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Abstract

This work is concerned with the modelling and analysis of the orientation and distance between steel fibers in X-ray Micro-
Tomography (XCT) data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed
understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarise
the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale
entropy. Theoretical modelling, simulation and application to real imaging data are shown here. The theoretical modelling of
multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales.
A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical
descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique
insights into both simulated and real imaging data of steel fiber reinforced concrete.

I. INTRODUCTION

Steel Fiber Reinforced Concrete (SFRC) is a common engineering material in the construction industry. The steel fibers

help to improve the mechanical properties of the material. The orientation of the fibers is important because they help to

strengthen the material, particularly in the direction orthogonal to the fibers. In the extreme case they can help to bridge a

gap if a crack forms. If the fibers are not oriented perpendicular to the direction of the crack then they will not be able to

bridge the gap according to Abrishambaf et al. [1]. Thus, the aim of the work here, is to provide a quantitative insight into,

how randomly distributed steel fibers or any other randomly oriented structures are located and oriented in volumetric imaging

data. Multiscale Entropy modeling is investigated here to describe the randomness of steel fibers in micro-tomography data of

SFRC. This enables the orientation distribution and distancing of the fibers to be summarized in an effective way.

A number of techniques exist for estimating the orientation distribution of the fibers. The orientation distribution is a

distribution function which can help in understanding how well distributed the fibers are within the volume. The approach

taken in Vicente et al. [2] and Abrishambaf et al. [3] was to look at the distributions of the fibers against the 3 axes in

combination with fiber distribution efficiency factors, one for each axis (ex, ey, ez). For each of the efficiency factors, a variety

of scenarios may be considered, such as complete alignment with a given axis (e.g. ex = 2), perpendicular to that axis (e.g.

ex = 0). These are useful as they summarize, for each of the axes, the extensive information in the orientation distribution for

a volume. A software system for interactive visualization and investigation of fiber based materials that combined similar axis

dependent distribution information was described by Weissenböck et al. [4].

Another approach taken by Axelsson and Svensson in [5], [6] is via a structure tensor that describes the orientations of the

fibers through out the volume. The tensor can be summarized via a combination of three relative anisotropy terms (c1, c2, c3)
calculated from combinations of the three eigenvalues (λ1, λ2, λ3) of the structure tensor. For the case of when the fibers are

well distributed then c2 will be small, c1 small and c3 large. This measurement of anisotropy can be understood in terms of

how the eigenvalues are inter-related (since the relative anisotropy terms are derived from the eigenvalues).

Alternatively we may prefer to somehow summarize the distribution of the fibers in terms of how randomly they are

distributed. One way of doing this is with the use of a Scalar Order Parameter (SOP). Hermann et al. [7], [8] used SOP as a

scalar value, S ∈
[

− 1
2 , 1

]

to quantify the amount of variation in the distribution of fibers. The SOP can be calculated via the

second order orientation tensor O which is given by the sum of the outer products of the orientation vectors. The SOP S can

then be calculated from the largest eigenvalue of O (but scaled by 3/2) or the average of the second Legendre polynomial,

(see e.g. Jankun-Kelly and Mehta, [9] and Mottram and Newton [10]) dependent upon the angle α which is the angle between

each of the fibers’ vectors and the director’s vector that describes the mean orientation.

Each of the above techniques rely on the processing of knowledge about the locations of the steel fibers, as might be possible

from image processing operations performed on microtomography data. However fiber orientation estimation has also been
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Fig. 1. Example of a volume rendered real Steel Fiber Reinforced Concrete (SFRC) core (left), result of thresholding (middle left), individual steel fibers
(middle right) and volume rendered result of a corresponding multiscale Entropy estimation process, as described here. The individual steel fibers are obtained
using an iteratively applied Random Sample Consensus process applied to a morphologically thinned version of the segmented steel fibers.

performed using electromagnetic measurement techniques, relying on the magnetic properties of the steel fibers, as shown in

Juan-Garcı́a et al. [11]. These techniques are interesting but a high resolution 3D microtomography data set would likely be

considered as a potential source of a gold standard in this type of scenario.

Many of the aforementioned techniques attempt to describe the amount of concentrated directionality in the distribution of

the fibers. This is often referred to as anisotropy. Anisotropy is a popular topic in the medical imaging community to help

understand the connectivity of the brain. Westin et al. [12] derived an eigenvalue based description of the shape of a diffusion

tensor to describe the directionality of water diffusion in Diffusion Tensor Magnetic Resonance Imaging (DTMRI) data. Similar

techniques were applied to more general computer vision problems by Westin and Knuttson, [13], [14] for symmetry detection

and motion vector field estimation. Anisotropy is also useful for fingerprint authentication. For example Jiang, [15] used the

eigenvectors of the gradient covariance matrix for fingerprint authentication, similar to the structure tensor approach used

previously in computer vision by Bigun and Granlund in 1987 [16] and Knutsson in 1989 [17]. In particular the magnitude

of the image gradient was used as a measure of anisotropy, which is not so applicable to steel fiber like data as a measure of

anisotropy. Another fingerprint indexing approach by Liu and Yap in 2012 [18] looked at polar complex moments at different

scales. The use of different scales was interesting but the inherent assumption with fingerprints with their technique is that

there must be a direction to infer.

The majority of the techniques described above derive some form of measurement from the eigenvalues of a second order

moment matrix, such as the orientation tensor as used by Hermann et al. [7], [8], a structure tensor as used by Axelsson and

Svensson [5], [6] or even a covariance like matrix as in Principal Component Analysis (PCA), also used by Axelsson and

Svensson [6]. As such the eigenvalues describe the variability of a system, with the greatest eigenvalue in the direction of

maximum variability. These approaches implicitly assume a uni-modal distribution. An alternative approach to describing the

statistical variability which does not assume a uni-modal distribution can be based on Shannon’s Entropy H , first proposed in

1948 [19] for application in telecommunications. A comparative illustration of the different properties of standard deviation

versus Shannon’s Entropy can be seen in Fig. 14.

