
Dragone, Vincenza and Sans, Victor and Henson, Alon 
B. and Granda, Jaroslaw M. and Cronin, Leroy (2017) 
An autonomous organic reaction search engine for 
chemical reactivity. Nature Communications, 8 . p. 
15733. ISSN 2041-1723 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/44197/1/140603.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


ARTICLE

Received 11 Jan 2017 | Accepted 22 Apr 2017 | Published 9 Jun 2017

An autonomous organic reaction search engine
for chemical reactivity
Vincenza Dragone1, Victor Sans1, Alon B. Henson1, Jaroslaw M. Granda1 & Leroy Cronin1

The exploration of chemical space for new reactivity, reactions and molecules is limited

by the need for separate work-up-separation steps searching for molecules rather than

reactivity. Herein we present a system that can autonomously evaluate chemical reactivity

within a network of 64 possible reaction combinations and aims for new reactivity, rather

than a predefined set of targets. The robotic system combines chemical handling, in-line

spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish

and select the most reactive pathways, generating a reaction selection index (RSI) without

need for separate work-up or purification steps. This allows the automatic navigation of a

chemical network, leading to previously unreported molecules while needing only to do a

fraction of the total possible reactions without any prior knowledge of the chemistry.

We show the RSI correlates with reactivity and is able to search chemical space using the

most reactive pathways.
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T
he number of small organic molecules reported in
the literature is 475 million1, yet this only represents
an infinitesimal fraction of the estimated 1060 molecules

available to search in chemical space2,3. To help speed up the
process of chemical synthesis, numerous time-saving devices have
been developed for today’s modern chemical laboratory,
including flow systems4–6, automated chromatography columns,
in-line analysis7,8 and combinatorial screening that uses
spectrometry9. Also, the development of flow systems for the
synthesis of known molecules is well established and is
particularly useful for automating chemical processes10, as well
as for developing safer procedures for working under more
extreme conditions, or with highly reactive materials11–13. In
addition, the availability of configurable robotics (for example,
three-dimensional-printer-based chemical robots)14, as well as a
large variety of control systems15–17, have been introduced for
custom chemistry, target syntheses18–20 and for optimization
purposes21–28. Automation offers advantages such as reliable
control over a chemical process increasing reproducibility29

and has been used to enable the development of systems that
allow the automatic optimization of the reaction conditions for
known reactions30–32. Despite these advances, the autonomous
‘closed-loop’ searching of organic33,34 chemical space following
chemical reactivity33 has not yet been achieved, which means the
discovery of new reactions and molecules is still largely in the
domain of the chemist.

To date, the development of automated systems in chemistry35

has focussed on the generation of predesigned libraries, while the
real-time experimental exploration of chemical reactivity remains
underexplored. This is because the process of organic synthesis is
normally target-based, and reactivity searches are normally
focussed on a particular transformation/optimization of a
given reaction step24–27. We therefore hypothesized that the
‘closed-loop’ exploration of chemical space could be implemented
using a simple approach using spectroscopic feedback focussing
on the differences between the starting reagents and the products
enabling the search for new molecules, reactions and synthetic
pathways. This is because the ability to search for reactivity,
rather than following the constraints of a design-to-target
approach might lead to the discovery of new reactions and
molecules by following reactivity first. This approach could
allow the elimination of bias which can prevent the human
experimenter from doing a particular set of experiments. By
focussing on a new metric-based approach following chemical
change, the system will be able to explore without bias thereby
allowing machine learning based upon only sensor feedback
rather than relying on prior knowledge. Ideally, a system that
could allow both searching of new chemical space and the ability
to update the database to predict new routes would be the most
powerful combination36.

Herein we present a reactivity explorer robot that is capable of
navigating a large reaction network and assessing the reactivity of
the chemical transformations autonomously, without needing to
do every reaction. The navigation of the chemical network is
achieved in real time with an algorithm that compares the
differences between the starting materials and each reaction
mixture generated with no prior knowledge of the chemistry and
without any work-up. The robot then uses the same algorithm
to autonomously assess and rank the reactivity of all reagent
combinations (represented as potential reaction pathways)
quantified with a reaction selection index (RSI) and select the
most reactive pathway automatically. The idea is not just to
follow yield but to see how using a straightforward algorithm,
following maximum reactivity, can lead to linking together many
reactions with minimum work-up allowing the system to
autonomously follow reactivity. In this instance, we chose a

