermore, in concave geometries, wetting by an unstable in bulk phase
can occur. Under conditions of high solvent-solute but low solvent-intermediate
and intermediate-solute interfacial tensions, wetting by the unstable intermediate
phase was shown to accelerate nucleation of solute [207].

Mechanisms of heterogeneous freezing and condensation of water were also
modelled in scenarios of surface contact at water to saturated vapour interface
[208] and presence of non-volatile soluble impurities [209]. The former setting
was investigated in a d = 2 Potts model, and nucleation was found to be fastest
at the point where a liquid-liquid interface meets a smooth solid surface, though
presence of liquid-liquid and liquid-solid contact lines also accelerated the pro-
cess. This finding supports experimental studies of effects of partially submerged
impurity particles on freezing of water. Effects of soluble non-volatile particles
on liquid condensation were studied by theory and in a minimal d = 3 lattice
model [209]. Using CNT based arguments, Sear showed that soluble impurities
tend to stabilise liquid droplets, effectively eliminating the barrier to condensa-
tion at an impurity size dependent value of vapour supersaturation. Results of
forward flux sampling MC in a d = 3 lattice model of liquid, vapour and solute
particles gave a convincing qualitative verification of the finding.

Although typically in error, quantitative predictions of CNT, reported in the
above studies, showed reasonable qualitative agreement with simulation.
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4

M O D E L A N D P H A S E B E H AV I O U R

Here we will introduce a novel lattice model which will be the central subject
of study in this work. We will explore the phase behaviour of the model for low
temperatures (kBT < 1.5), mapping the phase diagram via free energy calculations
and approximate analytical treatment.

4.1 the extended potts lattice gas model

We extend the Potts lattice gas (PLG) model discussed in Sec. 3.2.5 by intro-
ducing an additional solute species. Thus, the extended PLG model is a three
component system of particles on a cubic lattice with each site i having the two
degrees of freedom si ∈ {0, 1, 2} and qi ∈ {1, . . . , Q}, corresponding to the species
and orientation labels respectively. We denote sites i with si = 0 as solvent and
sites j with sj ∈ {1, 2} as solute, taking Q = 24.

4.1.1 Particle Interactions

As before, we specify the particle interactions in terms of the isotropic and
anisotropic interaction matrices K and A respectively, which, in the case of the
extended PLG, are 3× 3 square matrices with entries Ksisj and Asisj indexed by non-
negative integers si, sj ∈ {0, 1, 2} corresponding to site species labels. The energy
E(σ) of a lattice configuration σ ∈ Λ =

{
(s, q) : s ∈ {0, 1, 2}, q ∈ {1, . . . , Q}

}N is
given by:

E(σ) = − ∑
{(i,j)}

Ksisj − ∑
{(k,l)}

δsksl Asksl , (4.1)

where {(i, j)} and {(k, l)} are respectively the sets of unique nearest and unique
diagonally neighbouring site pairs on a finite rectangular lattice with periodic
boundaries. For every site i with nearest neighbours {j}, each member of the set
of diagonal neighbours {k} is a site which is a nearest neighbour of exactly two
sites in {j} (Fig. 4.1), giving 4 diagonal neighbours for every orthogonal plane in
the d-dimensional lattice space for a total of

4
(

d
2

)
= 2

d!
(d− 2)!

= 2d(d− 1), d ≥ 2 (4.2)

43



diagonal neighbours for every site i. Thus, for any d-dimensional hyperrectangu-
lar lattice with N sites, the total counts of unique nearest and unique diagonal
neighbour pairs are respectively Nd and Nd(d− 1) for d ≥ 2.

i

Figure 4.1: Visualisation of a 3× 3× 3 cell of a cubic lattice showing nearest (grey circles)
and diagonal (grey pentagons) neighbours of a lattice site i.

We define the isotropic and anisotropic interaction matrices as follows:

K =




1 0 0
0 0 1
0 1 0


 , A =




0 0 0
0 c/(c + 1) 0
0 0 1/(c + 1)


 , (4.3)

allowing the relative strength of anisotropic interactions between the two solute
species to be controlled via the parameter c ∈ [0.5, 1].

4.1.2 The Hamiltonian

The Hamiltonian H(σ) is given by:

H(σ) = E(σ)−
2

∑
i=0

µiNi(σ), Ns(σ) = N1(σ) + N2(σ), (4.4)

where µi and Ni are respectively the reservoir chemical potentials and particle
counts for species i ∈ {0, 1, 2} and we define Ns(σ) as the number of solute sites
in the lattice configuration σ. In this work, we will only consider the regime
µ1 = µ2 where the chemical potentials of the two solute species are equal. We,
therefore, define the fugacity ratio f > 0 as:

f = f01, fss′ = exp[β(µs′ − µs)], s, s′ ∈ {0, 1, 2}, (4.5)

as the sole parameter controlling the chemical composition of the system.
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4.1.3 Monte Carlo Move Sets

We will consider the model in the semigrand (µVT) and canonical (NVT) en-
sembles, corresponding to two distinct MC move sets:

1. µVT: Transmutation-reorientation (TR) – analogous to spin-flip kinetics of
the Ising model – conserving ∑2

i=0 Ni(σ) = N.

2. NVT: Diffusion-reorientation (DR) – analogous to Kawasaki [157] kinetics of
the Ising model – conserving Ns(σ) = ns = ρN and N0(σ) = N − ns, where
ρ is the solute concentration.

Both move sets comprise two equally probable moves, one of which is the reorien-
tation move attempting to replace the orientation label qi of a randomly selected
site i with an alternative label q′i which is chosen uniformly from the set {1, . . . , Q}
of possibilities. The transmutation move, as part of the TR move set, attempts to
replace the species label si of a randomly chosen site i with an alternative s′i uni-
formly selected on {0, 1, 2}. The diffusion move, as part of the DR move set,
attempts to simultaneously swap both the species and orientation labels of a ran-
domly chosen site and one of its randomly chosen nearest neighbours.

For any MC move (s → s′, q → q′) attempting to replace the species s and
orientation q labels of a single lattice site with the respective alternatives s′ and q′,
the acceptance probability Pacc(s→ s′, q→ q′) is given by:

Pacc(s→ s′, q→ q′) = min{1, fss′ exp[−β∆E(s→ s′, q→ q′)]}, (4.6)

where ∆E(s → s′, q → q′) is the change in the energy of the system in the case of
the proposed move being accepted.

4.1.4 Low Temperature Equilibrium States

Exploring the parameter space (kBT, f ) under the TR move set for c = 0.5, kBT <

1.5, Q = 24, we find four distinct stationary system states as listed in Table 4.1.
We find that the bulk solute rich states (Fig. 4.2) correspond to checkered arrange-
ments of the two solute particle species as can be expected for the given definition
of the isotropic interaction matrix K. Periodic checkered particle arrangements
can only be realised without interruption on rectangular periodic domains with
dimensions ~l such that all lattice lengths li are even, and we will therefore only
consider domains satisfying these conditions in this work.

4.2 coexistence point calculations

Having established a rough sketch of the model’s phase behaviour, we will
now attempt to map the phase diagram. A wide selection of approaches to phase
coexistence point calculations exists in the literature [210–215], and in this work we
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Phase Label Long Range q Order Average Energy −〈E(σ)〉
Solvent Rich – – ∼ Nd

Disorder I – ∼ Nd
Partial Disorder II s = 2 ∼ Nd[1 + 0.5(d− 1)(c + 1)−1]

Order III s ∈ {1, 2} ∼ 0.5Nd(d + 1)

Table 4.1: Listing of the stationary states in the extended PLG model for kBT < 1.5, c ∈
[0.5, 1], Q = 24 on cubic lattices with even dimensions ~l. For all considered temperatures,
the solvent rich (〈N0(σ) ∼ N) state occurs at low values of f < 1.0. For c = 0.5, the three
solute rich states (〈Ns(σ) ∼ N) are found at high values f > 1.0 with disordered (I), partially
disordered (II) and ordered (III) structures being persistent at respectively high, intermediate
and low values of kBT. Specified in the ”Long Range q Order” column are the solute species
s for which long range orientational (q) order is present in the given phase.

(a) Disorder (I) (b) Partial Disorder (II) (c) Order (III)

Figure 4.2: Visualisations of the bulk structures of the three solute rich states in the extended
PLG model in 6× 6× 6 cubic lattice cells. Lattice sites carrying species labels si = 1 and si = 2
are depicted as tetrahedra and cubes respectively, with distinct values of the orientation
labels qi ∈ {1, . . . , Q} being represented by one of the Q = 24 distinct colours.

will employ the combined ideas of multicanonical [216] and Wang-Landau [217]
sampling strategies.

4.2.1 Flat Histogram Method

The central element of flat histogram sampling approaches is the observation
that given the function ηλ(λ) = ln P(λ), where P(λ) is the projection of the equi-
librium microstate distribution P(σ) into the space of some order parameter λ(σ),
the distribution P̄(λ) under the action of the bias ηλ(λ) is uniform:

P̄(λ′) = Z̄−1 ∑
{σ: λ(σ)=λ′}

exp{−βH(σ)− ηλ[(λ(σ)]}

= Z̄−1ZP(λ′) exp[−ηλ(λ
′)] = Z̄−1Z ∝ 1,

(4.7)

where Z̄ = ∑σ∈Λ exp{−βH(σ) − ηλ[(λ(σ)]}. The Wang-Landau recursion can
be viewed as one of many sampling strategies for estimation of P(λ) based on
utilisation of the above property of ηλ.
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We implement a procedure analogous to the Wang-Landau recursion by, first,
defining the range [λmin, λmax] of a chosen one-dimensional order parameter λ.
We then define a discretisation λi ∈ {λmin, λmin + ∆λ, . . . , λmax − ∆λ} as a set of
bins λi, i ∈ {1, . . . , nbin} of width ∆λ. Any value λ(σ) of the order parameter
falls into the ith bin of a histogram h(λi) if λi ≤ λ(σ) < λi+1. An estimate of the
discrete analogue of ηλ(λ) is obtained via iterative incremental refinement over the
course of a MC simulation where a history dependent bias η̃k(λi) is introduced
into the Metropolis acceptance criteria. At the kth iteration of the algorithm, we
sample the histogram hk(λi) under the MC scheme where a move σ → σ′ is
accepted with probability

min
{

1, exp
[
−β{H(σ′)− H(σ)} − {η̃k[λ(σ

′)]− η̃k[λ(σ)]}
]}

, (4.8)

and the histogram hk(λi) and the bias η̃k(λi) are updated according to:

hk(λi)← hk(λi) + 1, η̃k(λi)← η̃k(λi) + ∆ηk, λi : λi ≤ λ(σ′′) < λi+1, (4.9)

where σ′′ ∈ {σ, σ′} is the system’s microstate upon rejection or acceptance of
the proposed move and ∆ηk = 2−k∆η0 ≥ ∆ηmin is the iteration dependent bias
increment. The kth iteration is terminated if the histogram hk(λi) achieves the
flatness criterion:

0.95h̄k < hk(λi) < 1.05h̄k ∀i ∈ {1, . . . , nbin}, h̄k =
1

nbin

nbin

∑
i=1

hk(λi), (4.10)

and we take η̃k(λi) as an estimate of the discretised ηλ when the flatness criterion
is satisfied for the final iteration k : ∆ηk = ∆ηmin.

Statistical and systematic errors, convergence properties and various refine-
ments of the above approach have been examined by multiple studies [218–220]
and it is well known that the presented sampling strategy is, in many respects, not
optimal. In this work, however, we will only aim to obtain approximate values of
phase coexistence points for which, as we shall see, the procedure listed above is
adequate.

4.2.2 Histogram Reweighting

Specific choices of λ can allow for estimation of P(λ|β′,~µ′) based on a known
distribution P(λ|β,~µ) at a different point in the parameter space. Choosing the
system’s energy E(σ) as an order parameter yields:

P(E′|β′)
P(E′|β) ∝

e−β′E′ ∑σ:E(σ)=E′ f Ns(σ)

e−βE′ ∑σ:E(σ)=E′ f Ns(σ)
= exp[−(β′ − β)E′]. (4.11)
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Similarly, we may choose the number of solute particles Ns in the system as an-
other order parameter yielding:

P(N′s| fb)

P(N′s| fa)
∝

f N′s
b ∑σ:Ns(σ)=N′s e−βE(σ)

f N′s
a ∑σ:Ns(σ)=N′s e−βE(σ)

=

(
fb

fa

)N′s
. (4.12)

Thus, given a sufficiently accurate initial estimate (β,~µ) of the phase coexistence
point (β∗,~µ∗), by choosing an appropriate order parameter λ, the initial estimate
can be refined via reweighting of the distribution P(λ|β,~µ) to the point where the
coexistence condition is satisfied:

∑
σ∈A

P[λ(σ)|β∗,~µ∗] = ∑
σ∈B

P[λ(σ)|β∗,~µ∗], (4.13)

where A and B are the coexisting phases.

4.2.3 Validation for Ising-like Lattice Gas

We now consider solute-solvent coexistence in a two component (si = 0 for
solvent and si = 1 for solute) Ising-like lattice gas model with the Hamiltonian
HLG(σ) given by:

HLG(σ) = ∑
{(i,j)}

Ksisj − Ns(σ)kBT ln f , K =

[
1 0
0 2

]
, (4.14)

where we set to solvent chemical potential µ0 = 0 without loss of generality. The
exact value f∗ of f at solute-solvent coexistence can be obtained by various means,
and here we will employ an approach based on the Widom expression [221] for
chemical potential of particle species, which, for lattice systems [76], can be de-
rived from the following observation:

Zns+1 =
1

ns + 1 ∑
σ∈Λns

∑
~x∈X(σ)

exp{−βH(σ)− β∆H(σ,~x)}

= Zns

N − ns

ns + 1
〈exp{−β∆H}〉σ∈Λns

= f Zns

|Λns+1|
|Λns |

〈exp{−β∆E}〉σ∈Λns
,

(4.15)
where the NVT partition function Zns+1 for the system with ns + 1 solute parti-
cles is constructed from a partition function Zns by considering replacement of a
solvent particle with solute at all possible N− ns positions X(σ) in configurations
Λns = {σ : Ns(σ) = ns} of the ns ensemble. The symbols ∆H(σ,~x) and ∆H in the
above expression denote the change in the system’s Hamiltonian due to insertion
of a solute particle at respectively a specific lattice position ~x and a randomly cho-
sen available position in a configuration sampled from the distribution of the ns

ensemble.
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The solute chemical potential µns(β, f ) of a system with ns solute particles can
be written as:

µns(β, f ) = F(ns + 1|β, f )− F(ns|β, f ), F(ns|β, f ) = −kBT ln
Zns(β, f )
Z(β, f )

, (4.16)

where F(ns|β, f ) is the µVT free energy of the system with ns solute particles
and Z(β, f ) is the corresponding partition function. Noting that the energy of the
given lattice gas can be computed by counting the unique neighbouring pairs of
particles: ELG(σ) = ∑1

i=0 Nii(σ)Kii, where Nij(σ) is a count of unique neighbouring
pairs of particles of species i and j, it is easy to show that:

F(ns|β, f∗) = F(N − ns|β, f∗) ∀ns ∈ {1, . . . , N}, (4.17)

by symmetry of the state space under the operation which replaces all solute
particles with solvent and vice versa. Although the above condition is sufficient
to obtain the exact values of f∗(β), we can also consider the equivalent condition
of equality of chemical potentials:

µns(β, f∗) = −µN−ns−1(β, f∗) ∀ns ∈ {1, . . . , N}, (4.18)

which states that the change in free energy of the system at coexistence due to
insertion of a solute particle into a Ns(σ) = ns configuration is equal to that due
to insertion of a solvent particle into a Ns(σ) = N − ns configuration. Solving
the equation µns(β, f∗) + µN−ns−1(β, f∗) = 0, with ns = 0 for f∗ we obtain the
solute-solvent coexistence line for the given lattice model:

ln f∗(β) = −1
2

{
ln〈e−β∆E〉σ∈Λns=0 + ln〈e−β∆E〉σ∈Λns=N−1

}
= −3β. (4.19)

Taking the bin width of ∆λ = 1 with λmin = 0, λmax = N, we now apply the
procedures discussed in Secs. 4.2.1 and 4.2.2 to obtain the coexistence values f∗(β)

via MC for the cubic~l = (4, 4, 4) lattice gas model by computing the free energies
F(ns|β, f ). As shown in Fig. 4.3, we find the numerical estimates of the coexistence
points in excellent agreement with Eq. (4.19).

4.3 approximate coexistence points

In this section we will apply the approach of Sec. 4.2.3 along with the mean
field theory for the Potts model [Eq. (3.4)] to obtain approximate expressions for
the coexistence points of the four considered phases in the extended PLG model.
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Figure 4.3: Free energies F(ns|β, f∗) [(a)] and solute-solvent coexistence points f∗(β) [(b)] for
the lattice gas model defined by Eq. (4.14). The four shown sets of estimates of F(ns|β, f∗)
(lines and markers) in (a) were computed at the four values of kBT, specified in the legend, by
reweighting the estimates F(ns|β, f = 1.0), obtained via the flat histogram approach taking
∆η0 = 2−2, ∆ηmin = 2−20. The corresponding estimates of f∗(β) (markers) are plotted in
(b). Error bars in (a) and (b) (smaller than markers) indicate the maximum and minimum
deviation from the mean value of a set of 10 independent estimates.

4.3.1 Mean Field Solute Phase Coexistence points

In order to determine the I− II and II− III phase coexistence points it is suf-
ficient to consider the high f limit of the parameter space, where the extended
PLG model can be thought as an interweave of two decoupled Q-state Potts lat-
tices, each having the coordination number Nnbr = 12. The general mean field
expression for the order-disorder coexistence temperature β† in the 3D Q-state
Potts model is given by:

β−1
† (Q) = INnbr

Q− 2
Q− 1

[2 ln(Q− 1)]−1 , (4.20)

where I is the strength of interaction between aligned particle pairs. Taking I =

(c + 1)−1 for II − III coexistence and I = c(c + 1)−1 for I − II coexistence, we
obtain the mean field solution for the coexistence points of the three solute rich
phases in the extended PLG model.