Shannon’s Entropy is sometimes referred to as useful as a spectral Entropy described by Sharma et al. [20]; similarly for

Renyi’s Entropy [21]. In the same context, there are other forms and uses of Entropy such as approximate Entropy as proposed

by Pincus [22] and sample Entropy described by Richman and Moorman [23]. Both these techniques have often been used in

the context of analyzing the complexity of time series data. They are often used as a regularity statistic, e.g. by Ho et al. [24].

Both approximate Entropy and sample Entropy have also been used within a multiscale Entropy framework, see Costa et al.

[25] where the multiple scales provide an advantage enabling the randomness or complexity of a signal to be quantified across

a range of scales so that signals can be compared more easily. For example, Ramdani et al. [26] and Fino et al. [27] looked at

posture fluctuations to compare falling in elderly people; artefact detection in electroencephalographic signals is also another

popular topic e.g. Mariani et al. [28]; analysis of various engineering type problems such as for two phase flow e.g. Gao et

al. [29]; and quantifying human heartbeat complexity and similar has also been another popular topic for the application of

multiscale Entropy e.g. Valencia et al. [30] and Costa and Goldberger [31]. Shannon’s Entropy has also been used in multiscale

formulations by Zhang [32] and also Fogedby [33], but not for the description and summarisation of orientation information

which is the problem considered here.

The steel fibers are included in steel fiber reinforced concrete to provide improved mechanical properties to the concrete. The

mechanical modeling of composite materials can be done in a number of ways, such as with Finite Element Analysis (FEA)

(e.g. Abbas et al. [34]) or statistically via the Weibull distribution, often used to model tensile strength via weakest link theory,

see e.g. Zhang et al. [35]. Both types of techniques have advantages, but they do not incorporate the orientation distribution

information, an often used descriptor of fiber enhanced materials. FEA provides insight into the mechanical properties of a

material at various levels of detail but statistical techniques are often limited to providing a global summary or at best limited
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to sub-volumes. Therefore it is of interest to investigate statistical models that are able to provide a global summary of the

orientation information but also to focus at the imaging point measurement level, i.e. for individual voxels.

The work described here is based on a multiscale Entropy approach. It is used to quantify the randomness of the distribution

of steel fibers in steel fiber reinforced concrete. The randomness is quantified in 3D both in terms of a 3D angle (φ, θ) in section

II-A and the 3D angle is combined with distance between fibers in section II-B. An example multiscale Entropy estimate can

be seen in Fig. 1 for a real SFRC core sample. Shannon’s Entropy rather than approximate Entropy or sample Entropy is

used here as Shannon’s Entropy quantifies overall randomness rather than irregularity (as for approximate Entropy or sample

Entropy). Irregularity is not appropriate here because regularly spaced fibers could still provide improved mechanical properties

to a material. Rather a measure of uniformity, whether regular or irregular is appropriate here. Also remembering that the use

of multiscale ensures that the properties of the orientation distribution are quantified consistently across scale.

Section III then follows with a series of experiments and corresponding results concluding with a discussion and conclusions

in section IV.

II. METHODOLOGY

A. Multiple Scale Discrete Orientation Distribution

Each individual steel fiber can be represented as a vector p in 3D cartesian space i.e. p = (x, y, z)T. Alternatively it can

be represented in a spherical coordinate system with v = (φ, θ, ρ)T, where φ and θ are the in-plane and inter-plane angles

respectively and r is the Euclidean length of the steel fiber vector. These terms can be calculated with φ = tan−1
(

y
x

)

,

θ = cos−1(z), ρ =
√

x2 + y2 + z2. For each fiber i in a volume, discretized angle indices ni and mi are calculated with

ni ≤ N and mi ≤ M are whole number indices in the range provided by the selected scale given by N and M . The indices

ni and mi are calculated from the continuous underlying angles θ and φ respectively.

A histogram can be created for a volume containing fibers binned at discretized angle indices f(n,m); containing the counts

for the fibers at a particular combination of angle ranges. The histogram can be used to estimate a probability mass function for

the orientations of the fibers, with P̂ (n,m) = f(n,m)/
∑

n

∑

m f(n,m) so that
∑

n

∑

m P̂ (n,m) = 1. We will assume an

infinite sample size so that P (n,m) = P̂ (n,m). This assumption is considered in more detail in section II-F. The discretized

orientation distribution at a particular scale (N,M) can then be summarized with Shannon’s Entropy, i.e.

HNM =
∑

n

∑

m

P (n,m)h(n,m); (1)

where the self information is given by h(n,m) = − log2(P (n,m)). Extending across multiple scales gives,

Hms =
∑

N

∑

M

HNM =
∑

N

∑

M

∑

n

∑

m

P (n,m)h(n,m). (2)

The question we might ask, is, what value will Hms take for a volume consisting of fibers distributed over a particular range

of angles, e.g. r, where θ ∈ [0, q] × 180 and φ ∈ [0, r] × 180? Expressing this as Hms(q, r); it is shown in appendix A that

Hms(q, r) is approximately logarithmically proportional to q and r, where the Entropy is calculated across a set of scales, with

maximum M×N i.e. M ∈ [1,M] and N ∈ [1,N]. An example of this can be seen in Fig. 2. Also shown in Fig. 2 are data

points obtained from simulation (see III). These data points closely follow the theoretical line for the majority of the curve.

This is interesting because it demonstrates the result of a multiscale operation is an easily understood function and also one

which can be used to indicate the range of angles over which the fibers are distributed. Using similar steps and assumptions,

it is also shown in appendix A that the variance of this estimator is given by

σ2
ms = 4 log22(NM)− log2(NM)(4 + 2/ ln(2)) + 4/ ln2(2). (3)

Through numerical simulation it can be seen that mean Hms and the sample standard deviation σms are of similar value where

Hms/σms ∈ [0.8, 1.8]. The standard error Sms =
σms√

C for the estimation of Hms will however be significantly reduced because

of the numerous fibers in every volume e.g. C > 70. A further useful observation regarding (3) is the independence from the

range of angles ([0, q], [0, r]) that a particular volume might have fibers distributed across.

The use of angle alone is interesting because of the original premise regarding highly randomized fibers contributing to a

material with good mechanical properties (see e.g. ACI Committee [36]). But the microtomography data provides more detailed

information, i.e. local information that can be relied upon to help localize the quantification of the randomness, through another

type of Entropy calculation, as can be seen in the following section.

