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ABSTRACT 

Global challenges related to energy security, resource sustainability and the 

environmental impacts of burning fossil fuels have led to an increasing need for 

switching to the use of clean and sustainable resources. Bio-oil produced through 

pyrolysis has been suggested as one of the sustainable alternatives to fossil 

resources for power generation as well as chemicals and biofuels production. 

Pyrolysis is a thermochemical process during which the biomass feedstock is heated 

in an inert atmosphere to produce gas, liquid (bio-oil) and solid (char) products. 

Microwave heating has been considered a promising technique for providing the 

energy required for biomass pyrolysis due to its volumetric and selective heating 

nature which allows for rapid heating in a cold environment. This helps to preserve 

the product quality by limiting secondary reactions. 

The aim of this research was to study the interactions between biomass materials 

and microwave energy during pyrolysis, and to develop a reliable and scalable 

microwave pyrolysis process. 

The dielectric properties of selected biomass materials were studied and found to 

vary significantly with temperature due to the physical and structural changes 

happening during pyrolysis. The loss factor of the biomass materials was found to 

reach a minimum value in the range between 300 oC and 400 oC followed by a sharp 

increase caused by the char formation. 

A microwave fluidised bed process was introduced as an attempt to overcome the 

challenges facing the scaling-up of microwave pyrolysis. The concept of microwave 

pyrolysis in a fluidised bed process was examined for the first time in this thesis. A 

systematic approach was followed for the process design taking into account the 

pyrolysis reaction requirements, the microwave-material interactions and the 

fluidisation behaviour of the biomass particles. The steps of the process design 

involved studying the fluidisation behaviour of selected biomass materials, 
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theoretical analysis of the heat transfer in the fluidised bed, and electromagnetic 

simulations to support the cavity design.  

The developed process was built, and batch pyrolysis experiments were carried out 

to assess the yield and quality of the product as well as the energy requirement. 

Around 60 % to 70 % solid pyrolysed was achieved with 3.5 kJ·g-1 to 4.2 kJ·g-1 

energy input. The developed microwave fluidised bed process has shown an ability 

to overcome many of the challenges associated with microwave pyrolysis of biomass 

including improvement in heating uniformity and ability to control the solid 

deposition in the process, placing it as a viable candidate for scaling-up. However, 

it was found to have some weaknesses including its limitations with regards to the 

size and shape of the biomass feed. 

Microwave pyrolysis of biomass submerged in a hydrocarbon liquid was introduced 

for the first time in this thesis as a potential alternative to overcome some of the 

limitations of the gas-based fluidised bed process. Batch pyrolysis experiments of 

wood blocks submerged in different hydrocarbon liquids showed that up 50 % solid 

pyrolysis could be achieved with only 1.9 kJ·g-1 energy input. It was found that the 

overall degree of pyrolysis obtained in the liquid system is lower than that obtained 

from the fluidised bed system. This was attributed to the large temperature gradient 

between the centre of the biomass particle/block and its surface in the liquid system 

leaving a considerable fraction of the outer layer of the block unpyrolysed. It was 

shown that the proposed liquid system was able to overcome many of the limitations 

of the gas-based systems. 
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1 INTRODUCTION  

Global challenges related to energy security, resource sustainability and the 

environmental impacts of burning fossil fuels have led to an increasing need for 

switching to the use of clean and sustainable resources. 

Oil and natural gas are considered the main raw materials for about 95 % of 

chemicals produced worldwide (Koutinas et al., 2008), and according to the 

International Energy Agency (IEA), 81 % of the world energy supply comes from 

fossil fuels (IEA, 2015). Burning fossil fuels releases carbon dioxide which is one of 

the greenhouse gases believed to have the major contribution towards global 

warming and climate change (IPCC, 2013). 

Demand for resources including energy are expected to increase with the increase 

in world population which is currently estimated at 7.3 Billion and predicted to reach 

9.7 in 2050 (UN, 2015). Resources consumption per individual is also expected to 

increase due the foreseeable increase in humans wealth (Clark and Deswarte, 

2008). This predicted rapid increase in demand for resources including energy, has 

raised many questions regarding resource security and the need for sustainable 

development. 

Sustainable development requires replacing current sources of materials and energy 

with sustainable sources and increasing the utilisation efficiency of such resources 

(Clark and Deswarte, 2008). Renewable resources such as solar radiation, wind, 

tides and biomass have been considered as strong alternatives to replace fossil 

resources due to their inexhaustible availability and the environmental benefits 

related to the reduction of the carbon dioxide emissions (van Dam et al., 2005; 

Clark and Deswarte, 2008). Currently, renewable resources contribution towards 

total world’s energy supply is estimated at about 14 % as can be seen in Figure 1-1. 

Among the available renewable resources, biomass has a unique advantage in that 

it can be used to produce chemicals as well as fuel products. Moreover, biomass is 
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considered the only available renewable resource to replace fossil resources for 

liquid transportation fuels production (Cherubini, 2010). 

 

 

Figure 1-1: World total energy supply shares in 2013 (IEA, 2015) 

 

In general, biomass refers to any organic matter available on a renewable basis 

(Clark and Deswarte, 2008). Biomass is the largest renewable source of carbon on 

earth (Foust et al., 2009). It is formed through the photosynthesis process during 

which atmospheric carbon dioxide and water are converted into sugars. These 

sugars are considered the base compounds from which more complex materials are 

synthesised forming the biomass (Cherubini, 2010). When it comes to fuels and 

their environmental implications, biomass and its fuel products are considered CO2 

neutral as biomass releases when burnt, approximately the same amount of CO2 

absorbed during its syntheses; i.e. it forms a closed CO2 loop (Clark et al., 2012). 

For commercial-scale applications, biomass can be obtained from four main sectors: 

agriculture, forestry, aquaculture (micro- and macro-algae) and wastes from 

industries and households (Cherubini, 2010).  

Raw biomass materials have a low energy density compared to fossil resources. 

This is because of their low calorific value and low density. Wood chips, for example, 

Oil
31.1%
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21.4%
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Hydro
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1.2%
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have a calorific value of around 18 MJ·kg-1 and a typical density of 200 kg·m-3 

(McKendry, 2002) providing an energy density of around 3.6 GJ·m-3.  In contrast, 

heavy fuel oil has a typical calorific value of 40 MJ·kg-1 and a density 990 kg·m-3 

(Lehto et al., 2014) providing an energy density of 39.6 GJ·m-3 which is more than 

ten times that of the wood chips. Therefore, instead of using them directly as fuels, 

it might be preferable to process the feedstocks to produce higher energy density 

fuels and/or more valuable material products. It is to be noted here that there could 

be considerable amount of energy consumed in the conversion process depending 

on the technology used. This processing energy needs to be taken into consideration 

when evaluating the economic feasibility for converting biomass feedstocks into 

more valuable products rather than using them directly as fuels. 

Biomass conversion processes can be classified into chemical, thermochemical and 

biochemical processes. Chemical processes, by definition, refer to those processes 

involving changes in the material chemical structure. The most common biomass 

chemical conversion processes are hydrolysis and transesterification (Cherubini, 

2010). Hydrolysis uses a catalyst to depolymerise the polysaccharides in the 

biomass material to produce sugars or derivative chemicals (Sun and Cheng, 2002; 

Cherubini, 2010). Transesterification is the process during which fatty acids 

extracted from appropriate biomass feedstocks are reacted with methanol or 

ethanol in the presence of a catalyst to produce bio-diesel (Gude et al., 2013). 

Biochemical (or biological) processes are those involve adding micro-organisms or 

enzymes to assist in achieving the required chemical reactions. The most common 

biochemical conversion processes are fermentation for ethanol production and 

anaerobic digestion for the production of biogas which is a mixture of mainly 

methane and carbon dioxide (Cherubini, 2010). One the drawbacks of the 

biochemical processes is that among the whole feedstock, only the simple sugars 

are used in the reaction and that the conversion process takes relatively long time 

of hours to days (Mettler et al., 2012). 
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Thermochemical processes involve heat-assisted structural changes. The major 

thermochemical processes are combustion, gasification and pyrolysis. Combustion 

is the 100 % oxidation of all the organic matter using oxygen (air) while gasification 

is a partial combustion of the biomass material to produces heat and syngas which 

could be used for chemicals and/or energy production. Pyrolysis is heating the 

biomass feedstock in the absence of oxygen to produce gases, oil and char (Arshadi 

and Sellstedt, 2008; Luque et al., 2012). Thermochemical processes have the 

advantage of that the entire feed is involved in the products formation. Also, the 

conversion process occurs in a shorter time compared to the chemical and 

biochemical processes (Mettler et al., 2012). The residence time of the solid biomass 

during the thermochemical processes can be as short as few seconds as the case in 

fast pyrolysis (Bridgwater, 2012). 

Among the thermochemical processes, pyrolysis have received great attention with 

hundreds of papers have been published over the last decade. The target product 

from pyrolysis is usually the liquid fraction which is called bio-oil or pyrolysis oil. 

Bio-oil has a typical energy density of around 20 GJ·m-3 (Bridgwater, 2012) 

compared to around 3.6 GJ·m-3 for the biomass feed if wood chips is used. It can 

be used directly for heat and power generation, or upgraded to be used for 

chemicals and biofuels production as will be discussed later in Section 2.1. High bio-

oil yield requires high heat transfer rates. Bridgwater (2012) have identified five 

pyrolysis modes among which fast pyrolysis provides the highest bio-oil yield. 

However, this requires a residence time of an order of seconds for both the solid 

and the vapour. A number of technologies have been developed for bio-oil 

production through fast pyrolysis as will be discussed in Section 2.2. However, 

providing the energy required to achieve the biomass reaction (around 2.7 kJ·g-1*) 

with high heating rate without degrading the product quality has been of the major 

                                           
* Bridgwater (2012) estimated that the pyrolysis process requires about 15 % of the energy in the 

biomass feed. Woods have a typical gross calorific value of about 18 MJ·kg-1  (Günther et al., 2012). 
Based on the 15 % figure, around 2.7 kJ·g-1 would be needed for the pyrolysis of wood. 
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challenges facing the development of fast pyrolysis technologies (Bridgwater, 

2012). 

Microwave heating has been considered as a promising technique for providing the 

energy required for biomass pyrolysis due to its volumetric and selective heating 

nature which allows for rapid heating in a cold environment. This helps to preserve 

the product quality by limiting secondary reactions. It can also help to reduce the 

energy consumption as the energy is used to directly heat the biomass material 

with no need to heat its environment (Robinson et al., 2015). The focus of this 

thesis is on the processing aspects of microwave pyrolysis of biomass material.  

1.1 Aim and Objectives 

The aim of this research is to study the interaction between biomass materials and 

microwave energy during pyrolysis, and to develop a reliable and scalable 

microwave pyrolysis process. Number of objectives have been set to achieve this 

goal:  

 To identify different types of biomass materials for characterisation based on 

their abundance, economic value and suitability for pyrolysis. 

 To study the dielectric properties of the selected biomass materials over the 

pyrolysis temperature range, and to relate their variations with temperature 

to the physical and structural changes during pyrolysis. 

 To develop a microwave pyrolysis process based on the understanding of the 

dielectric properties of the biomass material, the pyrolysis reaction 

requirements, the heat transfer characteristics, and the bulk solid flow 

behaviour.  

 To assess the yield and quality of the products obtained from the developed 

process as well as the energy requirement. 

The thesis is structured into eight chapters including the current introductory 

chapter. Chapter 2 gives a general overview of the fundamentals of biomass 



23 

 

pyrolysis including its reaction mechanisms and conditions as well as the energy 

requirement. It includes also a review of the existing fast pyrolysis technologies. 

Chapter 3 focuses on the fundamentals of microwave heating technique. It details 

the microwave heating mechanisms and the microwave-material interactions. The 

recent developments in the microwave pyrolysis of biomass materials are also 

reviewed. The details of the experimental methodologies involved in this thesis are 

presented in Chapter 4.  

Chapter 5 is dedicated for characterising selected biomass material as candidates 

for microwave pyrolysis. Characterisation includes studying the dielectric properties 

of the selected biomass materials and their temperature dependency, and relating 

them to the physical and structural changes in the biomass materials during 

pyrolysis. 

Chapter 6 and 7 investigate the microwave pyrolysis in a fluidised bed process as 

an attempt to overcome the challenges associated with the heterogeneity of 

microwave heating, and to provide a reliable and scalable microwave pyrolysis 

process. Chapter 6 covers the steps of the process design including studying the 

fluidisation behaviour of the biomass particles, estimating the energy and power 

density requirements for pyrolysis, and the microwave cavity design. Chapter 7 

focuses on operating the developed microwave fluidised bed process and running 

batch pyrolysis experiments to investigate the product yield and quality and the 

energy consumption. 

Chapter 8 investigates the microwave pyrolysis of biomass in a hydrocarbon liquid 

instead of using an inert gas as a way to overcome some of the limitations in the 

gas-based fluidised bed system. The conclusions of the thesis are presented in 

Chapter 9 together with recommendations for future studies. 
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2 BIOMASS PYROLYSIS: PRINCIPLES AND TECHNOLOGIES 

2.1 Reaction Conditions and Mechanisms 

Pyrolysis is a thermochemical process during which the biomass feedstock is heated 

in an inert atmosphere at around 500 oC to produce gas, liquid and solid products. 

The liquid product which is also called bio-oil is usually the target product because 

of its eligibility to be used in applications similar to those of petroleum oil such as 

heat and power generation. It could be also used as a feedstock for chemicals and 

transportation fuels production. The gas product is a mixture of mainly CO, H2, CO2, 

and some low molecular weight hydrocarbons. The solid product is a carbonaceous 

material or char.  

Figure 2-1 shows the pyrolysis products and their typical applications. The fraction 

and quality of each of the three products are functions of the type of the biomass 

material used and the processing conditions which include the temperature, the 

heating rate and the solid and vapour residence time (Bridgwater, 2012). 

 

 
Figure 2-1: Pyrolysis products and their applications. Adopted from (Bridgwater, 2012). 

 

Different kinds of lignocellulosic biomass from forestry and agricultural wastes can 

be used as a feedstock for bio-oil production. This includes, but not limited to, wood, 

straws, switchgrass, corn stover and bagasse. Number of studies have used algae 

as well (Mohan et al., 2006). 
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Lignocellulosic biomass have been considered the most suitable type of biomass to 

be used for commercial scale production of chemicals and biofuels because of their 

abundance, low cost, and that they do not interfere with food supply (Cherubini, 

2010; Isikgor and Becer, 2015). Lignocellulosic biomass is made up of three main 

constituents: cellulose, hemicellulose and lignin. Both cellulose and hemicellulose 

are carbohydrate polymers. Cellulose is a linear polymer of β-glucose while 

hemicellulose is a branched polymer that can contain different monosaccharides of 

which xylose is the most common especially in  hardwoods (Wang et al., 2015). 

Lignin is a complex highly aromatic non-carbohydrate polymer consisting of three 

primary monomers as shown in Figure 2-2 which also shows the chemical structure 

of the cellulose and hemicellulose (Turley, 2008; Alonso et al., 2012). 

 
Figure 2-2: Chemical structure of the main biomass constituents (Alonso et al., 2012) 
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The kinetics of biomass pyrolysis is still considered a complex subject (Van de 

Velden et al., 2010; Collard and Blin, 2014). Many authors have tried to understand 

the mechanism of biomass pyrolysis through the study of the decomposition 

mechanisms of its individual constituents; cellulose, hemicellulose and lignin (Yang 

et al., 2006; Yang et al., 2007; Giudicianni et al., 2013). Yang et al. (2007) studied 

the decomposition temperature of the three constituents using thermogravimetric 

analysis (TGA). They found that hemicellulose decomposition happens first at 

around 220–315 °C while cellulose decomposes in the range 315–400 °C. Lignin 

was found to decompose slowly over a wide temperature range starting from 150 

°C and continues up to 900 °C (Yang et al., 2007). 

Regarding the product distribution and quality, it has been strongly believed that 

the pyrolysis of biomass constituents is a superposition of three primary 

mechanisms and secondary mechanisms (Van de Velden et al., 2010; Collard and 

Blin, 2014). The primary mechanisms which are explained by Figure 2-3 are: 

 Char formation: this pathway is favoured at low reaction temperatures, 

below 500 oC, and low heating rates (Collard and Blin, 2014). It is 

characterised by rearrangement reactions leading to the formation of a 

thermally stable solid product called char which has a polycyclic aromatic 

structure. Water and incondensable gases are formed as a result of these 

rearrangement reactions (Van de Velden et al., 2010; Collard and Blin, 

2014).  

 Depolymerisation: this pathway involves the breakage of the bonds between 

the monomer units leading to the formation of shorter chains. 

Depolymerisation continues until the produced molecules become volatile at 

the operating conditions (Collard and Blin, 2014). Cellulose depolymerisation 

leads to the formation of levoglucosan as the primary product with 

concentration up to nearly 60 % (Demirbaş, 2000; Patwardhan et al., 2011). 

Hemicellulose depolarisation products depend on the type of 
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monosaccharides involved. Xylose-rich hemicellulose depolymerises into 

mainly five-carbon compounds such as furfural while hexoses-rich 

hemicellulose depolymerises into products rich in six-carbon compounds 

such as Hydroxymethylfurfural (HMF) (Wang et al., 2015). Lignin 

depolymerisation leads to the formation phenolic compounds which could be 

monophenols or oligomers (Bai et al., 2014). 

 Fragmentation: this involves the breakage of covalent bonds including those 

within the monomer units leading to the formation of low MW molecules and 

incondensable gases (Collard and Blin, 2014). This pathway is favoured at 

high temperatures of 600oC and more (Van de Velden et al., 2010). 

 
Figure 2-3: Primary mechanisms of biomass pyrolysis (Collard and Blin, 2014). 

 

Secondary mechanisms take place when the volatile products are not stable at the 

reactor conditions. These conditions catalysis the secondary cracking and/or 

recombination reactions leading to the formation of low MW compounds and 

incondensable gases which could be similar to those usually formed under the 

fragmentation mechanism (Van de Velden et al., 2010; Collard and Blin, 2014). 

Some of the secondary reactions are catalysed by the minerals present in the solid 

(Lin et al., 2015). 
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In addition to the pyrolysis mechanisms of the individual biomass constituents, 

product distribution and quality is also affected by the interactions between the 

individual constituents. Zhang et al. (2015) studied these interactions and found a 

reduction in the levoglucosan yield in native cellulose-lignin mixture. No significant 

change in the product distribution was found when a native cellulose−hemicellulose 

mixture was used (Zhang et al., 2015)*.   

 

Understanding the above discussed mechanisms and pathways helps to predict the 

conditions required to maximise or minimise the yield of each of the three pyrolysis 

products. Low reaction temperature with slow heating rate tends to maximise the 

char yield. On the other hand, high reaction temperature with fast heating rate 

tends to maximise the gas fraction as it stimulates fragmentation reactions. High 

liquid (bio-oil) yield requires the conditions that favour the depolymerisation 

pathway to be imposed which are a high heating rate and an intermediate 

temperature. High bio-oil yield requires also short vapours residence time and rapid 

cooling in order to avoid secondary cracking and recombination reactions. 

Bridgwater (2012) have identified five pyrolysis modes based on the operating 

conditions and the products fractions as shown in Table 2-1. Among these modes, 

fast pyrolysis has received great attention as it gives the highest bio-oil yield.  

Table 2-1: Typical product distribution on dry wood basis obtained at different modes of 
pyrolysis (Bridgwater, 2012). 

Mode Conditions 
Product fractions (%) 

Liquid Solid gas 

Fast pyrolysis ~500 oC, fast HR, vapour RT ~1 s 75 12 13 

Intermediate ~500 oC, vapour RT ~10-30 s 50 25 25 

Carbonisation ~400 oC, slow HR, vapour RT hours to days 30 35 35 

Gasification ~750-900oC 5 10 85 

Torrefaction ~290 oC, slow HR, solid RT ~10-60 min 0-5 80 20 

HR = heating rate, RT = residence time 

 

                                           
* The native cellulose−lignin mixture was obtained by selectively removing hemicellulose from the 

original biomass, and the binary native mixture of cellulose−hemicellulose was obtained after 
delignification of corn stover (Zhang, 2015). 
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The minimum energy required for pyrolysis is called the enthalpy for pyrolysis. The 

enthalpy for pyrolysis is the sum of the sensible enthalpy and the enthalpy for 

reactions. The former is the energy required to heat the biomass material up to the 

pyrolysis reaction temperature while the latter is the energy required to drive the 

pyrolysis reaction (Daugaard and Brown, 2003). This definition of the enthalpy for 

pyrolysis does not include any energy losses which depends on the technology used 

and the reactor design which are discussed in Section 2.2. 

Table 2-2 shows values of enthalpy for pyrolysis for various biomass materials 

obtained from previous studies. It can be seen from Table 2-2 that there is a large 

variations in the enthalpy for pyrolysis ranging from 0.049 to 1.64 MJ·kg-1. This 

large variations can be regarded to different reasons including the use of different 

types of biomass material, employing different measurement techniques and the 

variations in the temperature range.  

Table 2-2: Enthalpy for pyrolysis for various biomass materials from previous studies. 

Study Material  
Enthalpy for 

pyrolysis (MJ·kg-1) 
Method 

Daugaard and 

Brown (2003) 

Oak wood 1.46 ± 0.28 

Energy balance in a 

fluidised bed at 500 oC 

Pine wood 1.64 ± 0.33 

Oat hulls 0.78 ± 0.20 

Corn Stover   1.35 ± 0.28 

He et al. (2006) 

Wheat straw 0.558 
Differential Scanning 

Calorimetry (DSC), at 500 
oC 

Cotton stalk 0.465 

Pine wood 0.600 

Peanut shell 0.389 

Van de Velden et 

al. (2010) 

Poplar 0.207 Differential Scanning 

Calorimetry (DSC), at 600 
oC 

Sawdust 0.434 

Straw 0.375 

Yang et al. (2013) 

Cedar 1.30 

Energy balance in a screw-

conveyer at 600 oC 

Pine 1.50 

Willow 1.50 

Bamboo 1.50 

Chen et al. (2014) 

Poplar wood 0.114 
Differential Scanning 

Calorimetry (DSC), at 500 
oC 

Pine bark 1.135 

Corn stalk 0.049 

Rice straw 0.880 

Atsonios et al. 

(2015) 
Beech wood 1.12 ± 0.17 

Energy balance in a 

fluidised bed at 500 oC 
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2.2 Technologies and Reactor Design for Fast Pyrolysis 

Bio-oil production through pyrolysis is usually achieved in four main steps as 

explained by Figure 2-4: (a) feed preparation which includes drying and grinding; 

(b) reactor system where the pyrolysis reaction takes place; (c) solid separation 

where the solid is separated from the volatiles; and (d) condensation system in 

which bio-oil is condensed and separated from the other incondensable gases. 

 

 

Figure 2-4: Biomass pyrolysis – main processing steps 

 

The reaction conditions required to achieve high bio-oil yield as discussed in 

Section 2.1, limit the choices for the reactor design and the overall process. A 

number of technologies have been introduced as candidates to meet these reactor 

requirements, each has its advantages and limitations. The main existing pyrolysis 

technologies include bubbling fluidised bed, circulating fluidised bed, rotating cone, 

ablative pyrolysis, and the auger (screw) system. 

2.2.1 Bubbling Fluidised Bed  

Bubbling fluidised bed (also known as fluidised bed) reactors have been used for 

decades in petroleum and chemical processes. One of the main advantages of the 

fluidised bed process is its ability to provide high heat transfer rate due to the large 

contact area between the fluid and the solid particles (Ringer et al., 2006; Fouilland 

et al., 2010; Bridgwater, 2012).  

Figure 2-5 shows a flow diagram for a typical bubbling fluidised bed process for 

biomass pyrolysis. The biomass material, after preparation, is fed to the fluidised 
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bed column where the pyrolysis reaction takes place. The fluidising gas, which is 

fed at the bottom of the column, controls the vapour and solid residence time. The 

pyrolysis products are carried with the fluidising gas and exit at the top of the 

reactor. This mixture is passed through a series of cyclones where char is separated. 

The vapours are then fed to a quench cooler where bio-oil is condensed. Bio-oil yield 

from a fluidised bed reactor could be as high as 75 % (Bridgwater, 2012). The 

incondensable gases from the condenser could be recycled and used as a fluidising 

gas.  

 

Biomass 

Char  

Incondensable gas 

Cyclones 

Condenser 

Bio-oil 

Vapours 

Fluidised 
bed reactor 

Fluidising 
gas 

 
Figure 2-5: Typical bubbling fluidised bed technology for bio-oil production through fast 
pyrolysis. Adopted from (Robson, 2000) 

 

The operating temperature for bubbling fluidised bed reactors is around 500 – 550 

oC which can be controlled through the temperature and flowrate of the fluidising 

gas (Ringer et al., 2006). The heat required to achieve the pyrolysis reaction could 

be provided through one or a combination of the following methods (Ringer et al., 

2006; Bridgwater, 2012): 
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 Hot fluidising gas 

 Heating through the reactor walls 

 Immersed heating tubes  

 Recycled hot sand 

One of the limitations of this technology is that it requires the use of small particle 

sizes of less than 3 mm in order to achieve high heat transfer (Bridgwater, 2012). 

Also, the high gas flow required for fluidisation decreases the vapour pressure of 

the pyrolysis vapours, making oil condensation and recovery more difficult 

(Bridgwater and Peacocke, 2000). 

Early research on biomass pyrolysis in fluidised beds was pioneered by the 

researchers at the University of Waterloo in Canada (Scott and Piskorz, 1982; Scott 

and Piskorz, 1984; Scott et al., 1985) which led to the development of RTI process 

(Scott et al., 1999). Based on the RTI process, Dynamotive built a 100 tonne per 

day and 200 tonne per day plants in Canada (Bridgwater, 2012). Recently, Fortum 

has built and commissioned a commercial-scale 10 tonne per day plant in Finland 

employing the fluidised bed technology. The bio-oil plant is integrated with a 

combined heat and power (CHP) plant (Oasmaa et al., 2015). 

2.2.2 Circulating Fluidised Bed  

Circulating fluidised bed (CFB) is similar to bubbling fluidised bed in many aspects. 

The main difference is that CFB technology uses higher gas velocity which results 

in a shorter particle and vapour residence times (Fouilland et al., 2010; Bridgwater, 

2012). Hot sand is usually used in CFB to provide the process with most of the heat 

required to achieve the pyrolysis reaction. It also assists lifting the biomass and 

char particles in the reactor. Figure 2-6 shows a typical CFB process in which the 

biomass material, after preparation, is fed to the column where it is heated rapidly 

as soon as it comes into contact with the hot fluidising gas and sand at its entrance. 

The produced vapours together with the char and sand are carried up with the gas 
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which is fed at the bottom of the column. The char and sand are separated from the 

hot vapours in cyclones and fed to a combustor where the char is burned. The 

combustion heat it transferred to the sand which is then recycled to the reactor. 

The hot vapours from the cyclones are fed to a quench cooler to condense and 

collect the bio-oil. The incondensable gases are recycled to the column to be used 

as a carrier. 

 

Biomass 

Ash 

Char + sand 

Hot 
sand 

Gas lift 

Incondensable gas 

Combustor 

Cyclones 

Condenser 

Bio-oil 

Vapours 

Reactor 
(pyrolyser) 

 
Figure 2-6: Simplified flow diagram of the circulating fluidised bed process developed by 
(Ensyn) 

 

One of the main advantages of CFB technology is its short vapour and solid 

residence times which limits the secondary cracking reactions. The solid residence 

time is usually less than 2 seconds (Fouilland et al., 2010). Also, CFB technology 

has the advantage of its suitability for high throughputs which favours this 

technology for commercial scale operation (Bridgwater, 2012). However, the design 

and operation of the CFB process are more complicated compared to the bubbling 
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fluidised bed process due to the high gas velocity and the presence of the 

recirculated sand (Ringer et al., 2006; Bridgwater, 2012). The sand flowrate is 

usually 10 to 20 times greater than the biomass feed rate which adds high energy 

cost for moving this sand around the process (Ringer et al., 2006). 

The developments and commercialisation of the CFB technology have been led by 

Ensyn who, with partners, have designed and constructed several commercial-scale 

bio-oil plants in USA, Canada and Brazil (Oasmaa et al., 2015). 

2.2.3 Rotating Cone 

This technology, which was developed by the Biomass Technology Group (BTG), 

involves mixing the biomass material with hot sand in rotating cone inside a vessel 

(BTG-BTL, 2015). It does not require using an inert gas which substantially reduces 

the size of the reactor and the condenser (Ringer et al., 2006). As in the CFB 

technology, the sand and the produced char from the reactor are fed into a 

combustor where the char is burned and the heat is transferred to the sand which 

is then recycled to the reactor. Typical flow diagram of the process developed by 

BTG-BTL is shown in Figure 2-7.  

The main disadvantage of the rotating cone process is its complexity involving a 

rotating cone (moving parts), a fluidised bed combustor for burning the char and a 

pneumatic transport of the sand. EMPYRO has recently constructed and opened a 5 

tonne per hour demonstration plant in Netherlands. Employing BTG’s rotating cone 

technology, the plant simultaneously produces process steam, electricity and 

pyrolysis oil (Meulenbroek and Beld, 2015). 
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Figure 2-7: Process flow diagram of the rotating cone technology developed by BTG-BTL 
(BTG-BTL, 2015) 

 

2.2.4 Ablative Pyrolysis 

The concept of this technology is different than the others in that instead of using 

a heat carrier, the biomass particles are contacted with a hot metal surface (Oasmaa 

et al., 2015). The char layer formed on the particle’s surface during the reaction is 

continuously removed as a result of an ablative force applied on the particle through 

either high gas velocity flowing tangentially to the reactor walls (gas ablation) or 

mechanically using a rotary disc/blade (Ringer et al., 2006; Bridgwater, 2012). The 

reactor wall temperature is usually kept around 600 oC. The main advantage of this 

technique is that it can process particles as large as 20mm (Ringer et al., 2006). 