model reaction network that comprises 64 unique possible
reaction pathways arising from the combination of 12 reagents
in groups of three (4� 4� 4); that is, a three-step synthesis where
each step has a choice from one of the four possible reagents.
During each run, the reagents travel through each of the three
reaction manifolds, an infrared spectrum is collected using an
in-line attenuated total reflectance infrared (ATR-IR) flow cell
and then compared in real time with that of the starting materials
in order to derive the RSI. After each reaction step, the
combination with the largest RSI value is selected automatically,
reacted in subsequent reaction steps and analysed in a similar
manner. In this way, the decision-making system navigates
through the reaction network following the reactions with the
highest reactivity and hence is able to autonomously pursue the
most reactive pathways under any given conditions.

Results
The reaction network/the model system. The reaction network
presented in our study is defined by a core molecule that is able to
undergo three consecutive reactions: (I) Diels–Alder reaction;
(II) reductive amination; and (III) amide formation. These three
reactions were chosen as a proof of concept in order to gradually
increase the complexity of the mixtures obtained in each step and
obtain new unpublished molecules demonstrating the potential
aiming for reactivity rather than new molecular identities. To
achieve this, we selected a core ‘framework’ molecule that can be
combined with one of the four available reagents in each reaction
step as shown in Fig. 1a. However, using the RSI approach, the
navigation of the reaction network is only focussed on the most
reactive pathways. Indeed, at the end of each reaction step a
decision point is reached, where a pathway is selected and used to
direct the chemical navigation of the network, see Fig. 1b. In each
generation, one of the four possible reagents was selected such
that it should purposely not react under the selected conditions.
These so called ‘stopper’ reagents were selected not only to act as
an in-built control, as they should always score the smallest RSI,
but they were also introduced to the system to investigate
whether the algorithm would be capable of correctly assessing
and differentiating between kinds of reactivities in real time.

The core molecule chosen was the diene 1,3-cyclopentadiene
(1), which can then be reacted in the first-generation reaction
with one of four reagents including three dienophiles—
methacrolein (2a), trans-2-methyl-pent-2-enal (2b) and trans-2-
pentenal (2c)—in order to form [4þ 2] cycloadducts (3) as the
first-generation products. These also have an aldehyde moiety
that can take part in the subsequent step by reacting one of
the four reagents including three primary amines—aniline (4a),
S-(� )-a-methylbenzylamine (4b) and cyclohexylamine (4c)—to
form imines (5) to form the second-generation products. Next, in
the presence of a reducing agent, the reaction between these
cycloadducts (3) and the primary amines (4) yields secondary
amines (6), which can then be reacted in the final step with one of
the four reagents, three of which are the acyl chlorides—
propionyl chloride (7a), benzoyl chloride (7b) and phenyl
acetyl chloride (7c)—to form amides (compounds 8) to yield
the third generation as the final products of the three-step
reaction sequence. The stoppers that were selected for the three
generations were cyclohexanone (2d), N,N-dimethylaniline (4d)
and methyl benzoate (7d) for generations I, II and III,
respectively, see Fig. 2.

The setup and the algorithm. The physical robot reactor
setup comprises of 14 digitally controlled 5 ml syringe pumps,
three reactor manifolds: R1, R2 and R3 with volume of 1.5,
1.5 and 3 ml, respectively, and two in-line analytic instruments:
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an ATR-IR and an electrospray ionization mass spectrometry
(ESI-MS) spectrometers, see Fig. 3. The software to control the
platform was written using LabVIEW. The software was able to
fully automate and synchronize the system during each operation,
in-line data acquisition and real-time data treatment and
decision-making with the algorithm.

The core feature of the robot is the algorithm used to assess
reactivity of the regents mixed together in the reaction manifolds
with the RSI, which is derived from the mean square error (MSE)
of the difference of the ATR-IR spectra. Once the run of a
generation is completed, the RSI of each of the pathways screened
is calculated as shown in equation 1 (see Supplementary
Equations 1–5 for a full explanation):

RSIn ¼
MSEnP
MSEgen

ð1Þ

Here the MSE gives an estimate the difference between the
infrared spectra of a known combination of starting materials and
the same reacted (under specific conditions). This value is defined
as the mean of the squares of the difference between the actual
observations—in this case, an experimental infrared spectrum—
and those predicted—in this case, the sum of the starting material
infrared spectra (See Supplementary Equations 1 and 2).