B. Probability of Angle and Distance Combined

The mechanical properties of a material should improve when fibers are distributed evenly throughout a volume in a highly

randomized way (see e.g. ACI Committee, [36]). The orientation distribution only describes the angular distribution, not

the spatial distribution. This spatial information is not captured in the preceding model. Furthermore, as noted above, the

microtomography data provides highly detailed, localized information regarding the location of fibers. This information can be
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Fig. 2. Illustration for 2D of the effect of including multiple scales (dashed lines), with a solid gray line for the resulting combination of the multiple scale
lines. Also shown are dots corresponding to simulations which closely follow the theoretically derived expression, (in Appendix A).

used to develop a new, more sophisticated model of fiber distribution; both at the voxel level and also capturing information

about the distribution of the fibers throughout the volume.

The probability of angle and distance combined can be considered. For a particular point xj in the volume and a particular

direction (n,m), at angular scale (N,M) and distance scale σ, we have

P (xj |n,m, σ) ∝
∑

i:ni=n,
mi=m

exp

(

−
dls(j|i)

2

2σ2

)

(4)

where dls(j|i) is the distance from point xj to a steel fiber with end points x1,i and x2,i. Details on the computation of this

distance can be found in section II-D.

The probabilities are normalized for each point across all discretized angles. Using Bayes theorem it can then be shown

P (ni,mi, σ|xj) =
P (xj |ni,mi, σ)P (ni,mi, σ)

∑

nk

∑

mk
P (xj |nk,mk, σ)P (nk,mk, σ)

, (5)

which describes the probability of fibers oriented in direction (ni,mi) at distance scale σ influencing the volume at point xj .

Uniform priors are assumed because fibers could potentially point in any direction i.e. P (nk,mk, σ) = 1 and the denominator

is a marginal distribution P (xj) so that

P (ni,mi, σ|xj) =
P (xj |ni,mi, σ)

P (xj)
, (6)

where P (xj) =
∑

nk

∑

mk
P (xj |nk,mk, σ). This marginal is important in terms of the conventional notion of conditional

probabilities. The normalizing sum or marginal P (xj) also carries important details regarding the proximity and consequently

influence of any fibers, which is preserved to scale the resulting Entropy calculations as will be seen shortly.

C. Conditional Multiscale Entropy

The influence of fibers pointing in direction (n,m) at varying distances dls to a point xj are important in understanding

whether an individual point is sufficiently influenced in terms of proximity, as well as the complexity of the distribution of

orientations. Therefore the marginal term p(xj) from (6) is introduced to weight the Entropy calculation in terms of the distance

of influencing fibers dls for a particular orientation (n,m). The result of this is a conditional Entropy of a point xj being

influenced by fibers pointing in directions (n,m) for a particular scale (N,M, σ)

H(N,M, σ|xj) = E [− log2 P (n,m, σ|xj)|xj ]

= −
∑

n

∑

m

P (n,m, σ,xj) log2 P (n,m, σ|xj)

= −
∑

n

∑

m

P (n,m, σ|xj)P (xj) log2 P (n,m, σ|xj) (7)

The conditional Entropy at point xj across all scales is then

Hvol(xj) =
∑

σ

∑

N

∑

M

H(N,M, σ|xj) (8)

Each Hvol(xj) describes the Entropy across multiple scales of orientations (N,M ) and distance (σ). This conditional Entropy

will be used shortly (in III) to quantify the amount of randomness in the orientation distribution of steel fibers.
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||x1-x2||2
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Fig. 3. Illustration of the geometry involved in the calculation of the distance from the line segment, dls. When h1, h2 ≤ hmax (left) then dls = d. When
h1 or h2 ≥ hmax (right) then dls = min(h1, h2).

D. Fiber Modeling

Steel fibers typically have hooked ends to help improve anchorage in the concrete, see e.g. Abdallah et al. [37]. Sometimes

they may also have a zig-zag form. Furthermore many of the steel fibers will also bend when combined with aggregate (small

stones) in the concrete mix.

The steel fibers are modeled here as line segments, a straight line but terminated at two end points. This provides a convenient

approach for the purposes of modeling. Furthermore, the fiber detection process (see see section II-E) does not assume a constant

fiber length. This means that a bent fiber can be approximated with a series of shorter straight line segments.

If a point x0 is perpendicular to the line segment with end points x1 and x2 then the perpendicular straight line distance

can be used. Otherwise the distance will need to be calculated in another way, as shown in the following lemma.

Lemma. The minimum distance of a point x0 to a line segment with end points x1 and x2 is defined as

dls =

{

d if h1 ≤ hmax and h2 ≤ hmax;
min(h1, h2) otherwise;

(9)

where d = ‖(x0−x1)×(x0−x2)‖2

‖x2−x1‖2

is the perpendicular distance of x0 to a straight line with points x1 and x2 as described by

Weisstein, [38], h1 = ‖x0 − x1‖2, h2 = ‖x0 − x2‖2 and hmax =
√

d2 + ‖x1 − x2‖22.

Proof. The distance to a line segment from a point x0 can be calculated by observing that two right angle triangles are formed

between x0 and the closest point on the straight line and the two end points of the line segment x1 and x2 (forming two

different right angle triangles). The hypotenuses h1 and h2 for the two triangles are then the distances between two end points,

i.e. h1 = ‖x0 −x1‖2 and h2 = ‖x0 −x2‖2. A third right angled triangle is also formed, defined as having the points x1, x2

and a point on a line running through x0 parallel to the line with x1 and x2, perpendicular at x1 (or equivalently x2) with

hypotenuse hmax =
√

d2 + ‖x1 − x2‖22. If both hypotenuses h1 and h2 are less than hmax then there will be a perpendicular

point within the line segment. If either h1 or h2 are greater than hmax then the right angle triangle formed will have a

perpendicular point that lies outside of the line segment (although still on the straight line). In this case, the perpendicular

distance (to the straight line) will be less than the distance to the closest point on the line segment. This is illustrated in Fig.