We sample the probability distribution P(E) = exp[−βF(E)] over the set of the
system’s energy states in the range E ∈ [3N, 6N] by applying the flat histogram
method. As shown in Fig. 4.4a, the distribution P(E) exhibits three clear peaks at
energy values close to the approximate estimates for the three solute rich phases
given in Table 4.1. By reweighting the numerically computed profiles F(E) we ob-
tain estimates of coexistence points for the three solute phases (Fig. 4.4b), showing
reasonable agreement with the values produced by Eq. 4.20.
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Figure 4.4: Numerically obtained free energy profile F(E) at order-disorder coexistence for
f = 1, c = 1 [(a)] and solute phase coexistence points [(b)] for various values of parameter
c ∈ [0.5, 1.0] [Eq. (4.3)] in the Q = 24 cubic ~l = (8, 8, 8) extended PLG model. Lines and
markers in (a) correspond to values produced by the flat histogram method taking ∆η0 =
2−2, ∆ηmin = 2−20. Markers in (b) are the the coexistence point coordinates obtained via
reweighting of numerical estimates of F(E), while the lines show the corresponding mean
field values as given by Eq. (4.20). Error bars (smaller than markers) indicate the ranges
of numerical estimates based on at least 10 independent repetitions of the flat histogram
method at every point.

4.3.2 Solvent-Solute Coexistence in the Extended PLG

We can derive an analogue of the Eq. (4.19) for the extended PLG model via:

ln f∗(β) ≈ −1
2

{
ln
|Λns=1||Λns=N |
|Λns=0||Λns=N−1|

+ ln〈e−β∆E〉σ∈Λns=0 + ln〈e−β∆E〉σ∈Λns=N−1

}
,

(4.21)
where |Λns | = QN2ns(N

ns
), however, the state space symmetry argument towards

Eqs. (4.17) and (4.18) does not apply here due to the presence of multiple solute
species and anisotropic interactions. Additionally, due to ergodicity breaking in
the large N limit, not all states in Λns=N and Λns=N−1 are accessible to the system
in the NVT ensemble, which is not taken into account by the above expression.
We will now attempt to use the above expression to obtain an approximation to
the solute-solvent coexistence curve for the extended model at c = 1.

We first note that at all considered conditions ln〈e−β∆E〉σ∈Λns=0 = e−6β. Assum-
ing no short range order in I and perfect short range order in III, the respective
solute insertion probabilities can be approximated by:

〈e−β∆E〉(I)σ∈Λns=N−1
≈ 1

2
+

1
2

12

∑
i=0

(
12
i

)
e(6+i/2)βQ−i(1−Q−1)12−i, (4.22)

〈e−β∆E〉(III)
σ∈Λns=N−1

≈ 1
2
+

1
2

Q−1
(

Q− 1 + e6β
)

e6β, (4.23)
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where we take into account the possibility of interruption of the checkered ar-
rangement of solute particles upon solute insertion. Due to ergodicity breaking
at low temperatures, the disordered solute phase, like III, cannot easily transform
between the two available checkered structures while the ordered solute phase is
also unable to explore the Q2 energetically equivalent ordered arrangements. This
factors into the entropic contribution of Eq. (4.21) as follows:

|Λns=1||Λns=N |
|Λns=0||Λns=N−1|

= 2N
|Λns=N |
|Λns=N−1|

=





2 for I,

2Q−1 for III.
(4.24)

Ignoring the negligible exp(−6β) < 2× 10−2, ∀kBT < 1.5 term, we arrive at:

f∗(β) =





[
Q
(
Q− 1 + eβ/2)−1

]6
, β ≤ β∗(Q),

Q
(
Q− 1 + e6β

)−1/2 , β ≥ β∗(Q),
(4.25)

where β∗(Q) is the intersection point defined implicitly by
(
Q− 1 + eβ∗/2)12 Q−10 =

Q− 1+ e6β∗ , which, we find, converges as power law to β†(Q) [Eq. (4.20)] for large
Q. As shown in Fig. 4.5b, the above expression is in reasonable agreement with
the solute-solvent coexistence curve estimated via the flat histogram method.
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Figure 4.5: Numerically obtained free energy profiles F(Ns|β, f∗) at solute-solvent coexis-
tence f∗(β) for four values of kBT (legend) [(a)]; and solute-solvent coexistence points [(b)]
for kBT ∈ [0.5, 1.5] in the Q = 24, c = 1 cubic ~l = (4, 4, 4) extended PLG model. Lines
and markers in (a) correspond to values produced by the flat histogram method taking
∆η0 = 2−2, ∆ηmin = 2−20. Markers in (b) are the the coexistence point coordinates obtained
via reweighting of numerical estimates of F(Ns|β, f = 1), while the dashed line shows the
corresponding values given by the approximation of Eq. (4.25). Error bars (smaller than
markers) indicate the ranges of numerical estimates based on 10 independent repetitions of
the flat histogram method for every point.
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4.4 phase diagrams

The phase diagrams for the extended PLG model at c ∈ {0.5, 1.0} are shown
in Fig. 4.6. Due to the small system sizes used in MC computation of the phase
coexistence points, we cannot comment on the accuracy of the approximations or
the magnitude of the finite size corrections here. As we shall see in the subsequent
chapters, however, the approximations developed in this chapter are sufficiently
accurate for the purposes of this study.
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Figure 4.6: Phase diagrams for the Q = 24, d = 3 extended PLG model at c = 0.5 [(a)]
and c = 1.0 [(b)], showing the boundaries of stability regions of solvent rich (∗), disordered
solute (I), partially ordered solute (II) and ordered solute (III) phases. Markers correspond
to coexistence point estimates obtained via the flat histogram and reweighting approaches as
detailed in Sec. 4.3 with error bars (smaller than markers) showing the full ranges of values
over a minimum of 10 independent calculations. The solid and dashed lines in (b) are the
approximate values of coexistence points obtained via respectively Eqs. (4.20) and (4.25).

4.4.1 Solute Fugacity and Concentration

The solute-solvent chemical potential difference can be defined as per solute
monomer difference in free energy between solute rich and solvent rich states.
This definition corresponds to the gradient of the straight line drawn from the
point [0, F(ns = 0|β, f )] to the point [N, F(ns = N|β, f )], which can be related to
the ratio f / f∗(β) by assuming F(ns = 0|β, f∗) = F(ns = N|β, f∗), yielding the
expression:

∆µcoex(β, f ) = β−1[ln f − ln f∗(β)]. (4.26)

If setting the solvent species chemical potential µ0 = 0, the above expression gives
the difference in solute chemical potentials at the point (β, f ) and at coexistence
(β, f∗), which is the CNT definition of the driving force to nucleation [75]. In
Fig. 4.7 we plot the solute concentration ρ = Ns/N against f and ∆µcoex, showing
that the CNT assumption ln ρ ∝ ∆µcoex holds at constant temperature.
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Figure 4.7: Solute concentration ρ(β, f ) plotted against solute fugacity [(a)] and solute-
solvent chemical potential difference [(b)] at three values of kBT (legend) in the c = 1, Q =
24, d = 3 extended PLG model. Markers correspond to estimates computed from MC tra-
jectories of 220 MCS long in~l = (64, 64, 64) systems, with error bars (smaller than markers)
calculated by taking the means of 210 MCS long trajectory segments as independent estimates
and obtaining the 99% confidence intervals on the means of the resultant distributions. Lines
correspond to polynomial fits to the MC estimates.

4.4.2 Low Temperature Metastability of Disordered States

As shown above, the extended PLG model reduces to a variant of the Potts
model in the high f limit, allowing us to make use of the existing results for the
Potts model here. Currently, presence of metastability in the d-dimensional Q-
state Potts models is debated with recent evidence [186, 187, 222] pointing to such
metastability being a finite size effect. Thus we do not expect the disordered or
partially disordered phases I and II in our model at c = 1 to be metastable in
bulk below the order-disorder transition temperature, and we will provide some
evidence towards this in the next chapter.
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5

E Q U I L I B R I U M C L U S T E R D I S T R I B U T I O N S

In this chapter we will discuss the approaches and the results of sampling the
equilibrium size and internal orientational order distributions of solute nuclei in
the cubic c = 1, Q = 24, d = 3 extended PLG model at low temperatures. We will
start by defining the relevant order parameters followed by a discussion of a path
sampling approach to free energy calculations. Using the path based enhanced
sampling method, we will compute the equilibrium distributions of nuclei sizes
and examine the size dependence of the preferred internal orientational order of
nuclei at equilibrium.

5.1 order parameters

In this work, we will employ the geometric definition [1,76] of particle clusters
in lattice models, i.e. a particle on the lattice is a member of a given cluster if it
neighbours at least one other particle in the given cluster. It is well known that the
geometric definition of particle clusters conflicts with the physical definition and
leads to an incorrect treatment of the percolation transition. At the low temper-
atures and particle densities considered in this work, however, we do not expect
to encounter any of the problems associated with the percolation transition and
we will examine the thermodynamic and kinetic meaningfulness of the geometric
cluster definition via appropriate calculations.

We define the order parameter n(σ) as the size of the largest geometric cluster
of solute particles present in the given microstate σ, without requiring any struc-
ture in the cluster’s internal arrangement of the solute particles. By computing the
proportions of aligned diagonal solute particle pairs within the largest solute clus-
ter, we additionally quantify the degree of the cluster’s internal structural order
via the order parameters υ(σ) ∈ [0, 1] and χ(σ) ∈ [0, 1]:

υ(σ) = max
{

φ1(σ)Φ−1
1 (σ), φ2(σ)Φ−1

2 (σ)
}

, (5.1)

χ(σ) =





υ−1(σ)min
{

φ1(σ)Φ−1
1 (σ), φ2(σ)Φ−1

2 (σ)
}

if υ(σ) > 0,

0 otherwise,
(5.2)
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where Φs ∈ N and φs ∈ N are, respectively, the total number and the number of
aligned diagonal particle pairs of species s ∈ {1, 2} internal to the largest solute
cluster.

(a) (1/6, 1) (b) (1, 1/6) (c) (1, 1)

Figure 5.1: Visualisations of cubic ~l = (2, 2, 2) lattice configurations of the Q = 24, d = 3
extended PLG model fully occupied by solute nuclei n(σ) = 8 with Φ1 = Φ2 = 6, showing
structures with various degrees of internal orientational order and the corresponding values
of the structural order parameter [υ(σ), χ(σ)].

The choice of the structural order parameter (υ, χ) is motivated by the energet-
ics of the solute states in the extended PLG model: for any configuration σ such
that the lattice is fully occupied by a checkered arrangement of solute particles
s ∈ {1, 2}, the energy is given by −E(σ) = Nd + [cφ1(σ) + φ2(σ)]/(c + 1). In
Sec. 4.3 we have already shown that the energy E(σ) of the system serves as a
good order parameter for distinguishing between the bulk solute phases, and we
can loosely classify the solute nuclei by defining three order parameter regions
{(υ, χ)}X, X ∈ {I, II, III}:

1. Disordered nuclei: {(υ, χ)}I = {(υ, χ) : υ ∈ [0, 0.5], χ ∈ [0, 1]}.

2. Partially disordered nuclei: {(υ, χ)}II = {(υ, χ) : υ ∈ (0.5, 1], χ ∈ [0, 0.5]}.

3. Ordered nuclei: {(υ, χ)}III = {(υ, χ) : υ ∈ (0.5, 1], χ ∈ (0.5, 1]}.

Upon a rapid quench to low temperatures, order-disorder transitions in Potts-
like spin systems are known to proceed via domain coarsening, where multiple
domains (grains) of aligned spins form, leading to a frustrated ”polycrystalline”
state or extremely slow relaxation towards a globally ordered – ”monocrystalline”
– state [223]. For the purposes of this work, we identify ”polycrystalline” states
as subsets of their corresponding ordered phases (II or III), as is achieved by the
above classification scheme over the considered range of temperatures.

5.2 enhanced sampling method

Once again, a multitude of methods for enhanced sampling of order parameter
distributions exist [224], many of which have already been mentioned in Sec. 4.2.
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In this chapter, we consider the equilibrium path sampling (EPS) or ”BOLAS” ap-
proach [225], thereby providing an introduction to the path sampling methodology
which will be useful in Chapter 7.

5.2.1 Equilibrium Path Sampling

A path through the system’s configuration space can be viewed as a sequence
~σ = (σ1, σ2, . . . , στ) of configurations σi ∈ Λ, such that any microstate σi+1 in
the sequence can be constructed from σi via acceptance of a single MC move, i.e.
P(σi → σi+1) > 0 ∀i ∈ {1, . . . , τ − 1}. By the Markov property, the probability
P(~σ) of any path ~σ can be written in the form of Eq. (2.12), which allows us to
develop a MC approach for path sampling.

We now consider sampling of the equilibrium distribution P(~σ) of paths ~σ ∈
Λτ of fixed length τ via the ”shooting” MC move ~σ → ~σ′ [130], which constructs
a path~σ′ ∈ Λτ from path~σ by:

• Choosing a starting configuration σa from the sequence~σ and setting σ′b = σa

in the sequence ~σ′, for some independently generated a and b uniform on
{1, . . . , τ}.

• Sampling the forward and backward path segments of~σ′, comprising respec-
tively τ − b and b− 1 sequentially generated microstates, by initiating two
independent MC trajectories starting from σ′b = σa.

Correct sampling of the equilibrium path distribution can be achieved by im-
posing the detailed balance conditions on the shooting move acceptance [Pacc(~σ→
~σ′)] and path generation [Pgen(~σ→~σ′)] probabilities:

Pacc(~σ→~σ′)Pgen(~σ→~σ′)
Pacc(~σ′ →~σ)Pgen(~σ′ →~σ)

=
P(~σ′)
P(~σ)

=
P(σ′1)∏τ−1

i=1 P(σ′i → σ′i+1)

P(σ1)∏τ−1
j=1 P(σj → σj+1)

. (5.3)

The reversibility condition [Eq. (2.8)] on the microstate transition probabilities im-
plies that the dynamics of the systems studied in this work are invariant under
time reversal, allowing the path generation probability Pgen(~σ→~σ′) to be written
as the product of probabilities of the forward and backward path segments:

Pgen(~σ→~σ′)
Pgen(~σ′ →~σ)

=
∏b

i=2 P(σ′i → σ′i−1)∏τ−1
j=b P(σ′j → σ′j+1)

∏a
k=2 P(σk → σk−1)∏τ−1

m=a P(σm → σm+1)
. (5.4)

Combining and simplifying the above equations, we arrive at:

Pacc(~σ→~σ′)
Pacc(~σ′ →~σ)

× ∏b
i=2 P(σ′i → σ′i−1)

∏a
k=2 P(σk → σk−1)

=
P(σ′1)∏b−1

i=1 P(σ′i → σ′i+1)

P(σ1)∏a−1
j=1 P(σj → σj+1)

,
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which can be further simplified by noting that:

b

∏
i=2

P(σ′i → σ′i−1) =
b

∏
i=2

P(σ′i−1 → σ′i )
P(σ′i−1)

P(σ′i )
=

P(σ′1)
P(σ′b)

b−1

∏
i=1

P(σ′i → σ′i+1), (5.5)

leading to:
Pacc(~σ→~σ′)
Pacc(~σ′ →~σ)

=
P(σ′b)
P(σa)

= 1, (5.6)

since σa = σ′b. Thus, any shooting move can be accepted with probability 1, given
that the microscopic stochastic dynamics obey detailed balance and the shooting
point σa = σ′b appears in the generated trajectory~σ′ unaltered.

Acceptance criteria for shooting moves which perturb the microstate σa prior to
generating the forward and backward segments of~σ′ are straightforward to derive
by including appropriate considerations in the expression for the path generation
probability Pgen(~σ → ~σ′). Under the Metropolis kinetics discussed in Sec. 4.1.3,
however, shooting point perturbation is not required for decorrelation of the gen-
erated path, and the MC scheme described above is sufficient for the purposes of
this work.

5.2.2 Recovering Marginal Distributions

The EPS algorithm provides a straightforward approach to sampling of condi-
tional distributions P[σ|λ(σ) ∈ {λ}] over the portion of state space which realises
values of the order parameter λ(σ) belonging to some set or window {λ}. This
is achieved by accepting only the trajectories ~σ ∈ Λτ which contain at least one
configuration σi such that λ(σi) ∈ {λ}. The obtained conditional ensemble of
configurations can be used to estimate the conditional distribution of the order
parameter P[λ|λ ∈ {λ}], which, given a set of overlapping windows {λ}i, can be
used to reconstruct a substantial portion of the equilibrium distribution P(λ).

Several methods of reconstruction of the equilibrium distribution P(λ) from
a finite set of overlapping conditional distributions P[σ|λ(σ) ∈ {λ}i] exist in
the literature [226, 227]. In this work, we will consider the weighted histogram
(WHAM) [228, 229] and least squares (LSQ) approaches.

In a given range of order parameter values λ ∈ [λmin, λmax], we partition the
order parameter space into m bins of equal width ∆λ and define w overlapping
windows. For every window i ∈ {1, . . . , w}, the EPS scheme samples some num-
ber gij ∈N, j ∈ {1, . . . , m} of hits in the jth bin of the discretised order parameter
space. The set of probabilities {pj}, corresponding to an estimate of the discre-
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tised equilibrium distribution P(λ), can be recovered from the histograms gij via
WHAM by simultaneously solving the equations:

pj =
∑w

i=1 gij

∑w
i=1 uij ∑k∈{j}i

gik
, uij =





(
∑k∈{j}i

pk

)−1
if j ∈ {j}i,

0 otherwise,
(5.7)

where {j}i is the set of indices of bins included in the ith EPS window. The
more computationally straightforward LSQ approach attempts to match the free
energy estimates of adjacent overlapping windows by sequentially reconstructing
the overall estimated free energy profile G(w)

j , j ∈ {1, . . . , m} as follows:

G(1)
j =





ln g1j if j ∈ {j}1,

0 otherwise,
{j}(1) = {j}1, {j}(i) = {j}(i−1) ∪ {j}i,

G(i)
j =





ln gij + κ(i) if j ∈ {j}i and j 6∈ ν(i),(
G(i−1)

j + ln gij + κ(i)
)

/2 if j ∈ ν(i),

G(i−1)
j otherwise,

ν(i) = {j}(i−1) ∩ {j}i, κ(i) = |ν(i)|−1 ∑
k∈ν(i)

G(i−1)
k − ln gik,

(5.8)

where κ(i) determine the vertical offsets required for least squares matching of
values G(i−1)

k and ln gik in the window overlaps ν(i).