Assessing reactivity under different reaction conditions.
In initial experiments, we investigated whether the RSI in our
algorithm can be helpful in assessing the reactivity of a reaction
repeated under different conditions. We began with the study of
the Diels–Alder reaction between compounds 1 and 2a under
nine different reaction conditions (see Table 1). These experi-
ments were comprised of reactions at three different temperatures
at three different residence times. In all cases, the conversion rates
could be exactly calculated by integration of the aldehyde peak
from the starting material, 2a, and that of the cycloadduct, 3a,

after curve-fitting operations. These results were then confirmed
by 1H-NMR spectroscopy. The results obtained in terms of
conversion, RSI and a selected region (between 1750 and
1650 cm� 1) of the infrared spectra of this reaction under the nine
different conditions are summarized in Table 1. From these
comparisons, it is possible to observe the highest conversion
rate associated with a highest aldehyde intensity 3a: 2a ratio
(corresponding to condition IX and to the red spectrum in graph
c of Table 1). It can be seen that, for this reaction, the RSI values
can be reliably utilized for the selection of the reaction condition
giving the highest conversion.

Multi-step reaction network navigation. Now we have
established that the RSI could be used to link reactivity with
conversion, we set out to design and perform experiments
intended to challenge the algorithm by making the analysis of
reaction mixtures progressively complex. Indeed, in initial
experiments, we investigated whether the RSI in our algorithm
can reliably navigate a reaction network made of only two-step
reaction pathways characterized by high atom economy:
a Diels–Alder reaction and imine formation and carried on in the
same tetrahydrofuran solvent media. Adopting this approach, the
programmed set of experiments is automatically executed where
the whole of generation I is run and a fourth of the generation II
in 280 min. The screening of the generation I consisted of
reacting compound 1 with the dienes 2a–d. In the first step,
the experiment concluded with the selection of the reaction
pathway associated with the formation of compound 3a as the
first decision point. Interestingly, the stopper did not merely score
the smallest RSI (as expected), but this value was an order of
magnitude smaller than the other three (see Supplementary
Table 17). Also, the RSI assessment of the generation I reaction
pathways correctly matched the at-line 1H-NMR analysis of the
reaction mixtures, used to calculate the conversion yields of each

Combinatorial approacha
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I generation

II generation

III generation

I generation

II generation

III generation

RSI approach

Run reaction
combinations

Collect IR
spectra and

calculate RSI

Are all
generation
screened?

Select
the most reactive

combination

Generation
screening

completed?

The most
reactive pathway

is found

Y Y
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Figure 1 | Difference between the combinatorial approach and the RSI approach for the investigation/navigation of the reaction network.

(a) Schematic representaion of a 4�4�4 reaction network obtained using a combinatorial approach. A core molecule (donted by the black line) is

combined with four reactants in three consecutive reaction steps. This means that it is possible to form a I, II and III generation of products consisting of 4,

16 and 64 reaction outcomes, respectively. (b) Top: schematic representation of the RSI approach that uses this index to direct the reaction network

navigation to the most reactive pathways. Bottom: flow diagram of the algorithm used by the presented decision-making platform, for the navigation

through different paths of the reaction network.
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of the diene 1 into the expected cycloadduct 3. The navigation
then continued with the screening of generation II reactions
obtained from the combination of compound 3a with 4a–d. After
the screening of the four II generation reactions, the pathway
corresponding to the reaction between 3a and 4c was selected,
in which the aldehyde 3a is converted to the imine 5c. Again, the
stopper resulted in a value that is an order of magnitude smaller
than the selected pathway, and the selected pathway was shown to
be the most reactive by at-line 1H-NMR analysis of these four
reaction mixtures (see Supplementary Figs 6–13).