3. The minimum distance from x0 to the line segment can therefore be calculated with (9) as given.

E. Fiber Detection

The directionality of steel fibers in volumetric data may be corrupted because of the thickness of the steel fiber in relation to

the inter-plane thickness in the acquired XCT data (inter-slice gap). This can be observed in the 3D rendering and cross section

shown in Fig. 4. Techniques such as the one proposed by Fritz et al. [39] used region growing to segment the background

concrete from isolated steel fibers then assumed that individual fibers could be individually isolated. Another technique proposed

by Vicente et al. [2] involved taking a relatively high threshold and then determining fibers based on their connectivity in a

particular direction within a given tolerance by performing a regression like process of the resulting point cloud for the entire set

of segmented points. Other techniques by Eberhardt and Clarke [40], Salaberger et al. [41] and Tausif et al. [42] rely on finding

short straight lines in the 3D image data and then connecting them together, again similar to Vicente et al. [2] in a particular

direction within a given tolerance. The resulting potential ambiguities such as the directionality means simple techniques based

on connectivity are not sufficient for accurate detection of fibers. Random sample consensus (RANSAC), first proposed by

Fischler and Bolles [43] is used here as a robust clustering model based detection method to robustly and iteratively fit models,

(straight lines in this case) corresponding to steel fibers. The volumetric data is thresholded, morphologically thinned (see e.g.

Gonzalez and Woods [44]) and then RANSAC is applied to find the set of points that best match a straight line. Those points

are then deleted and then the process is repeated until no data points remain. This approach is reasonable and is often used in

computer vision research, see e.g. Davies [45]. An example output can be seen in Fig. 1.

If the imaging data is acquired with a sufficiently high resolution, including little or no inter-slice gap then other techniques

could instead be used such as the one proposed by Salaberger et al. [41].
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Fig. 4. Illustration of effect of inter-plane finite resolution when the dimensions of the steel fibers are small compared to the inter-plane resolution. Left:
cropped image of 3D rendering of isosurfaces (red) together with volume rendering of semi-transparent aggregate material (blue/ green). Right: 2D gray-scale
cropped cross section of same volume also illustrating fibers (0.75mm diameter) with poor inter-connectivity and a scale is included (mm). Voxel dimensions
given by 0.016522 × 1mm3 for a core size of π502 × 100mm3 with 197000 fibers/m3. Data provided by a user study, see section III-B, particularly table II.

Fig. 5. Histograms for repeated estimation of the mean Entropy for simulated fiber volumes (similar to bootstrapping with replacement sampling). These
results appear to show clustering around centralized mean like values. Standard deviations range from 1.5 to 3.1, all reflecting relatively low deviation from
the mean. These results help to show the repeatability of obtaining a particular value of Entropy using the described processes. Also note the estimation
process includes the fiber detection and Entropy estimation processes.

F. Entropy Estimation

The steel fibers are likely to be quite numerous, thus complicating the fiber detection process. Furthermore accurate estimation

of Entropy Ĥ is dependent on accurate estimation of the underlying probability distribution(s), e.g. using “plug-in” Entropy

estimation, see Antos and Kontoyiannis [46]

ĤMLE ≡ −
∑

k

P̂k log2 P̂k. (10)

which requires a large sample size to accurately estimate the probabilities P̂k. Obviously, this is impractical from a computational

point of view. However the stochastic nature of the fiber detection process provides an opportunity to repeat it over a number

of iterations, which can provide somewhat dependent re-sampling of the fiber volume.

The “plug-in” formula in (10) for Entropy estimation is also a negatively biased estimator according to Antos and Kontoyian-

nis [46] and Paninski [47], i.e. ĤMLE −H ≤ 0. Thus making robust inference of the Entropy from a quite densely populated

volume and or low contrast volume potentially erroneous. The good news is that the variance on the Entropy estimation part

of the process is bounded Var(ĤMLE) ≤ (log C)2/C due to central limit properties [47].

A further potential source of variation is from the fiber detection stage involving the RANSAC algorithm, as described in

the preceding section. The RANSAC algorithm does not always provide a perfect solution and the results returned can be

somewhat validated by re-running the sampling process. Therefore, not only are there multiple fibers from which to estimate

but also the estimation process is repeated multiple times (C = X × 50 for some of the experiments that follow shortly where

X is the number of fibers in a volume). This reduces the resulting weighting of a potentially poor fiber detection process and

also to take advantage of the central limit theorem. Some results of this bootstrap with replacement like process can be seen

in Fig. 5.

III. EXPERIMENTS AND RESULTS

The experiments that follow have utilized both simulated data and real XCT data of steel fiber concrete cores. The benefit

of simulating XCT data is because it enables parameters to be precisely controlled such as the orientation distribution and

distancing of the simulated steel fibers, the inter slice thickness, noise levels and it is also possible to have precise knowledge

about the location of the simulated fibers. The fibers were randomly located in the imaging data using
{

θ = 2πu
φ = cos−1(2v − 1).

(11)
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Fig. 6. Surface renderings of simulated volumes. Each row represents increasing ranges of angles over which fibers were distributed, where θ, φ ∈ (0, 10),
(0, 40), (0, 60), (0, 120), or (0, 180) where the first row has θ, φ ∈ (0, 10), second row θ, φ ∈ (0, 40) etc. Scale axes are shown with dimensions in mm.

where u and v are sampled from uniform distributions in (0,1). Rejection sampling was used to constrain θ and φ within a

given range, e.g. to generate fibers in the range θ, φ ∈ [0, 60] then u and v were sampled from the uniform distribution and

the corresponding θ and φ values were kept unless θ > 60 or φ > 60. Fibers were generated in a high resolution volume as

straight lines with 30mm lengths and 1mm diameters. Straight lines were generated and then dilated to create the specified

fiber dimension. Additive white Gaussian noise was added and convolution performed with a simulated point spread function,

assumed here to be Gaussian in form. Downsampling was then performed to a specified low resolution number of voxels, see

Table I. Volume renderings of a range of simulated volumes can be seen in Fig. 6.

The real XCT data are scans of 100mm core samples of steel fiber reinforced concrete square panels that have undergone

various mechanical tests such as flexural strength testing as performed by Ige et al. [48]. The cores were imaged with a

350kV X-ray source with a Venlo H350 manufactured by Shaw Inspection Systems. The technical details include a 350kV

2-D mini-focus, fan-shaped beam with a tungsten target, linear diode array using a 1× 3672 pixel area in conjunction with a
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TABLE I
DETAILS OF SIMULATED FIBERS VOLUMES, ILLUSTRATED IN FIG. 6 WITH RESULTS SHOWN IN FIGS. 5, 8 AND 7.