Research on this technology was led by SERI (then NREL)* between 1980 and 1996 

who employed the gas ablation method (Ringer et al., 2006). However, NREL’s work 

                                           
* The Solar Energy Research Institute (SERI) which became the National Renewable Energy Laboratory 
(NREL) in 1991. 
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on this technology was abandoned in 1997 due to technical issues related to the 

high gas and particle velocities which resulted in excessive erosion, and also 

because of uncertainties regarding the scalability of the technology (Ringer et al., 

2006). Recent activities on this technology have been focused more on the 

mechanical ablation such as the 250 kg·h-1 plant constructed by Pytec and the 100 

kg·h-1 plant operated by Fraunhofer UMSICHT, both in Germany (Oasmaa et al., 

2015). 

2.2.5 Auger Reactor 

The main feature of this technology is that the biomass material is fed to the reactor 

and moved inside it mechanically through auger or screw. The heat for the reaction 

is usually provided through hot sand which is mixed with the feed at the entrance. 

The sand is then separated from the product, reheated and recycled again (Dahmen 

et al., 2012). The heat could also be provided externally through the wall 

(Bridgwater, 2012). The main advantages of the auger reactor are its simplicity and 

flexibility in terms of feed particle size and shape (Bridgwater, 2012). However, the 

solid and vapours residence time inside the reactor for this technology are long 

compared to the fluid-transported technologies leading to high char and low liquid 

yields (Bridgwater, 2012). 

2.2.6 Other Technologies 

There are other types of reactor design which have not received as much attention 

and development towards scaling up as the earlier discussed technologies. One of 

these is the vacuum reactor which does not require a carrier gas to sweep the 

vapours out of the reactor. This makes the condensation easier and results in a 

clean oil with little or no char particles (Ringer et al., 2006). Although the vapour 

residence time is short, vacuum pyrolysis is still considered a slow pyrolysis process 

with a liquid yield of 35 – 50 % (Bridgwater, 2012). 



37 

 

Another technology is the fixed bed reactor which has been used widely in laboratory 

scale studies but there is no evidence that it could be used in larger scale 

applications (Bridgwater, 2012). 

2.3 Conclusions 

A number of technologies have been introduced as possible candidates to meet the 

requirements for high bio-oil yield through fast pyrolysis. These requirements 

include a high heating rate, intermediate temperature and a short vapour residence 

time.  

The differences in the reactor design between these technologies can be found in 

mainly two areas: the method of solid flow/movement and the method of heat 

transfer to the biomass material. These are actually the main focus of most of the 

research and development in fast pyrolysis technologies.  

Biomass materials, in general, are known for their complex flow behaviour and in 

the above-discussed technologies, there are essentially two methods for feeding 

and moving the biomass materials inside the reactor. One is using a gas carrier 

such as in the bubbling and circulating fluid bed reactors and the gas ablative 

reactors. The other is mechanical such as in the auger reactor and the mechanical 

ablative reactors. Although the rotating cone reactor uses the gravity force for 

feeding the solid into the reactor, it could be considered as a mechanical flow 

method because the reaction takes place in the rotating cone and the char and sand 

are transported out of the reaction area using the centrifugal force supplied by the 

rotating cone. 

The gas carrier systems have the advantage of their ability to provide shorter 

vapour residence time which is required for high liquid yield. They can also improve 

the heat transfer if the gas is preheated. However, a large condenser is required to 

cope with the high gas flowrate.  
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The heat required to achieve the pyrolysis reaction can be provided to the biomass 

material through either a heating medium (hot gas or hot sand) which is the most 

common method or through a hot surface such as in the ablative reactor. Using hot 

gas alone is usually not sufficient to provide the heat of reaction unless the gas 

temperature is excessively raised which would degrade the liquid yield and quality 

(Bridgwater, 2012). This is why it is usually used in a combination with hot sand or 

hot surface. Adding hot sand to the process adds high energy cost for moving the 

sand around the process (Ringer et al., 2006). 

Providing the energy required to achieve the biomass reaction with high heating 

rate has been of the major challenges facing the development of fast pyrolysis 

technologies (Bridgwater, 2012). 

One of the promising heating methods which has been considered to replace the 

conventional heating techniques is the microwave heating technique. Microwave is 

a volumetric heating technique meaning that the workload molecules are heated 

instantaneously as a result of their interaction with the microwave electromagnetic 

field. It is therefore an energy transfer rather than heat transfer. Microwave is also 

a selective heating technique meaning that it could be targeted to heat any good 

microwave absorbent material such as water without heating its environment. Air 

and free space are transparent to microwaves (Meredith, 1998). With its selective 

and volumetric heating features, microwaves can provide a rapid heating in a cold 

environment. In biomass pyrolysis, this helps to preserve the product quality by 

limiting secondary reactions. It can also help to reduce the energy consumption as 

the energy is used to directly heat the biomass material with no need to heat its 

environment (Robinson et al., 2015). 

Many studied have been published on biomass pyrolysis employing the microwave 

heating technique. However, before reviewing these studies, some fundamentals of 

microwave heating will be discussed.  
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3 MICROWAVE HEATING FUNDAMENTALS 

3.1 Background 

Microwave heating technique is one of the electrical volumetric heating family which 

includes also conduction and induction heating (resistive heating), Ohmic heating 

and, radio frequency (RF) heating (Meredith, 1998). The frequency and wavelength 

ranges for each of these heating techniques are indicated in Figure 3-1. 

 

Figure 3-1: Volumetric heating methods in the electromagnetic spectrum. Adopted from 
(Meredith, 1998)  

 

Certain frequencies have been specified for domestic, industrial, and medical uses 

as an international agreement to avoid interference with communication signals 

(Meredith, 1998). However, the most commonly used microwave frequencies for 

these applications are 2.45 GHz and near 900 MHz (896 MHz in the United Kingdom 

and 915 MHz in the United States). In the RF region, 6.78 MHz, 13.56 MHz, 27.12 

MHz and 40.68 MHz are commonly used (Reader, 2006). 

3.2 Microwave Heating Mechanisms 

Materials could be classified according to their interaction with the electromagnetic 

fields into conductors, insulators and absorbers. In the case of microwave 

frequencies (0.3 to 300 GHz) conductors reflect the radiation and they are used as 

waveguides and walls in microwave cavities, insulators behave as transparent 
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mediums and they are used as supports and holders in microwave heating 

applications, and absorbers (also called dielectric materials) absorb the radiation 

and can be heated by the microwave energy (Jones et al., 2002). 

Dielectric materials can be heated electromagnetically due to polarisation (also 

referred to as relaxation) or conduction loss effects (Clark and Sutton, 1996).  

Polarisation loss occurs as a result of the charges displacement from their 

equilibrium position when the alternating electromagnetic field is applied to them. 

This is accompanied by a motion in the charge carriers leading to heat dissipation 

(Metaxas and Meredith, 1983; Yu et al., 2001). There are, in general, four 

polarisation loss mechanisms: dipolar, electronic, atomic and interfacial 

polarisation. Electronic and atomic polarisation mechanisms have a negligible effect 

within the microwave and RF frequency ranges and they are effective only in the 

infrared and visible parts of the electromagnetic spectrum (Metaxas and Meredith, 

1983). 

 

Figure 3-2: Electromagnetic loss mechanisms. 

 

The dipolar loss is associated with materials with permanent dipoles such as water. 

When the electromagnetic field is applied, the dipoles try to align themselves 

responding to the oscillating electromagnetic field as explained in Figure 3-3. Energy 

is then dissipated as heat as a result of this motion (Meredith, 1998). Dipolar loss 

is more significant in liquids (Kitchen et al., 2014). 

Loss 
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Figure 3-3: Dipolar molecules trying to align themselves according to the applied field 
(Lidström et al., 2001) 

 

Interfacial loss, which is also called Maxwell-Wager mechanism, is related to 

heterogeneous materials containing free charged particles confined within a non-

conducting medium structure. Polarisation, in this case, occurs at the interface as a 

result of charges build-up at the interface when the electromagnetic field is applied 

(Metaxas and Meredith, 1983).  

Conductive loss (also called ionic conduction) is related to poor electric conductors 

which contain charge carriers free to move under the influence of the electric field 

(Meredith, 1998; NPL, 2003). The applied electric field redistributes the charge 

carriers forming a conducting path and the material, in this case, is heated due to 

the electrical resistance (charged particles collision) resulted from the conduction 

(Metaxas and Meredith, 1983; Remya and Lin, 2011). Conductive loss is the 

dominant loss mechanism in solids (Kitchen et al., 2014). Figure 3-4 explains how 

the charged particles in a solution follow the applied field. 

 

Figure 3-4: Conduction mechanism: charged particles move following the applied field 
(Lidström et al., 2001) 

 

For biomass materials, their moisture content make the dipolar loss the dominant 

loss mechanism at room temperature. However, during biomass pyrolysis when 

char starts to form at high temperature, the conductive loss becomes the dominant 

loss mechanism (Robinson et al., 2010b). More details about the loss mechanisms 

in biomass materials are discussed in Section 3.3. 
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3.3 Dielectric Properties 

3.3.1 Definition and Mathematical Representation 

Dielectric properties define the interaction of materials with the electromagnetic 

field. Biomass materials are considered nonmagnetic materials and, therefore, their 

interaction is limited to the electric field (Nelson, 2010). The mathematical 

representation of dielectric properties is commonly explained through the 

polarisation loss. When an electric field is applied to a dielectric material, some 

energy is stored as a result of charges polarisation. The dielectric permittivity, 휀, is 

used to quantitatively describe this stored energy. If the electric field is alternating, 

as in the case of microwave field where part of the energy is dissipated into heat, 

the dielectric permittivity is, then, expressed as a complex quantity as shown in 

Equation 3-1 (Meredith, 1998; Yu et al., 2001): 

 휀 = 휀′ − 𝑗휀′′ 3-1 

 
The real part of the complex permittivity, 휀′, is called the dielectric constant and it 

determines the amount of the stored energy while the imaginary part, 휀′′, is the 

dielectric loss factor and it determines the amount of power dissipation into heat. It 

is to be noted here that the real part of the complex permittivity has been 

traditionally called the dielectric constant. However, it is not constant as it does 

change with frequency and temperature as will be shown later in this section. The 

ratio of the dielectric constant to the loss factor is called the loss tangent or 

dissipation factor, tan δ. The loss tangent is commonly used to assess the general 

ability of a material to heat in an electric field (Robinson et al., 2010a). If two 

materials have the same loss factor, then the material with lower dielectric constant 

would heat better as it would have higher loss tangent. 

The dielectric properties of biomass materials at room temperature are affected 

significantly by their moisture content. Robinson et al. (2009) investigated the loss 

factor of dried and undried (6.3 % water content) pine pellets at 2.45 GHz. They 
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found that at room temperature the loss factor is 0.05 and 0.81 for the dried and 

undried samples respectively. This study showed clearly the significant contribution 

of the water content in the dielectric properties of biomass materials as only 6.3 % 

moisture increases the loss factor with an order of magnitude. 

There are other factor that affects the dielectric properties of biomass materials 

including the frequency, temperature and the packing density. Table 3-1 shows the 

dielectric properties of different biomass materials at room temperature together 

with water which is a good microwave absorbent.  

Table 3-1: Dielectric properties of different biomass materials together with water at room 
temperature (~25oC), no errors were defined in these papers other than in the case of the 
pine pellet report 

Material Moisture 

(%, d.b) 

Density 

(g·cm-3) 

Frequency 

(MHz) 

ε' ε'' tan δ Reference 

Pine pellets 
6.3±0.2 - 2450 - 0.81 - (Robinson et 

al., 2010b) dry - 2450 - 0.05 - 

Palm Kernel 

Shell 
8.5 - 2450 2.76 0.35 0.13 (Salema et 

al., 2013) 
Palm Fibre 10 - 2450 1.99 0.16 0.08 

Switchgrass 

pellets 

2.23 0.94 915 2.63 0.17 0.06 (Motasemi et 

al., 2014) 2.23 0.94 2450 2.55 0.16 0.06 

Municipal 

solid waste 
2.9 0.166 2450 2 <0.05 <0.03 

(Beneroso et 

al., 2016) 

Distilled 

water 
- 1 2450 77 13 0.17 

(Meredith, 

1998): 

 

It can be seen from Table 3-1 that there are significant variations in the dielectric 

properties of biomass materials, especially the loss factor. These variations are 

regarded to many reasons of which the most important are the type of the biomass 

materials used and the measurement conditions i.e. the material’s moisture content 

and density and the frequency used. It is, therefore, important to present the 

dielectric properties of biomass with their moisture content, density, temperature 

and the frequency as these factors significantly affect the dielectric properties. The 

factors influencing the dielectric properties will be discussed in more details later in 

this section. 
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When an electromagnetic field is applied on a dielectric nonmagnetic material, the 

power dissipation (𝑃) could be estimated from the following equation (Meredith, 

1998):  

 𝑝 = 2𝜋𝑓휀0 휀" 𝐸𝑖
2 3-2 

 
Where 𝑝 is the power dissipation density (𝑝 = 𝑃/𝑉); 𝑣 is the volume of the dielectric 

material (m3); 𝐸𝑖 is the internal electric field intensity or voltage stress (V·m-3); 𝑓 is 

the frequency of the applied field (Hz); 휀" is the loss factor of the dielectric material; 

and 휀0 is the free space permittivity (휀0 = 8.854 × 10−12 𝐹 · 𝑚−1).  

Substituting the constant values, Equation 3-2 could be written as: 

 𝑝 = 55.63 × 10−12 𝑓 𝐸𝑖
2 휀"  (𝑊 · 𝑚−3) 3-3 

 

Equation 3-3 shows that the power dissipation is a function of the material’s loss 

factor, frequency and the square of the electric field intensity. The loss factor varies 

with the frequency which makes the relationship between the power dissipation 

density and frequency not linear. 

Although, the dielectric constant does not appear in Equation 3-3 it affects the 

power dissipation through the electric field intensity, 𝐸𝑖 (Nelson, 1999). 

Electric field intensity propagation through the material could be represented 

graphically as displayed in Figure 3-5 and mathematically as follows (Metaxas and 

Meredith, 1983; Nelson, 1999): 

 𝐸(𝑧) = 𝐸0𝑒−𝛼𝑧𝑒−𝑗(𝜔𝑡−𝛽𝑧) 3-4 

 
Where 𝛼 and 𝛽 are called the attenuation factor and phase factor respectively and 

both of them are functions of the dielectric constant and loss factor of the medium 

(Metaxas and Meredith, 1983; Nelson, 1999). 
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𝐸0𝑒−𝛼𝑧  

𝐸 = 𝐸0𝑒−𝛼𝑧  𝑒𝑗 (𝑤𝑡 −𝛽𝑧 ) 
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𝑍 

𝐸 = 𝐸0 

 

Figure 3-5: Electromagnetic field propagation in a dielectric medium. Redrawn from 
(Metaxas and Meredith, 1983) 

 

The maximum electric-field stress should be less than a critical value at which 

voltage breakdown (or electric breakdown) occurs. This high electric field stress can 

ionise gases forming a conducting path at which considerable power dissipation 

takes place (arcing). This high local power dissipation density can damage the 

workload and some parts of the microwave heating system as well. The electric 

breakdown voltage of air at the standard conditions is about 30 kV·cm-1 (Meredith, 

1998). The electric breakdown voltage of a gas is proportional to its density which 

decreases with increasing temperature at a constant pressure (Meredith, 1998).  

As mentioned in Section 2.1, the biomass pyrolysis reaction happens at high 

temperature of around 500 oC. Operating at such temperature increases the 

possibility of electric breakdown by reducing the breakdown voltage to around 11 

kV·cm-1*. 

Another important parameter in material interaction with electromagnetic energy is 

the penetration depth which is a measure of how deep the electric field can 

penetrate into a material. The penetration depth (𝐷𝑝) is defined as the distance from 

                                           
* The change in the voltage breakdown is inversely proportional to the change in the absolute 
temperature at constant pressure (Meredith, 1998). Therefore, the voltage breakdown at 500 oC (773 
K) could be estimated as 30×(288/773) = 11.2 kv·cm-1.  
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the surface at which the power flux drops to 1/e (≈0.368) of its surface value 

(Meredith, 1998). This definition comes from the fact that as the wave progresses 

inside a dielectric material, the electric field intensity and its associated power 

density fall exponentially with the distance from the surface as explained by 

Figure 3-5. The penetration depth can be estimated from the following equation 

(Metaxas and Meredith, 1983): 

 

𝐷𝑝 =
𝜆0

2𝜋√(2휀′)
 

1

√[(1 + (
휀′′
휀′

)
2

)

0.5

− 1]

 

3-5 

 

It is important to note here that this definition does not suggest that no heating at 

distance exceeding 𝐷𝑝 as about 37 % of the power is dissipated in the material at 

depth greater than 𝐷𝑝. From Equation 3-5, it is clear that the penetration depth is a 

function of the dielectric constant, loss factor and the free-space wavelength, 𝜆0. 

lossy materials will have a short penetration depth. Water for example has a 

penetration depth of 1.3 cm at room temperature and 2.45 GHz. A materials with a 

complex permittivity of 2 - 0.1j, which is a typical value for a biomass material at 

room temperature, would have a penetration depth of 27.5 cm. However, the 

dielectric properties of biomass materials change with temperature and it becomes 

lossy when char starts to form at high temperature leading to reduction in the 

penetration depth.  

3.3.2 Factors Influencing Dielectric Properties  

Many factors affect the dielectric properties of materials: frequency; temperature; 

density; and the moisture content in the case of wet materials such as biomass 

(Nelson and Trabelsi, 2012). 

3.3.2.1 Frequency 

With the exception of transparent and extremely low-loss materials, dielectric 

constant and loss factor vary significantly with frequency (Nelson and Trabelsi, 
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2012). The relationship between the frequency and dielectric properties depends on 

the loss mechanism(s) involved. 

One of the well-known equations used to mathematically represent the relationship 

between the permittivity of polar materials such as water and frequency is Debye 

equation which is as follows (Metaxas and Meredith, 1983): 

 휀 = 휀∞ +
휀𝑠 − 휀∞

1 + 𝑗𝜔𝜏
 

3-6 

 
Where 휀𝑠 and 휀∞ represent the dielectric constant at d.c (static) and very high 

frequency respectively, while 𝜏 is called the relaxation time (in seconds) which is 

the time required for the dipole to revert to a random orientation when the applied 

field is removed (Nelson and Trabelsi, 2012). The relaxation time is strongly related 

to the intermolecular forces which are affected by temperature (Gabriel et al., 

1998). 

Equation 4-15 could be separated into real and imaginary parts to give the dielectric 

constant and the loss factor as follows (Metaxas and Meredith, 1983):  

 휀′ = 휀∞ +
휀𝑠 − 휀∞

1 + (𝜔𝜏)2
 

3-7 

 휀′′ =
(휀𝑠 − 휀∞)𝜔𝜏

1 + (𝜔𝜏)2
 

3-8 

 

Debye equation could be represented graphically as displayed in Figure 3-6 which 

shows that the dielectric constant has a constant high value, 휀𝑠, at static and very 

low frequencies and a constant low value, 휀∞, at very high frequencies. The drop in 

the dielectric constant at high frequency is because that the molecules become no 

longer able to rotate with a significant amount before the field is reversed. The loss 

factor has zero values at very low and very high frequencies. There is a peak at an 

intermediate frequency called the relaxation frequency, 𝜔𝑜, and it is equal to the 

reverse of the relaxation time (𝜔𝑜 = 1/𝜏). 
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Figure 3-6: Dielectric permittivity for a material following Debye’s equation. Adopted from 
(Metaxas and Meredith, 1983) 

 

The frequency dependency of dielectric properties is more complex in 

heterogeneous materials when more than one loss mechanism is involved at the 

same time. Figure 3-7 is a typical representation of the relationship between the 

loss factor and the frequency for a heterogeneous material exhibiting dipolar and 

conductive losses. It shows how the conductive loss is the dominant at lower 

frequencies while at higher frequencies the dominant mechanism is the dipolar loss. 
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Figure 3-7: The loss factor for a homogeneous dielectric material exhibiting dipolar and 
conductive losses 
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3.3.2.2 Temperature and moisture content 

The importance of studying the effect of temperature on the dielectric properties is 

coming from the fact that under electromagnetic heating the material’s temperature 

does change. Temperature has an effect on the intermolecular forces and the 

molecules mobility (Gabriel et al., 1998; Nelson and Trabelsi, 2012) which affects 

the molecules ability to store and dissipate energy. The influence of the temperature 

on the dielectric properties depends on the loss mechanism involved and the applied 

frequency (Nelson and Trabelsi, 2012). 

For polar materials exhibiting polarisation loss, increasing the temperature 

decreases the relaxation time. This is because increasing the temperate increases 

the ability of the molecules to rotate by freeing them from the intermolecular forces 

such the hydrogen bond in water (Gabriel et al., 1998). Decreasing the relaxation 

time increases the relaxation frequency and shifts the loss factor peak in Debye’s 

formula towards a higher frequency as explained by Figure 3-8. 

 

Figure 3-8: Permittivity at two different temperatures, T1 and T2; where T2 > T1. 

 

The reduction in the relaxation time with increasing temperature leads to an 

increase in the dielectric constant for polar materials as explained by Figure 3-8. 

For the loss factor, the behaviour depends on the position of the measurement 
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frequency relative to the relaxation frequency. If the frequency is less than the 

relaxation frequency, then increasing the temperature will decrease the loss factor. 

On the other hand, increasing the temperature will increase the loss factor if the 

measurement frequency in higher than the relaxation frequency. Pure water has a 

relaxation frequency of about 20 GHz at 25 oC (Kaatze, 1989). Therefore, at 2.45 

GHz the loss factor of pure water will decrease when the temperature is increased.  

As mentioned earlier, the water content of biomass materials significantly affects 

their dielectric properties at room temperature. Therefore, the discussed influence 

of temperature on the dielectric properties of polar materials can be used to 

understand the dielectric behaviour of biomass materials at low temperatures. 

However, the water content of biomass materials is not purely free water.  

The water content of wet materials, in general, could either be free water or bound 

water. Free water is found in capillaries and cavities while bound water could be 

physically attached to the dry surface or chemically combined with other molecules 

such as that of MgCl2·6H2O (Metaxas and Meredith, 1983; Shrestha et al., 2011).  

Because of their restricted movement, bound water has less ability to polarise under 

the alternating electric field resulting in a lower dielectric constant and loss factor 

values compared to free water (Metaxas and Meredith, 1983; Bergo et al., 2012). 

Figure 3-9 explains a typical dielectric-moisture relation for a wet material. Both, 

the dielectric constant and loss factor, increase apparently above a critical point 

called the critical moisture content, 𝑚𝑐, above which the free water dictates the 

behaviour of the dielectric properties (Metaxas and Meredith, 1983; Shrestha et al., 

2011; Bergo et al., 2012). 
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Figure 3-9: Relationship between loss factor and moisture content for moist solid; adopted 
from (Metaxas and Meredith, 1983), (Shrestha et al., 2011), and (Bergo et al., 2012) 

 

Tinga (1969) studied the relationship between the loss factor of Douglas fir at 2.45 

GHz and the temperature up to 90 oC at differed initial moisture contents. They 

found that the loss factor decreases with temperature when high initial moisture 

contents were used. At low initial moisture contents, the loss factor was found to 

increase with temperature and reaches a peak before it starts decreasing. This was 

regarded to that at low moisture content (probably lower than the critical moisture 

content), the dielectric behaviour is dictated by the bound water. Increasing the 

temperature makes the bound water molecules freer to polarise and rotate under 

the alternating electromagnetic field which results in an increase in the loss factor. 

The presence of soluble ions could have a significant effect on the dielectric 

properties of wet materials, especially above the critical moisture content. Shrestha 

et al. (2011) studied the dielectric properties of alfalfa leaves and their moisture 

and frequency dependencies. They found that above the critical moisture content, 

the loss factor increases more rapidly at lower frequencies which was regarded to 

the increased ionic loss caused by the presence of larger number of dissolved ions. 

During pyrolysis, the biomass material experiences several physical and structure 

changes starting by drying until the formation of char which has different chemical 
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structure to the raw biomass as discussed in Section 2.1. These transformations 

have significant effect on the dielectric properties of biomass materials.  

Robinson et al. (2015) studied the influence of temperature on the loss tangent of 

Larch (wood) at 2.45 GHz over the pyrolysis temperature. They showed that the 

loss tangent drops while increasing the temperature up to around 120 oC which was 

regarded to the moisture evaporation. A second reduction in the loss tangent was 

seen above 200 oC leading to the formation of a very low loss material between 250 

to 480 oC. A sharp increase in the loss tangent was observed above 500 oC which 

was regarded to the carbonisation of the woody material and the formation of char 

which is a good microwave absorber. 

3.3.2.3 Density 

Packing density is a very important parameter that influence the dielectric 

properties of granular and pulverised solids as higher packing density results in 

higher permittivity. This is because that at higher packing density, the air fraction 

(or void fraction) in the mixture is smaller, and as the permittivity of air is lower 

than that of the solid material, then the overall permittivity of the mixture will be 

greater. 

Biomass materials are found in different forms, and their density varies depending 

on their shape and size. Wood, for example, could be found in the form of logs, 

chips, pellets, shavings, or sawdust. In addition, shape and size of the feedstock for 

processing are decided based on many factors such as the form at which the 

material feedstock is available, processing requirements and the economic 

considerations.  

Many authors have suggested using dielectric mixing models for studying the 

relationship between the permittivity and the packing density (Nelson, 2005; Nelson 

and Trabelsi, 2012; Tuhkala et al., 2013). Dielectric mixing models are used, in 

general, to estimate the effective permittivity of a mixture of more than one 
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component. Porous and granular materials can be considered as binary mixtures of 

air and a solid material, and their effective permittivity could then be determined 

by substituting the permittivity of air with 1 − 0𝑗. 

3.3.3 Dielectric Measurement Techniques 

Many techniques are used to measure the dielectric properties of materials. Each of 

these techniques has its advantages and limitations. The choice of the appropriate 

dielectric measurement technique for specific application depends on many factors. 

Nelson (1999) highlighted the most important factors: the frequency range of 

interest, the nature of the material to be measured and its physical and electrical 

properties, and the required accuracy (Nelson, 1999). Dielectric measuring 

techniques could be classified into two broad classes: Lumped impedance methods 

and Wave methods (NPL, 2003). Lumped-impedance methods are only suitable for 

measuring dielectric properties at low frequencies up to 1 GHz (NPL, 2003) and high 

loss materials* (Venkatesh and Raghavan, 2005). Wave methods measure the 

interaction of the dielectric material with travelling or standing electromagnetic 

waves. The most common wave methods used for measuring dielectric properties 

in the microwave and RF frequencies are: the cavity perturbation technique, the 

open-ended probe technique, waveguide and coaxial transmission line method, and 

the free-space transmission technique. 

3.3.3.1 The cavity perturbation technique  

This technique measures the shift in the resonant frequency and the quality factor 

(Q-factor) caused by the insertion of the sample inside a resonant cavity. The Q-

factor is a measure for the ratio of the energy stored in the cavity to that dissipated. 

The change in the cavity Q-factor is used to calculate the loss factor while the 

frequency shift is used to calculate the dielectric constant (Metaxas and Meredith, 

1983). One of the advantages of this technique is that it can measure the dielectric 

                                           
* This is based on NPL (2003) classification of dielectric materials: low loss (tan δ < 3×10-4), medium 

loss (3×10-4 ≤ tan δ < 3×10-2), and high loss dielectrics (tan δ ≥ 3×10-2) 
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properties of low-loss materials with high accuracy compared to the other wave 

techniques (Sheen, 2005; Lester et al., 2006). It can be used to measure the 

dielectric properties of different types of materials including liquids, solids and 

powders. However, the sample volume in this technique needs to be relatively small 

depending on how lossy the material is (Sheen, 2005). One of the limitations of the 

cavity perturbation technique is that it measures the dielectric properties at only 

few frequencies depending on the cavity size (Bois et al., 1999b). 

The cavity perturbation technique has been used previously to measure the 

dielectric properties of different biomass materials in the form of pellets over the 

pyrolysis temperature (Robinson et al., 2010b; Motasemi et al., 2015; Sait and 

Salema, 2015).  

3.3.3.2 The open-ended probe technique 

This technique is used to determine the dielectric properties of materials by 

measuring the amplitude and phase of the signal reflected from the sample using 

an open-ended coaxial probe touching the sample (Venkatesh and Raghavan, 

2005). It is capable of measuring dielectric properties of high loss materials (Nelson, 

1999). The probe technique is a broadband that covers a broad range of RF and 

microwave frequencies (Nelson and Bartley, 1998). However, the probe technique 

has a poor accuracy for low loss materials compared to the cavity perturbation 

technique (Nelson and Bartley, 1998, Bois et al., 1999). Although it works well with 

liquids and semisolids, the accuracy of the probe technique is questioned for solids 

and pulverised materials. This is mainly because of the difficulty to get a smooth 

surface with no air gaps in solids and particles which is a requirement for accurate 

probe measurement (Nelson and Bartley, 1998). 

The open-ended probe is not a favourable technique for measuring the dielectric 

properties of biomass materials mainly because of its poor accuracy for measuring 

the dielectric low-loss materials and its surface finishing requirements. 
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3.3.3.3 Waveguide and coaxial transmission line  

This technique measures the reflected and/or transmitted signals from a workload 

placed inside a waveguide or transmission line (Bois et al., 1999b; Venkatesh and 

Raghavan, 2005). It is one of the best techniques to measure the permittivity of 

bulk samples with  high and medium loss over the microwave range (NPL, 2003). 