The second experiment consisted of navigating the whole
reaction network as shown in Fig. 4a. This includes the increased
complexity of the reaction mixtures analysed, not only due to the
low atom economy of the reactions but also due to the use of
solvent mixtures. The screening of first generation concluded
in 120 min with the selection of the pathway forming 3a
as previously described. The four experiments in the second-
generation reactions were conducted in the presence of a reducing
agent (to activate the imine for the subsequent step). These
experiments were concluded in only 160 min with the selection of
the reaction pathway corresponding to the formation of the
reaction mixture 6c. The navigation continued with the screening
of the reactions from the third generation obtained from the
combination (with a molar and volumetric ratio 1:1) of
compound 6c with 7a–d. After these four reactions were ran,
the experiment was complete and the system selected compound
8a corresponding to the reaction mixture obtained by reacting 1
with 2a and 4c in the presence of reducing agent and 7a, see
Fig. 4b. In each step, the RSI assessed the pathways correctly and
the stopper pathways were always scored with the smallest RSIs
helping validate the effectiveness of the approach. As the number
of generations increases, the range of the RSIs decreases due to
the more diluted reaction mixtures analysed. However, in this

case, this factor did not limit the selection of the most reactive
pathway. During the three-step experiment run, the in-line ESI-
MS measurements were automated in order to validate the
detection of the expected third-generation products in the final
four reaction mixtures screened in real time. However, the ESI-
MS data of the final four reaction mixtures were inconclusive,
highlighting the different diagnostic sensitivity and consequently
the limitations in the analysis of complex reaction mixtures (like
those studied and presented in this work) of this technique when
compared to the infrared spectroscopy. To confirm this, and to
also validate those pathways independently from the system, we
conducted ESI-MS measurements of the reaction mixtures
starting from the second-generation product 6c. The measure-
ments conclusively show that the presence of the third-generation
compounds could be detected by ESI-MS, after purification by
column chromatography. It was therefore possible to confirm also
for this set of reactions, the reliable use of RSI to implement in
similar decision-making platforms.

Conclusions. In summary, we have found that it is possible to
correlate the RSI with the level of reactivity of the chemical
transformations and to use this value for the navigation of
chemical spaces without necessarily having a target-oriented
strategy a priori. We first demonstrated the ability to navigate a
two-step reaction network with high atom economy, using the
RSI to assess changes between the starting materials and the
products of reactions as proof of principle. Building on this, it was
possible to demonstrate that the RSI can be directly related to the
reactivity of a chemical transformation. In addition, it is also
possible to observe a significant difference, equal to an order
of magnitude, between reactive and non-reactive pathways when
the complexity of the reaction mixtures is contained. We then
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Figure 2 | The reaction network used as chemical model system for the development of the autonomous organic search engine for chemical reactivity.

Illustration of the reaction network obtained by reacting a core molecule (hexagon in black) in three-step reactions with four different reagents in each step.

The I, II and III generation reagents are represented by the hexagons in red, blue and green, respectively. The expected products of reactions are

represented with circles. The final selected pathway and reaction mixture are highlighted in purple.
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developed a decision-making platform, where the RSI is used to
navigate a 4� 4� 4 reaction network involving also the use of
two different solvents. With this approach, we were able to
demonstrate that it is possible to efficiently reduce the sampling
to a smaller space by focussing on the level of reactivity of the
chemical transformations. After the full run of the first reaction
step, the duration of the screening and material waste can be
significantly reduced in the second step and even more in the
third step. Indeed, with this methodology, it was possible
to reduce the screening time from 12 to 5 h ca. for the
second-generation screening process and from 44 to 8 hours ca.
for the third generation. Furthermore, a theoretical analysis of
this approach shows that the time to navigate a given network
dramatically decreases as the fraction of the total number of
reactions that need to be performed when the number of reagents
per generation (R) and reaction generations (G) increase. In fact,
with this approach, the number of reactions required only
increases as a fraction of the total number of possible reactions,
and this increases as a function of the number generations and
hence decision points. For example, here only 16 out of a total 84
reactions needed to be explored, but this goes down much further
as the number of generations, and hence decision points, increase
(see Supplementary Fig. 5).