5.2.3 Validation

We now verify our implementation of the EPS method by computing the equi-
librium distribution of the order parameter (n, χPLG) in the PLG model as defined
in Sec. 3.2.5 at kBT = 0.7, f = 2.25, where the product n(σ)χPLG(σ) corresponds
to the size of the largest cluster of aligned solute particles inside the largest cluster
of solute particles in configuration σ. We consider cubic ~l = (32, 32, 32) systems
and sample paths of length τ = 6N = 6× 323 counting and storing only 7 con-
figurations, obtained at intervals of 1 MC sweep, per accepted path. We estimate
the conditional probabilities of every possible value of the order parameter in the
range n ∈ [1, 320], χPLG ∈ (0, 1] by defining an array of 6400 windows as illus-
trated in Fig. 5.2a. For each window we carry out EPS equilibration and sampling
stages which terminate upon accepting respectively 5× 104 and 105 new lattice
configurations, i.e. accepting at most 5× 104 and 105 or at least 5× 104/7 and
105/7 shooting moves. Reconstructing the estimate of the free energy landscape
F (n, χPLG) via the LSQ procedure [Eq. (5.8)] we obtain a result (Fig. 5.2b) which
is in good quantitative agreement with that reported in Ref. [6].
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Figure 5.2: EPS windowing scheme (left) and the reconstructed free energy profile (right) for
the PLG model at kBT = 0.7, f = 2.25. Markers in the left panel are drawn at each of the
possible order parameter values in the range n ∈ [1, 12], χPLG ∈ (0, 1], with distinct marker
shapes corresponding to distinct overlapping order parameter windows i ∈ {1, . . . , 9} (leg-
end). In the left panel, the contour lines are drawn at intervals of 8kBT and the black line is
drawn through coordinates χ∗PLG(n) = argminχPLG

{F (n, χPLG)}.

Due to the high computational expense of solving the set of coupled equations
Eq. (5.7) via fixed point iteration, we have not attempted to employ WHAM in
reconstruction of multi-dimensional free energy landscapes in this work. While
the computational expense of the WHAM approach can be dramatically reduced
by applying the more advanced numerical methods [229], we do not observe any
significant discrepancies between profiles reconstructed via Eqs. (5.7) and (5.8)
(Fig. 5.3) and, for this reason, do not employ WHAM throughout the rest of this
work.
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Figure 5.3: Reconstructions of the free energy F(n) = −kBT ln P[n|n(σ) ∈ {3, . . . , 603}] +
const. as function of the largest solute cluster size n via Eqs. (5.7) and (5.8) for the
c = 1, Q = 24 extended PLG model on a cubic ~l = (32, 32, 32) lattice at kBT = 0.7, f = 2.0.
The conditional distributions P[n|n(σ) ∈ {n}i] were sampled via EPS, defining 200 over-
lapping windows of width ∆n = 4 over the range n ∈ [3, 603]. For each window, the EPS
equilibration and sampling stages terminated upon accepting respectively 5× 104 and 105

new configurations. The EPS algorithm sampled paths of length τ = 6× 323 in the µVT
ensemble, counting and storing only 7 configurations per path.
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5.3 equilibrium cluster distributions in the extended plg

We now apply the EPS sampling and LSQ reconstruction procedures to obtain
estimates of portions of the equilibrium distributions P(n) and P(n, υ, χ) for the
Q = 24, c = 1 extended PLG model on a cubic ~l = (32, 32, 32) lattice in the
region kBT ∈ {0.6, 0.65, 0.7}, f ∈ {2, 2.25, 3, 4, . . . , 7} of parameter space, i.e. at
conditions where the ordered solute phase is the most stable thermodynamic state
of the system. In all applications of the EPS method, we sample paths of length
τ = 6× 323 in the µVT ensemble, i.e. under the transmutation-reorientation move
set (Sec. 4.1.3), counting and storing only 7 configurations per path and allow the
equilibration and sampling stages to terminate upon acceptance of respectively
5× 104 and 105 new configurations.

5.3.1 Cluster Size Distributions

We estimate the 1D conditional distributions P[n|n(σ) ∈ {n}i] via EPS, defin-
ing 200 overlapping windows {n}i = {3 + (i − 1)(∆n − 1), . . . , 3 + i(∆n − 1)}
of width ∆n = 4 in the range n ∈ [3, 603]. Additionally, we obtain estimates
of the conditional probabilities P[n|n(σ) ∈ {1, . . . , 8}] from 102 brute force MC
generated trajectories of length 104. Applying the LSQ reconstruction procedure
to the obtained EPS and brute force histograms, we estimate the free energies
F(n) = −kBT ln P[n|n(σ) ∈ {1, . . . , 603}] + const. computing the barriers ∆F(n) =
F(n)− F(1) (Fig. 5.4).
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Figure 5.4: Estimates of the free energy barriers ∆F(n) to nucleation (solid lines) for the
c = 1, Q = 24, d = 3 extended PLG model at kBT ∈ {0.6, 0.65, 0.7}, f ∈ {2, 3, . . . , 7}, showing
the corresponding fits of the CNT expression Eq. (2.54) (dashed lines). The CNT fits were
obtained by computing the coefficients a and b yielding the least squares solutions to the
sets of simultaneous equations ∆F(ni)− bn2/3

i + ani = 0, ni ∈ {nmn, n† + 50}, where nmn =

max{n† − 50, 1}, n† = argmaxn{∆F(n)} and the sets of coordinates [ni, ∆F(ni)] used in the
fits correspond to the thicker portions of the solid lines.
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Although Eq. (2.54) appears to give reasonable fits to the obtained estimates
of ∆F(n) close to the top of the barrier n† = argmaxn{∆F(n)}, we find the over-
all quality of the CNT description of the free energy barriers rather poor, which
has previously been recognised in multiple other studies of nucleation phenom-
ena [175, 176] (Table 3.2). We also find that the least squares values of the CNT
coefficients ∆µCNT do not correspond to the approximate values of the thermo-
dynamic solute-solvent chemical potential difference ∆µcoex [Eq. (4.26)], while
the estimates of the nuclei surface tensions γCNT are not independent of solute
supersaturation as typically assumed by CNT (Fig. 5.5). The CNT prediction
∆F(n†) ∝ ∆µ−2

coex, however, appears to hold well at higher solute supersaturations
f ≥ 3 as shown in Fig. 5.5c. Additionally, we verify the absence of finite size ef-
fects in the calculations presented here by obtaining estimates of ∆F(n) from EPS
simulations on cubic systems of ~l = (16, 16, 16) at kBT = 0.7, f = 2, i.e. where
the critical nuclei are largest, which we find in excellent agreement with the data
computed for~l = (32, 32, 32) systems.
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Figure 5.5: Values of the least squares estimates of CNT volume and surface coefficients [(a)
and (b)], and heights of the free energy barriers to nucleation [(c)] for the c = 1, Q = 24, d =
3 extended PLG model plotted against ∆µcoex for three values of kBT (legend). Lines and
markers in (a) and (b) correspond to the least squares coefficient estimates producing the
CNT fits shown in Fig. 5.4. Markers in (c) are the EPS estimates of the free energy barrier
heights while lines show the corresponding least squares linear fits to the leftmost 5 points,
i.e. for f ≥ 3.

It is important to note that our estimates of P(n) do not take into account
the possibility of existence of multiple clusters in a single lattice configuration,
which can be expected to result in a systematic underestimation of P(n) for low
values of n [73]. Furthermore, we do not assess the thermodynamic relevance
of the geometric definition of solute clusters which may be a significant factor in
our application of CNT [75]. Due to the relatively high computational expense
of the necessary calculations, we cannot give a rigorous account of the statistical
uncertainties in our estimates of nucleation barrier heights here. Therefore, we
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cannot comment conclusively on the predictive power of Eq. (2.54) based on the
data presented in this section. In the chapters that follow, however, we will explore
the applicability of CNT’s treatment of nucleation kinetics in the extended PLG
model, making use of the explicit estimates of the free energy barrier heights given
here.

5.3.2 Equilibrium Internal Orientational Order of Nuclei

In this section, we estimate the equilibrium distributions P(n, υ, χ) of the three-
dimensional order parameter introduced in Sec. 5.1 via EPS at kBT ∈ {0.6, 0.65, 0.7}
and f = 2.25. For simplicity, we coarsen the space of the orientational order pa-
rameter (υ, χ) by defining 16 equally sized bins along υ and χ and only consider
the range of cluster sizes n ≥ 22, where the density of order parameter values
is sufficiently high to allow at least one value per bin. Keeping the bin width of
1 along the n coordinate, we define 2500 cubic overlapping EPS windows 4 bins
wide along each coordinate in the range n ∈ [22, 322], υ ∈ [0, 1], χ ∈ [0, 1]. Using
the EPS trajectory parameters and termination criteria specified in Sec. 5.3.1, we
obtain estimates of the free energies F (n, υ, χ) = −kBT ln P(n, υ, χ) + const. via
Eq. (5.8), interpolating for the unsampled values via Delaunay triangulation.
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Figure 5.6: Coordinates of minima (υ†, χ†)(n) = argmin(υ,χ){F (n, υ, χ)} plotted against n at
three temperatures for the c = 1, Q = 24, d = 3 extended PLG model. Markers correspond
to the values obtained directly from the EPS estimates of F (n, υ, χ) while lines show the data
upon application of a smoothing filter.

Examining the reconstructed profiles F (n, υ, χ), we observe a strong depen-
dence on n and kBT of the equilibrium distributions P(υ, χ|n) of the orientational
order parameter, where small solute clusters (n < 80) are highly likely to exhibit
a low degree of internal orientational order, i.e. P[(υ, χ) ∈ {(υ, χ)}I|n < 80] ≈ 1,
while large solute nuclei (n > 310) are typically highly ordered, i.e. P[(υ, χ) ∈
{(υ, χ)}III|n > 310] ≈ 1. We illustrate this by computing the n dependent coor-
dinates of the local minima (υ†, χ†)(n) = argmin(υ,χ){F (n, υ, χ)} (Fig. 5.6), which
can be thought of as metrics of the thermodynamically preferred degrees of nu-
clei orientation order. As can be seen in Fig. 5.6, partially disordered states appear
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to be preferable for a range of intermediate nuclei sizes, which suggests that we
can expect multi-stage nucleation pathways of the ordered solute phase, proceed-
ing sequentially via disordered and partially disordered precursor states, to be
viable under microscopic kinetics characterised by slow nucleus growth and fast
relaxation of nucleus’ orientational order.

In Fig. 5.7 we visualise the orientational order distributions of critical nuclei,
i.e. of size n = n† = argmaxn{∆F(n)}, showing that their thermodynamically
preferred degrees of orientational order are temperature dependent. This, how-
ever, does not imply that nucleation of disordered and partially disordered solute
structures can occur at the studied temperatures. In fact, for n ≥ 300 we see
no barriers to transformation of nuclei to ordered structures from either of the
two possible precursors, suggesting that, in the studied parameter regime, the
scenario of competitive nucleation of the three solute structures is unlikely in
the extended PLG model. Computing portions of the distributions P(n, υ, χ) at
kBT ∈ {0.6, 0.65, 0.7}, f ∈ {1, 7}, we find no significant dependence of the thermo-
dynamically preferred nuclei structures on solute concentration, suggesting that
the maximum nucleus size below which non-ordered structures are thermody-
namically viable is largely determined by temperature.
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Figure 5.7: Contour plots of 2D segments F †(υ, χ) of free energy landscapes F (n, υ, χ) at
three temperatures, f = 2.25 and for fixed values of n = n† = argmaxn{∆F(n)} for the
c = 1, Q = 24, d = 3 extended PLG model. Contour lines are drawn at intervals of 1kBT and
crosses indicate the coordinates of the local minima (υ†, χ†) = argmin(υ,χ){F (n†, υ, χ)}.

A possible interpretation of the findings presented in this section can be con-
structed within the framework of CNT. We can consider treating the three so-
lute structures as distinct solute polymorphs, defining the barriers FX(n), X ∈
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{I, II, III} by integrating the distributions P(n, υ, χ) within the appropriate basins
{(υ, χ)}X of orientational order, as defined in Sec. 5.1:

FX(n) = −kBT ln
∫

{υ}X

∫

{χ}X

dυdχP(n, υ, χ) + const.. (5.9)

We find that the curves FX(n) (Fig. 5.8) are well fitted by the CNT-like expression:
γXn2/3 − ∆µXn + const., yielding values of coefficients of the surface and volume
contributions to the nuclei free energies which are consistent with the energetics of
the extended PLG model: γI < γII < γIII and ∆µI < ∆µII < ∆µIII – i.e. the cost of
forming solute-solvent interface and the gain associated with the growth of solute
domain both increase with the degree of nucleus order. The observed dependence
of FX(n) on temperature suggests that in some parameter regime kBT ∈ (0.6, 0.65)
the heights of the barriers to nucleation of the three solute structures are equal,
which, in the framework of CNT, implies the possibility of comparable nucleation
rates for the three solute structures.

35 150 265

30

40

50

60

n

F X
(n
)

35 150 265
n

35 150 265
n

I
II
III

(a) kBT = 0.60 (b) kBT = 0.65 (c) kBT = 0.70

Figure 5.8: Free energy barriers FX(n) (markers) to nucleation of the three solute structures
at three temperatures for the c = 1, Q = 24, d = 3 extended PLG model, showing the cor-
responding fits of the CNT-like expression γXn2/3 − ∆µXn + CX (lines). Black lines show
estimates of the one-dimensional free energies ∆F(n) obtained via the EPS procedure out-
lined in Sec. 5.3.1.

Regimes where different solute structures nucleate on similar timescales could
be useful for investigation of the, so far, poorly understood microscopic kinetics of
dissolution-recrystallisation processes [152] in scenarios where structural transfor-
mation is also a viable mechanism of formation of the stable solute phase. While
such scenarios can be realised in the present model, e.g. by generating postcritical
solute clusters of the three different structures, due to the absence of barriers to
structural transformation between the three solute phases, however, the physical
relevance of such realisations is unclear. Although we will not consider the route
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to a lattice model with higher barriers to structural transformations in solute nu-
clei in this work, in the next section we will provide evidence towards barrierless
orientational ordering within solute nuclei being a feature of any ferromagnetic
Potts-like lattice model of anisotropic particles.

5.4 sampling equilibrium cluster configurations

Similar dependence of the distributions of the orientational order parameter
(υ, χ) to that discussed in Sec. 5.3.2 can be observed in the solute rich state of the
extended PLG model on small cubic~l = (l + 2, l + 2, l + 2) lattices of length l + 2
with a static layer of solvent particles at each boundary of the lattice (Fig. 5.9). With
transmutation MC moves disabled, this setup corresponds to the two component
Q-state Potts model with diagonal interactions and reflecting boundary conditions,
and can be used to sample the distribution of equilibrium structures of cubic
nuclei n = l3.

The tendency of small nuclei to adopt disordered structures at higher tem-
peratures, as seen in Fig. 5.9, can, therefore, be understood as a consequence of
finite size stability of disordered states in the Potts model. Recent reports on
d-dimensional Q-state Potts models [186, 187, 222] argue that the range of temper-
atures where disordered states persist is a function of system size, approaching
zero as l → ∞. This is consistent with our observation that at low temperatures
kBT ∈ {0.6, 0.65, 0.7} there exists a finite solute cluster size nIII such that for nu-
clei of size n > nIII the ordered structure is thermodynamically preferred and no
barriers to transformation to the ordered structure are present.

The same arguments can be used to interpret the stability of small disordered
nuclei in the PLG model [6] and we can expect similar behaviour in any lattice
model of anisotropic particles where the solute rich state reduces to the ferromag-
netic Q-state Potts model.

5.4.1 Constrained Cluster Size Ensemble

Various methods for analysis and generation of nuclei have previously been
explored in the Ising model [165,230]. In this section we develop a straightforward
MC based approach for sampling the equilibrium distributions of nuclei in the
extended PLG model.

We first generate a cluster of n solute particles by simulating an Eden-like
growth process [231], starting from a single solute particle at the centre of a three-
dimensional lattice occupied entirely by solvent. The growth process corresponds
to iterative insertion of solute particles (s, q), with s and q chosen uniformly on
respectively {1, 2} and {1, . . . , Q}, into randomly chosen sites neighbouring the
solute cluster. After n− 1 iterations of the process, we obtain a rough and struc-
turally disordered cluster of size n (Fig. 5.10a).
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Figure 5.9: Estimated distributions of the orientational order parameter (υ, χ) in the c =
1, Q = 24 extended PLG model on small cubic lattices of length l + 2 with static solvent
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are drawn at intervals of 1kBT.
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(a) 0 MCS (b) 103 MCS (c) 106 MCS

Figure 5.10: Typical initial, short time and long time cluster configurations for n =
103, kBT = 0.6 as generated by the constrained cluster MC algorithm for the c = 1, Q =
24, d = 3 extended PLG model. Here 1MCS corresponds to n applications of the constrained
cluster MC update. The configurations are visualised in accordance with the convention
used in Fig. 4.2.

Having generated a solute cluster of the required size, we define the subset
S = Su ∪ Sv of the lattice as the union of the set Su of solute particles belonging to
the generated solute cluster and the set Sv of solvent particles which are nearest
neighbours of at least one solute particle in the cluster. Subsequently, we initiate
a Metropolis MC scheme comprising three equally probable moves: (1) Reorienta-
tion of a particle in Su. (2) Change of species of a particle in Su to some species
s ∈ {1, 2}. (3) Interchange of species and orientation labels between a particle in
Su and a particle in Sv. It is important to note that acceptance of move (3) leads to
modification of sets Su and Sv which we take into account in the calculation of the
corresponding acceptance probabilities P

(3)
acc(σ→ σ′) to assure detailed balance:

P
(3)
acc(σ→ σ′) =





min
{

1, |Sv(σ)|
|Sv(σ′)| e

−β[E(σ′)−E(σ)]
}

if |Su(σ)| = |Su(σ′)|,
0 otherwise,

(5.10)

where Su(σ) is the set of solute particles belonging to the largest solute cluster
in a lattice configuration σ and Sv(σ) is the set of solvent nearest neighbours of
particles in Su(σ). We find that the described MC scheme yields compact solute
clusters (Fig. 5.10) characterised by a probability distribution of the orientational
order parameter (υ, χ) which matches that obtained via EPS (Fig. 5.11).