It can be used for measuring the dielectric properties of inhomogeneous materials 

including biomass wastes as it allows for using a large sample which is more 

representative to the bulk material. It has some limitations for the high temperature 

measurements which may cause some measurement errors including: the 

difference in the thermal expansion between the sample and the waveguide; the 

temperature gradient caused by using large sample; and the difficulty in isolating 

the measurement apparatus (Varadan et al., 1991a). 

3.3.3.4 Free-space transmission technique 

In this technique, the attenuation and phase shift of a signal is measured after 

placing the sample in a free space between a transmission antenna and a receiving 

antenna facing each other (Trabelsi and Nelson, 2003; Venkatesh and Raghavan, 

2005). The main advantage of this technique is its flexibility in terms of sample 

shape. However the free-space technique requires a relatively large sample size as 

transversal dimensions must be large to avoid diffraction effects at the sample 

edges (Dhondt et al., 1996). Similar to the waveguide technique, it can be used to 

measure the dielectric properties of inhomogeneous materials because of the large 

sample size it can accommodate (Ghodgaonkar et al., 1989). Another advantage is 

that it can be used for high temperature measurements and the sample could be 

thermally isolated from the measuring apparatus (Varadan et al., 1991a). 

3.4 Microwave Heating Equipment 

Microwave heating systems consist of three main components and some accessories 

for measurement and control. The main components are the microwave power 

source (generator), the waveguide, and the applicator.  
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3.4.1 Generators 

The types of microwave generators could be classified into microwave power tubes, 

which include magnetrons and klystrons, and solid-state generators. Solid-state 

generators are essentially transistor-based amplifiers that increase the power in 

steps. They are not commonly used for heating applications because of their low 

efficiency, high cost and limited output power (Meredith, 1998; Brace, 2009). Both, 

magnetrons and klystrons can provide high microwave output power. The 

magnetron is a high vacuum electronic valve that generates the microwave power 

from a high-voltage source of DC power while the klystron is an electronic valve 

that amplifies the microwave signals into high microwave power using an electron 

beam (Meredith, 1998). Magnetrons are the most commonly used type of 

generators for heating applications because of their high efficiency and low cost 

(Meredith, 1998; Brace, 2009). Commercially, microwave generators of up to 100 

kW at 915 MHz are currently provided (Sairem, 2015). 

3.4.2 Waveguides 

Waveguides are hollow metal pipes (usually rectangular) used for transmitting the 

microwave power. The distribution pattern of the electric and magnetic fields inside 

the waveguide is defined by the propagation mode. Rectangular waveguides can 

support two types of mode: transverse electric (TEm,n or H m,n modes) in which the 

electric field in the direction of propagation is zero, and transverse magnetic (TM m,n 

or E m,n modes) in which the magnetic field in the direction of propagation is zero. 

The suffixes m & n represent the number of half-cycles along the coordinate 

directions normal to the propagation direction. Rectangular waveguides are usually 

designed to support a TE10 mode which is the lowest order mode for rectangular 

waveguides (Metaxas and Meredith, 1983; Meredith, 1998). Figure 3-10 shows the 

electric field patterns for a TE10 mode in a rectangular waveguide. 
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Transverse section across waveguide. The electric field is maximum at the centre of the waveguide 

 
Longitudinal view along axis of propagation 

 
Figure 3-10: electric field pattern in a TE10 mode rectangular waveguide (Meredith, 1998) 

 

For free propagation, the dimensions of the waveguide has to be chosen so that the 

frequency is larger than a minimum value called the cut-off frequency, or the 

wavelength is smaller than the cut-off wavelength. For example, for the TE10 mode 

to propagate in a rectangular waveguide without attenuation the width must be at 

least half the free-space wavelength (Meredith, 1998). The microwave power 

passing through the waveguide is another factor that affects the choice of the 

dimensions of the waveguide as higher power at certain frequency requires larger 

waveguide to avoid arcing. Some standard waveguide dimensions and their 

corresponding frequency ranges are listed in Table 3-2. 

Table 3-2: Some standard waveguide dimensions and their corresponding frequencies 
(Metaxas and Meredith, 1983). 

Official designation Frequency 

range (GHz) 

Dimensions 

EIA RCSC IEC inches mm (approx.) 

WR975 WG4 - 0.75 - 1.12 9.75 x 4.875 248.0 x 124.0 

WR770 WG5 - 0.96 - 1.45 7.7 x 3.85 196.0 x 98.0 

WR430 WG8 R22 1.7 - 2.6 4.3 x 2.15 109.0 x 55.0 

WR340 WG9A R26 2.2 - 3.3 3.4 x 1.7 86.0 x 43.0 

EIA: The Electronic Industries Alliance; RCSC: The Radio Components Standardization Committee;  

IEC: International Electrotechnical Commission. 

 

3.4.3 Applicators 

There are three main classes of applicators: travelling waves, near-field and 

resonant applicators (Reader, 2006). Travelling wave applicators are simply 

waveguides connected to a microwave generator on one side and a terminating load 

on the other side. The power fed by the generator is essentially absorbed by the 
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workload and the rest is absorbed by the terminating load (Metaxas and Meredith, 

1983). Near-field applicators are usually defined as those which have a small 

distance between the material and the applicator compared to the wavelength. They 

can be open-ended waveguides, antennas, or slotted feed waveguide (Reader, 

2006).  

Resonant applicators (or cavities) are the most commonly used types of applicators 

(Mehdizadeh, 2015). Resonant cavities can be single-mode or multimode. 

Multimode cavities are designed to support many TEmn and TMmn modes 

simultaneously. Their dimensions are several half-wavelengths long in at least two 

directions (Meredith, 1998). Domestic microwave ovens are an example of 

multimode cavities.  

Besides their simple construction, multimode applicators have the advantage of 

being able to process a wide range of workloads with different sizes and properties 

(Meredith, 1998). The main disadvantage of multimode applicators is their 

complexity in terms of theoretical analysis, so they are usually subjected to 

experimental studies for design purposes (Metaxas and Meredith, 1983). However, 

with the developments of the computer modelling and simulation programmes, the 

field distribution could now be predicted with reasonable accuracy (Salema and 

Afzal, 2015). Multimode ovens also have the disadvantage of the non-uniform field 

strength distribution which results in the formation of hot and cold spots (Lidström 

et al., 2001; Salema and Afzal, 2015). 

Single mode cavities, as the name implies, are designed to allow only one mode to 

be exited inside the cavity (Meredith, 1998; Lidström et al., 2001). They have the 

ability to establish high electric field intensity (Metaxas and Meredith, 1983; Reader, 

2006). Better heating homogeneity could be achieved in single mode cavities. 

However this homogeneity comes at the expense of the sample size which is limited 

by the half-wavelength of the applied microwave field (Reader, 2006). When the 
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parameters are well controlled, single mode cavities are able to achieve reproducible 

and predictable results (Lidström et al., 2001).  

The power dissipation efficiency inside resonant cavities is commonly expressed 

through their quality factor (Q factor) which is given by (Metaxas and Meredith, 

1983; Meredith, 1998): 

 𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑/𝑐𝑦𝑐𝑙𝑒
 

3-9 

 
The efficiency of the heating cavity (𝜂) can be related to the Q factor and the 

resonant frequency as follows (Mehdizadeh, 2015): 

 𝜂 = 1 − √
𝑓0

𝑓1

𝑄1

𝑄0
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Where 𝑓0 and 𝑓1 are the resonant frequencies of the empty and loaded cavity 

respectively while 𝑄0 and 𝑄1 are the quality factors of the empty and loaded cavity 

respectively. 

3.5 Microwave Pyrolysis: Features and Recent Developments 

Microwave heating has been considered as a promising technique for providing the 

energy input to biomass pyrolysis due to its volumetric and selective nature which 

allows for rapid heating in a cold environment. These features can help to preserve 

the product quality by limiting the unwanted secondary reactions (Miura et al., 

2004; Robinson et al., 2015). They can also help to reduce the energy consumption 

as the energy is used to directly heat the biomass material with no need to heat its 

environment (Robinson et al., 2015). 

Many studies have been conducted and there are already several review papers 

published on microwave pyrolysis of biomass materials (Luque et al., 2012; 

Macquarrie et al., 2012; Yin, 2012; Motasemi and Afzal, 2013; Huang et al., 2016). 

Different factors have been found to effect the product yield and quality. These 
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include the type and size of the biomass material, the microwave energy input 

(power and time), the type of the microwave cavity and the reactor design 

(Motasemi and Afzal, 2013). Liquid yields as high as 60 % have been reported 

(Robinson et al., 2015).  

One of the early studies that discussed in some details the benefits of the heating 

in a cold environment during microwave pyrolysis is the work reported by Miura et 

al. (2004). They looked at the temperature gradient and the mass transfer for both 

conventional and microwave heating as explained by Figure 3-11. In conventional 

heating, the direction of mass transfer is opposite to the direction of heat transfer 

which results in that the volatile products pass through areas of higher temperature 

where secondary reactions can be activated. This is not the case in microwave 

heating where the centre has usually higher temperature than the outer surface. 

 

The volatiles must pass through 

a high temperature region  

The volatiles can pass through a 

lower temperature region  
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Figure 3-11: Temperature gradient and mass transfer in conventional and microwave 
heating. Adopted from (Miura et al., 2004) 

 

Robinson et al. (2015) studied the effect of microwave pyrolysis on the quality of 

the produced bio-oil and compared the results to those obtained using conventional 

pyrolysis. They found that the composition of the high molecular weight primary 

compounds such as levoglucosan in the bio-oil obtained after microwave pyrolysis 

was significantly higher than that from conventional pyrolysis. This was regarded to 
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the heating in cold environment advantage that microwave provides which limits 

the secondary degradations. 

Microwave can provide an added advantage over conventional techniques which is 

that it requires less pre-treatment in terms of drying, crushing and grinding (Luque 

et al., 2012). Because of that water is a good microwave absorbent, its presence in 

the form of moisture within the biomass feedstock increases the heating rate at the 

start of the process. Also, the time and energy consumed for crushing and grinding 

the feedstock could be substantially decreased under microwave treatment. This is 

because that, unlike conventional heating techniques, achieving high heating rate 

does not require using a very small particle size (Luque et al., 2012). 

Biomass materials, in general, have low loss values which may limit their heating 

rate and the final achievable temperature at certain power density. Many studies 

have suggested mixing the biomass material with a microwave susceptor (good 

microwave absorbent) in order to improve the heating rate and reach the pyrolysis 

temperature. The most commonly used susceptors are the carbon based material 

and metal oxides (Li et al., 2013; Borges et al., 2014; Mushtaq et al., 2014). Many 

studies have shown improvements in terms of heating rate and the final 

temperature of the bulk material when these microwave susceptors are used (Hu 

et al., 2012; Salema and Ani, 2012; Li et al., 2013; Borges et al., 2014; Mohamed 

et al., 2016; Pianroj et al., 2016).  

However, there is an ongoing debate about the feasibility of mixing biomass with a 

susceptor during microwave pyrolysis. Susceptors would result in localised heating 

and generation of hotspots with temperatures>1000 oC while the bulk temperature 

reads much less than that leading to significant gasification (Robinson et al., 2015). 

In fact, the use of susceptors eliminate the specific benefits of microwave heating 

which are the selective and volumetric heating. The biomass material, when a 

susceptor is used, is heated by conduction from the surface of the susceptor which 

is similar to what happens in conventional heating techniques. 
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The majority of the published studies on microwave pyrolysis were conducted on 

poorly designed cavities or modified domestic ovens. These cavities can not provide 

high electric field intensity to heat the low-loss biomass materials up to the pyrolysis 

temperature without using a suscueptor. Number of studies have demonstrated that 

by applying high enough electric field intensity, microwave pyrolysis of biomass 

could be achieved with no need for adding any microwave susceptor. Robinson et 

al. (2010b) estimated the minimum power density required to achieve the pyrolysis 

of wood pellets at around 5.0×108 W·m-3.  

Robinson et al. (2015) were able to get 60 % to 70 % of wood chips to pyrolyse in 

a single-mode applicator (TM01n) operated at 2.45 GHz with no need for any 

additives. The cavity was designed to create power densities on the order of 108 

W·m-3 in the heated phase. 

Shang et al. (2015) investigated the effect of various additives on the microwave 

pyrolysis of sawdust in a 3 kW single-mode system, operated at 2.45 GHz. They 

were able to obtain up to 27 % bio-oil without using any additive. They then studied 

the bio-oil yield after mixing the biomass materials with different susceptors 

including silica carbon (SiC), activated carbon, pyrolysis char, potassium carbonate 

(K2CO3), and sodium hydroxide (NaOH). They showed that, with the exception of 

the activated carbon, mixing the biomass with 5 % additive results in a reduction 

in the bio-oil yield. The silica carbon (SiC) resulted in a significant reduction in the 

gas and bio-oil yields. This was attributed to the non-uniform mixing caused by the 

large density difference between the sawdust and SiC particles. The pyrolysis char, 

the potassium carbonate and the sodium hydrate was found to increase the gas 

yield and reduce the oil yield. This increase in the gas yield at the expense of the 

oil yield could be attributed to the high-temperature hot-spots created by the 

microwave susceptor leading to significant gasification. 

One of the major challenges facing microwave pyrolysis and many other high-

temperature microwave heating applications is the heating non-uniformity. The 
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nature of the standing waves results in the formation of areas of high and low 

electric field intensity inside the microwave cavity leading to non-uniform heating. 

The implications of the heating heterogeneity of microwave heating are more 

significant in the processes where the loss factor of the material involved increases 

significantly with temperature such as in biomass pyrolysis where the loss factor of 

the formed char is significantly greater than that of the raw biomass. In such 

processes, the heating heterogeneity could lead to a rapid increase in the 

temperature at the areas of the high electric field intensity relative to the bulk 

material leading to, possibly, thermal runaway. 

Thermal runaway is a condition which arises when the power dissipation in a small 

element within the heated material exceeds the rate of heat transfer to its 

surroundings. This results in a local acceleration of heating and a rapid increase of 

temperature. The unstable nature of thermal runaway could cause severe 

degradation of the heated material and may damage the processing equipment 

(Meredith, 1998; Mehdizadeh, 2015). In the case of biomass pyrolysis, thermal 

runaway can happen when char starts to form as char is a good microwave absorber 

and has a high loss factor compared to the raw biomass (Robinson et al., 2015). 

Salema and Afzal (2015) studied the heating uniformity in the microwave pyrolysis 

of empty fruit bunch (EFB) pellets in a modified domestic microwave oven operated 

at 2.45 GHz frequency. The pellets were placed inside a quartz reactor with 100mm 

ID which was positioned at the centre of the cavity. They showed that this setup 

leads to significant heating heterogeneity and the formation of hot and cold spots 

as displayed in Figure 3-12. 
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Figure 3-12: Heating heterogeneity in a multimode cavity (Salema and Afzal, 2015)   

 

Single-mode cavities could provide better uniformity as the system could be set to 

have the sample placed at the area of a high field intensity, meaning that there will 

be only one hot-spot. However, the sample size in single-mode cavities is limited 

by the half-wavelength of the supplied microwave power. This make single-mode 

cavities not a practical choice for scaling-up.  

Robinson et al. (2015) discussed the relationship between the sample size and the 

heating homogeneity when they studied the microwave pyrolysis of wood chips. 

They applied 2.45 GHz microwave power at a fixed bed of the biomass material 

placed in a single-mode applicator (TM01n). They observed significant heating 

heterogeneity with thermal runaway at the centre of the sample when samples size 

of the order of 50 mm were used as shown in Figure 3-13. They concluded that for 

better heating uniformity and to avoid thermal runaway, the sample size needs to 

be kept within 15 mm. However, such size is far from what would be practical for 

large-scale operation. There is a need, therefore, to develop microwave pyrolysis 

systems that can provide homogenous heating while being able to process large 

feed sizes.   

 

 

 

Hot spot 

100 mm 
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Figure 3-13: Heating heterogeneity in a single-mode cavity (TM01n) (Robinson et al., 2015) 

 

There have been several attempts to improve the heating homogeneity during 

microwave pyrolysis in multimode cavities to allow for larger sample to be 

processed. One of the early attempts on this area was the work reported by Salema 

and Ani (2012) who employed an overhead stainless steel stirrer to agitate the 

biomass material during the microwave pyrolysis. The study was carried out in a 

modified domestic microwave oven at 2.45 GHz with 150 g of the biomass material 

(oil palm shell) placed inside a 100 mm ID quartz reactor. They could not obtain 

bio-oil with the available power without using a microwave susceptor. When the 

biomass material was mixed with activated carbon, bio-oil yield of up to 18 % was 

obtained. This was achieved after heating the mixture for 20 minutes at 450 W, a 

biomass to activated carbon mixing ratio of 1:05, and a stirrer speed of 200 rpm.  

In another study Abubakar et al. (2013) also employed an overhead stainless stirrer 

to agitate the biomass material during pyrolysis in a 100 mm quartz reactor placed 

in modified domestic microwave oven at 2.45 GHz. They used a setup in which the 

inert gas (nitrogen) was introduced at the top of the reactor and the pyrolysis 

vapours were condensed and collected at the bottom of the reactor. This was to 

avoid bio-oil deposition on the reactor wall above the bed. The biomass material (oil 

palm shell with 1.4 mm particle size) was mixed with activated carbon as a 

microwave susceptor. They studied the effect of the stirrer speed and the 

percentage of the microwave susceptor. They reported a maximum bio-oil yield of 

28 % at a stirrer speed of 50 rpm and 25 % activated carbon after applying 450 W 

microwave power for 30 minutes. They found that increasing the stirrer speed above 



66 

 

50 rpm results in a reduction in the bio-oil yield. It was also shown that increasing 

the fraction of the activated carbon above 25 % leads to a reduction in the bio-oil 

yield and an increase in the gas yield. This increase in the gas yield at the expense 

of the oil yield can be attributed to the increase in the high-temperature hot-spots 

formed around the activated carbon particles enhancing the secondary cracking 

reactions, leading to more gasification. 

Pianroj et al. (2016) studied the microwave pyrolysis of oil palm shell in 107 mm 

ID fixed-bed quartz reactor placed in a multimode cavity. The cavity was designed 

and built based on numerical simulations. Two waveguide feeds were used with two 

2.45 GHz magnetrons taken from domestic ovens with 800 W maximum power 

each. Employing two magnetrons was an attempt to provide higher microwave 

power, and based on the numerical simulations it improves the heating uniformity. 

As in most of the other microwave pyrolysis studies, they used activated carbon as 

a microwave susceptor. They reported a maximum bio-oil yield of 30 % which was 

obtained at a biomass to activated carbon ratio of 3:1 when a total power of 800 W 

was applied on 400 g biomass for 30 minutes. They found that decreasing the 

biomass to activated carbon ratio leads to a reduction in the bio-oil yield and 

increase in the char yield. This is probably because of the reduction in the microwave 

penetration depth with the increase in the fraction of activated carbon, meaning 

that most of the microwave energy is absorbed at the surface of the biomass bed 

leaving significant part of the biomass bed (fixed bed) at low temperature. It is to 

be noted here that there are no details about the parameters used for the numerical 

simulation in Pianroj et al. (2016) work, and it was not mentioned if the simulation 

was based on constant dielectric properties. The dielectric properties of biomass 

materials change significantly with temperature during pyrolysis. This change in the 

dielectric properties can alter the electromagnetic field distribution in the space 

inside the cavity and within the load. The heating uniformity in the case of a fixed 
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and unmixed bed cannot be guaranteed when the electromagnetic distribution is 

altered. 

3.6 Discussion and Conclusions on Previous Microwave Pyrolysis Studies 

Microwave heating has been considered as a promising technique for providing the 

energy input to biomass pyrolysis due to its volumetric and selective nature which 

allows for rapid heating in a cold environment. These features can help to preserve 

the product quality by limiting the unwanted secondary reactions (Robinson et al., 

2015). The following remarks could be made on the previous studies on microwave 

pyrolysis of biomass material. 

 All the published work on microwave pyrolysis of biomass materials is based 

on lab-scale batch pyrolysis experiments. The majority of the experiments 

were conducted in modified domestic microwave ovens which provide low 

powers and limited electric field intensity inside the cavity. 

 In the majority of the previous studies, the biomass material was mixed with 

a microwave susceptor to increase the heating rate and to reach the the 

pyrolysis temperature. The use of susceptors eliminate the specific benefits 

of microwave heating which are the selective and volumetric heating. The 

biomass material is therefore heated by conduction from the surface of the 

susceptor which is similar to the conventional heating techniques.  

 There is, in general, a lack of understanding about the impact of using 

microwave susceptors on the product yield and quality. There are number of 

studies which showed that increasing the fraction of the microwave 

susceptor increases the gas yield at the expense of the liquid yield (Abubakar 

et al., 2013; Shang et al., 2015) indicating an increase in the secondary 

cracking reactions.  

 There is also a lack of understanding about the impact of the cavity design 

and the applied electric field intensity on the performance during microwave 
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heating. The proper design of the microwave heating cavity to provide high 

electric field intensity can eliminate the need for a microwave susceptor. 

 One of the major challenges facing the microwave pyrolysis of biomass is 

the heating heterogeneity caused by the nature of the standing waves which 

creates hot- and cold-spots inside the heating cavity. Due to the high loss 

factor of the char formed during pyrolysis compared to the raw biomass, the 

heating heterogeneity can lead to thermal runaway in the hot-spots. In 

single mode cavities, the heating homogeneity can be controlled by 

processing a small sample size placed at the area of the high electric field 

intensity. Robinson et al. (2015) showed that for homogeneous heating and 

to avoid thermal runaway in a single mode cavity operating at 2.45 GHz, the 

sample needs to be not more than 15 mm. However, such size is too small 

for large scale processing. 

 One of the ways which have been suggested to improve the heating 

homogeneity during the microwave pyrolysis in multimode cavities is 

employing an overhead stirrer to mix the biomass material during pyrolysis 

such as the studies reported by Salema and Ani (2012) and Abubakar et al. 

(2013). However, these studies are not fundamentally scalable, mainly 

because they do not provide an approach to control the char deposition in 

the system for continuous and large-scale processing.  

 Apart from the work reported by Robinson et al. (2015), there is a lack in 

the analysis of the absorbed microwave power during the microwave 

pyrolysis in oreder to estimte the energy comsumption. This is mainly 

becasue that most of the studies were run in a modified domestic microwave 

ovens which do not provide information about the absorbed and reflected 

power. 

Developing a reliable and scalable microwave pyrolysis process would require an 

understanding of the interactions between biomass materials and microwave energy 
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over the pyrolysis temperature. It would also require an understanding of the impact 

of the changes in the dielectric properties during pyrolysis on the process and the 

cavity design. Any process to be scalable needs to provide a way for controlling the 

char deposition in the system during processing.  
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4 EXPERIMENTAL METHODOLOGIES 

4.1 Biomass Materials Involved in this Study 

Different types of biomass materials were identified as candidates for microwave 

pyrolysis in this study incuding wheat straw, softwood, hardwood, wood bark, and 

seaweed. Apart from the seaweed, all the other biomass materials could be 

classified as lignocellulosic biomass.  

Typical fractions of the main constituents of the lignocellulosic biomass materials 

involved in this study are listed in Table 4-1 which shows that softwood and 

hardwood have close compositions. Wood bark, in general, has a high lignin fraction 

(Mohan et al., 2006). 

Table 4-1: Typical composition of the lignocellulosic biomass materials involved in this 
study. 

Material Cellulose a Hemicellulose a Lignin a 

Softwood b 35-40 25-30 27-30 

Hardwood b 45-50 20-25 20-25 

Wood bark c 25 15 45 

Wheat straw b 33-40 20-25 15-20 

a The compositions are on the dry basis. The remaining fraction is mainly extractives and ash;  
b (McKendry, 2002); c (Valentín et al., 2010) 

 

It can be noted that seaweed is not included in Table 4-1. This is because it does 

not have a lignocellulosic structure as do the other biomass materials in this study. 

Seaweeds are usually characterised by their carbohydrates, proteins and lipids 

content depending on the type of the seaweed as will be discussed later in this 

section. 

These biomass materials chosen for this study were selected mainly because of their 

abundance, relatively low economic value and suitability for pyrolysis. A brief 

discussion on the social and economic considerations for using these materials for 

the production of biofuels and chemicals is presented first. 
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4.1.1 Wood 

Wood is one the oldest fuel sources known to humans. Before the 19th century, 

wood was the predominant fuel for cooking, heating, and lighting (Guo et al., 2015). 

Since the emergence of fossil resources, the use of wood as a fuel has declined and 

its applications were directed more towards construction, furniture, and packaging 

industries. Wastes from these global industries together with the forestry residues 

and municipal waste generate large quantities of wood waste. In the UK alone the 

total amount of wood waste arising was estimated in 2012 at around 4.3 million 

tonnes per year (DEFRA, 2012). The main markets for these wastes are panelboard 

industry, animal bedding and biomass for heat and power generation. The price of 

wood waste, in general, varies depending on its grade and cleanness. The price of 

the forestry wood used for heating depends on its form (chips, pellets, or logs) and 

moisture content. A typical price for wood chips with 20 % moisture content is about 

£150 per tonne (Forest-Fuels, 2016). 

Wood is one of the most extensively studied type of biomass materials for pyrolysis 

due to its ability to produce more consistent and repeatable results compared to the 

other biomass materials (Gómez-Monedero et al., 2015). The bio-oil yield from 

wood could be as high as 75 % depending on the type of wood and the processing 

conditions (Mohan et al., 2006). 

In this study two types of wood were used; pine which is a softwood and sycamore 

which is a hardwood. Both type of wood were provided by Eco-Fuels which is a 

biomass supplier local to the Nottingham area. 

The bark removed from pine was also characterised as part of this study. Wood 

bark, in general,  yields less bio-oil compared to wood mainly because of its high 

lignin content (Mohan et al., 2006). However, the bark is produced as waste with 

large quantities in various wood industries. Its poor physical structure makes it not 

suitable to be used in construction and furniture applications. It represents about 

10-22 % of the log volume depending on the tree species and size (Parikka, 2004).  
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4.1.2 Wheat Straw  

Straws are agricultural by-products from cereal crops such as wheat, barley and 

oats which are planted globally. In the UK alone, around 9 to 10 million tonnes of 

cereal straw is produced each year of which around 6 to 7 million tonnes comes 

from the wheat industry (DEFRA, 2015). The main uses of straws include bedding, 

animal feed, and heat and electricity generation in power stations and combined 

heat and power (CHP) units. However, there is a surplus of around 19 % in the 

cereal straws produced in the UK (DEFRA, 2015). This difference between the supply 

and demand keeps the economic value of the straws low, putting them as potential 

candidates for biofuels production. The farm price of wheat straw is estimated at 

around £50 to £60 per tonne (DEFRA, 2013). 

Many studies have been published on the pyrolysis of wheat straw. The bio-oil yield 

from wheat straw, in general, is low compared to the woody biomass due to the 

high ash content and the lower volatile matter in the wheat straw (Mohan et al., 

2006). Bio-oil yields of up to around 50 % have been reported (Henrich et al., 

2016). 

The wheat straw for the current study was obtained from the University of 

Nottingham farm in Sutton Bonington. It was harvested in August 2013. 

4.1.3 Seaweed 

Seaweeds or macroalgae include a wide range of multicellular marine algae found 

in seas and oceans. They are one of the biomass resources which have been 

considered as potential candidates for biofuels and chemicals production (Ross et 

al., 2008; FAO, 2009).  

Seaweed was considered in this study because of its unique economic and social 

advantages. Seaweeds have larger productivity per unit area than terrestrial 

biomass (Subhadra and Edwards, 2010) with 6 – 8% photosynthesis efficiency 

compared to only 1.8 – 2.2% for terrestrial biomass (Anastasakis et al., 2011). 
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Their competition in land and fresh water with other human activities is less 

compared to terrestrial biomass as they grow in seas and oceans. 

There are over 10,000 different kinds of seaweed all over the world (Wang et al., 

2013a). However, they are often classified into four groups: blue algae 

(Cyanophyta), green algae (Chlorophyta), brown algae (Phaeophyta) and red algae 

(Rhodophyta) (Ross et al., 2008). Seaweeds have a different chemical structure to 

that of lignocellulosic biomass. They are usually characterised by their 

carbohydrates, proteins and lipids content depending on the type of the seaweed 

(Ross et al., 2008). Brown algae, which is the kind of seaweed used in this study, 

have a high carbohydrates fraction dominated by alginates (10 – 40 %), laminarin 

(2 – 34 %), mannitol (5 – 25 %) and fucoidan (5 – 20 %) (Ross et al., 2009). 

Seaweeds have, in general, lower volatile matter and higher ash content than 

lignocellulosic biomass. The seaweed ash contains high fractions of Ca, K, Na and 

Mg (Ross et al., 2008; Ross et al., 2009). Seaweeds have also high nitrogen content 

which is associated with their protein content (Ross et al., 2008). 

Many studies have been published on the pyrolysis of seaweed, and bio-oil yields of 

up to around 40 % to 50 % have been reported (Bae et al., 2011; Ly et al., 2015; 

Ly et al., 2016). 

The type of seaweed used in this study is Laminaria Digitata which is brown algae 

and it is one of the most abundant types of seaweed in Britain and Ireland (Hardy 

and Guiry, 2003). The seaweed was supplied by the Cornish Seaweed Company Ltd. 

It was harvested in Lizard Peninsula, Southern England, in March 2014. 

4.2 Materials Characterisation 

The aim of the of the experiments described in this section was to study the 

dielectric properties of the biomass materials involved in this study and link their 

variations with temperature to the physical and structural changes happening 
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during pyrolysis. Materials characterisation involved mainly thermogravimetric 

analysis and dielectric properties measurement. 