We also demonstrated that the analysis of complex mixtures
with the RSI reliably leads to the selection of the most reactive
pathway. This is of particular interest as the reactivity can be
assessed even from the very small differences in similar infrared
spectra. The possibility of analysing reaction mixtures in real time

and without any work-up or purification steps makes this
methodology highly attractive, when an autonomous and fast
screening of many chemical combinations under different
conditions is required. The unique association of the RSI with
the reactivity of chemical transformations makes this platform a
suitable choice for the navigation of the chemical space focussing
on the region leading to the highest reactivity of a reaction
network under study. This methodology could be further
expanded to become a discovery tool, but in future, we will need
to evaluate this approach next to more traditional approaches to
see whether discoveries can be made more quickly and be more
‘exciting’ or unpredictable if reactivity is followed rather than
explicit target-based searching. We think that this approach has
promise due to the possibility of using the RSI to discriminate
between reactive and non-reactive substrates for one-step
reactions, as this will afford the possibility of using the RSI to
navigate reaction networks without the generational constrains.
In this way, the RSI could be used to help drive dedicated
chemical discovery systems that follow reactivity rather than the
normal rules of synthetic chemistry and retrosynthesis, leading to
new approaches to chemical robotics36,37.

Methods
Materials and chemicals. Solvents for synthesis (AR grade) were supplied
by Fisher Chemicals and Riedel-de Haen. Deuterated solvents were obtained
from Goss Scientific Instruments Ltd. and Cambridge Isotope Laboratories Inc.
All other reagents were supplied by Sigma-Aldrich Chemical Company Ltd.,
Fisher Chemicals and Lancaster Chemicals Ltd. All commercial starting materials
were used as supplied, without further purification, with the only exception
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being dicyclopentadiene, which was freshly cracked in order to form
1,3-cyclopentadiene38. Polytetrafluoroethylene tubing with different internal
diameters, PEEK connectors and manifolds were supplied by Kinesis Ltd.

NMR spectroscopy. All NMR data were recorded on a Bruker Advance 500 MHz.
1H-NMR at 500 MHz and 13C-NMR at 125 MHz, in deuterated solvent, at
T¼ 298 K, using tetramethylsilane as the scale reference. Chemical shifts are
reported using the d-scale, referenced to the residual solvent protons in the
deuterated solvent for 1H- and 13C-NMR (that is, 1H: d (CDCl3)¼ 7.26;
13C: d (CDCl3)¼ 77.16). All chemical shifts are given in p.p.m. and all coupling
constants (J) are given in Hz (J) as absolute values. Characterization of spin
multiplicities: s¼ singlet, d¼ doublet, t¼ triplet, q¼ quartet, m¼multiplet,
dd¼ double doublet, dt¼ double triplet, dq¼ double quartet, and ddt¼ double
doublet of triplets.

Gas chromatography mass spectrometric measurements. Gas chromatography
mass spectrometric analysis was performed using an Agilent Technologies
7890A GC system equipped with Agilent Technologies 5975C inert XL MSD
with Triple-Axis Detector. The column used was Agilent 19091N-102: 260 �C,
25 mm� 200mm� 0.2 mm wide bored.

Syringe pumps. The control over the fluids was performed using the C3000 model
and TriContinent pumps (Tricontinent Ltd, CA, USA) equipped with 5 ml syringes
(TriContinent) according to the requirements of the experiments.

In-line ATR-IR spectroscopy. All spectra were recorded on a Thermo Scientific
Nicolet iS5 Fourier transform infrared equipped with a ZnSe Golden Gate
ATR-IR flow cell. Frequencies are given in cm� 1. The resolution was set at 4 cm� 1

and each sample spectrum was recorded with 21 scans.

Bench-top mass spectrometry. The spectra were recorded using a Microsaic
systems 4000 MiD spraychip (electrospray ionization source). Masscape software
was used for control of sample methods and data analysis. The specifications of this
spectrometer are listed in Supplementary Table 1.

Flow setup and algorithm. A custom-made developed LabVIEW application
(provided by National Instruments Corp.) was employed to program the pumps in
order to deliver the desired flow-rates and to control the infrared spectroscopy.
A summary of the setup characteristic and the setup schematic are illustrated in
Supplementary Table 2 and Supplementary Fig. 1, respectively. All solutions were
pumped by TriContinent pumps equipped with 5 ml syringes. All syringe pumps
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Table 1 | RSI and conversion values of a Diels–Alder reaction
conducted under flow conditions using different
temperatures and residence time.