5.4.2 Committor Distributions

Having verified that the MC scheme of Sec. 5.4.1 correctly samples the equi-
librium distribution of solute clusters, we now consider the suitability of the ge-
ometric definition of solute clusters at low temperatures. A useful quantity for
this purpose is the committor Qn [7], which can be defined as the probability of
a solute cluster of size n growing to macroscopic size rather than dissolving com-
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Figure 5.11: Estimates of distributions of the order parameter (υ, χ) obtained under the
Metropolis MC sampling equilibrium configurations of solute clusters of fixed size n at three
temperatures for the c = 1, Q = 24, d = 3 extended PLG model. The shown estimates
were computed based on 102 samples of MC trajectories of length 106MCS, with 1MSC corre-
sponding to n MC updates of the cluster configuration. Contour lines are drawn at intervals
of 1kBT. The shown data appear in good agreement with those presented in Fig. 5.7.

pletely. This quantity can be expressed in terms of the microscopic committors q+σ
defined in in Sec. 2.3.5 via the equation:

Qn′ = ∑
σ∈Λ

q+σ P[σ|n(σ) = n′], (5.11)

which corresponds to the conditional average of q+σ with respect to the equilibrium
distribution P(σ) over the ensemble of configurations σ ∈ Λ for which n(σ) = n′

is the size of the largest solute cluster. Within the frameworks of CNT and TST, it
is expected that the ensemble of critical clusters of size n = n† yields the value of
committor Qn† = 0.5.

Exact evaluation of the committor is infeasible for large values of n, and we
instead compute the distributions P(Q̃n†) of the committor estimator Q̃n† defined
as the fraction of 10 µVT MC trajectories, initiated from a configuration containing
a solute cluster of size n†, where the size of the largest solute cluster exceeds
n = 103 before dissolving to n ≤ 10. Applying the constrained cluster size MC
scheme to generation of solute clusters of critical size n† = argmaxn{∆F(n)}, as
estimated based on EPS calculations, we obtain reasonable forms (Fig. 5.12) of
distributions of the committor estimators Q̃n† . Although we find that the critical
cluster sizes, as estimated based on explicit free energy calculations, likely do not
realise the value Qn† = 0.5 on average, the sharply peaked forms of the committor
estimator distributions suggest that the definition of solute clusters employed in
this work is kinetically relevant under the µVT kinetics.
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Figure 5.12: Distributions of the committor estimator Q̃n† at three temperatures and f = 4 un-
der the transmutation-reorientation (µVT) MC move set in the c = 1, Q = 24, d = 3 extended
PLG model. The distributions were estimated based on 10 sets of 103 independent samples
of Q̃n† . Each MC trajectory was initiated from a configuration containing a solute cluster of
size n† generated via the procedure outlined in Sec. 5.4.1, allowing 104MCS for equilibration
of the solute cluster. Samples of Q̃n† were computed as fractions of 10 independent MC
trajectories for which the solute cluster size exceeded 103 particles before ever dissolving to
a size of 10 or fewer particles. Error bars correspond to maximum and minimum deviations
from the average values across 10 independent estimates of the distributions.

It is important to note that the constrained cluster size MC scheme does not
sample nuclei configurations according to the distribution of the transition state
ensemble, as required under TST for realisation of the value Qn† = 0.5 of the com-
mittor. The results presented in this section, therefore, cannot be give a rigorous
assessment of our definition of the solute cluster size for the role of a reaction
coordinate. A more thorough report on such assessment would require imple-
mentation of MC schemes which sample the kinetically relevant distributions of
critical nuclei, e.g. TPS, TIS and FFS.

5.5 chapter summary

We have shown that, under microscopic kinetics where structural relaxation of
solute nuclei occurs on a significantly faster timescale than nucleus growth, low
temperature solute nucleation pathways in the c = 1, Q = 24, d = 3 extended PLG
model proceed via disordered and partially disordered precursor solute structures.
The apparent sequential ripening mechanism of the growth limited nucleation
process can be understood as a manifestation of the finite size effect in Potts-like
models of anisotropic particles: at any given temperature below the order-disorder
transition, the thermodynamically favoured nucleus structure is fully determined
by the nucleus size. We have additionally highlighted that, under the current un-
derstanding, metastability of disordered states below the order-disorder transition
temperature in Potts-like models occurs only in finite systems. Thus solid-state
transformation into the ordered solute structure is, energetically, a barrier free pro-
cess for sufficiently large disordered solute nuclei below the order-disorder transi-
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tion in the PLG and the extended PLG models. This suggests that pure Potts-like
models of anisotropic particles in solution such as the PLG or the extended PLG
are not sufficient for modelling of dissolution-recrystallisation processes observed
in systems of polymorphic minerals.
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6

S E E D I N G M E T H O D

The recently introduced ”seeding” method [232] is showing promise in obtain-
ing reasonable estimates of nucleation rates and free energy barrier heights for
solid-liquid transitions in multiple systems and over broad ranges of parameter
space [112,118,124]. By inserting an artificially constructed crystalline nucleus into
a system in a metastable liquid state, the approach attempts to obtain fragments
of nucleation trajectories of the system, which are then used for formulating a one-
dimensional quantitative model of the nucleation process based on CNT. Among
several advantages of the ”seeding” method over explicit techniques for free en-
ergy barrier and nucleation rate estimation are its simplicity of implementation
and significantly lower computational expense, since the estimation procedure
only requires a relatively small sample of short trajectories of the nucleus size co-
ordinate. However, the method relies heavily on the assumptions of CNT, typically
ignoring the variability of structure within crystalline nuclei over the course of the
nucleation process, and hence the resultant approximate quantitative treatment re-
quires verification against the more robust rate and barrier estimation strategies.
The ”seeding” method has also recently been applied in studies of nucleation
from solution [102, 114], however validation of the obtained nucleation rate esti-
mates against those computed via alternative means has, so far, not been carried
out in this particular context.

In this chapter we will consider the ”seeding” method in the context of nucle-
ation from solution in the c = 1, Q = 24, d = 3 extended PLG model. We will
first outline the approach in the context of overdamped Langevin dynamics and
consider the statistical properties of the typically computed quantities. Within
the framework of the seeding method, we will then derive an estimator for the
CNT coefficient γCNT and provide the analytical form of its probability distribu-
tion under a specific set of assumptions. Finally we will apply the method to
reconstruction of the nucleation free energy barriers in the extended PLG model
under the two sets of microscopic kinetics defined in Sec. 4.1.3.
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6.1 langevin equation for the reaction coordinate

The one-dimensional overdamped Langevin equation for the time evolution of
a coordinate x(t) ∈ R can be written as:

ẋ(t) =
dx
dt

= −βDx∇xFx[x(t)] + ξx(t) = −βDx
dFx

dx

∣∣∣∣
x(t)

+ ξx(t), (6.1)

where Dx is the diffusion coefficient, Fx is the one-dimensional potential of mean
force and ξx(t) is a random process satisfying the conditions 〈ξx(t)〉 = 0 and
〈ξx(t)ξx(t′)〉 = 2Dxδ(t− t′), with δ(t) being the Dirac delta function. Central to
the ”seeding” method is the observation that for any trajectory x(t) : x(0) = x0 the
initial drift 〈ẋ0|x0〉 along the x coordinate can be obtained by taking the ensemble
averages of both sides of the above equation:

〈ẋ0|x0〉 = 〈ẋ(0)|x(0) = x0〉 = −βDx
dFx

dx

∣∣∣∣
x0

, (6.2)

which offers the possibility of reconstructing the one-dimensional potential Fx

based on MC measurements of the initial drifts and the diffusion coefficient:

Fx(x) = −kBTD−1
x

∫ x

−∞
dx0〈ẋ0|x0〉. (6.3)

6.1.1 Estimators and Their Properties

Within the framework of the ”seeding” method, the drifts 〈ẋ0|x0〉 are estimated
by obtaining averages of linear least squares fits to the time evolutions ∆x(x0, t) =
x(t)− x0, x(0) = x0 over a narrow range of time values t ∈ [0, tmax]. It is expected
that at the top of the potential barrier x0 = x∗ = argmaxx{Fx(x)}, the average
deviation from the initial coordinate is zero for the specified short time interval, i.e.
〈∆x(x∗, t)〉 ≈ 0 for t ∈ [0, tmax], allowing the diffusion coefficient to be estimated
via the average gradient of the linear fits to the time series SD(x0, t) = [x(t) −
〈x(t)〉]2, x(0) = x0. Noting that ∆x(x0, 0) = 0 and SD(x0, 0) = 0 for all x0, we
argue that linear models of the form g(t) ∝ t, i.e. without vertical offsets, are a
reasonable choice for the purposes of extraction of initial gradients of the two time
series.

For a sample of M independent trajectories xj(ti) : xj(0) = x0, j ∈ {1, . . . , M},
where values of the x coordinate are evaluated at W points ti = i∆t, i ∈ {1, . . . , W}
with ∆t = tmax/W, the least squares estimators vx(x0) and ζx(x0) of, respectively,
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the coordinate dependent average drift and diffusivity can be explicitly written as:

v(x0) =
∑W

i=1 ti ∑M
j=1 ∆xj(x0, ti)

M ∑W
i=1 t2

i

,

ζx(x0) =
∑W

i=1 ti ∑M
j=1 SD(j)

x (x0, ti)

2M ∑W
i=1 t2

i

,

(6.4)

where ∆xj(x0, ti) and SD(j)
x (x0, ti) are computed from the independent trajectories

xj(ti) : xj(0) = x0. Assuming that over the range of times t ∈ [0, tmax] trajectories
x(t) : x(0) = x0 are well described by: ẋ(t) = −βDx∇xFx(x0) + ξx(t), it is possible
to show that the distributions of ∆x(x0, t) and SD(x0, t) are, respectively, normal
– N [−t∇xFx(x0), 2Dxt] and gamma – Γ(0.5, 4Dxt). While this clearly implies nor-
mality of the distribution of vx(x0), the distribution of ζx(x0) is more complex,
converging to normal only for large M as shown in Fig. 6.1.
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Figure 6.1: Probability densities of estimator ζx(x0) for trajectories of pure Brownian motion
ẋ(t) = ξx(t), i.e. Fx(x0) = 0, at kBT = Dx = 0.15 for various sample sizes M. Distribution
estimates (markers and thin dashed lines) and the corresponding 95% confidence intervals,
shown by the error bars (smaller than markers), were obtained based on a sample of 105 es-
timates ζx, i.e. M× 105 trajectories x(t), taking tmax = 10−3 and ∆t = 10−4. For comparison,
drawn in solid lines are the normal probability densities N [〈ζx〉, Var(ζx)] with the average
〈ζx〉 indicated by the dashed black lines. Deviation of P(ζx) from normality is noticeable
even for M = 100.

6.1.2 Drifts, Diffusion Coefficients and Escape Rates

We now apply the estimators given by Eq. (6.4) in the context of Brownian
motion in a bistable potential Fx(x) = x4 − 2x2, simulated via the BAOAB-limit
method presented in Ref. [233]. Taking W = M = 100 and ∆t = 10−4, tmax = 10−2,
we find that, on average, both estimators yield excellent linear fits of the form
〈∆x(x0, t)〉 = vx(x0)t and 〈SD(x0, t)〉 = 2ζx(x0)t (Fig. 6.2), with vx(x0) in good
agreement with Fx(x0) (Fig. 6.3a), since βDx = 1.

While the quantity vx(x0) appears to accurately estimate the drifts 〈ẋ0|x0〉, we
find that the estimator ζx(x0) does not, on average, yield the value of ζx(x∗) = Dx,
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Figure 6.2: Mean displacements [(a)] and mean squared deviations from the mean 〈x(t)〉
[(b)] of trajectories x(t) : x(0) = x0 at kBT = 0.15 for the 5 values of x0 given in the legend.
Estimates (markers) and the corresponding 95% confidence intervals, as shown by the error
bars (smaller than markers), were obtained based on 104 sets of M = 100 trajectories. Gradi-
ents of the solid lines are given by the averages of 〈vx(x0)〉 ≈ Fx(x0) [in (a)] and 〈ζx(x0)〉 [in
(b)] over the 104 trajectory sets.

where x∗ = 0 = argmaxx{Fx(x)}. As shown in Fig. 6.3b, we observe parabolic
variation of ζx(x0) in the vicinity of the top of the potential barrier, with ζx(x∗) >
Dx over a range of kBT values. Thus, we conclude that the estimator ζx(x∗) is
systematically in error, which, we speculate, may be attributable to the acceleration
of the evolution x(t) due to the curvature of Fx near x∗ = 0.

The rate jx of escape of trajectories starting at x0 = −1 to x = 1 is expressed in
terms of the barrier height ∆Fx = Fx(x∗)− Fx(−1) via the Kramers’ [234] approxi-
mate formula:

jx ≈
β

2π
Dxe−β∆Fx

√
|F′′x (−1)||F′′x (0)|, F′′x (x′) =

d2Fx

dx2

∣∣∣∣
x′

(6.5)

where cos π = −1 and |.| denotes the absolute value operator in this context. For
a barrier height reconstruction procedure of the form:

F̄x(xi) = −
kBT

ζx(x∗)

xi

∑
x0=xmin

∆xvx(x0), xi = xmin + i∆x, (6.6)

as motivated by Eq. (6.3), the exact form of the probability distribution of barrier
height estimates F̄x(xi) can be obtained under the assumption of normality of
the distribution of ζx(x∗). While in the next section, we will consider a similar
approach to estimation of error in barrier reconstruction, here we wish only to
examine the effect of the systematic error in ζx(x∗).
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For reference, we carry out calculations of mean first passage times from x =

−1 to x = 1 for a set of temperatures (Fig. 6.3c) and obtain the corresponding
exact values of the stationary current via the Kramers’ expression:

jx = DxPx(−1)
eβFx(−1)

∫ 1
−1 dxeβFx(x)

, Px(x) =
e−βFx(x)

∫ 0
−2 dxe−βFx(x)

, (6.7)

using numerical integration. Considering the narrow range of variation and the
low magnitude of the systematic error of the estimator ζx(x∗), we do not expect
the overestimation of Dx to impact significantly the estimates of escape rates jx, as
demonstrated in Fig. 6.3c, since the systematic error is partially cancelled by the
errors in the harmonic approximations employed in the derivation of Eq. (6.5).
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Figure 6.3: Average estimates of drifts 〈ẋ0|x0〉 [(a)] and coordinate dependent diffusivities
[(b)], and escape rates jx [(c)] at the 5 values of kBT specified in the legend. The values
and the corresponding 95% confidence intervals, as shown by the error bars (smaller than
markers), in (a) and (b) are based on 104 sets of M = 100 trajectories. Solid lines in (a) and (b)
are given by, respectively, the curve dFx/dx and a parabolic fit to the shown data. Markers
in (c) correspond to means of 106 brute force estimates of the inverse mean first passage
times, with error bars (smaller than markers) showing the corresponding 95% confidence
intervals. Dashed lines in (c) show the range of jx estimates obtained via Eq. (6.5), assuming
overestimation by 1% to 4% of the barrier height and the prefactor βDx due to the systematic
error in ζx(x∗). The dashed-dotted line in (c) shows the values of jx obtained via Eq. (6.5)
using exact values of ∆Fx and βDx. The grey line in (c) is given by Eq. (6.7).

6.2 seeding method in the context of cnt

We now consider the ”seeding” approach in the context of nucleation in the
extended PLG model under the assumption that the largest solute cluster size
n(σ), as defined in Sec. 5.1, is a good candidate for the reaction coordinate, and
the time evolution n(t) = n[σ(t)] is well described by the Langevin equation of
the form of Eq. (6.1). While in the results of committor calculations (Sec. 5.4.2)
we do not find any evidence for our definition of n(σ) being an inappropriate
choice of the reaction coordinate, the assumption of n(t) resembling Brownian
motion is problematic, since n(t) is clearly a non-Markovian process [159, 160]
under both the transmutation-reorientation (TR) and the diffusion-reorientation
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(DR) sets of microscopic kinetics (Sec 4.1.3). As we will discuss in Chapter 7,
non-Markovian effects under the DR move set are expected to be stronger than
under TR kinetics due to the stronger correlations of solute density fluctuations.
Furthermore, nucleation pathways in Potts-like models of anisotropic particles are
known to be strongly dependent on the relative rates of nuclei structural relaxation
and particle attachment under the given set of microscopic kinetics [78]. Due
to the diffusion limited character of nuclei growth under the DR kinetics, we
expect substantially lower rates of particle attachment under DR than under TR
kinetics, allowing much greater timescales for nuclei structural relaxation between
successive particle attachment events under the DR move set.

In the context of modelling of nucleation kinetics, the central aim of the ”seed-
ing” method is to recover thermodynamic properties of the system, namely the
invariant under the choice of microscopic kinetics height of the nucleation barrier,
based on kinetic information, i.e. the properties of n(t). In light of the above
observations, we argue that the DR and TR kinetic variants of the present model
offer an interesting test case for the ”seeding” method, since the effects of the non-
Markovian behaviour of n(t) and the significance of nuclei growth pathways in
this context are not clear.

6.2.1 Estimation of Drifts and Diffusivities along the Cluster Size Coordinate

We employ the standard ”seeding” approach in obtaining values of vn(n0) and
ζn(n0) for n ∈ [3, 498] at kBT ∈ {0.6, 0.65, 0.7} and f ∈ {2, 3, . . . , 7} in cubic ~l =

(64, 64, 64) systems, preparing the initial configurations σ0 : n(σ) = n0 in two
steps: (1) Generation of solute cluster via the procedure detailed in Sec. 5.4.1,
allowing n0 × 103 applications of the constrained cluster Metropolis MC scheme
for relaxation of the initial cluster to its equilibrium structure. (2) Insertion of
Nρ(β, f ) solute particles of species s chosen uniformly on {1, 2} into the system
away from the generated nucleus. Sampling M = 102 trajectories n(t) : n(0) = n0

for each value of n0 ∈ [3, 498] we compute the estimators vn(n0) and ζn(n0) via
an analogous procedure to that covered in Sec. 6.1.1, taking ∆t = 10MCS and
tmax = 103MCS, with W = 102. Within the considered time interval, we find
that the magnitude of fluctuations in the nucleus size coordinate under the DR
kinetics is negligible in comparison to Nρ(β, f ), suggesting that no significant
solute depletion effects are to be expected.

The linear fits produced by vn(n0) appear to capture the short time (t ≤ 102MCS)
behaviour of n(t) well (Figs. 6.4a and 6.4b), however, examining the fits with re-
spect to the time series ∆n(n0, t), we find that the quality of the fits is not consis-
tent and large relative errors in vn(n0) can be expected for DR kinetics (Figs. 6.4c
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and 6.4d). From the drift estimates, we estimate the size n∗ of the critical nucleus
as:

n∗ = argmax
n∈[3,498]

{
−

n

∑
n0=3

vn(n0)

}
, (6.8)

in accordance with Eq. 6.3. While we find that vn(n0) typically changes sign in
the vicinity of n0 = n∗ as expected, it is not uncommon for drift estimates vn(n∗)
to deviate from zero (Fig. 6.4c).