4.2.1 Sample Preparation for Characterisation 

The five biomass materials involved in this study were included in the dielectric and 

thermogravemitric characterisation. After receiving them from the suppliers, the 

biomass materials were left open for air drying for at least 48 hours. The sample 

from the woods were taken by cutting approximately 10 mm-thick cross-section 

discs after removing the bark. These discs allow for obtaining representative 

samples for the whole cross-section excluding the bark. For thermogravimetric 

analysis and dielectric properties measurement, the biomass materials were ground 

to less than 212 µm in two stages; first, the samples were shredded then pulverised 

in a disc mill. The aim of using a small particle size was to obtain representative 

samples that can fit in the 3 mm tube employed for the dielectric properties 

measurement. Sampling in all the stages after shredding was done using riffle 

splitters to ensure obtaining representative samples. All the samples were then 

stored in a fridge below 5 oC in plastic bags prior to further analysis. 

4.2.2 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) is one of the thermal analysis methods used to 

observe and study the different physical and chemical transformations through the 

changes in the material’s weight with time and temperature. It has been used widely 

to study the decomposition of biomass and its constituents during pyrolysis (Collard 

and Blin, 2014). TGA has been also used to perform proximate analysis for biomass 

materials which involves determining the moisture content, volatile matter, fixed 

carbon, and the ash content (García et al., 2013). 

In this study, thermogravimetric analysis was performed to determine the 

proximate analysis and to study the decomposition of the biomass materials as a 

function of temperature during pyrolysis. In both analyses, the sample size was 
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kept around 10 to 20 g. The TGA apparatus used in the analysis was Q5000 IR 

manufactured by TA Instruments. 

Proximate analysis for the lignocellulosic biomass was performed following García 

et al. (2013) method which was developed specifically for biomass materials. 

Figure 4-1 shows the heating profile which was applied. The heating rate was 50 

oC·min-1 in step 1, 100 oC·min-1 in step 3 and 5, and -100 oC·min-1 in step 4 (cooling). 

Nitrogen at 40 mL·min-1 was introduced from the start of step 1 until the end of 

step 4 to act as a sweep gas and to ensure inert atmosphere. At the start of step 5, 

the gas was switched to air at 40 mL·min-1 to burn the fixed carbon and allow for 

the ash content calculation. 

 

Figure 4-1: Heating profile for the proximate analysis based on the method reported by 
García et al. (2013). 

 

The mass loss during step 1 and 2 was used to determine the moisture content. The 

volatile matter was calculated from the weight loss during step (3). The mass left 

at the end of step 6 was the ash content. The fixed carbon was calculated by 

difference. 

The method reported by García et al. (2013) applies to only the lignocellulosic 

biomass and not to the seaweed. The reason for this is that seaweeds contain 
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significant amounts of volatile inorganics which start decomposition at around 600 

oC (Ross et al., 2008; Ross et al., 2009). Therfore, the García et al. (2013) method 

would give inaccurate estimates of the volatile matter and the ash content as it 

involves heating the material up to 950 oC for the volatile matter. Instead, the 

method reported by Ross et al. (2008) was employed where the volatile matter is 

determined from the mass loss between 110 oC and 550 oC, the fixed carbon is 

determined by the mass loss after switching to air at 550 oC, and the remaining 

mass is the ash content. 

The decomposition profile during the pyrolysis of the biomass materials was studied 

by heating the samples in the TGA from the room temperature up to 600 oC with a 

constant heating rate of 10 oC·min-1 under an inert atmosphere of nitrogen. 

4.2.3 Dielectric Properties Measurement 

The most commonly used techniques to measure the dielectric properties of 

materials over the microwave and RF frequencies were discussed in Section 3.3.3. 

The advantages and limitations of each of these techniques were discussed. Among 

the dielectric measuring technique the cavity perturbation technique was 

highlighted as the most suitable technique for measuring the dielectric properties 

of biomass materials over the pyrolysis temperature. One the main advantages of 

the cavity perturbation technique is its high accuracy compared to the other 

techniques for measuring the dielectric properties of low loss materials such 

biomass materials (Varadan et al., 1991b; Bois et al., 1999a; Rattanadecho and 

Makul, 2016). Another advantage is its simplicity regarding sample preparation, and 

a broad range of sample states and shapes can be measured including powders and 

granular solids as the case for the biomass materials in the present study. Further, 

the cavity perturbation technique allows for high-temperature measurements by 

moving the sample, between the cavity and a furnace as will be described later in 

this section. The cavity perturbation technique requires relatively small sample 

leading to small temperature gradient within the sample compared to the other 
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techniques such as the waveguide and free space transmission techniques which 

require large sample. 

The cavity perturbation technique measures the cavity’s resonant frequency and 

quality factor before and after inserting the sample inside the cavity. The frequency 

change is then used to calculate the dielectric constant while the change in the 

cavity’s quality factor is used to calculate the loss factor as follows (Nakamura and 

Furuichi, 1960; Smith et al., 2010): 

 휀′ = 1 + 2 𝐽1
2(𝑥1,𝑚) 

(𝑓0 − 𝑓1)

𝑓0
 
𝑉𝑐

𝑉𝑠
 

4-1 

 휀" = 𝐽1
2(𝑥1,𝑚) (

1

𝑄1
−

1

𝑄0
) 

𝑉𝑐

𝑉𝑠
 

4-2 

Where 𝑓0 and 𝑓1 are the resonant frequencies of the empty and loaded cavity 

respectively; 𝑄0 and 𝑄1 are the quality factors of the empty and loaded cavity 

respectively; 𝑉𝑐 and 𝑉𝑠 are the volumes of the cavity and the sample respectively; 

and 𝐽1(𝑥1,𝑚) is the second order of the first kind root of the Bessel function (Smith 

et al., 2010). 

In this study, the dielectric properties of the biomass samples were measured in a 

coaxial cylindrical cavity employing the cavity perturbation technique. A schematic 

diagram of the measurement setup is shown in Figure 4-2. The system included a 

TM0n0 cylindrical cavity, a vector network analyser (VNA), a tube furnace, a sample 

holder connected to a motor, and a computer with software to control the system 

and record the results. 

The cylindrical cavity was designed to support six modes (n from 1 to 6) enabling 

measurement at frequencies ranging from about 400 MHz to 3 GHz. However, in 

the present study measurements were taken at only two frequencies: 912 MHz and 

2.47 GHz corresponding to TM020 and TM050 modes respectively. These two 

frequencies are close to the frequencies allocated for Industrial, Scientific and 

Medical (ISM) heating applications which are 896 MHz and 2.45 GHz in UK.  
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Figure 4-2: A schematic diagram of the dielectric properties measurement facility 

A cooling jacket was attached to the top surface of the cavity to absorb any heat 

coming from the furnace and keep the cavity at the room temperature* during the 

high-temperature measurements. The role of the VNA (Hewlett Packard 8753C) was 

to generate and transmit the microwave signals to the cavity and then to measure 

the resonant frequency and the Q-factor of the cavity. 

A 3 mm (ID) quartz tube was used as a sample holder. Quartz was chosen mainly 

because of its extremely low loss and its high thermal resistance. It has a loss factor 

less than 0.001 and an operating temperature greater than 1000 oC. Further, it is 

transparent to light which allows for controlling and measuring the dimensions of 

the sample inside the tube. Silica (quartz) wool was used to hold/support the sample 

inside the quartz tube. During the high temperature measurement, a piece of the 

silica wool was also placed on top of the sample inside the quartz tube to stop air 

from flowing to the sample and, therefore, avoid oxygenation reactions 

                                           
* The temperature in the room where the measurements took place was controlled and set at 20oC. 
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(combustion). Due to its porous nature, the silica wool allows the vapours formed 

during pyrolysis to escape from the sample. The positive pressure generated by the 

vapours within the sample and between the two silica wools (top and bottom), 

prevents air from entering to the sample during the high temperature 

measurements.  

The quartz tube was connected to a motor which transports the sample between 

the cavity and the furnace during the high-temperature measurements. 

Measurements were taken for the tube with and without the sample, and the 

differences in the resonance frequency and the Q-factor between the two 

measurements were then used to calculate the dielectric constant and the loss 

factor. 

4.2.4 Study of the Factors Influencing Dielectric Properties 

As discussed in Section 3.3, many factors affect the dielectric properties of materials 

including the applied frequency, temperature, the material composition and the 

packing density.  

In this study, five different biomass materials were investigated representing 

different compositions. Typical fractions of the main constituents of the 

lignocellulosic biomass materials involved in this study are listed in Table 4-1. As 

mentioned earlier in Section 4.1, seaweed does not have a lignocellulosic structure 

as do the other biomass materials in this study. Instead, its carbohydrate fraction 

is dominated by other polysaccharides including alginic acid, laminarin, manntitol 

and fucoidan. It also has a high ash content compared to the lignocellulosic biomass 

(Ross et al., 2008). 

The effect of the packing density on the dielectric properties of the biomass 

materials was studied. The importance of studying the density dependency comes 

from the fact that biomass materials, especially wastes, are found in different forms, 

and their density varies depending on their shape and size. Wood, for example, 
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could be found in the form of logs, chips, pellets, shavings, or sawdust. In addition, 

shape and size of the feedstock for processing are decided based on many factors 

such as the form at which the material feedstock is available, processing 

requirements and the economic considerations.  

For the dielectric properties measurement, the packing density of the biomass 

samples was changed by using a metallic rod to press the sample inside the tube 

and change the volume of a certain mass. This allows for establishing relationships 

between the dielectric properties of the biomass materials and their packing density. 

These relationships could be used later to determine the dielectric properties at the 

processing density. 

Temperature is one of the important factors affecting the dielectric properties of 

materials especially for those materials experiencing physical and chemical 

transformations during heating. One of the major challenges of the microwave 

pyrolysis is occurrence of thermal runaway when char starts to form at high 

temperature as discussed in Section 3.5. It was, therefore, important to study the 

dielectric properties of the biomass materials over the temperature range of 

pyrolysis. This would allow for identifying the char formation temperature where the 

loss factor starts to increase rapidly with temperature, and would help controlling 

the temperature during microwave pyrolysis to avoid thermal runaway.  

Using the setup described in Figure 4-2, the dielectric constant and loss factor of 

the biomass materials involved in this study were measured starting from room 

temperature (20 oC) up to 600 oC with steps of 20 oC. The sample temperature was 

assumed to be the same as the temperature inside the furnace. During each step 

of the high-temperature measurements, the sample was kept inside the furnace for 

10 minutes at the target temperature before taking it down to the cavity for 

measurement. This 10 minute holding time was to minimise the difference between 

the sample temperature and the temperature inside the furnace. The dielectric 

measurements inside the cavity were achieved in less than 10 seconds at each step 
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of the high-temperature measurements to minimise the difference in the sample 

temperature between the furnace and cavity positions. 

During the high-temperature measurements, a significant shrinkage in the sample 

volume was observed at the end of each experiment as shown in Figure 4-3. This 

is due to the decomposition and evaporation of the volatile matter from the biomass 

material.  

  
(a) (b) 

Figure 4-3: Reduction in the sample volume during the high-temperature dielectric 
measurements. These pictures are for sycamore (a) before heating (b) after heated to 
600oC. 

 

The sample volume is a parameter in calculating the dielectric constant and loss 

factor as shown in Equations 4-1 and 4-2. It was, therefore, necessary to determine 

the volume of the sample not just at the start of the measurement but also 

throughout the experiment. A volume-temperature relationship was established for 

each of the studied biomass material by heating samples of the same initial volume 

and density to those used in the actual dielectric-temperature measurements in the 

furnace to different temperatures (20 oC, 100 oC, 200 oC, 300 oC, 400 oC, 500 oC, 

and 600 oC). The height and diameter of the sample inside the quartz tube were 

measured at each temperature. The average diameter after each heating step was 

determined after tacking photos such as that shown in Figure 4-3. The photos were 

exported to a computer software (ImageJ) which measures the lengths in pixels. 

5 mm 5 mm 
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The diameter of the sample at different heights was determined relative to the tube 

outer diameter which was measured using an electronic digital calliper*. 

Figure 4-4 shows the volume reduction as a function of temperature for the five 

biomass materials. The new volumes were then used to correct the measured 

dielectric constant and loss factor by substituting in Equation 4-1 and 4-2 as follows: 

 휀′
(𝑇) = 1 + 2 𝐽1

2(𝑥1,𝑚) 
(𝑓0 − 𝑓1)

𝑓0
 

𝑉𝑐

𝑉𝑠(𝑇)
 

4-3 
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Where 휀′

(𝑇) and 휀"(𝑇) are the corrected dielectric constant and the loss factor at a 

temperature, 𝑇, and a sample volume, 𝑉𝑠(𝑇). Substituting Equation 4-1 and 4-2 into 

Equation 4-3 and 4-4 leads to the following equations which were used to correct 

the dielectric constant and the loss factor: 

 휀′
(𝑇) = [(휀′ − 1)

𝑉𝑠

𝑉𝑠(𝑇)
] + 1 

4-5 

 휀"(𝑇) = 휀" ×
𝑉𝑠

𝑉𝑠(𝑇)
 

4-6 

 

 
Figure 4-4 (a): Change in the volume of the pine samples with temperature. 

                                           
* Swiss Precision Instruments (SPI® 13-610-1) which has a resolution of 0.01mm. This calliper was also 
used to measure the height of the sample from outside the tube before and during the high temperature 
measurements. 
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Figure 4-4 (b): Change in the volume of the sycamore samples with temperature. 

 

 
Figure 4-4 (c): Change in the volume of the pine bark samples with temperature. 

 

 
Figure 4-4 (d): Change in the volume of the wheat straw samples with temperature. 
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Figure 4-4 (e): Change in the volume of the seaweed samples with temperature. 

 

4.3 Cold Fluidisation Experiments 

The aim of the cold fluidisation experiments was to study the fluidisation behaviour 

of different particle sizes of the biomass materials, and to determine their minimum 

fluidisation velocity as one of the steps towards designing a microwave-heated 

fluidised bed process. The justifications for using a fluidised bed system are 

discussed in Sections 5.5 and 5.6. The steps of the process design are discussed in 

details in Chapter 6. 

The fluidisation behaviour of the different biomass particles was studied in a 5 cm 

ID fluidised-bed column which was built solely to run the cold fluidisation tests. A 

schematic diagram of the experimental facility used for the cold fluidisation 

experiments is shown in Figure 4-5. The column was made of acrylic tube with 5 

cm ID and 70 cm height. Acrylic (polyacrylonitrile) was chosed because it is 

transparent to light which allows for observing the particles behaviour inside the 

column. It is also easy to machine and has a lightwegiht compared to glass which 

is another light-transparent material that is commonly used in the design of 

experimental fluidised bed columns.  
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Figure 4-5: A schematic diagram of the fluidisation experiment facility 

 

The choise of the column diameter was in line with many of the previous lab-scale 

studies on the fluidisation behaviour of biomass material (Reina et al., 2000; 

Abdullah et al., 2003; Liu et al., 2014). Di Felice and Gibilaro (2004) reported that 

to avoid a significant wall effect on the fluidisation behaviour and the minimum 

fludisation velocity, the ratio of the column diameter to the particle size (D/dp) needs 

to be greater than 15. The maximum particle size used in the present study was 

2.36 mm. Using a column diameter of 5 cm results in a column to particle diameter 

ratio of 21.2 which is greater than the minimum ratio specified by Di Felice and 

Gibilaro (2004).  

The gas distributor consisted of 2 mm glass beads and a 37 µm wire mesh as shown 

in Figure 4-5. The pupose of the glass beads was to provide uniform gas distribution 

across the entire colmn. The wire mesh acted as physical barrier to separate the 

glass beads from the biomass particles. There was another 37 µm wire mesh at the 

top of the column as indicated in Figure 4-5 to retain any entrained particles. The 

minimum particle size used in the experiments was 45 µm which is larger than the 
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openning size of the wire mesh at both ends of the column. The fluidising gas was 

supplied to the system by a compressed gas cylinder with a maximum pessure of 

200 bar, connected to a pressure regulator to keep the delivary pressure at a 

constant low value (2 bar). The gas flowrate is controlled by a rotameter as shown 

in Figure 4-5. 

The fluidisation experiments were conducted for pine, sycamore and seaweed of 

different particle size groups ranging from 45 µm to 2360 µm. Air was used as the 

fluidising gas. Air has very close density and viscosity to nitrogen which will be later 

used in the actual pyrolysis experiments. During all the cold fluidisation 

experiments, the initial bed high was 50 mm. 

The biomass materials were crushed in a shredder (Retsch SM 2000). Three 

different shredder sieve sizes were used to produce enough quantities of each 

particle size group for the fluidisation experiments. The sieve sizes used in the 

shredder were 0.75 mm, 2.0 mm, and 4.0 mm. The particles were sieved in wire 

meshes using an electric sieve shaker. The sieving mesh sizes were 45 µm, 212 

µm, 425 µm, 600 µm, 850 µm, 1.18 mm, 1.70 mm, 2.36 mm, and 3.35 mm.  

 

For the theoretical calculations of the minimum fluidisation velocity, the particle 

densities were determined using the Mercury Porosimetry technique (Micromeritics' 

AutoPore IV 9500 Series) following the method reported by Mukaida (1981). The 

mercury porosimetry technique is used, in general, for measuring the pore size 

distribution of porous materials through the intrusion of mercury, which is a non-

wetting liquid, into the pores of the material. The pore size is determined based on 

the external pressure needed to force the mercury into the pores against the 

opposing force of the mercury’s surface tension. Mukaida (1981) defined the types 

of density that can be determined from the porosimetry measurement as: (a) the 

bed bulk density which is determined at low pressure with the mercury surrounding 

the particle bed without entering the pores between the particles; (b) the particle 
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density which is determined when the mercury fills the pores between the particle; 

and (c) the true density when the inner pores on the individual particles are filled 

at high pressure. The particle density (numbered “b” in the above classification) is 

the one which is used for calculating the theoretical minimum fluidisation velocity 

(Mukaida, 1981). The porosimetry experiments in the current study were performed 

by a technical staff at the Microwave Process Engineering Group at the University 

of Nottingham. The mercury intrusion results could be found in Appendix B. 

The fluidisation behaviour of char particles were also studied. This was an attempt 

to understand and predict the bed behaviour throughout the pyrolysis process 

including when char starts to form. The studied char particles were obtained by 

heating raw biomass particles in an electric furnace at 400 oC for 30 minutes. 

4.4 Energy Requirement for Microwave Pyrolysis in a Fluidised Bed 

4.4.1 Differential Scanning Calorimetry (DSC) 

As discussed earlier in Section 2.1, the minimum energy required for pyrolysis is 

called the enthalpy for pyrolysis. It is the sum of the energy required to heat the 

biomass material up to the pyrolysis reaction temperature and that needed to drive 

the pyrolysis reaction.  

The enthalpy for pyrolysis of the sycamore was determined using Deferential 

Scanning Calorimetry (DSC). The measurements were made in an SDT-Q600 

apparatus which is a simultaneous DSC-TGA device that measures the heat flow 

and weight change as functions of temperature. The samples were prepared as 

described in Section 4.2.14.3 and a particle size of 212 – 850 µm was used. Before 

the analysis, the samples were dried in an electric oven at 105 oC for one hour. The 

aim of drying was to produce values of enthalpy for pyrolysis independent of the 

moisture content. The enthalpy for pyrolysis is commonly reported on a dry basis 

(Daugaard and Brown, 2003; He et al., 2006; Chen et al., 2014) because the 

moisture content is a variable when it comes to processing. The enthalpy for heating 
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and evapotating the moisture content of the biomass material can be added to the 

enthalpy for pyrolysis later depending on the moisture content of the biomass 

material. This can be acheived by calculating the sensible enthalpy for heating the 

water content form the ambient temperature up to 100 oC and the latent heat for 

evaporation of water, then multiplying the sum by the water fraction in the biomass 

material.  

During the DSC-TGA measurements, the samples were heated from 30 oC to 550 

oC at a constant heating rate of 10 oC·min-1. Nitrogen at 100 mL·min-1 was used as 

a purging gas. Samples of approximately 10 mg were used, and three repeats were 

made. The main outputs from the DSC-TGA measurements were the heat flow and 

the weight change as a function of temperature. The enthalpy for pyrolysis was 

calculated by integrating the heat flow curve over the pyrolysis temperature range 

as follows: 

 𝑄𝑝𝑦 = ∫
𝐻(𝑇)

𝑑𝑇 𝑑𝑡⁄
𝑑𝑇

𝑇𝑝𝑦

𝑇0

=
1

𝑑𝑇 𝑑𝑡⁄
∑ 𝐻(𝑇). ∆𝑇

𝑇𝑝𝑦

𝑇0

 
4-7 

Where:  

𝑄𝑝𝑦 is the specific enthalpy for pyrolysis, J·g-1;  

𝑇0 and 𝑇𝑝𝑦 are the starting and final temperature respectively, oC;  

𝐻(𝑇) is the specific heat flow to the sample at temperature 𝑇, W·g-1; 

𝑑𝑇 𝑑𝑡⁄  is the heating rate which was constant at 10 oC·s-1;  

The heat flow values were also used to calculate the specific heat capacity, 𝐶𝑝(𝑇), of 

the biomass material as a function of temperature as follows: 

 𝐶𝑝(𝑇) =
−𝐻(𝑇)

𝑑𝑇 𝑑𝑡⁄
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4.4.2 Energy Balance and Mathematical Models 

The enthalpy for pyrolysis gives the thermodynamic energy required to achieve the 

pyrolysis without taking into account any heat losses. As the fluidising gas is to be 

fed to the process at room temperature, there will be a considerable amount of heat 

loss from the biomass particles to the fluidising gas. Therefore, energy balance 

calculations were performed to estimate the minimum power density required to 

achieve the pyrolysis in the fluidised bed system. It should be highlighted here that 

these energy balance calculations will be useful for understanding the effect of the 

different parameters such as the particle size, gas velocity and temperature on the 

energy consumption and the performance of the process in general. This 

understanding will be used for troubleshooting and adjusting the processing 

parameters during the experimental investigations as will be shown later.  

For the energy balance calculations, several assumptions were made as follows: 

 The microwave power is absorbed only by the biomass particles, and the 

term power density refers to the absorbed microwave power by the biomass 

particles. 

 A homogeneous heating throughout the bed volume, meaning that the power 

density is constant throughout the bed. 

 Spherical biomass particles.  

 The particle size is constant during heating. The reduction in the particle 

weight is accounted for in the specific heat capacity calculated from the DSC 

measurements which were based on the initial weight. 

 The only heat loss is to the fluidising gas, and the heat losses to and through 

the reactor wall are ignored. 

 The temperature around the particles inside the bed is an average of the gas 

inlet and outlet temperature. The gas is assumed to enter at 20oC and leave 

at the particle temperature. 

The energy balance equation per unit volume can then be written as follows: 
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Where: 

𝑃𝑎𝑏 is the absorbed microwave power per unit volume, W·m-3; 

𝜌𝑏 is the bed density, g·m-3; 

𝐶𝑝 the specific heat capacity of the biomass particle, J·g-1·oC -1; 

ℎ is the particle-to-fluid heat transfer coefficient, W·m-2.oC; 

𝑆′ is the surface area of the particles per unit volume, m2·m-3; 

𝑇 and 𝑇𝑎 are the temperature of the particle and its surrounding fluid 

respectively at any time (𝑡), oC. 

The left-hand side of Equation 4-9 refers to the absorbed microwave energy. The 

first term on the right-hand side refers to the increase in the particle’s thermal state 

while the second term accounts for the heat losses to the fluidising gas. 

The specific heat capacity, 𝐶𝑝 , was determined from the DSC measurements and it 

accounts for both, the sensible enthalpy and the reaction enthalpy. The convective 

heat transfer coefficient, ℎ, was estimated using Ayers correlation which is one of 

the most widely used correlations for studying the heat transfer in fluidised bed 

processes (Richardson et al., 2002): 

 𝑁𝑢 =
ℎ𝑑𝑝

𝑘𝑓

= 0.054 (
𝜌𝑓𝑑𝑝𝑢

𝑒𝜇𝑓

)

1.28
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Where 𝑁𝑢 is Nusselt’s number; 𝑘𝑓 is the conductive heat transfer coefficient of the 

fluid (W·m-1·K-1); and 𝑒 is the bed porosity.  

To estimate the particle temperature at any time, t, Equation 4-9 was rearranged 

and solved numerically as follows:  
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 𝑚. 𝐶𝑝

(𝑇 − 𝑇0)

∆𝑡
= 𝑃 − ℎ. 𝑆′(𝑇0 − 𝑇𝑎) 

4-11 

 
𝑇 and 𝑇0 are the particles temperature at time 𝑡 and (𝑡 − ∆𝑡) respectively. 

The temperature gradient within the particle was also studied. Equation 4-9 

and 4-11 assume a constant temperature within the particle. To study the 

tempearure gradient inside the particle, the particle volume was divided into 20 

control volumes (elements); a core and 19 shells with equal thicknesses as 

explained in Figure 4-6. The temperature within each of these elements is assumed 

constant. 
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Figure 4-6: Control volumes (elements) used for estimating the temperature gradient 
within a particle during the microwave pyrolysis in a fluidised bed process.  
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The heat transfer equations were solved at each element iteratively in both space 

and time. At each time step, the increase in the element’s thermal state is the sum 

of the absorbed microwave power by the element and the heat transferred from the 

previous element minus the heat transferred to the next element. Adopting the 

explicit finite difference method reported by Versteeg and Malalasekera (2007), a 

general equation for calculating the temperature at each element can be written as 

follows: 

 𝑇𝑛 = 𝑇𝑛
0 +

∆𝑡

𝑚. 𝐶𝑝

[𝑃 +
4𝜋𝑘(𝑇𝑛

0 − 𝑇𝑛−1
0 )

1
𝑟′𝑛

−
1

𝑟′𝑛−1

−
4𝜋𝑘(𝑇𝑛+1

0 − 𝑇𝑛
0)

1
𝑟′𝑛+1

−
1

𝑟′𝑛

] 
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For the core element: 

 𝑇1 = 𝑇1
0 +

∆𝑡

𝑚. 𝐶𝑝

[𝑃 −
4𝜋𝑘(𝑇2

0 − 𝑇1
0)

1
𝑟′2

−
1

𝑟′1

] 
4-13 

For the outer shell: 

 𝑇𝑛 = 𝑇𝑛
0 +

∆𝑡

𝑚. 𝐶𝑝

[𝑃 +
4𝜋𝑘(𝑇𝑛

0 − 𝑇𝑛−1
0 )

1
𝑟′𝑛

−
1

𝑟′𝑛−1

− ℎ. 𝑆(𝑇𝑛
0 − 𝑇𝑎)] 4-14 

 

Where 𝑇𝑛 is the temperature of the 𝑛𝑡ℎ element and 𝑟′𝑛 is the average of the inner 

and the outer radius of the 𝑛𝑡ℎ element. Equations 4-12, 4-13 and 4-14 were solved 

iteratively with time steps of 0.5 ms. The calculations were carried out using 

Microsoft Excel® 2013 spreadsheets. More details about the derivation of 

Equations 4-12, 4-13 and 4-14  and their use are discussed in Appendix C. 

Sycamore of particle size range 212-850 µm was used as the basis for the design. 

The justification for using this particle size range is discussed in Section 6.2.3. The 

corresponding parameters which were used for the energy balance and temperature 

gradient calculations are listed in Table 4-2. 
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Table 4-2: Values used in the energy balance and temperature gradient calculations 

Parameter Value 

Particles diameter (m) 0.6×10-3 

Particle density (kg·m-3) 900 

Gas (N2) velocity (m·s-1) 0.38 

Gas inlet temperature (oC) 20 

Gas density (kg·m-3) 1.16a 

Gas viscosity (Pa·s) 1.85×10-5 a 

Bed porosity at the minimum fluidisation 0.73 

Bed bulk density at the minimum fluidisation (g/cm3) 0.24 

Specific heat capacity of the gas (J·kg-1·K -1) 1000a 

Thermal conductivity of the gas (W·m-1·K-1) 0.026a 

Thermal conductivity of the particles (W·m-1·K-1) 0.155b 
a Green and Perry (2007);  b Guo et al. (2013) 

4.5 Microwave Pyrolysis Experiments in a Fluidised Bed  

4.5.1 Materials 

The aim of the experiments described in this section was to operate the microwave 

fluidised bed process which was developed following the steps discussed in 

Chapter 6, and run batch pyrolysis experiments to investigate the effect of different 

processing parameters on the product yield. 

The biomass materials involved in the batch pyrolysis experiments were sycamore, 

pine and seaweed. Different particle size groups were studied. The samples for the 

pyrolysis experiments were prepared following the same procedure described in 

Section 4.3. The moisture content of the raw biomass particles was determined by 

measuring the weight loss after heating around 1 g samples in an electric oven at 

105 oC for one hour. The moisture content measurement results are listed in 

Table 4-3. 

Table 4-3: Initial moisture content of the biomass materials involved in the batch pyrolysis 
experiments 

Biomass material Sycamore Pine Seaweed 

Moisture content (%) a 10.6 ± 2.0 11.0 ± 1.4 13.0 ± 2.6 

a The moisture content was measured for different particle size groups ranging from 0.212 mm to 2.36 
mm. At least 10 repeats were made for each biomass material. The average was taken for each material, 
and the standard uncertainty is indicated.  
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4.5.2 Experimental Setup 

Figure 4-7 shows the experimental setup which was used to operate the developed 

microwave fluidised bed process. The microwave power was provided by a ~2.45 

GHz generator with a maximum incident power of around 5 kW. The microwave 

power was transmitted to the multimode cavity through standard WR430 

waveguides together with H- and E-bends.  

 

 

 

 
Figure 4-7: The experimental setup for biomass pyrolysis in the developed microwave 
fluidised bed process. 

 

An automatic three-stub tuner (S-TEAM STHD v1.5) was attached to the waveguide 

for power analysis and impedance matching. The aim of the impedance matching 

was to minimise the reflected power. The tuner measures the phase and magnitude 

of the reflection coefficient as well as the power and frequency and uses these data 

to adjust the position of the stubs for matching. The automatic tuner was connected 

to a computer with software to control the tuner and record the results. 