1,740

Wavenumber (cm–1) Wavenumber (cm–1) Wavenumber (cm–1)
1,720 1,700 1,680 1,660 1,740 1,720 1,700 1,680 1,660 1,740 1,720 1,700 1,680 1,660

Starting
material

(1,697 cm–1)

New
signal

(1,720 cm–1)

New
signal

(1,720 cm–1)

New
signal

(1,720 cm–1)

Starting
material

(1,697 cm–1)

Starting
material

(1,697 cm–1)

38%
36%
27%

57%
47%
31%

77%
67%
60%

a b c

Condition T (�C) tR (min) RSI (%) Conversion* (%)

I 20 7 3.7 27
II 13 5.2 36
III 20 5.5 38
IV 35 7 4.4 31
V 13 11.6 47
VI 20 15.0 57
VII 55 7 16.0 60
VIII 13 18.1 67
IX 20 20.5 77

Three graphs illustrating the infrared spectra of the experiments at 20 �C (a), 35 �C (b) and
55 �C (c). In each graph, the infrared spectra of 3a obtained at 7, 13 and 21 min are shown
(green, blue and red spectra, respectively) and are compared with the starting material spectra
(in purple).
*Conversions calculated according to curve-fitting operations of the aldehyde peaks in the
ATR-IR spectra of reaction mixtures and confirmed by 1H-NMR spectroscopy.
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were associated with one reagent and were equipped with polytetrafluoroethylene
tubing for delivering the solutions into the flow reactors. The syringe pumps of the
first-generation reactants, the core molecule and the solvent are connected to the
first flow reactor (R1) using a eight-way connector. R1 is then connected to the
second flow reactor (R2) together with the four syringe pumps associated with the
second-generation reagents, using a six-way connector. R2 is also connected with a
six-way connector to the third flow reactor (R3) together with the four syringe
pumps associated with the third-generation reactants. R3 is then connected to the
portable ATR-IR with a two-way connector. The ATR-IR spectrometer is then
connected to the portable ESI-MS using another two-way connector. The physical
connection between the pumps and the computer was built based on wiring RS232
cables to a multi-block assembly. In-line analytics were physically connected to a
computer by a USB to Serial connection. In particular, the communication between
the computer and the ATR-IR spectrometer was enhanced by controlling the
property software OMNIC via ActiveX Functions, available as LabVIEW features.
The ESI-MS was automated using the property software Microsaic Masscape
(Version 2.52). The language used to communicate between the PC and the pumps
was originally created by the pump manufacturer. A schematic of the flow
diagram of this algorithm is illustrated in Supplementary Fig. 2. Details on the
algorithm—including data processing operations—are reported in Supplementary
Note 1, Supplementary Equations 1–5, Supplementary Fig. 3 and Supplementary
Tables 3–16.

Multi-step reactions: navigation up to the second generation. The compounds
and their preparation used are described in Supplementary Table 17. In each of the
first group of three reactions, 1.5 ml of the reagent associated with P1 at a flow rate
of 0.075 ml min� 1 and combined with 1.5 ml of one of the reagent associated with
P2, P3, P4 or P5 (randomly selected) at the same flow rate and then heated to 55 �C
in reactor R1þR2 (tR¼ 20 min). Between one reaction and the next, 1.5 ml of
solvent from P14 was passed through R1þR2 at a flow rate of 0.15 ml min� 1,
resulting in a waiting time of 10 min, during which the flow stream passed through
an ATR-IR flow cell in order to collect its infrared spectrum and calculate its MSE
value. At the end of the third reaction and washing cycle, the system calculates the
RSI values of all experiments of the same generation and compares them, in order
to select the biggest one and lock the pump combination associated with it—which
in this case was the product obtained from mixing the reagents with P1 and P2,
corresponding to compound 3a. In each of the second group of three reactions,
1.125 ml of the reagent associated with P1 at a flow rate of 0.0325 ml min� 1 and
combined with 1.125 ml of the reagent associated with P2 at the same flow rate
and then heated to 55 �C in reactor R1 (tR¼ 20 min). The output from R1 was
combined with 0.75 ml of one of the reagent associated with P6, P7, P8 or P9
(randomly selected) at the flow rate of 0.75 ml min� 1 in R2 (tR¼ 10 min). Between
one reaction and the next, 1.5 ml of solvent from P14 was passed through R1þR2
at a flow rate of 0.15 ml min� 1, resulting in a waiting time of 10 min, during which
the flow stream passed through an ATR-IR flow cell in order to collect its infrared
spectrum and calculate its MSE value. At end of the third reaction and washing
cycle, the system calculates the RSI values of all experiments of the same generation
and compares them, in order to select the biggest one and the pathway, as pump
combination, associated with it—that in this case was the product obtained from
mixing the reagents in P1, P2 and P8, corresponding to compound 5c. The eight
reaction mixtures collected were further analysed by NMR spectroscopy and MS
(see Supplementary Note 4). The operations executed with VI-4 for each sequence
run are summarized in Supplementary Note 2 and a list of the experiments ran
with conversion, RSI and MSE value for each of the six reactions is reported in
Supplementary Table 18.