In the obtained sample of trajectories, the nuclei growth rates under the DR
kinetics appear to be approximately two orders of magnitude slower than those
under the TR move set, which is attributable to the differences in the underlying
character of the two particle attachment processes as discussed above. We observe
reasonably linear behaviour of 〈SDn(n∗, t)〉 for t ≤ 102MCS and slow variation
of estimates ζn(n0) in the vicinity of n0 = n∗ (Fig. 6.5). We, therefore, use the
data points ζn(n0) : n0 ∈ [n∗ − 20, n∗ + 20] for estimation of uncertainty in the
measurement ζn(n∗) of diffusivity Dn.
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Figure 6.4: Average trajectories [(a) and (b)] and displacements [(c) and (d)] along the cluster
size coordinate at kBT = 0.7, f = 3 under DR (n∗ = 82) and TR (n∗ = 78) kinetics for
the c = 1, Q = 24, d = 3 extended PLG model at three values of n0: (i) n0 = n∗ − 60, (ii)
n0 = n∗, (iii) n0 = n∗ + 102. Markers show the data points obtained via MC, with error bars
specifying the 95% confidence intervals based on M = 102 estimates, while lines correspond
to the linear fits vn(n0).
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6.2.2 Fitting of a CNT model

Substituting Eq. (2.54) into an analogous equation to Eq. (6.2) for n(t), we ob-
tain a relationship between the parameters (γCNT, ∆µCNT) of the CNT droplet
model and the drifts 〈ṅ0|n0〉 along the solute cluster size coordinate under the
assumption of n(t) obeying Langevin dynamics:

−〈ṅ0|n0〉
βDn

=
2
3

γCNTn−1/3
0 − ∆µCNT ⇒ γCNT =

3
2

[
∆µCNT −

〈ṅ0|n0〉
βDn

]
n1/3

0 .

(6.9)
We, therefore, expect that the quantity γ†(n0) is independent of n0 under the
assumptions of CNT and the ”seeding” method:

γ†(n0) =
3
2

[
∆µCNT −

vn(n0)

βζ∗n

]
= γCNT, ζ∗n = ζn(n∗), (6.10)

and we define the least squares estimator γLS of γCNT as an average of γ†(n0) over
some range n0 ∈ [a, b]:

γLS =
1.5

b− a + 1

[
∆µCNT

b

∑
n0=a

n1/3
0 − kBT

ζ∗n

b

∑
n0=a

vn(n0)n1/3
0

]
. (6.11)

Assuming that the quantities ∑b
n0=a vn(n0)n1/3

0 and ζ∗n are normally distributed,
the probability distribution of γLS corresponds to the distribution of the quotient
of noncentral normal variates [235, 236], which can be accurately computed via
integration of the bivariate normal probability density function [237]. Thus, based
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on our sample of vn(n0) and ζn(n0) it is possible to estimate the confidence interval
on γLS and, therefore, deduce the error in the estimate of the nucleation free
energy barrier height.

6.2.3 Quotient of Noncentral Normal Variates

We now outline the approach for calculation of confidence intervals on the
quantity ∑b

n0=a vn(n0)n1/3
0 /ζ∗n, assuming ∑b

n0=a vn(n0)n1/3
0 and ζ∗n are normally dis-

tributed and independent. For any two normally distributed independent random
variates Xi, i ∈ {1, 2} with respective means 〈Xi〉 and variances Var(Xi), the cu-
mulative distribution of the quotient Y = X1/X2 is given by [236]:

P(Y ≤ y) = L[ω(y),−a2, ψ(y)] + L[−ω(y), a2, ψ(y)], ai =
〈Xi〉√

Var(Xi)
,

b(y) = y

√
Var(X2)

Var(X1)
, ω(y) =

a1 − a2b(y)√
1 + b2(y)

, ψ(y) =
b(y)√

1 + b2(y)
,

L[h, k, $] =
1

2π
√

1− $2

∫ ∞

h

∫ ∞

k
dxdz exp

{
− x2 + z2 − 2xz$

2
√

1− $2

}
.

(6.12)

In Fig. 6.6 we verify the above set of equations against numerically computed
probability density distributions P(Y).
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Figure 6.6: Numerically computed distributions of quotients of noncentral normal variates
for three sets of parameters. The numerical estimates (markers) are based on 107 independent
samples of Y = X1/X2 with error bars (smaller than markers) showing the 95% confidence
intervals computed based on 50 independent sample sets. Lines correspond to numerically
computed derivatives dP(Y ≤ y)/dy of P(Y ≤ y) as given by Eq. (6.12).

Setting X1 = ∑b
n0=a vn(n0)n1/3

0 and X2 = ζ∗n the 95% confidence interval on

∑b
n0=a vn(n0)n1/3

0 /ζ∗n can be estimated by numerically solving the equations:

P(Y ≤ ymin)− 0.025 = 0, P(Y ≤ ymax)− 0.975 = 0, (6.13)
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for ymin and ymax, and the corresponding confidence interval on the value γLS

can be computed via the appropriate scaling and translation operations on the
obtained interval [ymin, ymax].

6.3 nucleation barrier reconstruction

The fitted CNT model yields estimates of the form of the free energy barrier
∆F(n) and the height of the barrier ∆F(n†) via:

∆F(n) = n2/3γLS − n∆µCNT, ∆F(n†) =
1
2

n†∆µCNT, n† =

(
2γLS

3∆µCNT

)3

, (6.14)

Clearly, all the necessary computations, including the calculation of γLS, require a
precise definition of ∆µCNT and we consider the following three options:

1. ∆µCNT = ∆µcoex – the per solute monomer free energy difference between
bulk solute rich and solvent rich states, i.e. the thermodynamic solute-
solvent chemical potential difference.

2. ∆µCNT = ∆µfit – the values of the CNT volume coefficient obtained via two
parameter fits of Eq. (6.9).

3. ∆µCNT = ∆µEPS – the values of the CNT volume coefficient obtained via
fits of Eq. (2.54) to the explicitly computed via EPS free energy barriers as
presented in Sec. 5.3.1.

We obtain fits of the three classes of CNT models to the estimates of scaled
initial drifts −kBTvn(n0)/ζ∗n in the range n0 ∈ {n∗ − 20, n∗ + 20} via Eq. (6.11)
as illustrated in Fig. 6.7. Although we occasionally arrive at exceptionally poor
fits of the ∆µCNT = ∆µcoex model, with noticeable dependence on n0 of γ†(n0)

(Figs. 6.7a and 6.7e), the resultant three fits of Eq. (6.9) are typically of compa-
rable quality. The obtained reconstructions of the nucleation barriers [Eq. (6.14)],
however, appear highly sensitive to the choice of the ∆µCNT value, as can be seen
in Figs. 6.7f, 6.7g and 6.7h, where the values ∆µCNT 6= ∆µEPS result in significantly
overestimated barrier heights.

To illustrate the sensitivity of the ”seeding” method’s barrier reconstruction
approach further, we compare the barrier height values obtained via EPS and the
”seeding” method in Fig. 6.8. Here we show that usage of the model ∆µCNT =

∆µcoex results in systematic errors of up to a factor of 3 in the obtained estimates
of nucleation barrier heights, while usage of values ∆µCNT = ∆µfit leads to poor
consistency of the estimation procedure, often yielding barrier reconstructions
which vary strongly with the underlying microscopic kinetics of the system. Tak-
ing ∆µCNT = ∆µEPS results in reasonable agreement between the barrier height
estimates of the ”seeding” method and those of EPS under both sets of kinetics
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Figure 6.7: Comparison of the three fitted CNT models based on the three values of ∆µCNT
for DR (circles) and TR (squares) kinetics for the c = 1, Q = 24, d = 3 extended PLG model
at kBT = 0.7, f = 4. Panels (a), (b) and (c) show the obtained values of γ†(n0) [Eq. (6.10)]
(markers) and the corresponding linear fits γLS [Eq. (6.11)] (lines). Panels (d) and (e) compare
the numerical estimates (markers) and the fitted CNT models (lines) for the Eq. (6.9), using
the three values of ∆µCNT specified in the legend of (e). The smaller markers in (d) and (e)
correspond to data points outside the ranges n0 ∈ [n∗ − 20, n∗ + 20] of the data values used
for computation of the CNT fits. Panels (f), (g) and (h) show the forms of the reconstructed
via CNT fits profiles ∆F(n) [Eq. (6.14)] (markers) in relation to those explicitly computed
via EPS (Fig. 5.4) (lines). Error bars show the 95% confidence intervals obtained using the
procedure outlined in Sec. 6.2.3.
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for f ≥ 3, although at lower supersaturations ( f = 2) we find that the ”seeding”
method overestimates the barrier heights by up to 43%.
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Figure 6.8: Comparison of nucleation barrier height estimates obtained via EPS (diamonds
and lines corresponding to the data shown in Fig. 5.5c) and the ”seeding” method (markers),
using the three definitions of ∆µCNT for DR (circles) and TR (squares) kinetics for the c =
1, Q = 24, d = 3 extended PLG model at kBT ∈ {0.6, 0.65, 0.7} and f ∈ {2, 3, . . . , 7}. Error
bars show the 95% confidence intervals obtained using the procedure outlined in Sec. 6.2.3.

6.3.1 Nucleation Rate Estimates

We now compare the nucleation rate values obtained via Eq. 2.53 using barrier
height estimates of the ”seeding” method and of EPS. We estimate the monomer at-
tachment rates J+∗ via the measurements ζn(n0) of diffusivity Dn along the nucleus
size coordinate, taking J+∗ = ζn(n∗) with n∗ given by Eq. (6.8) for the ”seeding”
method, and J+∗ = ζn(n†) for EPS where n† = argmaxn{∆F(n)} with ∆F(n) being
the explicitly computed free energy barrier. The values of the Zeldovich factor Z
are given by Z = 3(∆µCNT)

2
√

β(γLS)−3/4 in the case of the ”seeding” method
and are estimated via the curvature of parabolic fits to the top of the explicitly
computed barrier ∆F(n) for EPS. We use the solute density values ρ(β, f ), shown
in Fig. 4.7, in estimation of rates based on both the ”seeding” method and the EPS
data sets.
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The resultant nucleation rate estimates are shown in Fig. 6.9 from which we
arrive at the same set of conclusions regarding the sensitivity of the ”seeding”
method to the choice of ∆µCNT value as when analysing Fig. 6.8. The systematic
errors in barrier height estimates of the ∆µCNT = ∆µcoex model lead to factors
of tens of orders of magnitude disagreement between the rate estimates of the
”seeding” method and those obtained via the CNT formula [Eq. (2.53)] using the
EPS estimates ∆F(n†) of the nucleation barrier heights. The poor consistency and
the large scatter of rate values using the ∆µCNT = ∆µfit fits are attributable to
the large errors in drift and diffusivity estimates for DR kinetics. The systematic
deviation of rate values estimated based on the ∆µCNT = ∆µEPS model from those
obtained via EPS is likely due to the differences in the estimates ζn(n∗) and ζn(n†)

of diffusivity along the n coordinate and the differences in the computed values
of Z .
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Figure 6.9: Comparison of nucleation rate estimates obtained via EPS (lines and black mark-
ers) and the ”seeding” method (hollow markers), using the three definitions of ∆µCNT for
DR (circles) and TR (squares) kinetics for the c = 1, Q = 24, d = 3 extended PLG model
at kBT ∈ {0.6, 0.65, 0.7} and f ∈ {2, 3, . . . , 7}. Error bars are based on the 95% confidence
intervals on γLS.

Thus, we have shown that barrier reconstruction and rate estimation proce-
dures of the ”seeding” method are highly sensitive to the values of ∆µCNT, yet,
given an appropriate value of the CNT volume coefficient, reasonable estimates of
these quantities can be obtained based on seeded trajectories of n(t) at high solute
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supersaturations. Although we expect differences in the accuracy of the Langevin
description of n(t) as well as differences in growth pathways for the two studied
sets of kinetics, the barrier reconstructions for DR and TR move sets appear in
good agreement at high supersaturations suggesting that the differences between
the respective n(t) kinetics do not play a significant role here.

From the available to us data we cannot comment conclusively on the dis-
crepancies between the barrier height and nucleation rate estimates of the ”seed-
ing” method and those informed by explicit free energy calculations at f = 2.
The apparent deviation of explicit barrier height estimates from the CNT scaling
∆F(n†) ∝ ∆µ−2

coex at the lower supersaturations may be an artefact of our solute
cluster size metric or may indicate the onset of a distinct scaling regime for f ≤ 2.
The latter scenario, while previously unseen in lattice models, is not implausible
since, unlike for f ≥ 3, we expect the equilibrium structures of the critical nuclei at
lower supersaturations to be partially or fully ordered, as shown in Sec. 5.3.2. Thus
it is not unreasonable to suppose that the scaling of nucleation barrier heights with
solute-solvent chemical potential difference in the lower supersaturation regime
may be distinct to that seen at higher supersaturations due to the distinction be-
tween energetics and surface properties of fully disordered and partially or fully
ordered nuclei. Furthermore, it is possible that the appropriate nuclei structures
were not adequately sampled in our application of the ”seeding” method, since
n× 103 applications of the constrained cluster size MC scheme may be insufficient
to relax the initially generated large nuclei to their equilibrium structures, which
would explain the observed discrepancies.
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7

E X P L I C I T R AT E C A L C U L AT I O N S

We start by briefly reviewing the formalism of transition path theory and its con-
nection to the theory of Markov chains and rare event methods in the context
of reversible Markov jump processes. Since detailed comparison of the well es-
tablished rare event methods is still lacking in the literature, we will provide an
illustration of the implemented methods by studying transition events a simple
system. The results of rare event simulations for the c = 1, Q = 24, d = 3 ex-
tended PLG model will be covered towards the end of the chapter.

7.1 irreducible markov chains

Computational study of kinetics of lattice models, in our case, is concerned
with properties of a Markov jump process σ(m) ∈ Λ, m ∈ N evolving at discrete
time intervals m on a discrete and finite state space Λ. Every configuration σ ∈ Λ
encodes states of N lattice sites, no more than two of which may change over any
jump σ(m) → σ(m + 1) due to single site update or site exchange moves as used
in MC (Sec. 4.1.3). For simplicity, we will set a constant rate R for all possible
jumps, including the self loops σ→ σ, which can be used to map the discrete time
process σ(m) onto its continuous analogue σ(t), t ∈ [0, ∞). Setting R = N we state
that, on average, N jumps occur per unit time, i.e. one time unit is equivalent to a
single MC sweep (Sec. 2.2.6).

In this setting, the continuous time process σ(t) is fully defined by the jump
rate R and the jump (transition) matrix P:

Pij = P(σi → σj), i, j ∈ {1, . . . , |Λ|}, (7.1)

where P remains constant after every jump and is such that the set Λ of mi-
crostates forms a single communicating class, i.e. there exists at least one path
of non zero probability between any two microstates states in Λ. We will now
outline some elegant computations on P which will be useful in later sections.

86



7.1.1 The Fundamental Matrix

In studies of transition events, we are interested in aggregate properties of
trajectories σ(t) which start in some subset A ⊂ Λ and end in some other subset
B ⊂ Λ, such that A and B are disjoint. Much of rare event methodology, for
example, is concerned with computing the average first passage times from A to
B.

In the context of irreducible Markov chains [238], as discussed in Sec. 2.2.1,
problems of this kind can be very elegantly formulated in terms of the fundamen-
tal matrix G of an absorbing Markov chain with a transition matrix M, which is
easily constructed from P. To study properties of trajectories σ(t), ending in some
subset C ⊂ Λ and starting anywhere but C, one constructs M(C) by modifying P
as follows:

Mij(C) =





Pij if σi, σj ∈ Λ \ C,

0 if σi ∈ C, σj ∈ Λ \ C,

1 if σi = σj ∈ C, i.e. otherwise.

(7.2)

Thus M(C) corresponds to P modified such that all states σ ∈ C are absorbing.
The fundamental matrix G(C) is extracted by first rearranging the rows of M(C)
and partitioning it into portions corresponding to absorbing and non-absorbing
states:

M(C) =

[
Ml(C) Mr(C)

0C IC

]
, (7.3)

where I is a |C| × |C| identity matrix, 0C is a |C| × |Λ \ C| matrix of zeroes, Ml(C)
is a |Λ \ C| × |Λ \ C| matrix of transition probabilities between states σ, σ′ ∈ Λ \ C
and Mr(C) is a |Λ \ C| × |C| matrix of jump probabilities from states σ ∈ Λ \ C to
states σ′ ∈ C. The fundamental matrix is then defined as:

G(C) = lim
τ→∞

τ

∑
k=0

[Ml(C)]
k =

[
IΛ\C −Ml(C)

]−1 . (7.4)

7.1.2 Mean First Passage Times

The significance of G(C) is that it encodes the mean numbers of jumps in Λ \C
before absorption by C of trajectories which started in Λ \C. It is possible to show
that the column vector ~mC, where each entry m(i)

C gives the mean number of jumps
before absorption in C from a state σi ∈ Λ \ C, i ∈ {1, . . . , |Λ \ C|}, is given by:

~mC = G(C)~eΛ\C, ⇒ m(i)
C =

|Λ\C|
∑
j=1

Gij(C), (7.5)

where ~eΛ\C is a column vector of |Λ \ C| ones. To specify the mean number of
jumps before entry into C, one has to provide the initial distribution P̃Λ\C(σ) of
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states σ ∈ Λ \ C. Expressing P̃Λ\C(σ) as a row vector ~πΛ\C : π
(i)
Λ\C = P̃Λ\C(σi),

the mean number of jumps
〈
mC|~πΛ\C

〉
before hitting C can be written as a scalar

product: 〈
mC|~πΛ\C

〉
= ~πΛ\C~mC = ~πΛ\CG(C)~eΛ\C, (7.6)

which, in the case of a constant jump rate R, also yields the mean first passage
time

〈
tC|~πΛ\C

〉
: 〈

tC|~πΛ\C
〉
=
〈
mC|~πΛ\C

〉
/R. (7.7)

7.1.3 Absorption Probabilities

The probability of eventual absorption of a trajectory σ(t) : σ(0) = σi ∈ Λ \ C
by a particular state σj ∈ C is given by a matrix A(C) =

[
Aij(C)

]
:

A(C) = G(C)Mr(C), (7.8)

which yields the distribution row vector ~πC, whose jth entry gives the average
absorbed by the particular state σj ∈ C fraction of trajectories σ(t) : σ(0) ∈ Λ \ C,
given the initial distribution ~πΛ\C of staring points σ(0) in Λ \ C:

~πC = ~πΛ\C A(C). (7.9)

7.1.4 General Applicability

It is worth noting that computations of mean first passage times and absorption
probabilities do not require explicit evaluation of the fundamental matrix. Never-
theless, computations on transition matrices for even the smallest lattice models
are generally impractical due to the large volume of the models’ configuration
space. In addition, jump probabilities in low temperature and saturation regions
of the parameter space are typically small, which limits the precision with which
useful quantities can be evaluated numerically.