The pyrolysis reaction took place in a quartz column which was placed inside the 

multimode cavity. A sintered quartz disc was attached to the column to act as a gas 

distributor. Nitrogen, which was used as the fluidising gas, was supplied from a 
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compressed gas cylinder with a maximum pressure of 230 bar. A pressure regulator 

was connected to the cylinder to control the delivery pressure (2 bar). The gas 

flowrate was controlled by a flowmeter which can provide a maximum flowrate of 

100 L·min-1 (0.85 m·s-1 superficial velocity through the bed). 

During the pyrolysis experiments, the nitrogen and the evolved vapours exit at the 

top of the column and pass through a series of condensers as indicated in Figure 4-7 

to recover the bio-oil. The condensation system consisted of 3 cold-traps filled with 

a mixture of water, ice and sodium chloride salt with which a temperature as low as 

-18 oC could be reached. The non-condensable gases were allowed to leave the 

system and extracted by the fumehood. 

A camera (Microsoft® LifeCam Studio) was connected to the front cover of the 

cavity, as shown in Figure 4-7, directed towards the quartz column bed (the spot 

axis passes 60 mm above the distributor). The aim of using the camera was to 

monitor and record the process during pyrolysis and to allow for stopping the 

microwave power immediately in the cases of failure due to electric breakdown or 

thermal runaway. Both forms of failure are accompanied with light, arcing/plasma 

in the case of electric breakdown and thermal radiation in the case of thermal 

runaway. 

Two infrared (IR) temperature sensors (Optris® CT LT15) were connected to the 

walls on either sides of the cavity and directed towards the quartz column. The IR 

sensors were used to monitor the temperature at the outer wall of the quartz 

column. It is to be noted here that the temperature readings from the IR sensors 

was not used in the results analysis. They were just used as a safety feature to stop 

the process in the case of overheating to avoid melting the reactor. 

Before the microwave heating experiments, matching at room temperature (cold 

matching) was performed to set the stubs at a position to minimise the reflected 

power. The cold matching was performed using a vector network analyser 
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(ROHDE&SCHWARZ ZVL). The vector network analyser (VNA) sends signals to the 

cavity through a port connected to the waveguide, and measures the phase and 

magnitude of the reflected signal. More details about the cold matching are 

discussed in Section 7.2. 

4.5.3 Pyrolysis Experiments Procedure 

During each of the pyrolysis experiments, a weighed quantity of the biomass 

particles was added to the column. The cavity cover was then replaced, and the 

condensers were connected. The nitrogen flow was then switched on and allowed 

to flow for at least 10 seconds before turning on the microwave power to purge/inert 

the system before heating. The minimum nitrogen flowrate applied during the 

pyrolysis experiments was 40 L·min-1 which allowed to reducing the oxygen content 

inside the column to less than 0.1 % before the start of the heating. More details 

about the calculations pefrormed to estimate the purging time can be found in 

Appendix D. The microwave power was then turned on after setting the required 

power level. A stopwatch was used to measure the heating time. After reaching the 

required heating time, the microwave power was turned off. 

At the end of each experiment, the solid left in the column was collected. All the 

glassware was then flushed with acetone to recover the bio-oil and any remaining 

solid particles. The mixture was first passed through a 37 µm wire mesh to filter the 

solid particles. The filtered solids were left for air drying before being added to the 

solids collected from the column at the end of the experiment. The total solid 

collected after the experiment was used to calculate the fraction of solid pyrolysed 

as follows:  

 𝑆𝑜𝑙𝑖𝑑 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑒𝑑 (%) =
𝑊𝑖 − 𝑊𝑝

𝑊𝑖

× 100% 
4-15 

Where 𝑊𝑖 and 𝑊𝑝 are the initial and the final weight collected respectively. 

After filtering the solids, the pyrolysis oil was recovered by separating the acetone 

in a rotary vacuum evaporator (Büchi® R-200) at 48 oC for one hour. It is to be 
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noted here that the collected liquid was not used for calculating the product yield. 

This is because of the losses through entrainment during processing due to the high 

fluidising gas velocity and also losses while flushing the glassware with the solvent 

to recover the condensed liquid. The collected bio-oil was stored in glass vials in a 

fridge at 5 oC for further analysis. 

4.5.4 Product Characterisation 

The quality of the produced bio-oil was investigated by measuring its bulk properties 

including the density, viscosity, water content and calorific value. The density and 

viscosity are important flow properties as they affect the pressure drop and, 

therefore, the pumping costs. The calorific value is a measure of the energy stored 

in the fuel, and it is determined by the amount of energy released when a certain 

quantity of the fuel is completely combusted. The water content affects the calorific 

value and bio-oil is known to have high water content compared to petroleum fuels.  

The density of the produced bio-oil was determined by measuring the weight of the 

sample in a 10 mL graduated cylinder. The viscosity was measured using an 

automatic viscometer (Brookfield DV-II+Pro) at room temperature (20 oC) with 

spinning speed of 50 rpm. The calorific value was measured by a technical staff at 

the Cleaner Fossil Energy and Carbon Capture Technologies Research Group using 

an IKA® C5000 Calorimeter. 

The water content of the bio-oil was measured using the Dean-Stark method which 

involves mixing the oil with a water-immiscible solvent such as toluene. The mixture 

is heated in a glass still where the solvent co-evaporates with the water present in 

the oil. The solvent and the water are continuously condensed and separated in a 

trap with the water settling at the bottom of the trap and the solvent returning to 

the heated container. The Dean-Stark method was originally developed to measure 

the water content of petroleum oil (Dean and Stark, 1920). Several studies used 

the Dean-stark technique for measuring the water content of pyrolysis oil (Özbay 
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et al., 2001; Ateş et al., 2006; Onay, 2007; Cornelissen et al., 2008; Smets et al., 

2011).  

In the present study, the procedure reported by Smets et al. (2011) was followed. 

During each measurement, 100 mL toluene was mixed with 10 g bio-oil in a 250 

mL beaker. The experiment setup was then assembled as shown in Figure 4-8. The 

heater was adjusted to give a distillation rate of 2 to 4 drops per second. After 2 

hours of distillation, the heater was turned off, and the volume of the water was 

measured and used to calculate the water content. 

Heater

Boiling flask

Cooling 
water in

Cooling 
water out

Oil-toluene mixture

 

Figure 4-8: Schematic diagram of the Dean-Stark setup for the water content 
measurement. 

 

4.6 Microwave Pyrolysis in a Liquid System 

The aim of the experiments described in this section was to investigate the pyrolysis 

of biomass particles submerged in a hydrocarbon liquid as a potential alternative to 

overcome some of the limitations associated with the gas-based systems. These 

limitations are discussed in Section 7.8.  
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4.6.1 Materials 

The biomass material used for the pyrolysis experiments in the liquid system was 

sycamore. The samples were prepared by cutting small blocks using an electric saw. 

More details on the particle sizes used in the pyrolysis experiments will be discussed 

later in SectionError! Reference source not found. 

Three hydrocarbon solvents with different boiling points were used including 

hexane, iso-octane and kerosene. Table 8-1 shows the chemical formula, molecular 

weight and the boiling point of the three solvents. 

Table 4-4: Properties of the hydrocarbon solvents involved in the batch pyrolysis 
experiments. 

 Hexane a Iso-octane a Kerosene b 

Formula CH3(CH2)4CH3 (CH3)3CCH2CH(CH3)2 A mixture of C10-C14 

naphthenes, iso- and n-

paraffins c 

Molecular weight 86.18 114.23 

Boiling point (oC) 69 99.3 200 – 250 

Source: a (Green and Perry, 2007); b obtained from the safety data sheet provided by the supplier 
(AlfaAesar, 2016); c (NIOSH, 2014) 

 

4.6.2 Dielectric Properties Measurement of the Solvents 

The dielectric properties of the solvents involved in the pyrolysis experiments were 

measured using the same setup described in Section 4.2.3. The measurement 

procedure was similar to that described in Section 4.2.3 with some differences in 

the sample preparation. Around 0.2 mL samples were taken from the solvents using 

a syringe, and transferred to a 4.0 mm ID quartz tube. The quartz tube was used 

to hold the samples to be moved between the furnace and the cavity for heating 

and measurement as illustrated by Figure 4.2 in Section 4.2.3. The measurements 

were made starting from 20 oC with steps of 10 oC up to just below the boiling point 

of the solvent. The mass and volume of the sample were measured before and 

directly after the end of the measurements. 
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4.6.3 Batch Pyrolysis Experiments in Hydrocarbon Solvents 

The experimental setup for the microwave pyrolysis experiments is shown in 

Figure 4-9. The setup involves heating the biomass material while it is submerged 

in a hydrocarbon solvent.  

 

Figure 4-9: Experimental setup for biomass pyrolysis in an inert liquid. 

 

The heating and the pyrolysis reaction took place inside a 3.2 cm borosilicate glass 

tube (the reactor). The glass tube was placed inside a single-mode cavity 

surrounded with a 40 cm long metallic tube with an internal diameter of 5.0 cm 

acting as a choke for the electromagnetic power. The microwave power was supplied 

by a 2.0 kW generator (~2.45 GHz) and transported to the cavity through WR340 

aluminium waveguide together with E-bends as shown in Figure 4-9. An automatic 

three-stub tuner was attached to the waveguide for power analysis and impedance 

matching. More details on the role and use of the automatic tuner can be found in 

Section 4.5.2.  
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PTFE window
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N2

Cooling water in
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A water-cooled condenser was connected to the top of the reactor for condensing 

and recycling the evaporated solvent. The non-condensable gases were allowed to 

leave the system to be extracted by an extraction arm. 

During the pyrolysis experiments, the cavity was inerted using nitrogen as a safety 

feature to avoid fire in cases of failure such as electric breakdown and/or any breaks 

in the glass tube. A PTFE window is attached to the waveguide as indicated in 

Figure 4-9 to stop the nitrogen and any vapours from flowing towards the generator.  

For each of the pyrolysis experiments, a weighed quantity of the biomass material 

(5±1 g) was placed in the reactor, and 100 mL of the solvent was added. The 

condenser was then connected to the reactor and the cooling water was turned on. 

The nitrogen flow was turned on at 10 L·min-1 and allowed to flow for at least one 

minute before starting the microwave heating. This was to ensure reducing the 

oxygen content inside the cavity to less than 5 % as explained by the inerting 

calculations shown in Appendix D. The microwave power was then turned on after 

setting the required power value. A stopwatch was used to measure the heating 

time. At the end of the experiment the microwave power was turned off. 

After each experiment, the solid left in the reactor was separated from the solvent-

oil mixture. The collected solid was first washed with acetone to remove any oil 

sticking on its surface, then dried in an electric oven at 105 oC for an hour. The solid 

was then weighed to calculate the solid pyrolysed using Equation 6.1. 
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5 MATERIALS CHARACTERISATION 

5.1 Introduction 

This chapter focuses on the characterisation of selected biomass materials which 

are considered possible candidates for microwave pyrolysis. The characterisation 

includes studying the dielectric properties of the biomass materials and their 

temperature dependencies over the pyrolysis temperature range. 

Thermogravimetric Analysis (TGA) was performed to link the variations in the 

dielectric properties with temperature to the physical and structural changes in the 

biomass materials during pyrolysis. This was an attempt to identify the char 

formation temperature for the different biomass materials where the loss factor 

starts to increase rapidly with temperature. This enables the experimental 

programme to be designed such that the temperature of the biomass material can 

be controlled sufficiently well during microwave pyrolysis to avoid thermal runaway. 

The knowledge of dielectric properties is also essential for a proper design of the 

microwave heating cavity which will be discussed in Chapter 6. 

5.2 Thermogravimetric Analysis 

The experimental methods for the thermogravimetric analysis (TGA) are detailed in 

Section 4.2.2. Table 5-1 shows the proximate analysis for the biomass materials 

involved in this study obtained from the TGA analysis. It can be seen that among 

the studied biomass materials, the woods have the highest volatile matter content. 

The pine bark has a high carbon content compared to the other biomass materials 

involved in this study which can be attributed to its high lignin fraction. Lignin has 

a high carbon content compared to cellulose and hemicellulose (Stefanidis et al., 

2014). As can be seen in Table 5-1, seaweed has the highest ash content which 

reflects the presence of high minerals content in the material. The wheat straw has 

a higher ash content than the other lignocellulosic biomass, but lower than that of 

the seaweed.  
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Table 5-1: Proximate analysis for the studied biomass materials. For each material, four 
repeats were made and the standard uncertainty is indicated.  

Materials Moisture content a Volatile matter b  Fixed carbon b Ash Content b  

Pine 8.20 ± 0.46 83.22 ± 0.19 15.94 ± 0.25 0.84 ± 0.06 

Sycamore 6.40 ± 0.08 86.35 ± 0.36 12.79 ± 0.41 0.86 ± 0.09 

Pine Bark 11.32 ± 1.77 67.00 ± 0.43 31.58 ± 0.31 1.42 ± 0.22 

Wheat Straw 7.26 ± 0.36 77.12 ± 0.54 16.63 ± 0.31 6.25 ± 0.24 

Seaweed 9.30 ± 0.36 50.88 ± 0.19 10.80 ± 0.32 38.31 ± 0.27 

All values are weight percentages; a wet basis, b dry basis.  

 

It can also be seen from Table 5-1 that the pine bark has a moisture content greater 

than that of wood, eventhough, they were all left for air drying in the same 

environment. This can be attributed to the high equilibrium moisture content of the 

bark compared to the wood (Björk and Rasmuson, 1995) meaning that it can keep 

higher moisture content than wood even when they are both exposed to the same 

environment. The reason for the lower equilibrium moisture content in the bark 

compared to wood is the lower degree of crystallisation of the cellulose present in 

the bark compared to that in the wood leaving more primary sorption sites available 

for water molecules (Björk and Rasmuson, 1995). 

The decomposition of the biomass materials during pyrolysis was studied using 

thermogravimetric analysis. Figure 5-1 shows the weight loss (TG curve) and 

derivative weight loss (DTG curve) of the biomass materials involved in this study 

as functions of temperature from room temperature up to 600 oC. The weight loss 

in the biomass materials over the studied temperature range could be divided into 

three main stages: drying, decomposition/depolymerisation, and char formation. 

The drying stage is similar for all the biomass materials, and it is represented by 

the first peak in the DTG curves. It includes the range from room temperature up 

to 120 oC.  

The char formation (or charring) stage is also similar in all the biomass materials in 

that there is no significant mass loss as most of the reactions involved are 
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rearrangement reactions releasing only gases such as H2, CO, CO2, and CH4 (Collard 

and Blin, 2014). The main difference between the biomass materials in the char 

formation stage is the starting temperature which is related to the end of the 

decomposition/depolymerisation stage. 

As discussed in Section 2.1, the decomposition of biomass materials can be 

understood through the depolymerisation of their main building constituents. In the 

case of lignocellulosic biomass, hemicellulose decomposition starts first at around 

220–315 °C while cellulose decomposes in the range 315–400 °C. Lignin 

decomposes slowly over a wide temperature range starting from 150 °C and 

continues up to 900 °C (Yang et al., 2007). 

Figure 5-1 (a) and (b) show that pine and sycamore have similar decomposition 

behaviour with most of the mass loss happening in the range between 200 oC and 

400 oC. This takes place in two stages as can be seen in the DTG curves which show 

different rates of weight loss before and after 300 oC. The first stage represents the 

hemicellulose decomposition while the second stage represents the cellulose 

decomposition. It can be noted that the rate of weight loss in the second stage for 

sycamore is greater than that of pine which can be attributed to the relatively high 

cellulose content in hardwoods compared to softwoods as indicated in Table 4-1. 

Lignin decomposes over a wide range of temperature including the hemicellulose 

and cellulose decomposition ranges. The small weight loss between 400 oC and 450 

oC could be attributed to the decomposition of what left of the lignin. 

Wheat straw, as can be seen in Figure 5-1 (d), has a decomposition behaviour close 

to the woods, and its decomposition/polymerisation happens over a similar 

temperature range. However, it does not have a clear two-stage decomposition in 

the range between 200 oC and 400 oC as in the pine and sycamore. Also, it has a 

DTG peak at lower temperature than that of the woody biomass as can be seen in 

Figure 5-1. This can be regarded to the high minerals content of the wheat straw, 

such as Na, Mg, Ca and K minerals (Mohan et al., 2006), which is reflected in its 
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high ash content compared to the woody biomass. The minerals presence is known 

to have a catalytic effect in cracking biomass constituents leading to decomposition 

at a lower temperature (Ding et al., 2012).  

The decomposition of the pine bark, as can be seen in Figure 5-1 (c), happens more 

slowly over a wider range of temperature compared to the other lignocellulosic 

biomass materials. This can be attributed to its high lignin content which dominates 

its decomposition. However, the two-stage decomposition in the temperature range 

from 200 oC to 400 oC could still be clearly seen representing the depolymerisation 

of the hemicellulose and cellulose respectively. 

The decomposition of seaweed is largely different from that of the other biomass 

materials in that it happens at a lower range of temperature starting from around 

175 oC, and that it has two separate DTG peaks as shown in Figure 5-1 (e). This 

can be regarded to two main reasons. The first is that seaweed does not have the 

same lignocellulosic structure as in the other biomass materials leading to different 

decomposition behaviour. The first peak in the decomposition region at around 225 

oC corresponds to the depolymerisation of the poly(alginic acid) while the second 

peak at around 280 oC represents the depolymerisation of the laminarin and 

mannitol (Anastasakis et al., 2011). The second reason is the high minerals content 

of the seaweed which is reflected in its significantly high ash content compared to 

the other biomass materials as shown in Table 5-1. The minerals content, as 

mentioned in the case of wheat straw, catalyses the cracking reactions leading to 

the pyrolysis to happen at lower temperatures. The decomposition of the seaweed 

continues up to around 320 oC above which char formation starts taking place with 

no significant weight loss. 
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Figure 5-1 (a): Weight loss and derivative weight change during pyrolysis of pine. 

 

 
Figure 5-1 (b): Weight loss and derivative weight change during pyrolysis of sycamore. 

 

 
Figure 5-1 (c): Weight loss and derivative weight change during pyrolysis of pine bark. 
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Figure 5-1 (d): Weight loss and derivative weight change during pyrolysis of straw. 
 

 
Figure 5-1 (e): Weight loss and derivative weight change during pyrolysis of seaweed. 

 

5.3 Dielectric Properties and their Density Dependency 

The experimental methods for the dielectric properties measurement are detailed 

in Section 4.2.3. Figure 5-2 shows the dielectric constant and loss factor of the 

biomass materials involved in this study at room temperature, 2.47 GHz frequency, 

and 0.5 g·cm-3 packing density. The same diagram also includes values for other 

materials obtained from (Meredith, 1998). It can be seen from Figure 5-2 that the 

studied biomass materials, in general, have a low dielectric loss when compared to 

materials such as water, alcohols and silicon carbide which are considered good 

microwave absorbers. However, the biomass materials have dielectric loss much 
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higher than that of other materials such as alumina ceramic and fused quartz which 

are considered transparent and therefore used as supports in microwave heating 

cavities. It is, therefore, possible to selectively heat these biomass materials by 

applying an appropriate electric field intensity as will be discussed in more details 

in the next chapter. Among the studied biomass materials, pine bark has the highest 

dielectric constant and loss factor values which is related to its high moisture 

content compared to the other biomass materials as shown in Table 5-1.  

 

Figure 5-2: Dielectric properties of the studied biomass materials at room temperature, 
2.47 GHz frequency, and 0.5 g·cm-3 packing density together with other materials which 
were obtained from (Meredith, 1998). For the measured biomass material, the presented 
values are the average of four repeats. 

 

Figure 5-3 and Figure 5-4 show the change in the dielectric constant and loss factor 

respectively with the packing density of the biomass materials involved in this study. 

It can be seen that both parts of the permittivity could be related to the packing 

density through quadratic functions with a coefficient of determination, R2, greater 

than 99% for all the biomass materials indicating strong correlations. The 

correlations, which are listed in Figure 5-3 and Figure 5-4, were obtained after 

imposing the constraints that the dielectric constant and loss factor curves must 
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intercept the y-axis at 1 and 0 respectively which are the corresponding values for 

the free space or at zero packing density.  

 

Figure 5-3: Dielectric constant of different biomass materials as a function of the packing 
density at 2.47 GHz. In the quadratic functions, x and y refer to the packing density in 
g·cm-3 and the dielectric constant respectively. The results are based on four repeats and 
the error bars reflect the standard uncertainty. 

 

 

Figure 5-4: The loss factor of different biomass materials as a function of the packing 
density at 2.47 GHz. In the quadratic functions, x and y refer to the packing density in 
g·cm-3 and the loss factor respectively. The results are based on four repeats and the error 
bars reflect the standard uncertainty. 
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Many authors previously suggested using dielectric mixing models for studying the 

relationship between the permittivity and the packing density (Nelson, 2005; Nelson 

and Trabelsi, 2012; Tuhkala et al., 2013; Katrib et al., 2015). Dielectric mixing 

models are used, in general, to estimate the effective permittivity of a mixture of 

more than one component. Porous and granular materials can be considered as 

binary mixtures of air and a solid material, and their effective permittivity could 

then be determined by substituting the permittivity of air with 1 − 0𝑗. 

Among the available dielectric mixing models, the Complex Refractive Index (CRI) 

model and Looyenga model are the most popular models, and they have been 

previously found to give a good dielectric-density representation for biomass type 

materials (Nelson and Trabelsi, 2012). Both, CRI and Looyenga, are based on the 

power-low approximation which averages the permittivity by the components 

volume fraction (Sihvola, 1999). They can be written as follows: 

CRI: (휀)
1
2 = 𝑣1(휀1)

1
2 + 𝑣2(휀2)

1
2 5-1 

Looyenga: (휀)
1
3 = 𝑣1(휀1)

1
3 + 𝑣2(휀2)

1
3 5-2 

 
Where 휀 is the effective permittivity of the mixture, 휀1 and 휀2 are the permittivity of 

the individual components, and 𝑣1 and 𝑣2 are the volume fractions of the individual 

components. 

The CRI and Looyenga models were used to estimate the permittivity of the biomass 

materials involved in this study at their solid density using the experimental data of 

the dielectric properties at different packing densities. This was achieved by 

substituting the air permittivity with 휀1 = 1 + 0j and rearranging. Equations 5-1 

and 5-2 could then be written as: 

CRI: 휀2 = (
휀

1
2 + 𝑣2 − 1

𝑣2

)

2

 5-3 



111 

 

Looyenga: 휀2 = (
휀

1
3 + 𝑣2 − 1

𝑣2

)

3

 5-4 

 

Equation 5-3 and 5-4 were used to estimate the dielectric constant (the real part) 

and loss factor (negative of the imaginary part) of the biomass materials at their 

solid density. The solid density of the biomass particles was determined using in a 

helium pycnometer (Micromeritics AccuPyc 1330). The pycnommeter employes the 

gas displacement technique which consists of two calibrated chambers of known 

volumes connected with a valve pathway. The sample is placed in one of the 

chamber where the pressure of the gas (helium) is increased to a maximum value 

(19.5 psig) keeping the pathway valve closed. The solid volume is then calculated 

from the pressure difference when the valve is opened allowing the gas to expand 

into the second chamber. The preperation and sampling of the biomass materials 

for the helium pycnometer was the same as discribed in Section 4.2.1. 

Approximately 1.0 g biomass was placed in the measuement chamber each run.  

Table 5-2 shows the solid density obtained using the heluim pecnometer together 

with the dielectric constant and the loss factor at the solid density estimated using 

the CRI model, Looyenga model, and the quadratic functions obtained in Figure 5-3 

and Figure 5-4. 

Table 5-2: dielectric constant and loss factor of various biomass materials at their solid 
density, room temperature, and 2.47 GHz frequency estimated using different models. 

Material 

Solid 

density 

(g·cm-3)a 

CRI Looyenga 
Quadratic 

function 

ε' 𝑢𝑟
b ε'' 𝑢𝑟 

b ε' 𝑢𝑟 
b ε'' 𝑢𝑟

 b ε' ε'' 

Pine 1.53 4.37 0.02 0.04 1.50 4.80 0.03 0.73 0.07 4.55 0.54 

Sycamore 1.51 4.41 0.03 0.03 1.31 4.85 0.03 0.73 0.06 4.65 0.56 

Pine bark 1.60 7.20 0.03 0.04 1.46 8.54 0.04 2.10 0.09 7.41 1.35 

Straw 1.82 4.26 0.04 0.08 2.98 4.71 0.05 0.49 0.11 4.48 0.29 

seaweed 1.73 4.89 0.03 0.05 1.83 5.38 0.04 0.38 0.06 5.27 0.33 

a Average of four measurements and the uncertainty was less than 0.06 g·cm-3 for all the samples. 

b 𝑢𝑟 is the relative standard uncertainty which was calculated by dividing the standard uncertainty by the 

average value as explained in Appendix E. 
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It can be seen from Table 5-2 that the CRI model gives closer results to those 

obtained using the quadratic functions compared to Looyenga model. Table 5-2 also 

shows that the dielectric constant and the loss factor at the solid density are 

estimated with lower relative uncertainty using the CRI model compared to the 

Looyenga model which suggests that the CRI model represents the dielectric-

density relationship for the biomass materials better than the Looyenga model. 

5.4 Dielectric Properties Variation with Temperature 

The dielectric properties of the biomass materials were studied against temperature 

from 20 oC and up to 600 oC with steps of 20 oC. Figure 5-5 shows both the dielectric 

constant and the loss factor as functions of temperature at 2.47 GHz frequency with 

initial moisture contents as listed in Table 5-1. It can be seen from Figure 5-5 that 

the loss factor of biomass materials varied considerably with temperature with up 

to two orders of magnitude. These variations are caused by the physical and 

chemical changes during the pyrolysis and could be linked to the thermogravimetric 

behaviour of these materials as shown in Figure 5-1. As in the thermogravimetric 

analysis, the dielectric-temperature behaviour of the biomass materials in the 

studied range could be divided into three main stages: drying, decomposition and 

char formation.  

The dielectric behaviour of the biomass materials during the drying stage, which 

covers the range from room temperature up to 120 oC, is influenced to a large 

extent by the moisture content. As can be seen in Figure 5-5 the loss factor of the 

biomass materials increases initially with temperature and reaches a peak at around 

60 oC before it drops down. This contradicts the normal dielectric behaviour of free 

water in which the loss factor at this range of frequency (lower than the relaxation 

frequency) decreases continuously with temperature as discussed in Section 3.3.2. 

This behaviour suggests that most of the moisture content of the biomass materials 

is a physically bound water.  
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Figure 5-5: Variations in the dielectric constant and the loss factor of the different biomass 
materials with temperature at 2.47 GHz and 0.5 g·cm-3 initial packing density. The values 
of the initial moisture content are listed in Table 5-1. These results are average of four 
repeats. The standard uncertainty at temperature ≤400 oC is less than 0.2 and 0.02 for ε' 
and ε'' respectively, and less than 0.35 and 0.032 for ε' and ε'' respectively above 400 oC. 

 

As discussed in Section 3.3.2, bound water has less ability to polarise and rotate 

under the alternating electric field compared to free water because of the binding 

forces between the water molecules and the solid surface. This leads to a lower 

dielectric constant and loss factor for the bound water compared to free water 

(Metaxas and Meredith, 1983; Bergo et al., 2012). The initial increase in the loss 

factor with temperature up to 60 oC can, therefore, be explained by that increasing 
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the temperature reduces the binding forces of the water molecules allowing them 

to rotate more freely resulting in an increase in their loss factor. 

The reduction in the loss factor between 60 oC and 120 oC could then be due to the 

fact that enough water molecules have been freed to dominate the dielectric 

behaviour, and therefore, the loss factor decreases with temperature following the 

usual behaviour of the free water. The moisture evaporation in this range also 

contributes towards the reduction in the loss factor with temperature above 60 oC. 

As shown in Figure 5-5, the loss factor for seaweed increases with a higher rate of 

change with temperature between 20 oC to 60 oC compared to the other biomass 

materials, and also decreases with a higher rate between 60 oC and 120 oC. These 

higher rates of change can be attributed to the high minerals content of seaweed 

which is reflected in its high ash content compared to the other biomass materials 

as shown in Table 5-1. The seaweed ash contains high fractions of Ca, K, Na and 

Mg which exist as salts of alginic acid (Ross et al., 2008; Ross et al., 2009) in 

addition to the solid salt deposited from the seawater on the surface of the seaweed 

blade. The hypothesis is that when the physically bound water molecules are freed 

as a result of the heating, part of the mineral ions starts to dissolve in these water 

molecules increasing its ionic conduction, and therefore, the overall loss factor. It 

is to be highlighted here that an aqueous solution of a mineral salt has a higher loss 

factor than that of both distilled water and the solid salt separately (Meredith, 

1998). This hypothesis can be examined by looking at the dielectric-temperature 

behaviour at different frequencies. Figure 5-6 shows the dielectric loss of the studied 

biomass materials as a function of temperature at two different frequencies. It can 

be seen that the loss factor of the seaweed at 912 MHz frequency at around 60 oC 

is higher than that at 2.47 GHz which suggests that the more dominant loss 

mechanism at this point is the ionic conduction. This is not the case for the other 

biomass materials where the loss factor at 2.47 GHz is slightly higher than that of 



115 

 

912 MHz suggesting that the dominant loss mechanism is the dipolar loss which is 

associated with polar liquids, water in the present case. 