Multi-step reactions: navigation up to the third generation. The compounds
and their preparation used are described in Supplementary Table 19. In each of the
first group of three reactions, 3 ml of the reagent associated with P1 at a flow rate of
0.15 ml min� 1 and combined with 3 ml of one of the reagent associated with P2,
P3, P4 or P5 (randomly selected) at the same flow rate and then heated to 55 �C in
reactor R1þR2þR3 (tR¼ 20 min). Between one reaction and the next, 1.5 ml of
the solvent from P14 was passed through R1þR2þR3 at a flow rate of
0.3 ml min� 1, resulting in a waiting time of 10 min, during when the flow stream
passed through an ATR-IR flow cell in order to collect its infrared spectrum and
calculate its MSE value. At the end of the third reaction and washing cycle, the
system calculates the RSI values of all experiments of the same generation and
compares them, in order to select the biggest one and lock the pump combination
associated with it—which in this case was the product obtained from mixing the
reagents with P1 and P2, corresponding to compound 3a. In each of the second
group of three reactions, 1.125 ml of the reagent associated with P1 at a flow rate of
0.0325 ml min� 1 and combined with 1.125 ml of the reagent associated with P2 at
the same flow rate and then heated to 55 �C in reactor R1 (tR¼ 20 min). The
output from R1 was combined with 0.75 ml of one of the reagent associated with
P6, P7, P8 or P9 (randomly selected) at the flow rate of 0.75 ml min� 1 in R2
(tR¼ 10 min). Between one reaction and the next, 4.5 ml of solvent from P14 was
passed through R1þR2þR3 at a flow rate of 0.15 ml min� 1, resulting in a
waiting time of 30 min, during which (after the first 10 min) the flow stream passed
through an ATR-IR flow cell in order to collect its infrared spectrum and calculate
its MSE value. At the end of the third reaction and washing cycle, the system

calculates the RSI values of all experiments of the same generation and compares
them, in order to select the biggest one and the pathway, as pump combination,
associated with it—that in this case was the product obtained from mixing the
reagents in P1, P2 and P8, corresponding to compound 6c. In each of the third
group of three reactions, 1.5 ml of the reagent associated with P1 at a flow rate of
0.0325 ml min� 1 and combined with 1.5 ml of the reagent associated with P2 at the
same flow rate and then heated to 55 �C in reactor R1 (tR¼ 20 min). The output
from R1 was combined with 1.125 ml of the reagent associated with P5 at the flow
rate of 0.75 ml min� 1 in R2 (tR¼ 10 min). The output from R2 was combined with
0.75 ml of one of the reagent associated with P10, P11, P12 or P13 (randomly
selected) delivered at the flow rate of 0.15 ml min� 1 in R3 (tR¼ 10 min). Between
one reaction and the next, 1.5 ml of solvent from P14 was passed through
R1þR2þR3 at a flow rate of 0.3 ml min� 1, resulting in a waiting time of 5 min,
which allows the stream to pass through an ATR-IR flow cell in order to collect its
infrared spectrum and calculate its MSE value. At the end of the third reaction and
washing cycle, the system calculates the RSI values of all experiments of the same
generation and compares them, in order to select the biggest one and the pathway,
as pump combination, associated with it—which in this case was the product
obtained from mixing the reagents in P1, P2, P5 and P10, corresponding to
compound 8a. The 12 reaction mixtures collected were additionally analysed by
NMR spectroscopy and MS where possible (see section 4.4 for the characterization
of these nine compounds). The operations executed with VI-4 for each sequence
run are summarized in Supplementary Note 3, a list of the experiments ran with
conversion, RSI and MSE value for each of the nine reactions is reported in
Supplementary Table 20 and the comparison between the sum of the starting
materials and the experimental infrared is summarized in Supplementary Fig. 4.