7.2 transition path theory

Path sampling methods for rate calculations are often derived in the context of
the effective positive flux formalism. In this chapter we will explore the transition
path theoretic (TPT) approach [54] in the context of reversible Markov chains, as
introduced in Sec. 2.2.2. We will first outline the relationship between TPT and
the quantities discussed in Sec. 7.1.

7.2.1 Rate and Effective Reactive Current

In Sec. 2.3.5 we presented an expression for the rate of transition from metastable
state A to stable state B as a sum of effective reactive probability currents J +(σ→
σ′) from A to B through a dividing surface. For reversible Markov jump processes
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[Eq. (2.8)], there is no distinction between the forward and backward hitting times
τ+

C (σ) and τ−C (σ):
τ+

C (σ) = τ−C (σ) = τC(σ), (7.10)

leading to the following relation for the forward and backward committors q+σ , q−σ :

q+σ = P[τB(σ) < τA(σ)] = 1−P[τB(σ) > τA(σ)] = 1− q−σ . (7.11)

Further noting that q+(σ) = 0 ∀σ ∈ A and assuming a constant jump rate R, we
can write Eq. (2.43) as:

J(A→ B) = R ∑
σ∈A

∑
σ′∈Λ\A

P(σ)P(σ→ σ′)P[τB(σ
′) < τA(σ

′)]. (7.12)

7.2.2 Paths, Hitting Times and Committors

In Sec. 5.2.1, we have sketched a derivation for a MC approach to sampling
the equilibrium distribution P(~στ) of paths ~στ of fixed length τ ∈ N. It is easy
to see that the distribution P[τC(σ)] of hitting times τC(σ) can be related to the
distribution of paths P(~στ):

P[τC(σ) = τ] = ∑
σ1∈Λ\C

∑
σ2∈Λ\C

· · · ∑
στ∈C

P(σ→ σ1)
τ−1

∏
i=1

P(σi → σi+1), (7.13)

by expressing the total probability of reaching some state space subset C ⊂ Λ
from state σ ∈ Λ for the first time after τ ∈ Z+ jumps, as a sum over paths of
length τ + 1 (since the initial state σ is included) which only visit the set C after τ

jumps from σ. Using the notation of Sec. 7.1, it is easy to see that P[τC(σ) = τ] is
the sum of entries of the row vector: ~πΛ\C Mτ−1

l (C)Mr(C), where the row vector
~πΛ\C corresponds to the distribution P(σ → σ1) over σ1 ∈ Λ \ C, i.e. entries
Pij : σi = σ, σj = σ1 of the transition matrix P.

The above expression does not exclude the possible contributions from trajec-
tories which hit other disjoint from C subsets of Λ in less that τ jumps from
σ. Such contributions are important to consider when computing the committor
P[τB(σ) < τA(σ)]. Let Θ = Λ \ (A ∪ B) be the subset of the state space Λ ex-
cluding the reactant and product states. For any jump σi → σi+1 we can write:

∑
σi+1∈Λ\B

P(σi → σi+1) = ∑
σi+1∈Θ

P(σi → σi+1) + ∑
σi+1∈A

P(σi → σi+1). (7.14)
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This allows us to separate the contributions to P[τB(σ) = τ] from two types of
trajectories: (1) Those that remain in Θ until the final jump τ. (2) Those that decay
to A after τ′ < τ jumps:

P[τB(σ) = τ] = ∑
σ1∈Θ

∑
σ2∈Θ
· · · ∑

στ∈B
P(σ→ σ1)

τ−1

∏
i=1

P(σi → σi+1)

+ ∑
σ1∈A

∑
σ2∈Λ\B

· · · ∑
στ∈B

P(σ→ σ1)
τ−1

∏
i=1

P(σi → σi+1)

+ ∑
σ1∈Θ

∑
σ2∈A

∑
σ3∈Λ\B

· · · ∑
στ∈B

P(σ→ σ1)
τ−1

∏
i=1

P(σi → σi+1) + . . .

(7.15)

Introducing the joint probability P[τA(σ), τB(σ)] of trajectories originating at σ ∈
Λ and hitting the sets A and B at respective first times τA and τB:

P[τA, τB] = ∑
σ1∈Θ
· · · ∑

στA∈A
∑

σ3∈Λ\B
· · · ∑

στB∈B
P(σ→ σ1)

τB−1

∏
i=1

P(σi → σi+1), (7.16)

we can rewrite Eq. 7.15 in the more compact form:

P[τB(σ) = τ] = P[τA(σ) > τ, τB(σ) = τ] +
τ−1

∑
i=1

P[τA(σ) = i, τB(σ) = τ]

= P[τA(σ) > τ, τB(σ) = τ] + P[τA(σ) < τ, τB(σ) = τ],

(7.17)

where the contribution:

P[τA(σ) > τ, τB(σ) = τ] = ∑
σ1∈Θ

∑
σ2∈Θ
· · · ∑

στ∈B
P(σ→ σ1)

τ−1

∏
i=1

P(σi → σi+1) (7.18)

is related to the committor as:

P[τB(σ) < τA(σ)] = lim
τ→∞

τ

∑
k=1

P[τA(σ) > k, τB(σ) = k]. (7.19)

Thus, the committor can be thought of as the total absorption probability by subset
B of trajectories σ(t) : σ(0) = σ ∈ Θ in a Markov chain where all states in A ∪ B
are absorbing. In the framework of Sec. 7.1, the vector of committor values for
states σ ∈ Θ can be expressed as: A(A ∪ B)~eB, where ~eB is a column vector with
|A ∪ B| entries such that e(i)B = 1 for σi ∈ B and e(j)

B = 0 for σj ∈ A.
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7.2.3 Escape Rates and Quasi-equilibrium

When considering transitions from metastable to stable macroscopic states, we
assume that the initial probability distribution P̃(σ) of the system’s microstates is
concentrated in A and transforms into the concentrated in B equilibrium distribu-
tion P(σ) at a sufficiently slow rate that P̃(σ) can be treated as stationary. Under
the stationarity assumption on P̃(σ), we can write the approximately constant
with time total probability flux J+A leaving the state A as a sum over all possible
escape routes out of A:

J+A = R ∑
σ∈A

∑
σ′∈Λ\A

P̃(σ)P(σ→ σ′). (7.20)

Thus, for time invariant P̃(σ), J+A is equivalent to the inverse mean residence
time in A and the inverse mean first passage time 〈tΛ\A|~πA〉 from A to Λ \ A
for trajectories σ(t) : σ(0) ∈ A, with the distribution ~πA of initial microstates
corresponding to the concentrated in A distribution P̃(σ). Defining:

P(σ′|A→ σ′) = R
(

J+A
)−1 ∑

σ∈A
P̃(σ)P(σ→ σ′), (7.21)

as the distribution of microstates the system takes upon first leaving A, we can
rewrite Eq. (7.12) as:

J(A→ B) = J+A ∑
σ∈Λ\A

P(σ|A→ σ)P[τB(σ) < τA(σ)]. (7.22)

Noting that ∑σ∈Λ\A P(σ|A → σ) = 1, the above expression can be interpreted
as the product of the probability flux out of A and the average with respect to
P(σ|A→ σ) committor for microstates σ ∈ Λ \ A.

Using the notation of Sec. 7.1, the above can be expressed as:

J(A→ B) = 〈tΛ\A|~πA〉−1

[
~πΘ A(A ∪ B)~eB + ∑

σ∈B
P(σ|A→ σ)

]
, (7.23)

where ~πA is a row vector with |A| elements representing P̃(σ), ~πΘ is a row vector
with |Θ| entries representing the portion of P(σ|A → σ) falling on Θ, ~eB is a
column vector with |A ∪ B| elements such that e(i)B = 1 for σi ∈ B and e(j)

B = 0 for
σj ∈ A and the sum inside the square brackets takes into account the possibility
of trajectories arriving from A to B in one jump.

7.2.4 Application to the Ising Model

We now consider transition events in the 3× 3 two-dimensional Ising model
under the Metropolis realisation of spin flip kinetics with periodic boundaries,
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without examining in detail the transition mechanism. The transition matrix P
has (29)2 entries P(σi → σj) given by:

Pij =





0 if |N+(σj)− N+(σi)| > 1,
1

2N

{
eβ[E(σi)−E(σj)]]

}{
f N+(σj)−N+(σi)

}
if |N+(σj)− N+(σi)| = 1,

1−∑k 6=i Pik if i = j, i.e. otherwise.

(7.24)

which can be calculated and represented with sufficient accuracy for a range in
(kBT, f ) numerically, where N+(σ) gives the count of ”up” spins in the config-
uration σ, f = exp[β(µ+ − µ−)], with µ+ and µ− being the reservoir chemical
potentials of respectively the ”up” and ”down” spins, and we have already cov-
ered the relationship between f and the external magnetic field h in Sec. 3.2.1. In
Fig. 7.1 we verify that the above matrix is consistent with the Metropolis MC by
computing the equilibrium distribution P(N+) via MC and by taking the principal
eigenvector of P.
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Figure 7.1: Validation of the jump matrix P for the 3 × 3 Ising model. The sparsity pat-
tern of P is shown in (a) with blue dots marking the nonzero entries. In (b) free ener-
gies ∆F(N+) = − ln P(N+) + ln P(N+ = 0) are plotted for four values of kBT (legend) at
µ+ − µ− = 1. In (c) we plot the maxima of ∆F(N+) as a possible metric for the heights of
the free energy barriers to transition from spin ”down” to spin ”up” state. The markers in
(b) and (c) correspond to the data obtained via the multicanonical flat histogram MC, with
the minimum bias increment of 2−30, while the lines show the values obtained by computing
the principal eigenvector of P.

We define A = {σ : N+(σ) = 0} and consider transitions from A to B = {σ :
N+(σ) = N}, starting from a nonequilibrium initial distribution P̃(σ ∈ A) = 1.
Taking the jump rate as R = 1, it is easy to see that the escape rate J+A is equivalent
to the inverse mean first passage time 〈tΛ\A|~πA〉−1 and is given by the probability
of appearance of a single ”up” spin in a lattice with all spins being in the ”down”
state:

J+A = 〈tΛ\A|~πA〉−1 = 1−P(σA → σA), (7.25)

where σA ∈ A is such that N+(σA) = 0. We find that the rate of escape from A is
well defined for all kBT and ∆µ± = µ+ − µ− (Fig. 7.2), including the low barrier
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regimes, if the initial distribution P̃(σ ∈ A) = 1 is artificially kept constant in
time. In other words, the distribution of first passage times tΛ\A is exponential
with rate parameter J+A independent of the free energy barrier height, provided
that all sampled trajectories σ(t) start at σ(0) ∈ A, i.e. N+[σ(0)] = 0.
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Figure 7.2: Averages [(a)] and probability density distributions [(b) and (c)] of escape times
tΛ\A for four temperature values (legend) and at various values of ∆µ±, covering regimes of
low [(b) ∆µ± = 2] and high [(c) ∆µ± = 0.5] barriers. Markers correspond to MC estimates
based on 103 independent samples of tΛ\A, with error bars (smaller than markers) showing
the 95% confidence intervals based on 102 repetitions of the sampling procedure. Lines in
(a) are the exact values for residence times in state A. Lines in (b) and (c) are the exponential
probability densities with rate parameters given by 〈tΛ\A|~πA〉−1.

The escape rate J+A can also be estimated as the number of jumps σ → σ′

leading from N+(σ) = 0 to N+(σ′) = 1 per unit time over any sufficiently long
trajectory starting in A. While this procedure yields estimates which agree with
the inverse mean first passage time in high barrier regimes, it is not applicable in
low barrier regimes since any long trajectory will spend a significant amount of
time in B before returning to A thus severely underestimating the escape rate.

The distribution P(σ|A → σ) of the system’s states immediately upon leaving
A is uniform over the 9 states σ : N+(σ) = 1. Thus, due to the symmetry of the
system, the average committor P[σ → B|N+(σ) = 1] over states σ : N+(σ) = 1
is given simply by P[τB(σ) < τA(σ)] : N+(σ) = 1, which corresponds to any
entry Aij(A ∪ B) of the matrix A(A ∪ B) such that N+(σi) = 1 and N+(σj) = N.
Defining ~πΛ\B as the row vector form of P̃(σ), i.e. π

(i)
Λ\B = 1 if N+(σi) = 0 and

π
(i)
Λ\B = 0 otherwise, we find the brute force MC estimates of the committor and

the mean first passage times
〈
tB|~πΛ\B

〉
in excellent agreement with those obtained

via operations on the fundamental matrix of P (Fig. 7.3).
Having verified the exactness of Eqs. (7.20), (7.19) and (7.6) in computing re-

spectively the escape rates, committor values and mean first passage times, we
now show that the TPT Eq. (7.22) yields a good approximation to the inverse
mean first passage times in high barrier regimes. As shown in Fig. 7.3c, in the
high barrier regime at kBT = 1 the TPT rate is in excellent agreement with the
inverse mean first passage times computed via Eq. (7.6). With increasing temper-
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Figure 7.3: Committor values [(a)], mean first passage times [(b)] and comparison of rate
values given by TPT and corresponding inverse mean first passage times [(c)] for four values
of kBT (legends) over a range of ∆µ±. Markers correspond to MC estimates based on 102

independent samples of tB, with error bars (smaller than markers) giving the 95% confidence
intervals computed based on 102 repetitions of the sampling procedures. Lines in (a) and (b)
correspond to the values obtained via the operations on the transition matrix P discussed in
Sec. 7.1. In (c), the approach of Sec. 7.1 is compared to the TPT formula (black lines) for the
transition rate, making use of the exact values of the escape rates and the committor.

atures and ∆µ±, the quasi-stationary assumption on P̃(σ) gradually breaks down,
yielding non-exponential distributions of first passage times (Fig. 7.4a) which, in
contrast to those at high barrier regimes (Fig. 7.4b), are not well described by a sin-
gle rate parameter. Consequently, the TPT rate values are not meaningful in low
barrier regimes, since significant time dependent contributions to the, now time
dependent, arrival rate J(A → B) into B can be expected from all states in Λ \ B.
Various approaches to the study of transition processes under non-stationary con-
ditions exist in the literature [239, 240], however, in this work, we will not discuss
transitions in low barrier regimes further.
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Figure 7.4: Probability density distributions of first passage times in low [(a)] and high [(b)]
barrier regimes. Markers correspond to MC estimates based on 102 independent samples
of tB, with error bars being the 95% confidence intervals obtained via 102 repetitions of
the sampling procedure. Lines in (a) are the exact distributions of hitting times as given
by Eq. (7.13), computed via the appropriate matrix operations on P. Lines in (b) are the
exponential probability densities with rate parameters given by 〈tB〉−1.
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7.3 rare event methods

Modern rare event methods, such as transition interface sampling (TIS), partial
path TIS (PPTIS) and forward flux sampling (FFS) (Sec. 7.3), compute transition
rates via an equation of the form:

J(A→ B) = J+A
k

∏
i=1

P(λi → λi+1), (7.26)

where J+A is the rate of system’s escape of state A and P(λi → λi+1) are the
system’s transition probabilities in some collective variable space. For a carefully
chosen collective variable, we can interpret {λi : i ∈ {1, . . . , k}} as a collection
of disjoint subsets λi ⊂ Θ, such that every reactive trajectory must pass through
λi before passing through λi+1 on its way towards B. Path sampling algorithms
of FFS, TIS and PPTIS employ different strategies for estimating the transition
probabilities P(λi → λi+1), while the estimator for J+A is the same in all three
cases: J+A is given by the average number of times the system leaves A in the
”direction” of B per unit time, in other words – the inverse residence time in A as
discussed in Sec. 7.2.3. Here we will briefly discuss the justification of Eq. (7.26)
in the framework of TPT, exploring the differences between the three rare event
methods and validating our implementation.

7.3.1 Connection to Transition Path Theory

Clearly, Eqs. (7.22) and (7.26) are equivalent if the number of interfaces in the
rare event scheme is set to 2:

P(λ1 → λ2) = P(A+ → B) = ∑
σ∈A+

P(σ|A→ σ)P[τB(σ) < τA(σ)], (7.27)

where we have defined λ2 = B and A+ = λ1 is the set of microstates accessible by
the system immediately upon leaving A:

A+ = {σ ∈ Λ \ A : ∃ σ′ ∈ A : P(σ′ → σ) > 0}. (7.28)

Suppose every reactive trajectory must pass through some subset C ⊆ Θ of
microstates before it may enter B. Then for any σ ∈ Θ the joint probability
P[τA(σ) > τB, τB(σ) = τB, τC(σ) = τC] is given by:

P[τB, τC] = ∑
σ1∈Θ\C

∑
σ2∈Θ\C

· · · ∑
στC∈C

∑
στC+1∈Θ

· · · ∑
στB∈B

P(σ→ σ1)
τB−1

∏
i=1

P(σi → σi+1),

(7.29)
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where the contributions from trajectories recrossing C are included, since Θ in-
cludes C, and by construction we have:

P[τB, τC > τB] = 0, ∑
τC<τB

P[τB, τC] = P[τA(σ) > τB, τB(σ) = τB]. (7.30)

We can, therefore, rewrite Eq. (7.19) as follows:

P[τA(σ) > τB(σ)] = lim
τ→∞

lim
τ′→∞

τ

∑
k=1

τ′

∑
l=1

P[τA(σ) > k + l, τB(σ) = k + l, τC(σ) = k],

(7.31)
where we count contributions to the committor from all possible trajectories en-
tering B in l jumps after entering C in k jumps from σ. Defining the distribution
P(σC|σ→ C) of arrival points σC ∈ C for trajectories coming from σ ∈ Λ:

P(σC|σ→ C) = {P[τA(σ) > τC(σ)]}−1 × . . .

lim
τ→∞

τ

∑
k=1

∑
σ1∈Λ\C

· · · ∑
σk−1∈Λ\C

P(σ→ σ1)P(σk−1 → σC)
k−1

∏
i=1

P(σi → σi+1),
(7.32)

it is straightforward to show that:

P[τA(σ) > τB(σ)] = P[τA(σ) > τC(σ)] ∑
σC∈C

P(σC|σ→ C)P[τA(σC) > τB(σC)].