Downsampled High
θ, φ # Voxels Resolution # Voxels # volumes

[0, 10] 128×128×128 768×768×768 10
[0, 20] 128×128×128 768×768×768 10
[0, 40] 128×128×128 768×768×768 10
[0, 60] 128×128×128 768×768×768 10
[0, 90] 128×128×128 768×768×768 10
[0, 120] 128×128×128 768×768×768 10
[0, 150] 128×128×128 768×768×768 10
[0, 180] 128×128×128 768×768×768 10

Fig. 7. Multiscale Entropy calculated for simulated volumes (#400) with simulated fibers (#75) constrained to an upper limit for both the in-plane and
inter-plane angles (θ, φ). Rejection sampling was used to randomly generate within a given interval. The point values are the multiscale Entropy estimates
(#50 for each angle). The means, conditioned on the angle are diamonds and an inverse decay exponential curve of the form Hmax(1 − exp(−angle/τ))
was found to have a very good fit to these mean values.

12-bit digital output and a Gadolinium Oxysulphide scintillator. The focal spot is 0.9mm. The scan parameters included 296kV,

current 2.1mA, exposure time of 260ms and each scan was rotated 360o in 450 seconds.

Unless otherwise stated, the angle histograms for n and m are calculated with (N,M) ∈ (3, 4, 5, 6)2 so that the orientation

distribution is discretized into 16 different combinations of scale, i.e. for N = 3, M = 3, 4, 5, 6; for N = 4, M = 3, 4, 5, 6,

etc. The multiple scale variance σ2 in (4) was given values σ2 ∈ {1, 100, 10000, 1000000}.

The simulation software was implemented using a number of software tools including C++ with the Insight ToolKit (ITK)

for the volumetric processing framework, the Point Cloud Library (PCL), GNU Octave and for visualization purposes Python

and the Visualization ToolKit (VTK) were used. The developed software will be made available from Chiverton [49] for the

purposes of reproducible research.

A. Fiber Volume Simulations Entropy Estimation Results

The estimation of the Entropy is a random process. It is therefore desirable to look at how the Entropy estimates vary

depending on a given orientation angle. Simulated fiber volumes were generated with the distribution of the fibers for particular

simulations constrained within a particular range of angles, details of which can be seen in Table I.

Some histograms of the results of Entropy calculations estimated on the simulated volumes can be seen in Fig. 5. This is

an interesting comparison where the simulated maximum angle of deviation orientations of the fibers in the simulated fiber

volumes are plotted against the resulting multiscale Entropy values calculated for those volumes. Clusters can be seen for the

majority of the estimated Entropy values for each fiber orientation distribution. The relatively low standard deviations range

from 1.5 to 3.1 help to show the repeatability of a particular Entropy estimate for a fiber orientation distribution.

The conditional Entropy values for the simulated data was then plotted as discrete data points as a function of angle which

can be seen in Fig. 7. Also shown are the means of those data points for each angle simulation. A spline curve was fitted to

the mean values but an inverse decay exponential curve of the form Hmax(1− exp(−angle/τ)) was also found to have a very

good fit. Exemplar volume renderings of the Entropy estimation volumes can be seen in Fig. 8.

Asymmetric Fiber Distributions: Further simulations were performed to determine the ability of the conditional Entropy to

quantify asymmetry of the distributed fibers. Fibers were simulated with angles θ ∈ [1, 36]×5 and φ ∈ [1, 36]×5 so that θ and

φ took values between angles 5 and 180 degrees in steps of 5 degrees resulting in 36×36 = 1296 sets of simulated fibers from

which the multiscale Entropy was calculated creating a total of 1296 Entropy data points. Results of calculating the conditional

Entropy for these simulated volumes can be seen in Fig. 9. The results of the Entropy estimates on these simulated volumes

containing asymmetric fiber distributions show symmetric estimates of Entropy along the line θ = φ. This demonstrates the

Entropy estimation process is consistent whether, e.g. θ = 30 and φ = 45 or θ = 45 and φ = 30. Such asymmetric ranges
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Fig. 8. Volume renderings of single runs of the conditional Entropy estimation process for corresponding data volumes shown in Fig. 6. In total five estimations
were performed for each simulated volume which included fiber detection and Entropy estimation processes. Entropy color scales are shown along with scale
axes with dimensions in mm. Upper rows show generally lower estimated conditional Entropy values in comparison to lower rows, consistent with the
randomness of the fibers in each of the volumes.

of angles in fibers could potentially create ambiguities for techniques that are dependent on a particular reference direction

or similar such as Scalar Order Parameter (SOP). Indeed, there is no reference direction, director or similar required in the

calculation of the Entropy as described here.

Varying numbers of fibers: It is interesting to observe the performance of the fiber detection process. The number of fibers

in a volume was varied from 190730 fibers/m3 to 1907300/m3 and fibers were detected using the techniques described here.

The results for this process can be seen in Fig. 10. It is interesting to note that the number of fibers in the real SFRC described

shortly have a maximum number of 229200 fibers/m3, which is well under the 1× 106 fibers/m3 point at which the number

of detected fibers starts to be less than the actual number.

Computation times: The computation times for the RANSAC fiber detection stage and multiscale Entropy estimation stage

were computed for simulated volumes consisting of a range of different numbers of fibers. These can be seen in Fig. 11. The
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Fig. 9. Results of calculating the conditional Entropy for simulated data volumes with anisotropic variations, where the ranges of possible angles that the
fibers were distributed in are 5 ≤ θ ≤ 180 and 5 ≤ φ ≤ 180. The calculated conditional entropies for these anisotropic ranges of angles show a symmetric
distribution of Entropy values around the line θ = φ, indicating a consistent approach to the quantitative summarisation of the orientations of fiber distributions.

Fig. 10. Results of applying the fiber detection process to 643mm3 data volumes containing a range of different fiber counts (from 190730 fibers/m3 to
1907300 fibers/m3). Each fiber is approximately 1mm in diameter and each voxel is 0.5mm3 in size. The solid line represents the ideal, illustrating the number
of fibers are correctly detected up to 1× 106 fibers/m3.

computation times for the Entropy estimation stage appear to be somewhat constant whilst the RANSAC fiber detection stage

appears to follow a polynomial time curve.