 

 
Figure 5-6 (a): Variations in the loss factor of pine with temperature 

 

 
Figure 5-6 (b): Variations in the loss factor of sycamore with temperature 
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Figure 5-6 (c): Variations in the loss factor of pine bark with temperature 

 

 
Figure 5-6 (d): Variations in the loss factor of wheat straw with temperature 

 

 
 

Figure 5-6 (e): Variations in the loss factor of seaweed with temperature. The initial 
packing density of all the biomass materials was 0.5 g·cm-3. The values of the initial 
moisture content are listed in Table 5-1. 
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Apart from seaweed, there is no significant change in either the dielectric constant 

or the loss factor of the studied biomass materials in the range between 120 oC and 

220 oC. The dielectric-temperature behaviour of the biomass materials during the 

decomposition and char formation stages varies depending on their decomposition 

behaviours. The pine and sycamore have similar behaviour over these stages. Both 

of them show a drop in the loss factor starting from 220 oC up to around 380 oC due 

to the depolymerisation and devolatilisation of the major biomass constituents. This 

can be linked to the large weight loss over this range as shown in Figure 5-1. 

Starting from around 400 oC, the loss factor of pine and sycamore starts to increase 

steadily with temperature which is an indication of entering the char formation 

stage. The loss factor at 912 MHz during the char formation stage is greater than 

that at 2.47 GHz as shown in Figure 5-6 which suggests that the dominant loss 

mechanism during this stage is the conductive loss. 

Wheat straw has a close dielectric-temperature behaviour to that of pine and 

sycamore. However, the transformations happen earlier in the case of wheat straw 

as can be seen in Figure 5-5. The transformations in the case of pine bark after the 

drying stage happen with slower rate of change and over a wider temperature range 

with the char formation stage starting at higher temperature compared to the other 

biomass materials as can be seen in Figure 5-5. 

The dielectric-temperature behaviour of the seaweed was found to be significantly 

different from that of the lignocellulosic biomass. Unlike the other biomass 

materials, the loss factor of the seaweed increases again after the end of the drying 

stage starting from around 140 oC reaching a peak at around 240 oC. This increase 

in the loss factor at this temperature can be potentially explained by that some ions 

from the minerals content of the seaweed are dissolved in the decomposition 

products, including pyrolysis water from dehydration reactions, in their liquid state 

before evaporation. Again, this hypothesis can be supported by the dielectric 

behaviour at different frequencies as displayed in Figure 5-6(e) which shows that 
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the loss factor at 912 MHz over this range is higher than that at 2.47 GHz. Above 

240 oC the loss factor of the seaweed drops again due to the evaporation of the 

decomposition products. The char formation stage for seaweed starts earlier than 

the other biomass materials at around 300 oC. As displayed in Figure 5-6(e) during 

the charring stage, the loss factor at 912 MHz is higher than that at 2.47 GHz. 

5.5 Processing Options for Microwave Pyrolysis 

As discussed in Sections 3.5 and 3.6, one of the main challenges facing microwave 

pyrolysis is the heating heterogeneity which can lead to thermal runaway with the 

char formation. The heating heterogeneity is mainly because of the nature of the 

standing waves inside the applicator which create areas of high electric field 

intensity and others of low electric field intensity. As shown earlier in Section 5.4, 

the loss factor of the biomass materials reaches a minimum value in the range 

between 300 oC and 400 oC. This minimum value is followed by a sharp increase in 

the loss factor due to the char formation, and this is what causes the thermal 

runaway during microwave heating. Figure 5-7 shows that, for the woody biomass, 

the operating temperature should fall in the range between 350 oC and 400 oC, 

which can secure around 70 % to 80 % weight loss. Increasing the temperature 

more than 400 oC would lead to falling into the steadily increased loss factor area 

with no much gain in terms of the weight loss. 

Any microwave pyrolysis process for it to be reliable and scalable needs to be able 

to provide homogenous heating and be able to control the temperature of the 

process. It needs to be able to control the char deposition in the system for 

continuous processing.  
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Figure 5-7: Dielectric loss factor of sycamore at 2.47 GHz and 0.5 g·cm-3 packing density 
together with the weight loss as functions of temperature. 

 

Among the existing fast pyrolysis technologies, the fluidised bed technology is the 

most suitable to achieve these requirements. The fluidised bed technology is more 

flexible in terms of the heating methods compared to the other technologies as 

discussed in Section 2.2. The fluidised bed process is one of the most well-

established technologies for biomass pyrolysis at industrial scale.  

Microwave heating in fluidised bed systems has been used previously for several 

applications including drying (Goksu et al., 2005; Souraki et al., 2009), chemical 

vapour deposition (CVD) processes (Gerdes et al., 2006; Willert-Porada et al., 

2014) and metal ore processing (Tranquilla and Kruesi, 1999; Tranquilla, 2000). 

However, there are no published studies on the use of microwave fluidised bed for 

biomass pyrolysis. 

During fluidisation, the particles move freely within the bed supported by the 

fluidising gas. This movement of the particles provides a form of pneumatic agitation 

which can improve the heating uniformity in the bed during microwave heating as 
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If a cold fluidising gas is used, the gas velocity can be used to control the bed 

temperature at a certain power density. The bed temperature should be adjusted 

to achieve the highest weight loss without slipping into the thermal runaway zone 

as explained by Figure 5-7. 

Fluidisation also provides a form of particle segregation based on their size and 

density allowing for continuous removal of the product if they have different size 

and/or density to those of the feed. In the case of biomass pyrolysis, the formed 

char particles have lower weight than the feed because of the weight loss through 

decomposition during pyrolysis. This can help in controlling the char deposition in 

the system.  

The details of the proposed microwave fluidised bed process for biomass pyrolysis 

will be discussed in the following two chapters. The next Chapter is dedicated to 

studying the fluidisation behaviour of different biomass materials and the other 

steps of the process design. 

5.6 Conclusions  

This chapter was focused on the characterisation of various biomass materials as 

possible candidates for microwave pyrolysis. The biomass materials involved in this 

study include pine, sycamore, pine bark, wheat straw and seaweed. These materials 

were chosen because of their abundance, low economic value, and suitability for 

pyrolysis. The characterisation involved mainly thermogravimetric analysis and 

dielectric properties measurement. 

The thermogravimetric analysis over the range of pyrolysis temperature showed 

different decomposition behaviour for the different biomass materials which was 

related to variations in their chemical composition. The transformations from room 

temperature to 600 oC were divided into three main stages: drying, decomposition, 

and char formation. Pine and sycamore showed close behaviour including a two-

stage decomposition in the range between 200 oC and 400 oC corresponding to the 
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depolymerisation of the hemicellulose and cellulose respectively. The wheat straw 

showed an early one-stage decomposition ending at a temperature lower than that 

of the woody biomass which was attributed to the high minerals content of the 

wheat straw. The pine bark decomposition was found to happen slowly over a wider 

temperature range compared to the other biomass material because of its high 

lignin content. The seaweed showed largely different decomposition behaviour than 

the other biomass materials. This is because it does not have similar lignocellulosic 

structure, and also because of its high minerals content. 

The dielectric properties of the biomass materials were studied at different packing 

densities. The packing density was correlated to both the dielectric constant and the 

loss factor through quadratic functions with a cofficeint of determination, R2, greater 

than 99 % in all the cases indicating a strong relationship. 

High-temperature dielectric measurements showed significant variations in the 

dielectric properties of the biomass material with temperature in the range between 

20 oC and 600 oC. These variations were linked to the thermogravimetric analysis 

and the physical and chemical transformations happening during the heating. It was 

found that the loss factor of the biomass materials reaches a minimum value in the 

range between 300 oC and 400 oC. This minimum value is followed by a sharp 

increase in the loss factor due to the char formation, and this is what causes the 

thermal runaway during the microwave heating. 

A microwave fluidised bed process was proposed as an attempt to overcome the 

heating heterogeneity and thermal runaway challenges, and to develop a reliable 

and scalable microwave pyrolysis process. The fluidised bed technology is one of 

the well-established technologies for biomass pyrolysis at a commercial scale. The 

microwave heating technique has been used previously with the fluidised bed 

technology for diffetent applications including materials drying, chemical vapour 

deposition (CVD) processes, and metal ore processing. However, there are no 

published studies on the use of microwave fluidised bed for biomass pyrolysis. 
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The fluidisation can improve the heating homogeneity through the continuous 

movement of the particles within the bed. Furthermore, The fluidising gas could be 

utilised to control the bed temperature and avoid slipping into the increasing loss 

factor area above 400 oC. Also, the fluidisation allows for particle segregation based 

on their size and density. This can be used to control the char deposition in the 

system during pyrolysis and could allow for continous processing.  

The fluidisation behaviour of different biomass materials of different particle sizes 

will be studied in the next chapter which will also include the steps of the process 

design.  
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6 MICROWAVE PYROLYSIS IN A FLUIDISED BED: PROCESS 

DESIGN 

6.1 Introduction 

The aim of the work reported in this Chapter is to develop a microwave fluidised 

bed process for biomass pyrolysis as an attempt to overcome the heating 

heterogeneity challenge associated with microwave pyrolysis as discussed in 

Chapter 5. Fluidisation provides a form of pneumatic agitation which can improve 

the heating homogeneity through the continuous movement of the particles 

between the heating zones. Furthermore, the fluidising gas could be used to control 

the bed temperature and the solid deposition in the system. Based on the dielectric 

behaviour and the thermogravimetric analysis reported in Chapter 5, an optimum 

operating temperature for the microwave pyrolysis of woody biomass was 

suggested to fall in a range between 350 oC and 400 oC. 

There are several published studies on microwave heating in fluidised bed systems 

in the areas of drying (Goksu et al., 2005; Souraki et al., 2009), chemical vapour 

deposition (CVD) processes (Gerdes et al., 2006; Willert-Porada et al., 2014), and 

metal ore processing (Tranquilla and Kruesi, 1999; Tranquilla, 2000).  

Gerdes et al. (2006) studied the production of electronic-grade silicon using the 

CVD* process at around 600 oC in a microwave fluidised bed reactor (MW-FBR). 

They showed that microwave heating improves the product quality by enhancing 

the heterogeneous nucleation which takes place on the solid surface. This was 

attributed to that microwave heating allows for selectively heating of the solid 

keeping the surrounding gas at a lower temperature which limits the unwanted 

homogeneous nucleation in the gas phase. The fluidisation allowed for obtaining a 

well-defined particle size. The particle size of the product, which is larger than that 

                                           
* Chemical vapour deposition (CVD) is a chemical process during which a reactive gas mixture is 
deposited on the surface of a solid to improve its quality (Gerdes et al., 2006). 
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of the feed (seed), was controlled by adjusting the gas velocity to allow the product 

(grown seeds) to settle at the bottom of the reactor when they reach the required 

size (Gerdes et al., 2006). The similarities between this CVD process and biomass 

pyrolysis is that both of them favour heating in a cold environment to avoid 

unwanted side reactions, and that fluidisation can be used to control the product 

deposition in the system based on its size and/or density.  

The microwave fluidised bed process has also been suggested for metal ore 

processing (Tranquilla and Kruesi, 1999; Tranquilla, 2000). Tranquilla and Kruesi 

(1999) proposed a microwave fluidised bed reactor for the oxidation of pyritic ores. 

The use of the fluidized bed helps in controlling the oxygen supply to the reactor 

which governs the rate of the reaction (exothermic) and hence the reaction 

temperature. The microwave energy is used to initiate the chemical reaction and 

compensate for the heat losses (Tranquilla and Kruesi, 1999).  

Tranquilla (2000) proposed a microwave fluidised bed reactor with a tapered section 

for processing metal ores and concentrates. The use of the tapered section (small 

diameter at the bottom) was to reduce the reflected power from the reaction zone 

and improve the electric field distribution in the process.  

Microwave fluidised bed has also been used in drying of agriculture and food 

products (Goksu et al., 2005; Souraki et al., 2009; Khoshtaghaza et al., 2015). The 

majority of the studies in this area used a hybrid heating system combining the 

microwave heating with a hot fluidising gas. Microwave offers rapid drying while 

fluidisation provide a form of agitation which improves the heating uniformity 

(Zhang et al., 2006). 

It is to be noted here that there are no published studies on the use of microwave 

fluidised bed for biomass pyrolysis. Even in the published work in the above 

mentioned areas, there is a lack of details about the process and cavity design.  
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In the present study, a systematic approach will be followed for the process design 

taking into account the pyrolysis process requirements, the microwave-material 

interactions and the fluidisation behaviour of the biomass material. 

The fluidisation behaviour of the biomass particles will be studied initially, and the 

minimum fluidisation velocities will be determined. This will be followed by energy 

balance calculations to estimate the power requirement. Electromagnetic 

simulations will be then performed to support the microwave cavity design.  

6.2 Fluidisation of Biomass Particles 

6.2.1 Background 

The development of the fluidised bed processes was initiated during the 1920’s and 

their uses were focused mainly on catalytic cracking in the petroleum industry and 

for coal combustion for power generation (Richardson et al., 2002; Fouilland et al., 

2010). During the past few decades, their use has been extended to cover other 

applications including combustion, gasification and pyrolysis of biomass (Fouilland 

et al., 2010). The major merits that fluidised bed systems can offer include: high 

fluid-solid contact area which enhances the heat and mass transfer, good mixing 

characteristics due to the continuous movement of the particles within the bed, and 

the segregation of the particles according to their size and/or density (Richardson 

et al., 2002; Cui and Grace, 2007; Fouilland et al., 2010). However, one of the main 

drawbacks of the fluidised bed systems is their limitation with regards to the particle 

shape and size as will be discussed later in this section.  

The theoretical background behind fluidisation can be understood by studying the 

forces acting on the particle. When a fluid flows upwards through a bed of solid 

particles, the fluid pressure drops due to the frictional forces. This pressure drop 

(∆𝑃) increases when the fluid velocity is increased up to a point where the frictional 

forces equal the weight of the particles. Increasing the fluid velocity beyond this 

point leads to the separation of the particles from each other allowing them to be 
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freely supported in the fluid. The fluid velocity at this point is called the minimum 

fluidisation velocity. Further increase in the fluid velocity results in more bed 

expansion until it reaches a state of an upward particle flow. The velocity at this 

point is called the terminal falling velocity (Pell and Dunson, 1997; Richardson et 

al., 2002). Figure 6-1 illustrates the relationship between the pressure drop (∆𝑃) 

within the bed and the superficial gas velocity (𝑢) over the fixed bed and fluidised 

bed ranges. Figure 6-2 shows a typical bed transition from a fixed-bed through 

fluidised-bed to particle transport.  

 

 
Figure 6-1: Typical relationship between the pressure drop (∆𝑃) and velocity (𝑢) during the 

transition from fixed bed to fluidised bed. Adopted from (Richardson et al., 2002). 

 

   

(a) Fixed bed (b) Fluidised bed (d) Particle transport  

Figure 6-2: Transition from fixed bed to the particle transport  

 

The above-described behaviour is the most uniform form of fluidisation and it is 

associated mostly with the liquid-solid systems and not common in gas-solid 
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systems where more complicated behaviours may take place (Richardson et al., 

2002). 

One of the most seminal studies on the fluidisation behaviour of gas-solid systems 

is the work published by Geldart (1973). Geldart classified the fluidisation behaviour 

of solid particles into four groups according to their size and density as shown in 

Figure 6-3 (Geldart, 1973; Richardson et al., 2002): 

 Group A: characterised by particulate expansion over a wide range of gas 

velocities. Bubbling starts at a velocity higher than the minimum fluidisation 

velocity. This group is associated with materials of relatively small particle 

size and/or low particle density (less than 1.4 g·cm-3). This is the most 

homogenous form of fluidisation among the four groups. 

 Group B: bubbling starts at velocities less than the minimum fluidisation 

velocity. This group includes most of the materials with mean particle size 

of 40 to 500 µm and particle density larger than 1.4 g·cm-3. 

 Group C: associated with very fine particles. Fluidising materials within this 

group is difficult because the particles stick to each other and the gas flows 

upwards through channels. Mechanical stirring or addition of powders could 

be used to aid the fluidisation. 

 Group D: associated with large particle size and/or high-density particles. 

Unlike Group B materials, the bubbles rise at a velocity lower than the gas 

velocity. Materials in this group can form a spouting bed where most of the 

gas flows through the middle of the column with a downwards movement 

of the particles near the wall. 
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Figure 6-3: Geldart classification diagram for air fluidisation at ambient conditions; Adopted 
from (Geldart, 1973).  

 

It is not only the size and density of the particle that determine the fluidisation 

behaviour. The shape of the particle has a significant influence on its fluidisation 

behaviour. The particle sphericity is frequently used as a measure of its shape. It is 

defined as the surface area of a sphere having the same volume as the particle 

divided by the volume of the particle itself. The sphericity of a perfect sphere is, 

therefore, 1. The lower the particle’s sphericity, the more complex and less 

predictable its fluidization behaviour (Reina et al., 2000; Richardson et al., 2002; 

Cui and Grace, 2007). 

Knowledge of the minimum fluidisation (𝑢𝑚𝑓) velocity is fundamental for designing 

a fluidised bed for any application. The minimum fluidisation velocity could be 

determined experimentally in a small-scale column or theoretically using an 

appropriate correlation. One of the most widely used correlations for estimating the 

minimum fluidisation velocity is Wen and Yu correlation which assumes a 

relationship between the particle shape and the porosity at the minimum fluidisation 

velocity (Wen and Yu, 1966; Richardson et al., 2002; Rao et al., 2010): 
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 𝑢𝑚𝑓 = (
𝜇

𝑑𝑝𝜌𝑓

) [33.65 × (√1 + 6.18 × 10−5𝐺𝑎 − 1)] 
6-1 

 

Where 𝐺𝑎 is Galileo number and it is given by 𝐺𝑎 = 𝑑𝑝
3𝜌𝑓(𝜌𝑝 − 𝜌𝑓)𝑔 𝜇2⁄ ; 𝜌𝑓 and 𝜇 are 

the fluid density (kg·m-3) and viscosity (Pa·s) respectively; 𝜌𝑝 and 𝑑𝑝 are the particle 

density (kg·m-3) and mean diameter (m) respectively. 

Biomass particles, in general, have extremely irregular shapes (long, thin and 

fibrous) leading to a complex fluidisation behaviour that is difficult to predict (Cui 

and Grace, 2007). Biomass particles tend to stick to each other and agglomerate 

when they flow. This is why they are usually mixed with a second inert solid material 

such as silica sand, aluminium oxide and calcite to improve the fluidisation 

behaviour (R. Rao and Ram. Bheemarasetti, 2001; Paudel and Feng, 2013). As a 

consequence, most previous work on the fluidisation behaviour of biomass materials 

studied them as a mixture with another inert solid (Cui and Grace, 2007; Jia et al., 

2015). 

Abdullah et al. (2003) studied the minimum fluidization velocity for various biomass 

residues of different sizes and densities. They found that sawdust, coconut shell, 

and peanut shell, which were theoretically classified as Geldart Group B particles 

have good bubbling fluidisation behaviour. The palm fibre which was theoretically 

classified as Group A particles showed channelling behaviour which was related to 

their highly irregular shape and low density. 

Reina et al. (2000) studied the fluidisation behaviour of different types of wood. 

They showed that homogeneous fluidisation could be achieved with hardwood 

particles and for softwood particles, plugging/slugging behaviour was observed. 

This was related to the low density and the fibrous structure of the softwood 

particles.  

Jia et al. (2015) used a vibrating fluidised bed with a pulsed gas flow in order to 

improve the fluidisation behaviour of biomass materials. They investigated the 
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fluidisation of Douglas fir and pine particles which are softwoods as well as 

switchgrass. It was found that at pulsation frequencies above 3 Hz, the slugging 

could be stopped and regular bubbling behaviour could be achieved. The vibration 

was found to improve the fluidisation by breaking up agglomerating particles.  

Liu et al. (2014) studied the drying of sawdust particles in a fluidised bed system. 

They used a gas distributor with 30° vertically inclined orifices to improve the 

fluidisation and achieve a good solid circulation. They observed changes in the bed 

fluidisation behaviour with time during the drying process due to the reduction in 

the moisture content. The reduction in the moisture content was found to improve 

the fluidisation behaviour which was attributed to the weakening of the capillary 

forces between the particles due to the removal of the surface water. 

It was difficult to find a general correlation that could estimate the minimum 

fluidisation of biomass particles accurately. Even the Wen and Yu correlation (Wen 

and Yu, 1966) which is widely used for a broad range of materials was found to give 

highly inaccurate estimates for the minimum fluidisation velocity of biomass 

particles as shown by Reina et al. (2000).  

It was, therefore, necessary for the present study to run cold experiments to 

investigate the fluidisation behaviour and determine the minimum fluidisation 

velocity of the biomass materials involved in this study as a step towards the full 

design of the microwave fluidised bed process. 

Among the biomass materials which were characterised in Chapter 5, pine, 

sycamore and seaweed were selected to be taken forward for the fluidisation 

experiments and later for the microwave pyrolysis. Pine and sycamore were chosen, 

because as mentioned in Section 4.1, wood is the most extensively studied type of 

biomass materials for pyrolysis due to its ability to produce more consistent and 

repeatable results compared to the other biomass materials. It was, therefore, 

important to include wood materials in this study as they provide a comparison 
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platform for the newly developed process. Previous studies on the fluidisation of 

biomass particles showed that softwoods have significantly different fluidisation 

behaviour to hardwoods, and this is why both pine and sycamore were included for 

the fluidisation investigations. Seaweed was included because of its unique socio-

economic advantages including its abundance and lower need for land and fresh 

water compared to terrestrial biomass as discussed in Section 4.1 placing it as an 

important candidate for large-scale biofuels production.  

6.2.2 Cold Fluidisation Experiments 

The fluidisation behaviour and the minimum fluidisation velocity of pine, sycamore 

and seaweed of different particle size were studied. Description of the experiemntal 

setup and methods followed are detailed in Section 4.3. The results of the cold 

fluidisation experiments are summarised in Table 6-1. 

The theoretical Geldart’s classifications for the particles based on Figure 6-3 was 

found to be Group A for the small particles, Group B for the intermediate size 

particles, and Group D for the large particles as listed in Table 6-1. However, the 

experimental observations indicated different behaviour for most of the particle size 

groups, as can be seen in the same table. Figure 6-4 shows examples of different 

kinds of flow behaviour observed during the fluidisation experiments including 

bubbling, channelling, slugging and turbulent fluidisation. 

    

(a) Bubbling  

(Seaweed 212 - 425µm) 

(b) Channelling 

(Sycamore 212 - 425µm)  

 (c) Slugging  

(Pine 212 - 425µm) 

(d) Turbulent fluidisation 

(Pine 425 - 600 µm)  

Figure 6-4: Different kinds of bed behaviour observed during the fluidisation experiments of 
the biomass particles 

5 cm 5 cm 5 cm 5 cm 
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Table 6-1: Experimental and theoretical results of the fluidisation behaviour and minimum 
fluidisation velocity for seaweed, sycamore and pine of different particle size.  

Material 
Particle size 
group (µm) 

Geldert classification 𝑢𝑚𝑓 (m·s-1) 

Experimental Theoretical a Experimental b Theoretical c 
Error 
(%)d 

Seaweed 

45 – 212 B A 0.017 0.013 25.5 

212 – 425 B B 0.13 0.09 31.5 

425 – 600 B B 0.21 0.21 0 

600 – 850 B B 0.38 0.37 3.1 

850 - 1180 C/B D 0.64 0.58 8.3 

1180 - 1700 C/B D 0.81 0.85 5.6 

1700 - 2360 - D - 1.15 - 

Sycamore 

45 – 212 C A 0.06 0.004 93.0 

212 – 425 C B 0.30 0.05 83.3 

425 – 600 C B 0.42 0.12 71.0 

600 – 850 B B 0.47 0.23 51.7 

850 - 1180 B B/D 0.59 0.38 36.7 

1180 - 1700 B/D D 0.72 0.58 19.9 

1700 - 2360 D D 0.81 0.81 0 

Pine 

45 – 212 C A 0.14 0.003 97.5 

212 – 425 C A 0.34 0.04 89.3 

425 – 600 C B 0.47 0.09 80.4 

600 – 850 C B 0.55 0.17 69.0 

850 - 1180 C B 0.76 0.29 61.7 

1180 - 1700 C D 0.85 0.46 45.4 

1700 - 2360 - D - 0.66 - 
a The classification is based on Figure 6-3 using the average particle size. The particle density was 

estimated using Mercury Porosimetery as explained in Appendix B. 
b Three repeats were made. The accuracy of the measurements was within the accuracy of the flowmeters 

which were: ±1.0 L·min-1 (±0.0085 m·s-1) for velocities less than 0.25 m·s-1 and ±5.0 L·min-1 (±0.042 
m·s-1) for velocities between 0.25 m·s-1 and 0.85 m·s-1. 

c The theoretical 𝑢𝑚𝑓 was calculated using Wen and Yu correlation. 
d This is percentage error in the 𝑢𝑚𝑓 obtained from Wen and Yu correlation relative to the experimental 

values.  
 

 

The experiments showed that the fluidisation behaviour of the seaweed groups in 

the range between 45 µm and 850 µm is homogeneous bubbling and could therefore 

be classified as Geldart Group B. The larger particle size groups of the seaweed in 

the range between 850 µm and 1700 µm showed the development of small channels 

before fluidisation. The minimum fluidisation velocity in these cases was 

significantly higher compared to the smaller particle size groups, and their 

fluidisation behaviour was closer to that of Geldart Group C particles which can 
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possibly be explained by the shape of the seaweed blades. As shown in Figure 6-5, 

the seaweed blades are long and thin with a thickness of less than 0.5 mm*. 

Therefore, the particles of size close to the blade thickness would have a more 

regular shape (higher sphericity) and therefore more homogeneous fluidisation 

behaviour. The larger particle would have a disc-like shape with low sphericity 

leading to more complex fluidisation behaviour. 

 

Figure 6-5: Dry seaweed blades. 

  

In the case of the woody biomass, all the pine particle size groups and the smaller 

groups of sycamore (less than 600 µm) exhibited channelling behaviour similar to 

that shown in Figure 6-4(b) during fluidisation. The channels started to appear at 

low gas velocities, depending on the particle size, becoming larger with the increase 

in the gas velocity. In some cases, when increasing the gas velocity, multiple 

slugs/layers of the bed material were observed. The gas in these cases flows 

through one large channel as shown in Figure 6-4 (c). The slugging behaviour 

appeared more frequently with the pine particles. 

The behaviour of pine and the smaller particle size groups of sycamore are similar 

to that of Geldart Group C particles. However, Group C is usually associated with 

very fine particles in which London-van der Waals attractive forces are great enough 

to keep the particles tied together strongly (Richardson et al., 2002). In the case of 

the woody biomass materials, it is their irregular shape (long and branched) that 

                                           
* The blade’s thickness was measured using an electronic digital calliper (SPI® 13-610-1) which has an 
accuracy of 0.01mm. After 20 different readings at different places, the blade thickness was estimated 
at 0.35±0.09mm. 

~25mm 
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ties the particles together. Figure 6-6 shows images of samples from the studied 

biomass particles taken using an optical microscope (Nikon® Eclipse LV100ND) 

connected to a computer with a software (NIS-Elements 4.1) for processing and 

storing the images. The biomass particles for imaging were placed in glass plate. 

Figure 6-6  shows that woody biomass particles have highly irregular shapes 

compared to seaweed, and that pine particles are more fibrous than the sycamore 

particles. This also explains why pine particles fluidise at velocities much higher 

than sycamore with the same particle size group as can be seen in Table 6-1. 

 

Figure 6-6: Optical images for the shape of the biomass particles. 

 

Fluidisation in the cases of channelling/slugging could not be achieved without 

disengaging the particles from each other. Two different methods were applied to 

reach a fluidisation state and to estimate the minimum fluidisation velocity: (a) 

starting with a high gas velocity, high enough to separate the particles from each 

other, then reducing the velocity down to a minimum value at which the particles 

are still fluidised; (b) pouring the biomass particles slowly from the top of the 

column after introducing the gas. Both methods gave similar values for the 

minimum fluidisation velocity. However, the observed behaviour was turbulent 

fluidisation and the minimum fluidisation velocity was found to be significantly 

higher compared to the theoretical values as shown in Table 6-1. 

Increasing the particle size of the woody biomass was found to improve the 

fluidisation behaviour due to the reduction in the effect of the particles binding 

forces compared to their weight. It was mentioned earlier in this section that, in 

 

500µm 



135 

 

general, fine particles which are classified as Geldart’s Group C, tend to stick to 

each other (agglomerate) during fluidisation because that London-van der Waals 

attractive forces are great compared to their weight. In the case of biomass 

particles, their highly irregular shape (long and branched) increases the binding 

forces between the particles. By increasing the particle size, the effect of both type 

of binding forces is reduced relative to the weight of the particle resulting in more 

homogenous fluidisation. It was also found that larger woody biomass particles 

obtained from the shredded have more regular and less branched (fibrous) shape. 

Figure 6-7 shows the shape of the biomass particles in the range 1180 to 1700 µm 

which are less branched (fibrous) compared to the 212 – 425 µm shown in 

Figure 6-6. 

   

 (a) Seaweed 1180-1700 µm (b) Sycamore 1180-1700 µm  (c) Pine 1180-1700 µm 

Figure 6-7: Particle shape for the three biomass materials with a particle size of 1180 – 
1700 µm. 

 

The improvement in the fluidisation caused by increasing the particle size can be 

seen in the reduction of the difference between the theoretical and experimental 

𝑢𝑚𝑓 for the larger particles as displayed in Table 6-1. This improvement in the 

fluidisation with the particle size can also be seen for the sycamore particles larger 

than 600 µm which showed bubbling fluidisation rather than channelling following 

Geldart’s Group B behaviour. However, sycamore particles of a size larger than 1180 

µm can be classified as Geldart Group D particles. Large bubbles were observed at 

the middle of the column with the particles flowing downwards near to the wall. 