(7.33)
The expression for the rate now reads:

J(A→ B) = J+A ∑
σ∈A+

∑
σC∈C

P(σ|A→ σ)P(σ→ C)P(σC|σ→ C)P(σC → B), (7.34)

where P(σ → C) = P[τA(σ) > τC(σ)] and P(σC → B) = P[τA(σC) > τB(σC)] and
in order to write it in the form of Eq. (7.26), we can take the same approach as
when writing Eq. (7.12) in the form of Eq. (7.22). We first define the average with
respect to P(σ|A→ σ) committor P(A+ → C):

P(A+ → C) = ∑
σ∈A+

∑
σC∈C

P(σ|A→ σ)P(σ→ C)P(σC|σ→ C)

= ∑
σ∈A+

P(σ|A→ σ)P(σ→ C),
(7.35)
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which gives the total probability of a trajectory arriving in C before returning to A
after having entered A+, i.e. left A. Additionally, the distribution P(σC|A+ → C)
of arrival points σC ∈ C for trajectories coming from anywhere in A+ is given by:

P(σC|A+ → C) = [P(A+ → C)]−1 ∑
σ∈A+

P(σ|A→ σ)P(σ→ C)P(σC|σ→ C),

(7.36)
which finally leads to:

J(A→ B) = J+A P(A+ → C) ∑
σC∈C

P(σC|A+ → C)P(σC → B)

= J+A P(A+ → C)P(C → B).
(7.37)

Following analogous steps to those listed above, we can expand the committor
P(σC → B) further by introducing additional intermediate checkpoint sets for
reactive trajectories along the path from C to B.

7.3.2 Distinctions between Sampling Strategies

Let us now compare the approaches of the FFS, TIS and PPTIS algorithms to
calculating the expanded committor P(A+ → C)P(C → B).

The FFS algorithm proceeds by first collecting a sample of configurations σ ∈
A+ according to the distribution P(σ|A → σ) by storing the end points of all
configurations escaping A. Selecting the starting points uniformly from the ob-
tained pool of configurations, the algorithm generates a sample of trajectories
σ(t) : σ(0) ∈ A+, computing the fraction of the sample which arrived in C and
storing the corresponding arrival points. Thus, for every stored microstate σ ∈ A+,
the algorithm estimates the probability P(σ → C) while simultaneously storing
with probability P(σ→ C)P(σC|σ→ C) a starting point σC ∈ C for the subsequent
calculation of P(C → B). Estimates of P(σ → C) and the stored configurations
σC ∈ C are implicitly weighted by P(σ|A→ σ), since starting points of all trajecto-
ries launched from A+ are sampled from P(σ|A→ σ). It is, therefore, easy to see
that P(A+ → C) is correctly estimated and, by an analogous argument, the same
can be shown for the computation of P(C → B).

For each pair of interfaces, e.g. (A+, C), the algorithm of TIS samples the
equilibrium ensemble of paths of variable length, accepting only those trajectories
which, having originated in A and eventually entered A+, either: (1) return to
A or (2) proceed to C. The probability P(A+ → C) is estimated as the fraction
of trajectories of type (2) in the entire pool of accepted trajectories. Clearly, each
increment to the count of trajectories of type (2) is implicitly weighted by the
distribution P(σ|A→ σ) of arrival points in A+, while the likelihood of the count
being incremented is P(σ → C). In contrast to FFS however, when estimating
P(C → B), the TIS algorithm does not make use of the sampled information
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on the distribution P(σC|A+ → C) of arrival points σC ∈ C as obtained from
the calculation of P(A+ → C). Instead, the arrival points σC ∈ C are sampled
explicitly over the course of the calculation of P(C → B), since for the interface
pair (C, B) the accepted trajectories must again originate in A.

From the above it is reasonable to conclude that, in the context of spatially
discrete reversible Markov chains, the FFS and TIS algorithms sample the same
quantities, provided that the collective variable is defined as discussed at the be-
ginning of Sec. 7.3. The approach of PPTIS, however, departs substantially from
those listed above by, effectively, constructing a Markov chain in the collective
variable space to describe the kinetics of the transition from A to B. Given a set
of interfaces {λi}, the algorithm estimates a set of four conditional jump probabil-
ities:

1. P±i = P(λi → λi+1|λi−1 → λi).

2.
(
1−P±i

)
= P(λi → λi−1|λi−1 → λi).

3. P∓i = P(λi → λi−1|λi+1 → λi).

4.
(
1−P∓i

)
= P(λi → λi+1|λi+1 → λi),

between pairs of interfaces in every window defined by triples (λi−1, λi, λi+1).
This is achieved by sampling the equilibrium ensembles of the four corresponding
types of paths of variable length in the restricted to the PPTIS window region of
state space. Upon completion, the coarse grained Markov representation of the
transition is constructed by recovering the jump probabilities P(λi → λi+1) via
the recursion:

P(λi → λi+1) = P±i P(λi−1 → λi) +
(
1−P∓i

)
P(λi+1 → λi), (7.38)

where the Markov assumption:

P(λi → λi+1|λi−1 → λi) = P(λi → λi+1|λi−1 → λi, λi−2 → λi−1, . . . ),

is implicit and the resultant Markov chain can be solved exactly, taking λ0 = λ1,
to approximate the mean committors P(λi → λi+1). The conditions under which
the above corresponds to Eq. (7.37) are not obvious within the TPT framework, al-
though the validity of the approximation can be assessed by studying the memory
loss properties of the system in the collective variable space [140].

7.3.3 Application to the Ising Model

The collective variable N+ is a good candidate for ordering the state space of
the Ising model in the study of transitions from N+ = 0 to N+ = N, since any
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single jump σ → σ′ in the configuration space can lead to a change in N+ by
no more than ±1. Thus, any reactive trajectory must realise each of the possible
values of N+ in an increasing sequence along the path from A to B, allowing
any strictly increasing sequence of N+ values to construct a valid set of interfaces
{λi} for use in a rare event sampling scheme. Considering rare event methods
in the context of the Ising model is particularly interesting since it is easy to see
that the collective variable N+ evolves in time in a non-Markovian fashion, as the
probabilities of transitions N+ → N+ ± 1 are dependent not only on N+ but also
on the involved lattice configurations. In addition, the estimated by FFS, TIS and
PPTIS quantities can be computed exactly by appropriate manipulations of the
transition matrix P which we will now summarise.

We have already seen that the committor P(σ → B) can be computed via the
matrix A(A ∪ B) as the fraction of absorbed by the subset B trajectories σ(t) :
σ(0) = σ ∈ Θ in the Markov chain described by P with all microstates in A and B
being absorbing. The same procedure can be applied to compute any committor
P(σ→ λi), where:

λi = {σ ∈ Λ \ A : N+(σ) = i}, (7.39)

is the set of microstates realising the value i of the collective variable N+. To
compute exactly the quantities estimated by TIS and FFS for any pair (λi, λj) : j >
i > 1 of interfaces, we first obtain the matrix A(A ∪ λi) which, if post-multiplied
by a column vector~eλi of |A ∪ λi| entries such that e(k)λi

= 1 for σk ∈ λi and e(l)λi
= 0

for σl ∈ A, gives the column vector form of P(σ → λi) for every σ not included
in A ∪ λi. Pre-multiplying A(A ∪ λi) by the row vector ~πA+ , which comprises
9 nonzero entries corresponding to P(σ|A → σ), gives the row vector form of
P(A+ → λi)P(σ|A+ → λi), which, if conditioned on A+ → λi, is the distribution
P(σ|A+ → λi) of arrival points in λi from all possible trajectories starting in A.
At this point, the average committor P(λi → λj) can be computed via the scalar
product:

P(λi → λj) = ~πλi A(A ∪ λj)~eλj , (7.40)

where ~πλi is the obtained row vector form of P(σ|A+ → λi) and ~eλj is a column

vector with e(k)λj
= 1 for σk ∈ λj and e(l)λj

= 0 for σl ∈ A and we should also clarify
that ~πλ1 = ~πA+ and λ9 = B.

The procedure for computing exactly the PPTIS conditional jump probabilities
for any triple of interfaces (λi, λj, λk) : k > j > i ≥ 1 is more involved, and, for
simplicity, we will only illustrate the approach for computing P±j . We first isolate
a portion of the transition matrix P, keeping only the entries Plm which correspond
to P(σl → σm) : N+(σl), N+(σm) ∈ {i, i + 1, . . . , k} and normalising the rows of
the resultant matrix P′ to sum to 1. Taking the principal eigenvector of P′, we
obtain the equilibrium distribution P(σ) for the isolated portion of the Markov
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chain. To compute P±j , we must determine the conditional distribution P(σ|λi →
σ) as the fraction of absorbed by λj trajectories σ(t) : σ(0) ∈ λi with starting
points distributed according to the equilibrium distribution P(σ|σ ∈ λi) over λi.
Generating the matrix A′(λj) from P′ and providing the conditional equilibrium
distribution P(σ|σ ∈ λi) in row vector form ~wλi , the row vector form ~wλj of
P(σ|λi → σ) can be obtained via ~wλj = ~wλi A

′(λj). The conditional distribution
P±j can now be obtained by an analogous to Eq. (7.40) operation:

P±j = ~wλj A
′(λi ∪ λk)~eλk . (7.41)

We apply the three rare event methods to the 3 × 3 Ising model, taking the
sets of interfaces to be {λ1, λ2 . . . , λ9} for FFS and TIS, and {λ0, λ1, λ2 . . . , λ9}
for PPTIS, verifying that the results of the performed calculations do not change
if varying interface separation. Performing 10 independent calculations under
each rare event scheme for each of the parameter points kBT ∈ {1, 3}, ∆µ± ∈
{0.5, 1.0, 1.5, 2.0}, we find Eqs. (7.40) and (7.41) in excellent agreement with MC as
shown in Fig. 7.5.
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Figure 7.5: Comparison of Eqs. (7.40) and (7.41) (lines) with data produced by FFS, TIS and
PPTIS (markers) at kBT = 1, ∆µ± ∈ {0.5, 1.0, 1.5, 2.0}. Estimates due to FFS are based on 104

successful trials at each interface. Runs of TIS and PPTIS comprised an equilibration stage
and sampling stage, both of which continued until 105, for TIS, or 106, for PPTIS, shooting
moves were accepted. Error bars (smaller than markers) represent the minima and maxima
of 10 independent estimates.

Rate and committor estimates, produced by the three rare event schemes also
appear in excellent agreement with TPT (Fig. 7.6) both in high and low barrier
regimes, suggesting that the Markov assumption on the evolution of the collective
variable N+, as made by the PPTIS approach to committor estimation, is reason-
able for the 3× 3 Ising model under spin flip kinetics.
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Figure 7.6: Comparison of the three rare event methods at two values of kBT (legend) and
four values of ∆µ± ∈ {0.5, 1, 1.5, 2}. Lines correspond to exact values [Eq. (7.40)] of the
cumulative product of mean committors P(λi → λi+1) [(a)] and rates [(b)] as given by
Eq. (7.22). Estimates due to FFS are based on 104 successful trials at each interface. Runs of
TIS and PPTIS comprised an equilibration stage and sampling stage, both of which continued
until 105, for TIS, or 106, for PPTIS, shooting moves were accepted. Error bars (smaller than
markers) represent the minima and maxima of 10 independent estimates.

7.4 modelling open system kinetics

In order to study nucleation from solution in a finite lattice system at low solute
concentrations, we must consider an open system where the solute concentration
is allowed relax to its quasi-stationary level without being depleted completely
by nucleus growth. This is adequately achieved by the unphysical transmutation-
reorientation kinetics (TR), where solute particles are allowed to appear and disap-
pear in the finite system, thus correctly maintaining the solute chemical potentials.
For the more realistic diffusion-reorientation (DR) model of solute transport, we
can view the finite system Ω ⊂ Zd as a subregion of an infinite d-dimensional
lattice domain Zd whose spatially homogeneous solute concentration does not
change in time. In this setting, the subdomain Ω must be allowed to exchange
particles with the surrounding infinite system Zd. In this section, we will illus-
trate, in the context of an open system of non-interacting random walkers on Zd,
the implications of implementing the open system by allowing particle exchange.

7.4.1 Random Walker on Zd

We consider a particle ~x(m) ∈ Zd performing an unbiased random walk on a
d-dimensional lattice Zd in discrete time m. For our purposes, it is useful to write
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down the probability distribution Pd(~x|m) of particle positions after m jumps,
given that ~x(0) = 0:

Pd(~x|m) = (2d)−mm! ∑
{m+

i ,m−i }

[
d

∏
i=1

m+
i !m−i !

]−1

, (7.42)

where the sum carries over the set {m+
i , m−i } : i ∈ {1, . . . , d} such that ∑d

i=1 m+
i +

m−i = m and xi = m+
i −m−i and for d = 1 we have:

P1(~x|m) =
(2d)−mm!
m+

1 !m−1 !
=

2−mm!
[(m− x1)/2]![(m + x1)/2]!

.

Using the above, we also obtain the probability of the particle arriving in m jumps
at any point ~x ∈ Zd having started at any ~x0 ∈ Zd via Pd(~x−~x0|m).

7.4.2 Density Autocorrelation Function

We can define Ω as a cubic subdomain Ω = {−l/2, . . . , l/2}d of length l of a
much larger cubic domain Φ = {−L/2, . . . , L/2}d with periodic boundaries for
which we can take the limit L → ∞ to consider it an infinite system. Given a
constant density ρ = M/|Φ| of M unbiased random walkers in Φ, the particle
density Xm in Ω is a stationary stochastic process:

Xm = |Ω|−1
M

∑
i=1

1Ω[~xi(m)], 1Ω[~x] =





1 if ~x ∈ Ω,

0 otherwise,
(7.43)

where ~xi(m) is the position of the ith particle at discrete time m. For non-interacting
particles with multiple lattice site occupancy, Xm can exceed the value of 1 with
nonzero probability, however, for our purposes this is not important, since we are
only concerned with the relaxation properties of Xm, which can be quantified via
the time autocorrelation function RX(m) as defined in Sec. 2.2.4.

It is possible to show that, due to the mutual independence of the M random
walkers, the autocorrelation function for the L → ∞ limit is equal to the one
particle autocorrelation function:

RX(m) =
〈1Ω[~x(k)]1Ω[~x(k + m)]〉 − 〈1Ω[~x(k)]〉〈

12
Ω[~x(k)]

〉
− 〈1Ω[~x(k)]〉

= |Ω|−1 ∑
~x∈Ω

∑
~y∈Ω

Pd(~x−~y|m),

(7.44)
which is analogous to the result for systems of spatially and time continuous
random walkers [241]. Thus, RX(m) can be computed as the probability of an
unbiased random walker being in Ω after m jumps, having started its journey
at a lattice site drawn uniformly from Ω. Examining the analytical and MC es-
timated RX(m) for d ∈ {1, 3} (Fig. 7.7) we find that the random walker density
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autocorrelation functions vary slowly with m, exhibiting power law tails ∼ m−d/2.
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Figure 7.7: Density autocorrelation functions for d ∈ {1, 3}. In (a), the solid line is the plot
of Eq. (7.44) while markers correspond to estimates of the ACF sequence obtained from 102

independent realisations of Xm for m ∈ [0, 106], ρ = 0.5, l = 128 on a L = 221
1D lattice with

error bars showing the 95% confidence intervals. In (b), the markers correspond to averages
of 102 MC estimates of the probability |Ω|−1 ∑~x∈Ω ∑~y∈Ω Pd(~x −~y|m) for m ∈ [0, 104] in a
l = 32 subdomain of a 3D lattice with error bars showing the variance of the computed
estimates.

7.4.3 Implications for Modelling

Clearly any model of an open system must reproduce the particle density fluc-
tuations which are consistent with the underlying model of particle transport.
While we cannot accurately quantify solute density relaxation for DR kinetics
in 3D, even at β = 0, we can expect qualitatively similar behaviour of the au-
tocorrelation functions to that depicted in Fig. 7.7 at low solute concentrations.
Various memory kernel methods for generating stationary correlated sequences
exist [7, 32], although generation of sequences with slowly decaying memory is
challenging since the time range of any numerical kernel is limited by the avail-
able physical memory. Simple models of barrier crossing processes in presence of
fluctuations with slowly decaying memory have been considered [242–245], how-
ever, realising power law correlated density fluctuations in finite particle systems
via Metropolis style kinetics has not been attempted in the literature.

Thus, at present, we cannot formulate a model open system which reproduces
particle density fluctuations consistent with the underlying particle transport pro-
cess for DR kinetics.

7.5 explicit rates for the extended plg

In this section we consider an approximate treatment of the solute nucleation
process in the c = 1, Q = 24, d = 3 extended PLG model under DR and TR
kinetics via seeded PPTIS simulations. We implement the PPTIS algorithm taking
the size of the largest solute nucleus as the collective variable. Given a fixed
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PPTIS interface separation of ni − ni−1 = ∆n ∈ Z+ along the largest solute cluster
size coordinate n ∈ N, the maximum change in solute particle count within any
given PPTIS window (ni−1, ni, ni+1) is ni+1 − ni−1 = 2∆n. Noting that each PPTIS
simulation can be seeded with a trajectory starting from a configuration σ such
that n(σ) = ni and the solute particle count Ns(σ) is set to Ns(σ) = (N− ni)ρ + ni,
the solute density depletion and augmentation fall within ±∆n/N.

Thus the solute depletion within PPTIS simulations can be easily tuned to fall
well within confidence bounds on the density fluctuations in an open system,
which, assuming a quasi-static uniform density profile, follow a binomial distribu-
tion over the domain {0, 1, . . . , N} with ”success” probability ρ. Since we consider
the process over a range of solute concentrations ρ ∈ [5× 10−4, 3× 10−3] in cubic
systems of l = 32 using the same PPTIS implementation, we take the maximum
PPTIS interface separation of ∆nmax = 4, corresponding to the 75% confidence
bound on density fluctuations for ρ = 5× 10−4.