B. User Study of Steel Fiber Reinforced Concrete

Steel Fiber Reinforced Concrete (SFRC) slabs were prepared using 50kg/m
3

of steel fibers with varying lengths and diameters

and 10mm or 20mm aggregate (stones). Specific details can be seen in Table II. The SFRC was made into reinforced cuboid

slabs, each of size 6002×100mm3 with ×2 cylindrical samples for each slab. The sample core volumes were π502×100mm3

(from volume of a cylinder). Each of these core samples were then imaged with XCT acquired using the aforementioned

XCT parameters. Core sample voxel sizes were 0.016522×1.0mm3 with slice thickness 0.4mm. The conditional Entropy that

combines elements of the distance and orientation of fibers, on a per voxel level were calculated for these XCT imaging data

acquired from the steel fiber concrete cores with various properties.

The results can be seen in Figs. 12 and 13(a). The results in Fig. 12 appear to show greater fiber diameter results in increased

conditional Entropy. The results in Fig. 13 included some comparisons with the multiscale Entropy that includes just orientation

Fig. 11. Computation times for the RANSAC fiber detection stage and multiscale Entropy estimation stage for volumes consisting of a range of different
numbers of fibers.
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Fig. 12. Results of applying Entropy calculations to real steel fiber reinforced concrete where the diameter and length of the fibers for the different cores are
included. These results appear to show that greater Entropy is seen for cores with thicker fibers (greater diameters).

TABLE II
PROPERTIES OF THE REAL STEEL FIBER CONCRETE CORES. RESULTS OF APPLYING THE ENTROPY CALCULATIONS TO XCT SCANS OF THESE CORES CAN

BE SEEN IN FIGS. 12 AND 13.

length diameter fibers aggregate slab Peak kN

mm mm /m3 size mm3 count Load

50 1.11 140100 10 3 93
60 0.92 159150 10 3 106
60 0.75 229200 10 3 94
50 1.11 140100 20 3 68
60 0.92 159150 20 3 70
60 0.75 229200 20 3 82

information Hms(q, r) in (2); Scalar Order Parameter (SOP) as used by Hermann et al. in [7], [8] S ∈
[

− 1
2 , 1

]

; and efficiency

factors ex, ey and ez as used by Vicente et al. [2] and Abrishambaf et al. [3].

The comparative results in Fig. 13 appear to show a greater, consistent distinction between the 10mm aggregate core versus

the 20mm aggregate core, than for the SOP or the efficiency factors. This can be quantified with an overlap calculation

O =

∣

∣

∣

∣

∣

∑

∀cores

(X − Y )

max (X,Y )

∣

∣

∣

∣

∣

(12)

with corresponding values of (12) being shown in Table III. The calculated overlaps also show that the entropy based measures

demonstrate greater difference between the 10mm and 20mm based aggregate cores.

User study perspective: From the user study point of view, these results are potentially very useful. Quantitative com-

parisons in the form of scatter plots in Fig. 13 show that the Hvol values possess a marked distinction between the different

aggregate types and what appears to be a higher correlation with the peak load performance of the material in the different

cores. Peak load values in kN can be seen in Table II, details of which were described by Ige et al. [48]. The SOP and

efficiency factors results did not differentiate between aggregate types. The SOP values appear to have some correlation with

the number of fibers, but not the underlying matrix that may otherwise affect the general strength properties of the material.

The 10mm aggregate cores all have fibers with lengths that are over three times the size of the aggregate size. As noted by

Vandewalle [50], this is important because it enables the fibers to bridge any potential gaps and to provide sufficient bonding

in the concrete matrix. However this is not the case for a few of the 20mm aggregate cores, where the 50mm length fibers

(1.11mm diameter) fall below this length to aggregate size threshold. Another consideration is regarding the diameter of the

steel fibers. A smaller diameter potentially increases the number of fibers for a given weight and therefore the potential for

fibers to be distributed more densely across the matrix thereby improving the mechanical properties of the materials. The

influence of these factors can be seen in the load bearing capacity of concrete panels as described by Ige et al. [48] where it

can be seen that, for the same cores imaged here, the 10mm aggregate SFRC panels consistently possessed greater maximum

TABLE III
OVERLAP CALCULATIONS FROM (12) FOR THE DIFFERENT ENTROPY, SOP AND EFFICIENCY FACTORS RESULTS FOR THE REAL CORES; SHOWN IN FIG.

13.

Hvol S Hms ex ey ez

O 2.43 0.78 1.21 0.50 0.42 0.57
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Results of calculations applied to real steel fiber reinforced concrete. (a) shows conditional Entropy results using probabilities which include the
distance between fibers; (b) are the SOP results; and (c) shows Entropy results using just fiber orientations but no distance information; (d-f) show the
efficiency factors along each dimension of the data; (g-i) show the results of (a-c) but plotted as a function of fibers/m3; The entropy based results (a,c)
appear to consistently show that the 10mm based aggregate fiber concrete cores are more randomly distributed, however the Entropy calculations also appear
to identify greater relative differences between the 20mm and 10mm aggregate cores in comparison to SOP values and the efficiency factors, also quantified
in Table III.

load bearing capacity in comparison to the 20mm aggregate SFRC panels. This was also reflected well with the Hvol results

as shown in Fig. 13.

C. Entropy Comparison

The overlap results shown in Table III and in Fig. 13 indicate differences between Entropy based descriptions of randomness

and variance based descriptions of fiber distributions (e.g. SOP). So a question we now ask is, what properties of a distribution

are each of the randomness descriptors capturing?

Some further simulations were undertaken in the form of multiple randomly sampled multi-modal mixture models, to help

simulate the kind of scenarios that might be encountered in real world data. Some example randomly generated mixture models

can be seen in Fig. 14. The mixture model takes the form

P (θ) =

Q
∑

i=1

wi

2πσ2
i

exp

(

−
(θ − µi)

2

2σ2
i

)

(13)

where the number of components Q, the means and standard deviations of each component µi and σi respectively and the

priors wi, were randomly sampled with the constraint of
∑N

i wi = 1. This enabled a large range of distributions (10000)
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(a) σ = 6, H = 36

(b) σ = 57, H = 75

(c) σ = 45, H = 88

Fig. 14. Comparison of three randomly generated Probability Mass Functions (PMF). For (c) the PMF has the highest Entropy, but a lower standard deviation.
It has a wide range of values and fewer gaps, indicating that a fiber could occur in any direction, rather than a select few, as would be the case for (b).