10mm 
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The fluidisation of a wider range of particle sizes was also investigated. Initially, a 

particle size range of 45 - 850 µm was used. The particle size distribution of the 

particles in this range can be found in Appendix A.  However, it was observed that 

a considerable amount of fine particles were transported with the fluidising gas at 

the minimum fluidisation velocity. This suggests that at the minimum fluidisation 

velocity of the bulk bed, some of the finer particles had reached their terminal falling 

velocity. Therefore, a 212 – 850 µm range was used which eliminated particles 

entrainment at the minimum fluidisation velocity. The minimum fluidisation 

velocities of the three biomass materials of particle size 212 – 850 µm are listed in 

Table 6-2. The same table also shows the minimum fluidisation velocity for char 

particles which were prepared by heating 212 – 850 µm particles in an electric oven. 

The particle size distribution of the produced char particles is shown in Appendix A. 

Table 6-2: The minimum fluidisation velocity of 212 - 850µm biomass particles and 
biomass char obtained from the same particles size range. 

Material 
Mean particle 

size (µm) a 

Density 

(g·cm-3) b 

Minimum fluidisation 

velocity (m·s-1) c 

Seaweed 554 1.60 0.21 

Seaweed char 494 0.31 0.14 

Pine 531 0.66 0.47 

Pine char 415 0.60 0.38 

Sycamore 598 0.90 0.38 

Sycamore char 505 0.52 0.21 

a Obtained from the particle size distribution as can be seen in Appendix A. 
b Obtained using the Mercury Porosimetry as can be seen in Appendix B. 
c The accuracy of the flowmeter is ±5.0 L·min-1 (±0.042 m·s-1). 
 

It can be seen from Table 6-2 that the char particles for the three biomass materials 

have 𝑢𝑚𝑓 values smaller than those of the raw biomass. This is related to the 

reduction in the particle size and density after pyrolysis as indicated in Table 6-2. 

This drop in the 𝑢𝑚𝑓 after pyrolysis suggests that the formed char would tend to rise 

to the top of the column. The gas velocity can, therefore, be used to control the 

char deposition in the system during biomass pyrolysis. For continuous processing, 

the gas velocity can be set at a value higher than the terminal settling velocity of 

the char particles and lower than that of the feed particle. This would allow for the 
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continuous removal of the formed char particles through entrainment while keeping 

the heavier unpyrolysed particles fluidising in the bed. 

6.2.3 Summary of the Fluidisation Behaviour of Biomass Materials 

The fluidisation behaviour of pine, sycamore and seaweed particles was studied as 

one of the steps towards designing a microwave fluidised bed process for biomass 

pyrolysis. For the range of the particle size involved in this study (45 – 2360 µm) 

the following can be concluded: 

 The majority of the particle size groups showed different behaviour to those 

predicted from their theoretical Geldart classification which was attributed to 

their irregular shape. 

 The seaweed particles up to 850 µm showed homogeneous bubbling 

behaviour similar to that of Geldart Group B particles. Small channels were 

observed prior to fluidisation in the larger particles of seaweed which was 

related to a reduction in sphericity. 

 The pine and particle groups of sycamore up to 600 µm showed Geldart 

Group C behaviour including channelling and slugging. This was related to 

the fibrous structure of the woody biomass which encourages agglomeration. 

Fluidisation in these cases was achieved at relatively high velocities leading 

to turbulent fluidisation. Increasing the particle size was found to improve 

the fluidisation by eliminating the channeling and slugging behaviour. 

Sycamore particles larger than 600 µm demonstrated homogenous bubbling 

(Geldart Group B) with no channelling. 

 It was shown that raw biomass particles have greater minimum fluidisation 

velocities compared to char prepared using similar particle size feed. This 

was related to a drop in the particle’s size and density after pyrolysis. During 

processing, this would lead to particle segregation and could be used to 

control the char deposition and residence time in the bed. 
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For the next stages of the process design, including the energy requirement 

calculations and the microwave cavity design. Sycamore will be used as the base 

for the design. A woody biomass was chosen because of the suitability of wood to 

provide a comparison platform for the newly developed process as discussed earlier 

in this Chapter. Sycamore was chosen over pine mainly because it showed better 

fluidisation behaviour as in all the studied particle size, pine showed more complex 

behaviour including channelling and slugging. The minimum fluidisation velocity for 

pine was also greater than sycamore for the similar particle size groups. Sycamore 

showed more homogeneous behaviour especially for the particle groups in the range 

600 µm to 1700 µm which showed bubbling fluidisation as that of Geldart Group B. 

Sycamore would therefore allow for wider range of particle size and gas velocity to 

be studied during the pyrolysis experiments compared to pine. Although, the 

following steps of the process design will be based on sycamore, pine and seaweed 

will also be included in the pyrolysis experiments in the developed process. 

6.3 Energy Requirement for the Microwave Fluidised Bed Process 

After studying the fluidisation behaviour of the biomass particles and determining 

their minimum fluidisation velocities, the following step was to estimate the energy 

and power requirement for the pyrolysis in the microwave fluidised bed system.  

As discussed in Section 2.1, there is a disagreement in the literature on the enthalpy 

for pyrolysis of biomass materials. The enthalpy for pyrolysis is the sum of the 

enthalpy required to heat the biomass material up to the pyrolysis temperature 

(sensible enthalpy) and that required to achieve the pyrolysis reactions (reaction 

enthalpy). The enthalpy for pyrolysis in this study was determined experimentally. 

Energy balance calculations were then performed to estimate the energy required 

to achieve the pyrolysis in the fluidised bed system by taking into account the heat 

losses to the fluidising gas.  
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6.3.1 Enthalpy for Pyrolysis  

Figure 6-8 shows the heat flow and the weight loss during pyrolysis of sycamore 

particles which was obtained from the DSC-TGA measurements as detailed in 

Section 4.4.1. It can be seen that the pyrolysis process is, in general, endothermic. 

The heat flow decreases with temperature up to around 200 oC. Above 300 oC the 

heat flow starts to increase rapidly with temperature. This increase in heat flow can 

be regarded to the depolymerisation of the biomass constituents which can be 

explained by the large mass loss in the TGA curve over the same range. The heat 

flow decreases again between 370 oC and 400 oC which indicates the end of the 

endothermic depolymerisation reactions. Another increase in the heat flow can be 

seen above 400oC which corresponds to the rearrangement reactions and char 

formation. 

 

Figure 6-8: Heat flow and weight loss from three sycamore samples using a DSC-TGA. 

 

The enthalpy for pyrolysis was determined by integrating the heat flow curve over 

the pyrolysis temperature range using Equation 4-7. The results are listed in 

Table 6-3 which shows the enthalpy for pyrolysis at different temperatures. The 

majority of the previous studies, as discussed in Section 2.1, report the enthalpy 
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for pyrolysis at 500 oC. However, it was shown in Section 5.5 that for microwave 

pyrolysis, the operating temperature should be in the range between 350 oC and 

400 oC. It can be seen from Table 6-3 that the enthalpy for pyrolysis for sycamore 

at 400 oC is 0.88±0.07 kJ·g-1. 

Table 6-3: Enthalpy for pyrolysis for dry sycamore as a function of temperature. The results 
are from three repeats, and the standard uncertainty is indicated. 

Temperature (oC) 350 400 450 500 

Enthalpy (kJ·g-1) 0.71 ± 0.06 0.88 ± 0.07 1.04 ± 0.09 1.28 ± 0.11 

 

6.3.2 Power Density Requirement 

The specific heat capacity was determined as a function of temperature from the 

heat flow using Equation 4-8. Figure 6-9 shows the change in the specific heat 

capacity of sycamore as a function of temperature which accounts for the sensible 

heat and the heat of reaction. The relationship between the specific heat capacity 

of sycamore and temperature was represented by a third-order polynomial as 

displayed in Figure 6-9 to be used for the energy balance calculations. 

 

Figure 6-9: Specific heat capacity of sycamore as a function of temperature calculated from 
the heat flow results shown in Figure 6-8. 
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Energy balnce calculations were performed to estimate the power density and 

energy input requirements for microwave pyrolysis in the fluidised bes system. The 

mathematical models, assumptions, and the computing methods are detailed in 

Section 4.4.2. Figure 6-10 shows the rise in the bed temperature with time at 

different values of applied power density which was calculated using Equation 4-11. 

It can be seen that the bed temperature increases sharply during the first few 

seconds of heating before it slows down and reaches a point where no significant 

increase in the temperature with time due to the reached equilibrium between the 

input power and the heat loss. As can be seen from Figure 6-10, that the minimum 

power density required to reach 400 oC and 500 oC are 54 MW·m-3 and 68 MW·m-3 

respectively. About 20 seconds is required to reach 400 oC under 54 MW·m-3 which 

corresponds to 4.85 kJ·g-1 specific energy.  

 

Figure 6-10: Bed temperature as a function power loss density and time for sycamore of 
600µm particle size and gas velocity of 0.38 m·s-1. 

 

Table 6-4 shows that increasing the power density leads to reduction in the specific 

energy required for the pyrolysis. This is mainly because of the reduction in the 
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heating time as can be seen form Figure 6-10 leading to drop in the heat loss to the 

fluidising gas. 

Table 6-4: The specific energy required to achieve pyrolysis in the fluidised bed process 
using 600 µm sycamore with a fluidising gas flowing at 0.38 m/s. 

Power density (MW·m-3) 54 68 70 80 90 100 

Specific energy (kJ·g-1) at 400 oC 4.85 1.46 1.40 1.22 1.13 1.07 

Specific energy (kJ·g-1) at 500 oC - 14.65 6.53 3.31 2.60 2.27 

 

Figure 6-11 shows the temperature gradient inside a single particle calculated using 

Equations 4-12, 4-13 and 4-14. It shows that for the 600 µm sycamore particle, the 

temperature at the centre of the particle is 21 oC higher than that of its surface.  

 

Figure 6-11: Temperature gradient with time in a 600 µm sycamore particle at 54 MW·m-3 
power loss density and 0.38 m·s-1 gas velocity 

 

Increasing the particle size increases the temperature difference between the centre 

and the surface of the particle. Figure 6-12 shows that for 1.5 mm sycamore 

particle, the temperature difference is around 70 oC. Increasing the particle size 

also reduces the power density required to reach certain temperature. As indicated 

in Figure 6-12, 28 MW·m-3 is required to reach a surface temperature of 400 oC for 

200

250

300

350

400

450

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003

T
e
m

p
e
rr

a
tu

re
 (

o
C
)

Distance from the centre (m)

60 s

30 s

10 s

5 s

21oC



143 

 

the 1.5 mm particle compared to 54 MW·m-3 for the 600 µm particle. This reduction 

in power requirement with particle size is related to the smaller surface area for the 

larger particles leading to lower heat loss to the fluidising gas. 

 

Figure 6-12: Temperature gradient with time in a 1500 µm sycamore particle at 28 MW·m-3 
power loss density and 0.38 m·s-1 gas velocity. 

 

However, larger particles require higher gas velocity to fluidise leading to increased 

heat loss to the gas. Based on Equations 4-12 to 4-14, increasing the gas velocity 

to 0.58 m·s-1 for the 1.5 mm increases the minimum power density required to 

reach 400 oC to 48 MW·m-3. It also increases the temperature gradient inside the 

particle to 120 oC.  

It is clear from Figure 6-11 and Figure 6-12 that the temperature gradient within 

the particle under microwave heating is opposite to that of conventional heating in 

which heat is transferred from the surface to the centre. The direction of the 

temperature gradient in the conventional heating techniques has previously been 

believed to cause deteriorations in the oil yield and quality by stimulating 

fragmentation and secondary cracking reactions on the hot surface resulting in 
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lighter products and non-condensable gases (Fouilland et al., 2010; Collard and 

Blin, 2014). This is the reason why the vapour residence time has to be very short 

when using a conventional heating technique. Microwave heating, on the other 

hand, can provide colder particle surface which preserves the oil yield and quality 

by limiting the secondary cracking reactions. 

The maximum temperature gradient would happen at the bottom of the fluidised 

bed near to the distributor where the gas temperature is at its lowest value, while 

the minimum gradient is reached when the gas reaches a thermal equilibrium with 

the particles.  

6.3.3 Summary of the Energy Requirement Calculations 

After studying the fluidisation behaviour of the biomass particles and determining 

their minimum fluidisation velocities, the energy and power density requirement 

were calculated. Firstly, the enthalpy for pyrolysis was determined from the heat 

flow to the biomass samples using differential scanning calorimetry. The enthalpy 

for pyrolysis does not include the heat losses. Therefore, energy balance 

calculations were performed to estimate the power density and the energy 

requirement in the fluidised bed system including the heat loss to the fluidising gas. 

It was found that the minimum power density required for the pyrolysis of 600 µm 

sycamore particles at 400 oC is 54 MW·m-3. The specific energy corresponding to 

this power density was found to be 4.85 kJ·g-1. It was shown that increasing the 

power density leads to a reduction in the specific energy. Only 1.07 kJ·g-1 is required 

when 100 MW·m-3 power density is applied which is close to the 0.88 kJ·g-1 enthalpy 

for pyrolysis determined using the DSC at 400 oC. 

The temperature gradient inside the particle was studied by solving the heat transfer 

equations iteratively over space and time. It was found that the temperature at the 

centre of a 600 µm sycamore particle is 21 oC higher than its surface at 54 MW·m-

3 power density and 0.38 m·s-1 gas velocity. Increasing the particle size was shown 

to increase the temperature difference between the centre and the surface of the 
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particle. Increasing the particle size was also found to reduce the power density 

required to reach a surface temperature of 400 oC. 

This temperature gradient which is opposite in direction to that of conventional 

heating techniques can improve the product quality by limiting the secondary 

cracking reactions at the surface of the particle as the surface would always have a 

lower temperature than the centre. 

It is to be mentioned here that the bed temperature near the distributor will be 

lower than that at the top of the bed. This is because that fluidising gas is to be fed 

into the bed, which is being held at approximately 400 oC, at room temperature. 

Thus, the temperature gradient inside a particle at the bottom of the bed would, 

therefore, be greater than that at the top of the column if the absorbed power 

density is uniform across the bed.  

6.4 Design of the Applicator for the Microwave Fluidised Bed Process 

So far, the fluidisation behaviour of the biomass particles have been studied, and 

the minimum power density requirement to achieve pyrolysis has been estimated. 

The next step was to design the applicator for heating the biomass particles in the 

fluidised bed. 

The first step in the applicator design is to choose the type of the applicator. As 

discussed in Section 3.4, there are three main classes of applicators: travelling 

waves, near-field and resonant applicators. Resonant applicators (or cavities) are 

the most commonly used types of applicators for microwave heating applications as 

they allow for intensifying the electric fields inside the cavity for a given power. 

Resonant cavities can be single-mode or multimode. Each type has its advantages 

and disadvantages as discussed in Section 3.4. Single-mode cavities have the 

advantage of the well-defined electric field which allows for placing the material 

under processing in locations of highest field intensity (Mehdizadeh, 2015). 

However, one of the great disadvantages of single mode cavities for the current 
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application is that their dimensions are limited by the half wavelength of the applied 

wave. This limits the size of the sample to be treated and also increases the 

possibility of electric breakdown in the area surrounding the reactor due to the 

presence of a narrow gap and/or edges which create areas of higher electric field 

intensity. Multimode cavities, on the other hand, have larger dimensions and, 

therefore, larger spaces between the reactor and the walls of the cavity compared 

to the single-mode type cavities reducing the risks of electric breakdown. One of 

the weaknesses of multimode cavities, in general, is that unlike single mode 

cavities, the electric field is not well defined in space and its distribution is 

dependent on the size and dielectric properties of the load which could vary during 

the biomass pyrolysis process as well as the dimensions of the applicator. However, 

this weakness can be overcome in the present case through the movement of the 

particles between the hot and cold spot within the bed even if these cold and hot 

spots change locations during processing. 

Electromagnetic simulations using COMSOL Multiphysics® v4.4 were performed to 

investigate the design of the multimode cavity for the present application. COMSOL 

is computer code which applies the finite element method to give numerical 

solutions for physical quantities. The RF (Radio Frequency) Module in COMSOL has 

been used widely for modelling the electromagnetic field distribution in the 

microwave heating applicators based on Maxwell’s equations, and estimating the 

power loss within the workload.  

Several studies have shown good agreement between the results obtained using 

COMSOL modelling and those obtained experimentally for processes involving 

microwave heating. However, one of the main disadvantages of COMSOL, and the 

finite element methods in general, is that it requires large memory space and long 

processing time to give accurate results (Salvi et al., 2011).  

Salvi et al. (2011) modelled the microwave heating of a continuously flowing fluid 

in a cylindrical cavity at 915 MHz using the RF Module in COMSOL. They compared 
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the modelling results with experimental results for two different fluids; tap water 

and carboxymethyl cellulose (CMC). They found that COMSOL model predicted the 

power loss in the fluid with only 6% and 2% error for the tap water and CMC 

respectively. 

Salema and Afzal (2015) studied the microwave pyrolysis of empty fruit bunch (EFB) 

pellets in a modified domestic multimode cavity both experimentally and 

numerically using COMSOL. They showed good agreement between modelling and 

experimental results for predicting the location of the hot-spots. 

In many of the previous studies, the RF Module in COMSOL is coupled with other 

modules such as the Heat Transfer Module which allows for estimating the 

temperature profile within the workload (Salvi et al., 2010; Salvi et al., 2011; 

Salema and Afzal, 2015; Ferrari-John et al., 2016). 

In present study, the RF Module in COMSOL was used to simulate the 3D distribution 

of the electric field inside the cavity and within the load, and to determine the power 

loss density within the load for various cavity dimensions. Fluid dynamics and heat 

transfer were not included in the simulation in this study. 

6.4.1 Model Setup 

The simulations were solved using the Electromagnetic Waves Frequency Domain 

physics interface which is found in COMSOL under the RF Module. The governing 

equation of the electric field wave is given by: 

 ∇ × 𝜇𝑟
−1(∇ × 𝐸) − 𝑘𝑜

2 (휀𝑟 −
𝑗𝜎

𝜔휀𝑜

) 𝐸 = 0 
6-2 

Where  

𝜇𝑟 is the relative permeability of the material (for biomass 𝜇𝑟 = 1); 

𝐸 is the electric field strength which is a vector; 
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𝑘0 is the wave number which is given by 𝑘0 = 𝜔 𝑐𝑜⁄ , where 𝜔 is the wave 

angular frequency (rad·s-1) and 𝑐𝑜 is the speed of light in vacuum (3×108 

m·s-1) 

휀𝑟 is the relative permittivity of the material; 

𝜎 is the electric conductivity of the material, S·m-1;  

𝑗 is the √−1; 

휀𝑜 is the permittivity of free space (8.854×10−12 F·m-1). 

The power loss density (absorbed microwave power by the material) is determined 

through Equation 3.2 which was discussed in Chapter 3. 

The model was solved at 2.45 GHz frequency. As stated in Section 5.3, sycamore 

of 212 – 850 µm particle size was used as the basis for the design. Therefore, the 

parameters listed in Table 4-2 were used for the simulation. It is to be noted that 

the fluidised bed was simulated as a bulk solid using the bulk density of the bed at 

the minimum fluidisation velocity. The model was built and solved following the 

steps below. 

6.4.1.1 Simulation geometry 

The general geometry used for the simulation is shown in Figure 6-13 which is 

mainly a quartz column (reactor) with a gas distributor inside a rectangular metallic 

box. The quartz reactor is surrounded by a metallic tube all the way outside the 

cavity. Quartz was chosen because of its good dielectric and thermal properties for 

the present case. It has a loss factor less than 0.001 at 2.45 GHz (Meredith, 1998). 

It has a typical operating temperature of around 1000 oC. The inner and outer 

diameter of the column were 0.05 and 0.06 m respectively. The inner diameter of 

the metallic tube surrounding the column was assumed to have the same value as 

the outer diameter of the quartz column. This is lower than the critical cut-off 
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diameter*; the diameter above which microwave power would propagate through 

the tube (Meredith, 1998). The length of the column was set at 0.6 m. Based on 

the fluidisation experiments this length is enough for the bed expansion and 

disengagement. 

 

 
Figure 6-13: Geometry used to simulate the fluidised bed process in a multimode cavity. 

 

6.4.1.2 Materials 

The materials involved in the simulation were the biomass material, quartz, and air. 

The walls of the cavity and the waveguide were assumed to be perfect conductors. 

The complex permittivity of the biomass material was determined from the 

quadratic functions which were developed in Section 4.4 for the relationship 

between both parts of the permittivity and the packing density. The relationships 

for sycamore were as follows: 

휀′ = 0.69𝜌2 + 1.376𝜌 + 1;  휀′′ = 0.117𝜌2 + 0.197𝜌 

                                           
* The cut-off radius, 𝑎, for the lower-order mode (TE11) through circular choke is 𝑎 = 𝜆0 (3.413√휀′)⁄ . Where 

𝜆0 is the free-space wavelength, 휀′ is the dielectric constant of the medium. At 2.45 GHz frequency and 

air medium, 𝑎 = 0.0375 m. 
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Where 𝜌 is the packing density in g·cm-3. Substituting the bed bulk density of 

sycamore at the minimum fluidisation velocity which is 0.24 g·cm-3 as displayed in 

Table 4-2 gives a permittivity of: 휀 = 1.37 − 0.055𝑗.  

The space above the bed and that outside the reactor was assumed to be air. The 

COMSOL library permittivities for air and quartz were used which are 1.0 and 4.2 

respectively. 

6.4.1.3 Boundary conditions 

A port boundary condition was added to feed the microwave power into the system. 

The port is a rectangular TE10 placed at the start of a standard WR430 waveguide 

as indicated in Figure 6-13. The microwave power input through the port was set at 

6 kW. The obtained power loss density will be compared to the minimum power 

density required for the pyrolysis which is 54 kW·m-3. A perfect conductor boundary 

condition was also added to the model to simulate the internal walls of the 

waveguide, the cavity and the metallic tube. 

6.4.1.4 Mesh 

The finite element method divides the model into small and geometrically simple 

elements. The accuracy of the solution is affected by the resolution of the mesh. 

Fine mesh size improves the computational accuracy but increases the solving time 

and memory requirement. For the current model, the mesh type selected was 

physics controlled mesh and an extremely fine element size was selected. This 

generated 248,251 to 412,739 tetrahedral elements depending on the dimensions 

of the cavity in each case. The simulation was run on an Intel workstation with eight 

Dual Core 2.5 GHz Xeon processors, 192 GB RAM (Random Access Memory), with 

a Microsoft Windows 7, 64 bit operating system. With these memory and processing 

capabilities, the time needed to solve each case was 4 to 8 minutes. 
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6.4.1.5 Study 

There are many parameters related to the cavity dimensions, load position and 

microwave power feed position needed to be optimised. In order to limit the number 

of the variables, some practical choices/assumptions were made as follows: 

 The cavity depth (D) equals the width (W) 

 The column is at the centre of the cavity. 

 The waveguide is attached to the side of the cavity, and not at the top or the 

bottom. 

 The tapered section below the gas distributor is 10 cm long, and all of it is 

inside the cavity. 

This leaves four variables: the cavity height (H); the cavity width (W); the 

waveguide Y position; and the waveguide Z position. These variables were defined 

as parameters in the simulation to allow them to be changed during the simulations 

through the parametric sweep function. The parametric sweep function in COMSOL 

instructs the software to change the value of a parameter within a specified range 

and solve for each of these values instead of changing it manually. The function 

allows for more than one parameter to be changed, and the simulation is then 

solved for all the combinations of the specified parameters. The cavity width, W, 

was set to vary from 20 to 34 cm at steps of 2.0 cm which covers a number of 

cavity modes* slightly less than three to more than four. As the load is placed at 

the centre of the cavity, two modes would create an area of a low electric field 

within the load. The cavity height, H, was changed from 18 to 30 cm with step 

changes of 2.0 cm. The lower limit is determined by the height from the bottom of 

the tapered section to the top of the load. The waveguide Z position was changed 

to cover all the cavity height while the Y position was changed to cover only half of 

                                           
* The term “modes” refers to the number of the half-wavelengths generated by the reflection of the 

waves by the walls inside the cavity. The number of modes could be estimated by dividing the cavity 
length by the guide half-wavelengths, 𝜆𝑔 2⁄ . 
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the depth due to the symmetry. Step changes of 2 cm were used for both Y and Z 

positions. 

The aim was to run the simulations for a range of cavity dimensions and waveguide 

positions to find the optimum values that minimise the loaded cavity Q-factor 

(maximise the percentage absorbed power) while providing uniform heating.  

6.4.2 Simulation Results 

Changing the variables mentioned in model setup section over the specified ranges 

resulted into more than 2500 simulation cases. Two main criteria were used for 

comparison and selection: the fraction of the absorbed power (a measure for the 

Q-factor) and the heating homogeneity. The cases were filtered first based on the 

absorbed power by excluding all the cases that had less than 80% absorbed power. 

Then for the cases with similar dimensions and electric field distributions, the case 

with the highest percent absorbed power was selected. This allowed the number of 

cases required to be reduced to 30. The heating homogeneity was then used as the 

criteria to filter the remaining cases. This was achieved by comparing the electric 

field intensity and the power loss density on a slice passing through the centre of 

the cavity and the bed, and also the projection of the power loss density. The 

projection of the power density was obtained by integrating the power loss density 

over the bed height using the General Projection operator which is a predefined 

function in COMSOL. 

Figure 6-14 displays the simulation results from selected cases showing the electric 

field distribution and the power loss density. These cases give an example of how 

the selection based on the heating homogeneity was made. As can be seen in 

Figure 6-14, different cavity dimensions lead to different results in terms of electric 

field distribution and therefore the power loss density.  
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(a) H = 240, W = 240, z = 100, y = 35.1 

 
 

 

 

(b) H = 260, W = 200, z = 12.5, y = 72.5 

 
 

 
 

 

(c) H = 300, W = 240, z = 162.5, y = 20.1 

 
 

 
 

 

Figure 6-14: Simulation results for selected cases showing electric field intensity (left); 
power loss density (centre) and projection of the power loss density (right). The dimensions 
are in millimetres. 
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It can be seen also from Figure 6-14 that there are always areas of high electric 

field intensity and others of low field intensity throughout the cavity and within the 

load. For the present case, achieving uniformity within the load in the radial 

direction was more important than in the axial direction of the bed. This is because 

fluidisation provides better mixing in the axial direction. Among the three cases 

shown in Figure 6-14, Case (c) gives the best homogeneity in the radial direction 

which can be seen in the projected power loss density in Figure 6-14 (c). 

Case (c) has the following values: H = 300, W = 240, y = 20.1 and z = 162.5 with 

all dimensions in millimetres. The percent absorbed power for this case is 97 % (S11 

= -15 dB). As can be seen from Figure 6-14 (c), the applied 6 kW power input 

creates a hot zone at the top half of the bed with power loss density greater than 

54 MW·m-3 which is the minimum required to achieve pyrolysis at 400oC. Case (c) 

was, therefore, chosen for the design. 

It is important to mention here that chosen case, which is represented by 

Figure 6-14 (c), has some weaknesses that need to be highlighted. One of these 

weaknesses comes from the fact that the simulations were performed based on 

dielectric properties at room temperature. The electric field distribution and power 

loss density will change when the dielectric properties of the load change during the 

heating. However, the movement of the particles between the areas of high and low 

electric field intensity within the bed during their fluidisation can possibly mitigate 

the effect of any shift in the hotspots.  

Another possible challenge is that thermal runaway can occur when char starts to 

form in the space above the bed, particularly where there is a high electric field 

intensity as can be seen in Figure 6-14 (c). However, the process can potentially 

mitigate this issue through three actions: (a) the continuous agitation of the 

particles by fluidisation; (b) the change in the electric field distribution during the 

heating with the changes in dielectric properties; and (c) the gas flow could provide 

enough particle-to-fluid heat transfer to limit the particle temperature at the 
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hotspots. In addition to these self-mitigations the gas velocity could be increased 

which would increase the particle-to-fluid heat transfer and limit the maximum 

achievable particle temperature. However, increasing the gas velocity would 

increase the heat losses. These weaknesses and challenges will be investigated 

during the experiments in the developed microwave fluidised bed process.  

Figure 6-15 shows a schematic diagram for the proposed microwave fluidised bed 

process based on the cavity design represented by Figure 6-14 (c). The process 

consists of a microwave supply and transmission system, a fluidised bed reactor 

inside a multimode cavity with dimentions based on Figure 6-14 (c), and a 

condensation system.  
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Figure 6-15: A schematic diagram of the developed microwave fluidised bed process. All 
the dimensions are in millimetres. 

The microwave power is provided by a 2.45 GHz generator and transmitted to the 

cavity through rectangular WR430 waveguides. The waveguide is made of 

aluminium while the cavity is made of stainless steel 304. Aluminium is the most 

commonly used material for making microwave waveguides and cavities because of 
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its high conductivity and low skin depth. Stainless steel was used for the cavity 

because it provides greater mechanical strength than Aluminium for supporting the 

fluidised bed column and its contents.  

The details of the monitoring and measurement devices, condensation system, and 

the experimental setup and procedure are discussed in the following Chapter. 

 

6.5 Conclusions 

As an attempt to overcome the heating heterogeneity challenge in microwave 

pyrolysis, a microwave fluidised bed was designed. A systematic approach was 

followed for the process design taking into account the pyrolysis process 

requirements, the microwave-material interactions and the fluidisation behaviour of 

the biomass particles. 

Fluidisation experiments were run for biomass materials of different particle sizes 

in order to study their fluidisation behaviour and to determine their minimum 

fluidisation velocities. It was found that woody biomass particles have complex 

fluidisation behaviour due to their irregular shape. Fluidisation was achieved at 

relatively high velocities with a turbulent behaviour. It was shown that the raw 

biomass particles have greater values of minimum fluidisation velocity (𝑢𝑚𝑓) 

compared to char prepared using similar particle size. During processing, this would 

lead to particle segregation and could be used to control the char deposition and 

residence time in the bed. 

The minimum power density requirement was determined after estimating the 

enthalpy for pyrolysis using Deferential Scanning Calorimetry (DSC), and then the 

heat loss to the fluidising gas was included though energy balance calculations. The 

minimum power density required to reach 400 oC was found to be 54 MW·m-3.  