7.5.1 Validation at High Solute Concentration

We consider the sensitivity of our PPTIS implementation to variation of the
interface separation ∆n by obtaining rate estimates at kBT = 0.7, f = 8 under
DR kinetics. The interface coordinates {ni} are defined by ∆n ∈ {1, 2, 3, 4} and
the respective values n1 ∈ {5, 6, 8, 10}, nend ∈ {49, 48, 47, 46} as the increasing
sequence {ni} = {n1, n1 + ∆n, n1 + 2∆n, . . . , nend}. In all runs of PPTIS we employ
equilibration and sampling stages, which terminate after accepting at least 104

and 2× 104 shooting moves respectively.
Defining B as the region of state space where the size of the largest solute nu-

cleus exceeds 50 particles, we obtain brute force MC samples of first passage times
tB. Despite the relatively high supersaturation at f = 8, we find that the barrier
remains high enough for the quasi-static approximation of the transition process
to hold, yielding an exponential distribution of first passage times (Fig. 7.8a). We
find that rate estimates obtained by our PPTIS implementation, though consistent
across 10 independent sampling repetitions, vary over the explored range of ∆n
(Fig. 7.8b). Rate estimates for ∆n ∈ {3, 4} appear in good agreement, yet deviate
by approximately a factor of 2 from the obtained estimate of the inverse mean first
passage time.

Several factors contributing to the disagreement between PPTIS rates and the
inverse mean first passage time value can be identified for our PPTIS implementa-
tion. Along with the questionable validity of the memory loss assumption on n(t),
we can expect errors in PPTIS due to large time intervals between successive tests
of trajectory acceptance criteria. Based on the discussion of Sec. 7.3, we can see
that, in the context of Markov chains, reaching of a PPTIS interface by a trajectory
must be detected accurate to the smallest available time unit – a single jump. Since
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Figure 7.8: First passage time distribution [(a)] and PPTIS cumulative committor product [(b)]
for the c = 1, Q = 24, d = 3 extended PLG model under DR kinetics at kBT = 0.7, f = 8,
demonstrating the sensitivity of the PPTIS implementation to the choice of window width
∆n in (b). Markers in (a) are averages of 67 sets of 102 independent estimates obtained via
brute force MC, with error bars showing the 95% confidence intervals. The solid line in
(a) represents the exponential probability density with the rate parameter set to the inverse
mean first passage time 〈tB|σ(0) ∈ A〉−1. Markers in (b) are the averages of 10 independent
runs of PPTIS with error bars showing the minimum and maximum deviation from the mean
value across the 10 runs. The solid black line in (b) is the inverse mean first passage time
〈tB|σ(0) ∈ A〉−1.

in our implementation the order parameter is computed after a single MC sweep,
it is not unlikely that valid trajectories are rejected or incorrectly classified due to
crossing the required interfaces mid-sweep, although the corresponding effect on
the resultant rate estimate is not obvious.

7.5.2 Estimates at Lower Solute Concentrations

We carry out two PPTIS simulations taking ∆n = 4, n1 = 3, nend = 83 for every
pair (kBT, f ) of values kBT ∈ {0.60, 0.65, 0.70} and f ∈ {5.5, 6.0, 6.5, 7.0}, comput-
ing the largest solute cluster size n at intervals of 20 MCS for both TR and DR ki-
netics. For each window (ni−1, ni, ni+1) in the cluster size coordinate, we initialise
a simulation generating an acceptable trajectory by ”shooting” from an artificially
constructed configuration comprising a cluster of size ni surrounded by a super-
saturated solution with the total number of solute particles in the configuration
given by (N − ni)ρ + ni. In all PPTIS simulations we carry out equilibration and
sampling stages terminating upon acceptance of at least 104 and 2× 104 shooting
moves respectively.

In Fig. 7.9 we show typical nuclei configurations seen in the sampled PPTIS
trajectory ensembles for the window with the largest limits along n. We find that
the typical nuclei are reasonably compact and disordered, which is consistent with
results of EPS for n < 100 at the three temperatures as can be expected since PPTIS
samples the equilibrium path ensemble.
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DR, kBT = 0.6 DR, kBT = 0.65 DR, kBT = 0.7

TR, kBT = 0.6 TR, kBT = 0.65 TR, kBT = 0.7

Figure 7.9: Visualisations of typical nuclei configurations in PPTIS path segments for the
window n ∈ [75, 83] for the c = 1, Q = 24, d = 3 PLG model at three temperatures and f = 7
for the two sets of microscopic kinetics. The configurations are visualised in accordance with
the convention used in Fig. 4.2.

The obtained cumulative committor products appear to converge well within
the specified range along the cluster size coordinate (Fig. 7.10). We find the resul-
tant PPTIS rate estimates in reasonable agreement with those obtained via CNT
using explicitly computed free energy barrier heights (Fig. 7.11) at all considered
conditions except kBT = 0.6 for DR kinetics, where we see PPTIS rate estimates de-
viate from CNT by between 2 and 3 orders of magnitude. The PPTIS rate estimate
for kBT = 0.6, f = 6.5 for DR kinetics (Fig 7.11a) is greater than that for the same
temperature at f = 7.0, suggesting that our error estimates for PPTIS based on
two independent samples are not representative of the statistical errors in the pro-
cedure. We also expect a systematic error due to incorrectly implemented PPTIS
trajectory acceptance conditions: trajectories were only considered part of the PP-
TIS ensemble when crossing the appropriate interfaces. Based on the discussion
of Sec. 7.3 it is clear that such implementation is not correct, and we can expect the
resultant rate estimates to be lower than if trajectories were accepted upon hitting
the appropriate interfaces.

Finally, we cannot comment on the role of the Markov assumption on evolution
of n(t) based on the results presented here, since both CNT and PPTIS assume
Markovian behaviour, albeit to different extents.
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Figure 7.10: Plots of PPTIS estimates of cumulative committor products multiplied by the
escape rates J+A for the c = 1, Q = 24, d = 3 extended PLG model. Markers and lines
correspond to averages and error bars give the maxima and minima of two independent sets
of estimates of committor values. Escape rates J+A were estimated based on 102 independent
trajectories of n(t), each 104 MCS long. All PPTIS simulations carried out equilibration and
sampling stages continuing until respectively 104 and 2× 104 shooting moves were accepted.

7.6 chapter summary

In this chapter we have carefully examined the connection between the TPT for-
malism and modern rare event methodology in the context of reversible Markov
chains, demonstrating the mathematical equivalence of FFS and TIS approaches
to rate calculation. In addition to the ”seeding” method discussed in the previ-
ous chapter, here we have considered two strategies for rate calculation in lattice
models of nucleation from solution under realistic particle transport kinetics: (1)
Simulating kinetics of a finite subdomain of an infinite system at constant solute
density. (2) Carrying out seeded PPTIS simulations of closed systems conserving
solute density. Due to the slow relaxation of local particle density fluctuations in
large systems, we have concluded that, at present, approach (1) is difficult to re-
alise via standard Metropolis MC methods employed throughout this work. While
we have shown that approach (2) is feasible and does yield reasonable with respect
to CNT nucleation rate estimates in the c = 1, Q = 24, d = 3 extended PLG, we
have not assessed the role of the memory loss assumption, as made by PPTIS, in
simulations with diffusive particle transport.
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Figure 7.11: Comparison of rate estimates due to PPTIS (square markers) against rate esti-
mates obtained via the CNT formula [Eq. (2.53)] using the explicitly computed via EPS free
energy barriers (black markers) for the c = 1, Q = 24, d = 3 extended PLG model. Attach-
ment rates J+∗ for the CNT expression were estimated via the diffusion coefficient at the top
of the free energy barrier and Zeldovich factors Z were computed by taking the curvature
of the corresponding quadratic fits. Lines correspond to linear fits to the CNT rate estimates
as show in Fig. 6.9.
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8

S U M M A RY A N D C O N C L U S I O N S

We now provide an overview and a general discussion of the presented results
before summarising our main contributions and potential areas for future work in
the field of modelling nucleation from solution via lattice models.

8.1 summary and discussion of key findings

We have introduced a multicomponent lattice model of a solution, where solute
can adopt disordered, partially ordered and fully ordered structures, by extending
the PLG model of Duff and Peters [6], providing accurate estimates as well as
approximate analytical expressions for the corresponding phase diagrams. Noting
the similarity of the PLG and the extended model, it is likely that the approach
for derivation of the solute-solvent coexistence line, as discussed in Sec. 4.3, can
be applied to the PLG model, while the solute rich states of both models can be
easily mapped on to the Q-state three-dimensional Potts model, for which the
order-disorder coexistence temperature is known.

Using the path based enhanced sampling method (EPS) of Radhakrishnan and
Schlick [225] we have obtained equilibrium distributions of orientational order of
solute nuclei at conditions where the ordered solute phase is thermodynamically
preferred. We found that the degree of orientational order of solute nuclei is
temperature and size dependent, although, based on our calculations, we expect
sufficiently large nuclei to prefer high degrees of internal order in equilibrium,
with disordered and partially disordered states being short lived. This observation
is consistent with the results of the recent studies of metastability of disordered
states in the Potts model below the order-disorder coexistence temperature, which
suggest that such metastability is present only in finite systems. Thus the size
dependence of internal orientational order of solute nuclei in our model can be
thought of as a finite size effect. We have also developed and validated against
EPS a simple MC move set for sampling of equilibrium distributions of solute
nuclei, which can be easily applied to the Ising and PLG models.

Employing the constrained cluster size MC scheme introduced in Sec. 5.4.1 for
generation of seed system configurations, we have assessed the performance of the
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”seeding” approach to nucleation rate calculations in the extended PLG model un-
der two sets of microscopic kinetics. We found that the accuracy of the obtained
barrier height and nucleation rate estimates varied greatly with the set value of
the CNT chemical potential difference parameter, i.e. the volume coefficient of the
CNT droplet model (Sec 2.4.2). While this has not been previously demonstrated,
the poor performance of the ”seeding” method, when using the bulk value of
the solute-solvent chemical potential difference in the underlying CNT model, is
not surprising since the application of bulk phase properties to microscopic nu-
clei as well as the functional form of CNT have been criticised in multiple studies
of lattice and off-lattice models [1, 110, 175, 176] (Table 3.2). Although we found
that the ”seeding” method can produce reasonable nucleation barrier reconstruc-
tions at high solute supersaturations, given the values of CNT chemical potential
difference parameter obtained based on explicit free energy calculations, we ob-
served significant disagreement between the estimates produced by the ”seeding”
method and those computed via EPS at lower solute supersaturations.

Applying the statistical error estimation approach for the ”seeding” method, as
derived in Sec. 6.2.2, we found that the observed disagreement between explicit
nucleation barrier height estimates and those produced by the ”seeding” method
cannot be explained by the statistical errors associated with determining the pa-
rameters of a CNT model based on the kinetics of the largest solute nucleus size
coordinate. It is important to note, however, that the error estimation approach
of Sec. 6.2.2 is based on the assumptions of normality and independence of the
probability distributions of the involved quantities. The normality assumption is
difficult to verify even in the context of the relatively computationally inexpensive
lattice model, and it is, therefore, possible that the derived by us error estimation
approach for the ”seeding” method does not yield the correct confidence bounds
on barrier height and rate estimates. Although we obtained reasonable results of
the committor histogram tests (Sec. 5.4.2), we cannot rule out the possibilities of
our definition of the nucleus size coordinate not satisfying the criteria of CNT [75]
or being erroneous at low supersaturations. The observations that EPS tends to un-
derestimate the critical nucleus size (Sec. 5.4.2) and that the explicit barrier height
estimates at low solute supersaturations deviate from the expected CNT scaling
with respect to the bulk solute-solvent chemical potential difference (Sec. 5.3.1)
may also be partially explained by the inaccuracies of our definition of nucleus
size and the possibility of structural transformation of nuclei over the course of
the transition process, although we cannot make any conclusive comments here
without additional data in the low supersaturation regime.

In Sec. 7.3, we have thoroughly examined the connection between TPT and rare
event methods in the context of reversible Markov chains, showing that FFS and
TIS methods are conceptually equivalent, provided that the collective variable λ
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is defined such that every reactive trajectory must realise the value λi before the
value λi+1 can be achieved, where {λi} are the values of the collective variable at
the interfaces defined by FFS and TIS. Such definitions of the collective variable are
straightforward to provide in the context of lattice models, e.g. number of solute
particles in the system, which is not the case in the off-lattice systems. At present
we do not find any thorough analysis of FFS and TIS methods in the literature
under conditions where the definition of λ does not satisfy the given criterion.
While we did not explore such scenarios in this work, it would be interesting to
see if the framework of TPT can be used to provide a rigorous analysis of FFS and
TIS under suboptimal definitions of λ, and, as illustrated in Chapter 7, reversible
Markov chains can provide an ideal starting point for such analysis.

Despite the clear existence of nonclassical growth pathways of solute nuclei
(Sec. 5.3.2) and the known non-Markovian character of microscopic kinetics of
nuclei growth [159, 160], we found that the framework of CNT can be used to
construct a quantitatively reasonable effective treatment of the solute-solvent tran-
sition both in our examination of the ”seeding” method and in results of explicit
nucleation rate calculations via PPTIS (Sec. 7.5) at high supersaturations. This is
not surprising since assumptions of CNT are known to not hold in most numer-
ically studied model particle systems [3, 175] (Table 3.1), yet Eq. (2.53) appears
to yield reasonable nucleation rate estimates. Additionally, at the conditions of
our PPTIS simulations we only expect to observe disordered structures over the
considered range of values of the nucleus size coordinate, meaning no structural
transformations occurred within the sampled PPTIS paths. It is worth noting that,
for interface separation of ∆n = 1, the rate estimation approach of PPTIS, in the
context of nucleation, closely resembles the one-dimensional Markov treatment of
the process in the derivation of Eq. (2.53), which suggests that PPTIS may not be
the appropriate choice of sampling strategy if strongly non-Markovian character
or nonclassical kinetics of the transition process are expected. As discussed in
Sec. 7.5, out of the considered rate calculation approaches, the implemented by
us PPTIS scheme is the only viable choice of path sampling strategy for study of
nucleation under diffusive particle transport while avoiding the unphysical solute
depletion effects.

This brings us to the discussion of the seldom studied nucleation kinetics of
open systems under diffusive particle transport where, as shown in Sec. 7.4.2, we
expect solute density fluctuations to exhibit slow relaxation, making such systems
difficult to model via the standard MC methods. Barrier crossing processes in
presence of strongly correlated fluctuations have been studied in one-dimensional
systems [243, 245] showing escape characteristics which depart substantially from
those described by the Kramers’ rate theory. However, it is not clear whether inclu-
sion of realistic density fluctuations into models of open particle systems would
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significantly affect the models’ nucleation kinetics, which offers an interesting di-
rection for future study.

8.2 conclusions

We have considered nucleation of the ordered solute phase in a Q-state Potts-
like lattice model of solution of anisotropic particles, where the solute particles
exhibit a Potts-like anisotropic interaction. We have provided evidence for such
models not being appropriate candidates for modelling of competing nucleation
pathways, where large nuclei of solute structures of different degrees of internal
orientational order may form, and the subsequent formation of the most thermo-
dynamically stable bulk structure proceeds via a combination of structural trans-
formation, dissolution and recrystallisation of the formed nuclei. This is largely
due to the absence of metastability of disordered structures in the large system
limit of the Q-state Potts models below the order-disorder temperature.

We have demonstrated the connections between transition path theory and
the popular path sampling based rare event methods in the context of reversible
Markov chains, verifying that the FFS and TIS methods employ equally valid MC
sampling strategies assuming a well defined collective variable.

We found that, over a broad range of parameter space, the CNT framework
is sufficient to formulate a reasonable quantitative treatment of the nucleation
process in our model at high solute supersaturations, both in the context of the
Auer and Frenkel [125] approach and the procedure of the ”seeding” method
[102].

8.3 future work

At present, we do not find a lattice model of anisotropic particles in solution
which can capture the nonclassical nucleation mechanisms thought to occur in
systems of polymorphic minerals. While we cannot rule out the potential for
development of such models based on Potts-like representation of anisotropic par-
ticles, where a particle’s orientation in space is represented by an integer label, it is
clear that, for an accurate model, the Potts-like anisotropic interaction would have
to be modified to allow bulk metastability of disordered states below the order-
disorder transition temperature. It is worth noting that, even if an appropriate
set of particle interactions is found, showing that the corresponding disordered
solute structures are metastable in bulk may not be straightforward, as is evident
from the ongoing debate in the context of the Q-state Potts model.

It is clear that much further work is required in the assessment of the per-
formance of the ”seeding” method, in particular with respect to the statistical
properties of the estimators defined in Sec. 6.1.1 in the context of kinetics of the
nucleus size coordinate. It would, additionally, be useful to consider alternative
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functional forms of the CNT droplet free energy model as well as performance of
the method at ever lower supersaturations.

Finally, it would be particularly interesting to examine the nucleation kinetics
in lattice models with strongly temporally correlated particle density fluctuations.
Such kinetics have, so far, not been considered even in the context of the spin-flip
Ising model, which would serve a good starting point here. While the implemen-
tation of the appropriate MC scheme for such kinetics is not immediately clear,
various methods for generation of correlated stationary time series exist. This re-
search direction is particularly appealing since it may lead to general advances
in methodology for modelling of open systems, which are necessary for future
studies of nucleation from solution.
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[18] J. Earman and M. Rédei. Why Ergodic Theory Does Not Explain the Success
of Equilibrium Statistical Mechanics. Brit. J. Philos. Sci., 47(1):63, 1996.

[19] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.
American Mathematical Soc., 2009.

[20] T. P. Hayes and A. Sinclair. A General Lower Bound for Mixing of Single-Site
Dynamics on Graphs. Ann. Appl. Probab., 17(3):931, 2007.

[21] M. Lubin and A. D. Sokal. Comment on “Antiferromagnetic Potts models”.
Phys. Rev. Lett., 71(11):1778, 1993.

[22] I. Ya. Korenblit and E. F. Shender. Spin glasses and nonergodicity. Phys.
Usp., 32(2):139, 1989.

[23] H. Bauer, K. Schulten, and W. Nadler. Generalized moment expansion of
dynamic correlation functions in finite Ising systems. Phys. Rev. B, 38(1):445,
1988.

[24] C. E. Shannon. A Mathematical Theory of Communication. ACM SIGMO-
BILE Mob. Comput. Commun. Rev., 5(1):3, 2001.

[25] E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev.,
106(4):620, 1957.

[26] Harvey R. Brown, Wayne Myrvold, and Jos Uffink. Boltzmann’s H-theorem,
its discontents, and the birth of statistical mechanics. Studies in History and
Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics,
40(2):174, 2009.

115



[27] D. P. Landau and K. Binder. A guide to Monte Carlo simulations in statistical
physics. Cambridge university press, New York, 2009.

[28] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics.
Springer-Verlag Berlin Heidelberg, 5th edition, 2010.

[29] M. P. Nightingale and H. W. J. Blöte. Dynamic Exponent of the Two-
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