TABLE IV
CROSS-CORRELATION COEFFICIENT CALCULATIONS FOR ENTROPY CALCULATED WITH SINGLE SCALES HXX ; MULTIPLE SCALES (MS), HMS ; AND

WITH THE STANDARD DEVIATION (σvar) . ALSO INDICATED ARE, ACROSS ALL SCALES, THE MAXIMUM FOR EACH OF THE COEFFICIENTS IN BOLD AND

THE MINIMUMS IN ITALICS. THESE RESULTS ARE ALSO SUMMARIZED IN FIG. 15. THESE RESULTS INDICATE THAT HMS IS HIGHLY CORRELATED WITH

A NUMBER OF THE TERMS IN THE MIXTURE BASED SAMPLING DISTRIBUTION GIVEN BY (13).

maxi(µi)
scale Q maxi(wi) −mini(µi) E[σi] maxi(σi)

2 0.43 0.49 0.61 0.04 0.24

7 0.73 0.77 0.67 0.16 0.46
12 0.76 0.79 0.64 0.25 0.53
17 0.75 0.79 0.61 0.33 0.57
22 0.74 0.77 0.59 0.37 0.59
27 0.73 0.76 0.57 0.41 0.60

32 0.71 0.75 0.56 0.43 0.60
37 0.70 0.73 0.54 0.45 0.60
42 0.69 0.72 0.53 0.46 0.60
47 0.68 0.71 0.52 0.47 0.60
52 0.67 0.71 0.52 0.48 0.60
57 0.66 0.70 0.51 0.49 0.60
62 0.65 0.69 0.50 0.50 0.59
67 0.65 0.69 0.50 0.50 0.59
72 0.64 0.68 0.49 0.50 0.59
77 0.64 0.67 0.48 0.50 0.59
82 0.63 0.67 0.48 0.51 0.59
87 0.62 0.66 0.47 0.51 0.58
92 0.62 0.66 0.47 0.51 0.58
97 0.62 0.65 0.47 0.51 0.58

MS 0.69 0.73 0.55 0.45 0.59

σvar 0.40 0.45 0.85 0.03 0.21

to be tested in terms of three randomness descriptors: multiple scale Entropy Hms, standard deviation σvar and single scale

Entropy HXX calculated at a number of scales. For each randomly generated distribution a number of measurements were

made. The correlation coefficient was then calculated between the measurements and the randomness descriptors to determine

what aspects of the generated distributions that the randomness descriptors capture. The measurements were: the number of

mixture components Q; the maximum of the priors maxi(wi); the difference between the maximum mean and the minimum

mean maxi(µi)−mini(µi); the mean of the standard deviations E[σi]; and the maximum of the standard deviations maxi(σi).
Table IV has the cross-correlation coefficients for the single scale entropies HXX and also for the multiple scale Entropy

Hms and standard deviation σvar. The results shown in Table IV can also be seen, summarized, in Fig. 15.

These results show that the standard deviation of the angles has the highest cross correlation 0.85 with the difference between
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Fig. 15. Visual comparison of summaries of the cross-correlation coefficients shown in Table IV for parameters of the mixture based sampling distribution
in (13). The highest cross-correlation is achieved with the standard deviation in relation to the maximum difference between means (0.85). In other cases the
maximum of the single scales Entropy HXX achieves the highest correlation with, e.g. the number of mixtures Q; the mixture with the greatest weight wi;
and even the greatest standard deviation maxi(σi). The multiscale Entropy Hms is also highly correlated with these variables and is not dependent on a
particular scale which makes it the preferred choice for the majority of cases.

the maximum mean and the minimum mean for a set of randomly generated components, i.e. maxi(µi) − min(µi). This is

reflected in the examples shown in Fig. 14. The single scale Entropy cross correlation values can take on a range of different

values for each measurement, demonstrating (undesirable) scale dependency and the need for a multi-scale formulation. The

multiple scale Entropy, however demonstrates higher cross correlation coefficient values for all other measurements (other than

the difference between the means) completely independent of scale. This means that it can be computed without consideration

of a particular scale. In particular, it is interesting to see the high correlation with the number of components present and the

maximum prior, maxi(wi). This latter measurement is a strong indicator of whether a distribution is uniform and hence the

amount of randomness in a sample. This is also reflected in the examples in Fig. 14.

IV. DISCUSSION AND CONCLUSIONS

This work has included an extensive range of simulations of fiber distributions, a theoretical model and an investigation into

the unique benefits of using multiscale Entropy to summarize the orientation distribution and the spatial distribution of fibers

combined into a single model. The work is applied here to steel fibers for the reinforcement of concrete. The summarisation

of the orientation distribution in this way appears to show important applicability in this field. This is because it helps to more

accurately identify differences in the underlying properties of the material which is useful for mechanical applications and

others.

It is also anticipated that a model of this nature could potentially be applicable to a wide range of other areas, principally

where summarisation of the orientation and spatial distribution of fiber like materials is needed. This could include electrospun

nano-fibers that have been used in tissue scaffolds for bone, see Stachewicz et al. [51], also for ligaments as indicated by

Pauly et al. [52]. There are other fiber based materials including polymer based fibers as looked at by Salaberger et al. [41]

and paper as shown by Axelsson and Svensson [6]. The work presented here may have some application to these other areas

however some consideration will be needed with regards to applications at a smaller scale. For example, XCT of collagen fibers

can present some difficulties, partly due to the smaller scale which can require additional modeling of partial volume effects

or similar. Another consideration could potentially include the difficulty of accurately segmenting fibers that possess similar

appearance to the surrounding materials in the imaging data which is not the case for steel in XCT. Also, the assumption of

straight fibers may also need to be reconsidered for other applications.