Syntheses of the compounds isolated from the reaction network navigated.
Most of the products were not isolated due to the approach that includes a system
without any purification. Therefore, in most of the cases, the analysis was per-
formed directly on the crude reaction mixtures to ensure the reaction was pro-
ceeding as planned. Analysis of the crude reaction mixtures did not allow the
unambiguous assignment of 1H- and 13C-NMR signals, and all signals assigned to
the reaction products are given here. For more details, see Supplementary Note 4.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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36. Szymkuć, S. et al. Computer-assisted synthetic planning: the end of the
beginning. Angew. Chem. Int. Ed. 55, 5904–5937 (2016).

37. Peplow, M. The robo-chemist. Nature 512, 20–22 (2014).
38. Moffett, R. B. Claisen rearrangement of allyloxypyridines. J. Org. Chem. 28,

2885–2886 (1963).

Acknowledgements
We gratefully acknowledge financial support from the EPSRC (Grant Nos. EP/H024107/1,
EP/I033459/1, EP/J00135X/1, EP/J015156/1, EP/K021966/1, EP/K023004/1, EP/K038885/1,
EP/L015668/1, EP/L023652/1), BBSRC (Grant No. BB/M011267/1), ERC (project 670467
SMART-POM) and the Royal-Society Wolfson Foundation for a Merit Award to L.C.
and the University of Glasgow. J.M.G. acknowledges financial support from the Polish
Ministry of Science and Higher Education Grant No. 1295/MOB/IV/2015/0.

Author contributions
L.C. conceived the idea, designed the project and coordinated the efforts of the research
team. V.D. built the system with the initial help from V.S. in designing and programming
the flow system and conducted the experiments with input from A.B.H. and J.M.G. V.D.
and L.C. co-wrote the paper with input from all the authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: L.C. is a director of, and owns some shares in, Cronin Group PLC,
set up to commercialize new approaches to design, discovery and digitization in chemistry.
The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Dragone, V. et al. An autonomous organic reaction search engine
for chemical reactivity. Nat. Commun. 8, 15733 doi: 10.1038/ncomms15733 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/

r The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15733

8 NATURE COMMUNICATIONS | 8:15733 | DOI: 10.1038/ncomms15733 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	The reaction networksolthe model system
	The setup and the algorithm
	Assessing reactivity under different reaction conditions
	Multi-step reaction network navigation

	Figure™1Difference between the combinatorial approach and the RSI approach for the investigationsolnavigation of the reaction network.(a)™Schematic representaion of a 4times4times4 reaction network obtained using a combinatorial approach. A core molecule 
	Conclusions

	Figure™2The reaction network used as chemical model system for the development of the autonomous organic search engine for chemical reactivity.Illustration of the reaction network obtained by reacting a core molecule (hexagon in black) in three-step react
	Methods
	Materials and chemicals

	Figure™3Reaction steps and physical setup of the pathway-dependent chemistry platform.(a) Schematic of the three reaction steps selected to build this chemical network. The exploration of the reaction network is obtained by reacting a core molecule (1) in
	NMR spectroscopy
	Gas chromatography mass spectrometric measurements
	Syringe pumps
	In-line ATR-IR spectroscopy
	Bench-top mass spectrometry
	Flow setup and algorithm

	Figure™4Resultssolsummary of the navigation of the model reaction network using the RSI algorithm.(a) Schematic of the organic reaction search engine used for the navigation of the 4times4times4 chemical network. Each reactant is associated with a syringe
	Table 1 
	Multi-step reactions: navigation up to the second generation
	Multi-step reactions: navigation up to the third generation
	Syntheses of the compounds isolated from the reaction network navigated
	Data availability

	CAS REGISTRYSM surpasses 75 million small molecules.http://www.cas.org/news/media-releases/75-millionth-substance2013GrzybowskiB. A.BishopK. J. M.KowalczykB.WilmerC. E.The ’wiredCloseCurlyQuote universe of organic chemistryNat. Chem.131362009McNallyA.Prie
	We gratefully acknowledge financial support from the EPSRC (Grant Nos. EPsolH024107sol1, EPsolI033459sol1, EPsolJ00135Xsol1, EPsolJ015156sol1, EPsolK021966sol1, EPsolK023004sol1, EPsolK038885sol1, EPsolL015668sol1, EPsolL023652sol1), BBSRC (Grant No. BBso
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information