Another aspect not considered here is the mechanical properties of the materials such as elasticity, which is essential when

developing a model that can provide insight into how a particular material forms. An example of this is the formation of

bundles of fibers which has been looked at by e.g. Hall et al. [53]. Hall et al. combined a variety of different mechanical

properties such as cohesion and elasticity of the materials. On the other hand, an information theoretic model of a material

could potentially include elements of this type of theory which is the topic of on-going research.
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APPENDIX A

PROOF OF APPROXIMATE LOGARITHMIC MULTISCALE ENTROPY

Theorem. For a volume consisting of fibres isotropically distributed in the range θ ∈ [0, q]× 180 and φ ∈ [0, r]× 180 where

q ∈ [0, 1] and r ∈ [0, 1], the Multiscale Entropy Hms(q, r) across a set of scales M ∈ [1,N] and N ∈ [1,M], each with

M ×N bins, is approximately log2(qrMN) + 2
ln(2) .

Proof. At scale (M,N), which has M×N bins, the probabilities PMN (m,n, q, r) obtained from a volume consisting of fibres

distributed in the range [0, q]× [0, r] for bin (m,n) where 0 ≤ m < M and 0 ≤ n < N , are given by four possibilities. In two

of the four possibilities, the range of the fibre distribution [0, q] and [0, r] are smaller than the bin size at a particular scale,

i.e. q ≤ 1
M

and r ≤ 1
N

so that

if q ≤
1

M
and r ≤

1

N
then

PMN (m,n, q, r) =

{

1 for m,n = 0;
0 elsewhere.

(14)

The other two conditions occur when the fibre distribution is spread across multiple bins, i.e. 0 ≤ m ≤ ⌈qM⌉ and 0 ≤ n ≤
⌈rN⌉, assuming (an approximation) the spread completely fills each of the bins with 1

qM
× 1

rN
as each bin is of size 1

M
× 1

N
.

Therefore

if q >
1

M
and r >

1

N
then (15)

PMN (m,n, q, r) ≈







1
rN

× 1
qM

for 0 ≤ m ≤ ⌈qM⌉

and 0 ≤ n ≤ ⌈rN⌉;
0 elsewhere.

For these four cases, abbreviating the notation, the product of the probability PMN with the self information hMN can be

determined in the limit. For the first two cases (q ≤ 1/M & r ≤ 1/N ), we have PMNhMN = 0 as the log function grows more

slowly in comparison to the probability, closer to zero. Similarly, for the other two cases we have (q > 1/M & r > 1/N ):

PMNhMN ≈







1
qMrN

log2(qMrN) for 0 ≤ m ≤ ⌈qM⌉

and 0 ≤ n ≤ ⌈rN⌉;
0 elsewhere.

(16)

The entropy for a single scale (M,N) can then be determined (where q > 1/M & r > 1/N , as otherwise it is equal to zero)

HMN (q, r) =
M
∑

m=1

N
∑

n=1

PMNhMN (17)

Substituting in the values for the product term from (16):

HMN (q, r) ≈

⌈qM⌉
∑

m=1

⌈rN⌉
∑

n=1

1

qMrN
log2(qMrN) + 0

≈
⌈qMrN⌉

qMrN
log2(qMrN) ≈ log2(qMrN). (18)

This is the approximate entropy at a particular scale (M,N). The multiple scale entropy is then calculated with

Hms(q, r) =
1

|∀M |

∑

∀M

1

|∀N |

∑

∀N
HMN (q, r)

≈
1

|∀M ||∀N |

∑

∀M

∑

∀N
log2(qMrN). (19)

Assuming the scales are linearly progressed through the natural numbers to maximums M and N for scales M and N
respectively, we have

Hms(q, r) ≈
1

MN

M
∑

M=1

N
∑

N=1

log2(qMrN) (20)

≈ log2(qr) +
1

MN

M
∑

M=1

N
∑

N=1

log2(MN).
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The right most term can be expanded into factorials

Hms(q, r) ≈ log2(qr) +
1

MN
{N log2(M !) +M log2(N !)} .

(21)

Stirling’s approximation, i.e. ln(x!) ≈ x ln(x)− x can be used

Hms(q, r) ≈ log2(qr) + log2(M) + log2(N)−
2

ln(2)
(22)

resulting in

Hms(q, r) ≈ log2(rqMN)−
2

ln(2)
. (23)

Corollary. The variance of the mean multiscale entropy estimator can be approximated by

σ2
ms ≈ 4 log22(NM)− log2(NM)(4 + 2/ ln(2)) + 4/ ln2(2). (24)

Proof. The variance of the estimator at a particular scale (M,N) can be defined as

σ2
MN =

M
∑

m=1

N
∑

n=1

PMN ×
(

hMN −Hms

)2
. (25)

Using a similar argument as was used for (16) and assuming PMN = 1
qMrN

, results in

σ2
MN ≈

⌈qM⌉
∑

m=1

⌈rN⌉
∑

n=1

1

qMrN
×

{log2(qMrN)− log2(qMrN ) + c}2

=

⌈qM⌉
∑

m=1

⌈rN⌉
∑

n=1

1

qMrN

{

log2

(

MN

MN

)

+ c

}2

=
⌈qMrN⌉

qMrN

{

log2

(

MN

MN

)

+ c

}2

≈

{

log2

(

MN

MN

)

+ c

}2

. (26)

where c = 2/ ln(2). Assuming, as before, that the scales are linearly progressed to maximums M and N then the mean

variance across all these scales can be described with

σ2
ms ≈

1

MN

M
∑

M=1

N
∑

N=1

σ2
MN

≈
1

MN

M
∑

M=1

N
∑

N=1

{

log2

(

MN

MN

)

+ c

}2

≈ 3 log22(MN )− 2c log2(MN )− c2

+
1

MN

M
∑

M=1

N
∑

N=1

log22(MN) (27)

The remaining summations are then approximated using the Euler-Maclaurin formula, ignoring the error terms results in

σ2
ms = 4 log22(NM)− log2(NM)(4 + c) + c2. (28)



17

REFERENCES

[1] A. Abrishambaf, V. Cunha, and J. Barros, “The influence of fibre orientation on the post-cracking tensile behaviour of steel fibre reinforced self-compacting
concrete,” Frattura ed Integrita Strutturale, Fracture and Structural Integrity, vol. 31, pp. 38–53, January 2015.
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