Electromagnetic simulations were performed to investigate the cavity design. A 

multimode cavity was chosen based on the lower Q-factor and the heating 
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homogeneity. However, this design has some possible challenges from a practical 

standpoint which will be investigated during the experimental studies on the 

developed process.  
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7 PYROLYSIS EXPERIMENTS IN A MICROWAVE FLUIDISED BED 

7.1 Introduction 

The aim of the work reported in this chapter is to operate the microwave fluidised 

bed process which was developed following the steps discussed in Chapter 6, and 

run batch pyrolysis experiments to investigate the effect of different processing 

parameters on the product yield. The effect of the energy input, particle size and 

the gas velocity on the product yield was studied. The bulk properties of the 

produced bio-oil were measured and compared to the standard specifications for 

pyrolysis liquid biofuels. Description of the experiemntal setup and methods for 

microwave pyrolyis in the developed fluidised bed are detailed in Section 4.5. 

7.2 Impedance Matching 

The simulation results which were discussed in Section 6.4 as part of the steps of 

the process deign, suggest that the load would absorb around 97 % of the 

microwave power input (S11 = -15 dB).  This was based on several assumptions 

including dielectric properties at room temperature, homogeneous fluidisation, and 

a constant generator frequency of 2.45 GHz. However, the dielectric properties do 

change during heating. Also, any shift in the generator frequency can change the 

electric field distribution inside the cavity and would, therefore, affect the absorbed 

microwave power. Figure 7-1 shows the range of frequency measured by the 

automatic tuner during heating at 5 kW incident power. It can be seen that the 

frequency fluctuates between 2.466 and 2.473 GHz, and the most dominant 

frequency is 2.467 GHz. This dominant frequency was used as the basis for the cold 

matching. 
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Figure 7-1: Typical frequency distribution at 5kW incident power. The shown results are the 
average of five runs. The error bars represent the standard uncertainty. The recurrence 

percentage for each frequency was calculated by dividing the recurrences by the total 
measured points at each run. 

 

Figure 7-2 shows the reflection parameter, S11, for the fluidised bed at room 

temperature as a function of frequency before and after the cold matching. The 

stubs position from the cold matching were used as initial values at the start of the 

heating process. However, a significant drop in the absorbed power and an increase 

in the reflected power was observed as soon as the heating started, which was 

attributed to the change in the dielectric properties. 

As an attempt to improve the matching, a trial and error procedure was followed to 

identify the stub positions that minimise the reflected power throughout the heating. 

This was achieved by running single-step automatic tuning when the reflected power 

starts to increase during heating. The stub positions from the single-step tuning in 

each run was used as an initial position for the next run. This was repeated until 

the power profile which is shown in Figure 7-5 was obtained. It is to be noted here 

that it was chosen to keep the stubs position constant during the pyrolysis 

experiments to achieve a repeatable heating profile. Automatic tuning or one-step 

tuning leads to different stubs position each time and, therefore, different heating 

profiles. 
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(a) 

 

(b) 

 

Figure 7-2: The reflection parameter, S11, at different frequencies read by network analyser 
for 35 g of 212-850 µm sycamore particles fluidised at 0.38 m·s-1 nitrogen velocity: (a) 
Stubs up (unmatched); (b) Cold-matched stubs. 

 

7.3 Preliminary Pyrolysis Experiments  

Preliminary microwave pyrolysis experiments were run to identify the boundaries 

for the processing parameters including the particle size, gas velocity and the bed 

depth. As a starting point, 35 g of 212 – 850 µm sycamore was used with a fluidising 

gas velocity of 0.38 m·s-1. These are the values which were used as the basis of the 

process design. 
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The minimum fluidisation velocity of the biomass materials involved in this study 

was determined experimentally at room temperature as shown in Section 6.2. It 

was shown that the minimum fluidisation of the char particles are lower than that 

of the raw biomass particles due to the reduction in the particle size and density. 

Therefore, the gas velocity during the pyrolysis experiments could be set at a value 

lower than the minimum fluidisation velocity of the raw biomass particles. However, 

the gas velocity needs to be high enough to induce the fluidisation before the start 

of char formation at any part of the bed to avoid thermal runaway.  

The possibility of thermal runaway could always be decreased by applying higher 

gas velocities. However, too high a gas velocity would lead to entrainment by the 

fluidising gas, leaving the biomass unpyrolysed. It is to be noted here that the 

evolved vapours during the pyrolysis process could affect the fluidisation behaviour 

and shift the minimum fluidisation velocity as they contribute to the total gas flow 

through the bed. 

From the above discussion, for each particle size group at a certain incident power, 

the gas velocity should be set between two limiting values. A higher value, above 

which untreated biomass particles would be entrained by the fluidising gas and the 

pyrolysis vapours, and a lower value below which the gas velocity is not high enough 

for the fluidisation to be induced before thermal runaway. These limiting values are 

higher for larger particles and lower for smaller particles, and they limit the range 

of particle size that could be used at any power density. Examples of the effect of 

operating beyond these limiting values are displayed in Figure 7-3.  
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(a) (b) 

Figure 7-3: Limiting values for the gas velocity: (a) too high velocity leading to entrainment 
of un-pyrolysed particles to the condensers; (b) too low leading to thermal runaway due to 
poor mixing (no fluidisation). 

 

The boundaries mentioned above were applied to set the gas velocity for each 

particle size group. For sycamore, it was found that for the 212 – 850 µm particle 

size at 5 kW power input, the minimum gas velocity below which thermal runaway 

takes place was 0.38 m·s-1. However, this gas velocity lead also to the entrainment 

of a significant amount of unpyrolysed particles as shown in Figure 7-3 (a). In order 

to stop the entrainment of unpyrolysed particles, a narrower particle size range of 

0.6 – 0.85 mm was used by filtering out the finer particles. 

During the preliminary pyrolysis experiments, thermal runaway occurred at many 

occasions on the reactor wall even at gas velocities higher than the minimum 

fluidisation velocity of the raw biomass particles. This was attributed to the 

condensation of the pyrolysis vapours on the wall above the bed creating a “dirty” 

zone where some solid particles were stuck to the wall of the column. At the areas 

of high electric field intensity, these stuck particles are heated very rapidly, leading 

to thermal runaway as shown in Figure 7-4 (a). To overcome this and to reduce 

thermal runaway possibilities, the size of the bed was increased by doubling the 

quantity of the initial raw biomass particles to 70 g. This led to an increase in the 

bed height during fluidisation shifting that “dirty” zone outside the cavity as shown 

Thermal runaway on 
the wall 
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in Figure 7-4 (b) where there are no areas of high electric field intensity. The 

continuous movement of the particles within the bed area acts as a physical 

sweeper, preventing the particles and condensate from sticking to the wall. 

 

  

(a) (b) 

Figure 7-4: Effect of the bed height on controlling thermal runaway: (a) 35 g raw sycamore 
particles initially; (b) 70 g raw sycamore particles initially. 

 

7.4 Analysis of the Absorbed Power   

The absorbed power profile during the microwave heating can be related to the 

change in the dielectric properties of the biomass materials with temperature. It 

was shown in Section 5.4 that the loss factor of biomass materials decreases with 

temperature until it reaches a minimum value at around 300 oC to 400 oC. Above 

400 oC the loss factor increases sharply with temperature due to char formation. 

Figure 7-5 shows the change in the absorbed power with time during the microwave 

pyrolysis at 5 kW incident power and 0.38 m·s-1 gas velocity. The displayed results 

are from five different runs with different heating time, four of them with 1.18 – 

1.70 mm particle size and one with 1.70 – 2.36 mm particle size where thermal 

runaway took place.  

Thermal runaway 
on the wall 
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Figure 7-5: Change in the absorbed power during microwave pyrolysis of 70g sycamore of 
particle size 1.18 – 1.70 mm at 5kW incident power and 0.38 m·s-1 gas velocity. Thermal 
runaway took place when 1.70 – 2.36 mm particles were used as indicated. 

 

The low absorbed power during the first five seconds of the heating could be 

attributed to the instability in the generator frequency at the start of the heating. 

After reaching a maximum value, the absorbed power starts to decrease gradually 

with time until it reaches a minimum value after about 90 seconds. This drop in the 

absorbed power can be attributed to the drop in the loss factor of the biomass 

particles with temperature. Another factor which could have a significant 

contribution towards the drop in the absorbed power is the bed expansion and the 

increase in the void fraction due to the reduction in the particle size and density. A 

large fluctuation in the absorbed power can be seen in Figure 7-5 after 60 seconds 

of the heating, which suggests the process is entering a region of turbulent 

fluidisation. After about 90 seconds of heating, the absorbed power in the case of 

the 1.18 – 1.70 mm particles reaches a constant minimum value where an 

equilibrium is reached between the absorbed power and the heat losses. This 

equilibrium point is important for controlling the bed temperature to avoid slipping 
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into the increased loss factor zone above 400 oC where the possibility of thermal 

runaway increases. 

Figure 7-5 also shows the heating profile for a run where thermal runaway took 

place when the particle size was increased to 1.70 – 2.36 mm for the same gas 

velocity. As indicated in Figure 7-5, the thermal runaway is accompanied by a sharp 

increase in the absorbed power. 

7.5 Effect of the Processing Parameters on the Product Yield for Sycamore 

7.5.1 Effect of particle size 

The effect of particle size on the extent of pyrolysis was studied for sycamore 

particles and the results are listed in Table 7-1. As can be seen in Table 7-1, the 

solid pyrolysed increases with increasing particle size at a constant energy input.  

Table 7-1: Effect of the particle size on the degree of pyrolysis at 3.5 kJ·g-1 specific energy 

Particle size 

range 

Gas velocity 

(m·s-1) 

Solid pyrolysed 

(%) 

0.6 – 0.85 mm 0.38 42.15 ± 2.21 

0.85 – 1.18 mm 0.38 53.61 ± 0.62 

1.18 – 1.70 mm 0.38 59.08 ± 0.68 

1.70 – 2.36 mm 0.59 60.13 ± 0.69  

 

Increasing the particle size decreases the gas-particle contact area leading to a 

reduction in the heat loss to the fluidising gas. This results in an increase in the 

temperature at the centre of the particles allowing for more solid to be pyrolysed. 

The relationship between the particle size and the solid pyrolysed obtained from the 

batch experiments is in line with the results from the numerical model discussed in 

Section 6.3. It was shown through numerical modelling that increasing the particle 

size of the biomass material leads to reduction in the power density needed to reach 

the pyrolysis temperature, meaning that increasing the particle size at a given 



166 

 

power density would result in an increase in the particle temperature and therefore 

an increase the degree of pyrolysis.  

As can be seen in Table 7-1, there is no significant increase in the solid pyrolysed 

when the particle size was increased from 1.18 - 1.70 mm to 1.70 - 2.36 mm 

compared to the changes between the other particle size groups. This can be 

attributed to the increase in the gas velocity for the 1.70 – 2.36 mm particle size 

group which required higher gas velocity than the other groups to be pyrolysed 

without thermal runaway.  

The relationship between the particle size and the product yield in conventionally 

heated fluidised bed systems is different. Previously, Shen et al. (2009) studied the 

effect of the particle size on the pyrolysis of wood particles in a fluidised bed reactor 

heated in an electric furnace at 500 oC using preheated nitrogen as the fluidising 

gas. They found that the bio-oil yield decreased when the particle size was increased 

from 0.3 to 1.5 mm. This drop in the yield with the particle size was regarded to 

the reduction in the heat transfer rate for the larger particles. A similar relationship 

between oil yield and particle size was reported by other authors (Choi et al., 2012; 

Montoya et al., 2015).   

This difference in the effect of particle size on the product yield between the 

microwave and conventionally heated fluidised bed systems is mainly because of 

the difference in the direction of heat transfer. In conventionally heated systems, 

the heat is transferred from the fluidising gas to the particles. The extent of pyrolysis 

in this case is improved by reducing the particle size as it increases the specific 

surface area and, therefore, increases the heat transfer rate to the particles. While 

in the microwave heated system, where cold fluidising gas is used, the heat is 

transferred from the biomass particles to the gas. Using larger particles is, 

therefore, favoured as it reduces the heat losses to the fluidising gas resulting in an 

improvement in the extent of pyrolysis at a cetrain energy input. 
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7.5.2 Effect of gas velocity 

Figure 7-6 shows the effect of the gas velocity on the degree of pyrolysis for 1.18 - 

1.70 mm sycamore particles at 3.5 kJ·g-1 specific energy. It can be seen that 

increasing the gas velocity from 0.38 m·s-1 to 0.64 m·s-1 results in a limited drop in 

the solid pyrolysed.  

 

Figure 7-6: Effect of the fluidising gas velocity on the solid pyrolysed for 1.18 – 1.70 mm 
sycamore particles at 3.5 kJ·g-1 specific energy. 

 

The reduction in the solid pyrolysed with the gas velocity was expected because the 

fluidising gas is fed at room temperature, and increasing the gas velocity increases 

the heat losses to the fluidising gas. However, it can be seen that only 12 % 

reduction in the solid pyrolysed for about 68 % increases in the gas velocity. 

This limited reduction in the solid pyrolysed compared to the large increase in the 

gas velocity provides flexibility for using the gas velocity for controlling the other 

processing parameters including the bed temperature and the solids residence time 

in the case of continuous processing. 

In conventionally heated fluidised bed systems, where the gas is preheated to 

provide all or part of the energy required for pyrolysis, the relationship between the 

gas velocity and the product yield is different to that shown in Figure 7-6. Choi et 

al. (2012) showed that the bio-oil yield in a fluidised bed reactor heated in an electric 

furnace increases when the preheated gas velocity is increased up to a certain value 
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beyond which the oil yield starts to decrease. The initial increase in the product yield 

with the gas velocity was explained by the improvement in the heat transfer rate 

due to the better mixing provided by the faster-moving bubbles. The following 

reduction in the bio-oil yield at higher gas velocities was attributed to the formation 

of large bubbles (slugging) leading to poorer heat transfer. The explanation 

provided by Choi et al. (2012) for the deterioration in the heat transfer at high gas 

velocities could be used understand the limited drop in the solid pyrolysed with 

increasing the gas velocity in the present study especially at higher gas velocities 

as can be seen in Figure 7-6.  

7.5.3 Effect of energy input 

The effect of the specific energy input on the degree of pyrolysis was studied for 

various particle size groups of sycamore. Figure 7-7 shows that the solid pyrolysed 

increases steadily with the specific energy up to nearly 70 % depending on the 

particle size.  

 

Figure 7-7: Increase in the degree of pyrolysis with the specific energy for sycamore of 
different particle size at 5 kW incident power. The gas velocity is indicated between 
brackets. 
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The extent to which the solid pyrolysed increases with the specific energy is 

restricted by the drop in the absorber power as shown in Figure 7-5 which was 

explained by the reduction in the loss factor of the particle and the increase in the 

bed porosity.  

Figure 7-7 shows that around 3.5 to 4.2 kJ·g-1 energy input is needed to achieve 60 

to 70 % solid pyrolysis. Previously, Robinson et al. (2015) showed that the energy 

required to reach the same degree of pyrolysis in a microwave heated fixed bed 

reactor is around 2.2 to 2.5 kJ·g-1.  

The high specific energy in the fluidised bed system compared to the fixed bed 

system is mainly because of the heat loss to the fluidising gas, which is fed at room 

temperature. It was shown in Section 6.3 that the enthalpy for pyrolysis, which 

excludes any heat losses, of sycamore at 400 oC is about 0.88 kJ·g-1 (Table 5-4). 

However, it was shown through the numerical modelling in the same section that 

the specific energy required to pyrolysis 600 µm sycamore particles in the fluidised 

bed system can range from 1.07 kJ·g-1 to 4.85 kJ·g-1 (Table 5-5) depending on the 

power density. The high specific energy in the fluidised bed system compared to the 

enthalpy for pyrolysis was attributed to the heat losses to the fluidising gas. 

7.6 Pyrolysis Experiments for the Other Biomass Materials 

7.6.1 Pine 

As discussed earlier in Section 6.2, pine particles are more difficult to fluidise than 

the sycamore particles due to their highly irregular shape, which results in 

channelling and/or slugging behaviour at lower gas velocities. The cold fluidisation 

experiments also showed that pine particles require higher fluidisation velocities 

compared to sycamore, leading to a very turbulent fluidisation regime. 

Due to the complex fluidisation behaviour of the pine particles compared to 

sycamore, applying the same pyrolysis conditions which were used for sycamore 

led to thermal runaway on the wall of the column as shown in Figure 7-8.  
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Figure 7-8: Non-fluidising pine particles leading to thermal runaway; particle size = 1.18-
1.70 mm pine; initial mass = 70 g; gas velocity = 0.59 m·s-1. 

 

As an attempt to improve the fluidisation behaviour of the pine particles, stop the 

thermal runaway, and provide repeatable results, modifications were made to the 

processing parameters as follows: 

 Using larger particle size, larger than 1.70 mm. It was shown in Section 6.2 

that increasing the size of the pine particles improves its fluidisation 

behaviour due to the decline in the influence of the particle shape compared 

to the effect of its size and weight. 

 Increasing the gas velocity. This was necessary to fluidise the larger particles 

which were used. 

 Reducing the amount of biomass feed. Pine has a bulk density lower than 

sycamore and using 50 g pine was found to give nearly the same bed high 

as 70 g of sycamore. Reducing the bed size was found to improve the 

stability of the fluidisation. 

After these modifications, it was possible to run the pyrolysis experiment for two 

particle size groups of pine which were 1.70 - 2.36 mm and 2.36 - 3.35 mm with a 

gas velocity of 0.85 m·s-1 in both cases. These conditions allowed for running the 

pyrolysis experiments in the stable region between the two boundaries of thermal 

runaway at low gas velocities and particle entrainment and high gas velocity.  
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Figure 7-9 shows the increase in the degree of pyrolysis with specific energy input 

for the two studied particle size groups. The solid pyrolysed increases steadily with 

the specific energy up to a point beyond which no significant increase in the degree 

of pyrolysis with the specific energy. Similar to sycamore, the extent to which the 

solid pyrolysed increases with the specific energy is restricted by the drop in the 

absorbed power as shown in Figure 7-5.  

 

Figure 7-9: Increase in the degree of pyrolysis with the specific energy for pine of different 
particle size under 5 kW incident power and 0.85 m·s-1 gas velocity. 

 

Figure 7-9 shows that, as for sycamore, increasing the particle size increases the 

degree of pyrolysis. It can be noted that the solid pyrolysed from the pine particles 

is lower than that obtained from the sycamore at the same specific energy. For 

example, only 50 % of the 1.70 – 2.36 mm pine is pyrolysed at a specific energy of 

about 4 kJ·g-1, while over 65 % sycamore of similar particle size was pyrolysed 

when the same specific energy was applied as shown in Figure 7-7. This lower 

degree of pyrolysis in the case of pine can be attributed to the higher gas velocity 

used to fluidise the particles leading to an increase in the heat loss to the gas and, 

therefore, a decrease in the temperature at the centre of the particle. 
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7.6.2 Seaweed 

The pyrolysis of seaweed in the developed microwave fluidised bed was also 

investigated. The cold fluidisation experiments discussed in Section 6.2, showed 

that the seaweed particles have more homogeneous fluidisation behaviour 

compared to the woody biomass over the studied range of particle size. However, 

it was much more difficult to limit the thermal runaway in the pyrolysis experiments 

of the seaweed. Unlike the woody biomass, the thermal runaway in the case of 

seaweed was because of particles sticking to the walls of the reactor within the 

fluidisation area as shown in Figure 7-10. Part of the vapours produced during the 

pyrolysis the seaweed condenses on the wall within the bed allowing the particles 

to stick to the wall of the reactor. The fluidising particles were not able to sweep 

the wall and remove the sticking particle in the case of woody biomass because they 

were strongly bound to the wall. Thermal runaway appeared in the three studied 

particle size groups of seaweed which were 0.60 – 0.85 mm, 0.85 – 1.18 mm, and 

1.18 – 1.70 mm. Even increasing the gas velocity to values where unpyrolysed 

particles were entrained did not stop the thermal runaway. 

 

Figure 7-10: Thermal runaway during seaweed pyrolysis due to vapours condensation 
within the bed leading to seaweed particles sticking to the wall. This case was for 0.85 – 
1.18 mm particle size and a gas velocity of 0.68 m·s-1. 

Bed 

Thermal runaway  
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It was, therefore, difficult to run the pyrolysis experiments successfully for seaweed 

with the current setup. One of the possible solutions to stop the particles from 

sticking to the wall is to use a hot fluidising gas. The vapours start condensation 

within the bed because of the cold environment surrounding the particles, and 

preheating the gas would help to limit condensation. However, the process design 

and the experimental setup in the present study did not include the option of 

preheating the fluidising gas. Future studies should explore this option and 

investigate the optimum gas temperature that would stop the vapour condensation 

within the bed and preserve the product quality at the same time. 

7.7 Product Quality 

The bulk properties of the bio-oil produced from sycamore were measured, and the 

results are listed in Table 7-2. The same table shows the corresponding values for 

bio-oil obtained in a conventionally heated fluidised bed process, the ASTM standard 

specification for pyrolysis liquid biofuels, and standard values for a petroleum-based 

heavy fuel.  

Table 7-2: Bulk properties of bio-oil obtained from sycamore with 60 – 70 % solid 
pyrolysed. The results are from at least four repeats. 

Property Measured 

value 

Conventional 

pyrolysis a 

ASTM 

D7544 b 

HFO c 

Water content, wt% 25.06 ± 3.36 23.3 ≤30 0.5 (vol%) 

Density (20oC), g·cm-3 1.15 ± 0.04 1.20 1.1 – 1.3 >0.876 

Viscosity (20oC), cp 

Kinematic viscosity, mm2·s-1 

23.08 ± 1.98 

20.07±1.98 d 

87.6 

73 

- 

≤125 e 

- 

1.9 – 5.5 

Gross calorific value, kJ·g-1 17.5 ± 2.3 16.6 ≥15 40 f 

a  Bio-oil produced from wood pyrolysis (2.4 % moisture) in a conventionally heated fluidised bed reactor. 
The data were taken from (Oasmaa et al., 2005) 

b  ASTM standard specification for Grade D and Grade G pyrolysis liquid biofuels. 
c  Heavy Fuel Oil. The values are based on ASTM D396 - 15c specifications for Grades No. 4 (Light) which 

is a heavy distillate fuel or middle distillate/residual fuel blend used in commercial/industrial burners 
equipped for this viscosity range with no preheating. 

d  Calculated from the density and viscosity. 
e  Based on measurement at 40 oC. The viscosity in the present study was measured at 20 oC and it is 

still lower than the value required by the standard. 
f  Typical value for heavy fuel oil (Lehto et al., 2014; Oasmaa et al., 2015). 
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Table 7-2 shows that all the measured properties are within the limits required by 

the ASTM standard for pyrolysis liquid biofuels. It also shows that, with the 

exception of viscosity, the measured bio-oil properties from this study are similar 

to those obtained from conventionally heated fluidised bed process. It is to be noted 

that the wood used in the conventionally heated process is pre-dried to 2.4 % while 

the moisture content of the wood in the present study was 10.6 %. Even with this 

higher moisture content of the feed, the bio-oil obtained in the present study has a 

water content similar to that obtained from conventional pyrolysis. The viscosity of 

the bio-oil obtained from the present study is significantly lower than that from the 

conventionally heated process. 

As shown in Table 7-2 the produced bio-oil fails to meet the standard specifications 

for heavy fuel oils and, therefore, it cannot be fed to the commercial burners 

designed for heavy fuel oils. Bio-oil has a higher moisture content and higher 

viscosity compared to the heavy fuel oils. It also has very low calorific value 

compared to petroleum-based fuels.  

7.8 Discussion and Conclusions 

The developed microwave fluidised bed system was operated successfully and used 

for the pyrolysis of sycamore and pine particles. It was possible with the current 

system to achieve homogeneous pyrolysis for up to 70 g biomass particles. For each 

particle size group, the gas velocity was set between two limiting values, a higher 

value, above which unpyrolysed particles are entrained with the fluidising gas, and 

a lower value below which thermal runaway takes place before fluidisation. The 

movement of the particles within the bed acted as a sweeper preventing the solid 

particles from sticking to the wall of the reactor. However, for the seaweed, a layer 

of solid particles was formed on the wall of the reactor during pyrolysis due to the 

condensation of a significant amount of pyrolysis vapours within the bed which led 

to thermal runaway. The fluidising particles were not able to clean the wall because 
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that the sticking particles were strongly bound to the wall through the viscous 

condensed liquid. 

It was shown in the study that increasing the particle size of the biomass particles 

increases the solid pyrolysed at a certain specific energy input. This was attributed 

to the reduction in the heat losses to the fluidising gas which is caused by the 

reduction in the specific surface area of the particles. Processing larger biomass 

particles adds the advantage of reducing the energy costs for crushing the raw 

feedstock. However, the extent to which the particle size could be increased is 

restricted by the ability of the particles to fluidise.  

The energy consumption in the current microwave fluidised bed system was found 

to be higher than that obtained previously by Robinson et al. (2015) in a fixed bed 

reactor which was 2.2 to 2.5 kJ·g-1 for 60-70 % solid pyrolysis compared to 3.5 to 

4.2 kJ·g-1 in the present study. This was attributed to the heat loss to the fluidising 

gas which was fed at room temperature. The unique advantage of the developed 

fluidised bed process is that it can process larger feed sizes than the fixed bed 

system which had failed to control the thermal runaway and provide homogeneous 

heating for samples size larger than 1.5 cm (around 5 g) as shown by Robinson et 

al. (2015). The other advantage of the present microwave fluidised bed system is 

that it is scalable, and the bed temperature and the solid residence time could be 

controlled by changing the gas velocity. 

There is a lack of published data about the energy consumption in the pyrolysis 

reactor including heat losses in a commercial-scale systems. However, Bridgwater 

(2012) estimated that the pyrolysis process requires about 15 % of the energy in 

the biomass feed. Woods have a gross calorific value of about 18 to 20.5 kJ·g-1 

(Günther et al., 2012). Therefore, based on the 15 % figure, around 2.7 to 3.1 kJ·g-

1 could be considered an acceptable range of energy consumption for wood 

pyrolysis. It is clear that that energy consumption in the current microwave fluidised 

bed system (3.5 to 4.2 kJ·g-1 for sycamore) is higher than this range.  
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However, with some improvements in the process the energy consumption could be 

significantly reduced. These improvements could include preheating the fluidising 

gas which would reduce the heat loss to the gas. However, this would increase the 

capital cost for the heaters. Applying higher power density would also reduce the 

heating time and, therefore, reduce the heat losses as shown through the 

theoretical models in Section 6.3. However, increasing the power density and 

preheating the gas would make it more difficult to control the bed temperature and 

avoid thermal runaway. Applying higher electric field intensities need to yield higher 

power densities increases the probability of electric field breakdown within the 

cavity, which could subsequently damage the reactor. 

It is to be noted here that the specific energy presented in this study was based on 

the absorbed microwave power. However, as shown in Figure 7-5 there is a 

significant amount of reflected power which vary with time ranging between 10 % 

and up to around 90 % of the incident power at the late stages of pyrolysis when 

the loss factor of the bed drops. This large variations in the reflected power are 

associated with batch processing and could be controlled in the case of continuous 

processing where the system could be matched based on the steady-state 

conditions to minimise the reflected power. 

Table 7-3 summarises the advantages and limitations of the developed microwave-

heated fluidised bed system compared to conventionally-heated fluidised bed 

process for biomass pyrolysis.  
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Table 7-3: Summary of the advantages and limitations of microwave heated fluidised bed 
process compared to conventionally heated process for biomass pyrolysis. 

Microwave-heated fluidised bed Conventionally-heated fluidised bed 

The current study presented a batch 

system with only 70 g feed. Needs further 

research and development to put the 

technology on track for scaling-up.  

 

Already at commercial scale. Recently, a 

10 tonne per day plant has been built in 

Finland (Oasmaa et al., 2015) 

The energy consumption for pyrolysis in 

the present study was around 3.5 to 4.2 

kJ·g-1. However, the system can be 

optimised to minimise energy 

consumption. 

 

Energy requirement is estimated at around 

2.7 – 3.1 kJ·g-1 for woody biomass. 

Does not require heating medium as the 

microwave energy is directly absorbed by 

the biomass material. 

 

Requires a heating medium (hot gas and or 

hot sand) for heat transfer. This adds 

capital and operation cost for handling and 

recirculating this medium in the process. 

 

The gas can be fed at room temperature 

generating a cold environment around the 

particle. This limits the unwanted 

secondary degradation reaction. 

 

The gas has to be at temperature higher 

than that of the particles to allow for heat 

transfer. This promotes secondary 

degradations.  

Increasing the particle size improves the 

degree of pyrolysis. This allows for using 

larger particles, reducing the energy 

needed for crushing and preparation. 

 

Smaller particles are needed to improve 

the heat transfer from the heating 

source/medium to the particles. 

 

 

One of the common disadvantages of fluidised bed systems, in general, is the 

limitations with regards to the particle size and shape. It was shown in the present 

study that pine particles are more difficult to be pyrolysed compared to sycamore 

particles mainly because of the highly irregular shape of the softwood. A lower 

degree of pyrolysis was achieved for pine compared to sycamore due to the high 

gas velocity needed to fluidise the pine particles. It is clear that with the current 

setup, it would be even more difficult to process more irregular-shape biomass 



178 

 

particles such as straws. However, adding another inert solid to the system could 

be used to assist the fluidisation and allow a wider range of particle size and shape 

to be processed. This inert solid needs to be transparent to the microwaves. 

The developed microwave fluidised bed process has shown an ability to overcome 

many of the challenges associated with microwave pyrolysis of biomass including 

the improvement in heating uniformity and the ability to control the solid deposition 

in the process, placing it as a viable candidate for scaling-up. However, it has some 

weaknesses including its limitation with regards to the shape and size of the biomass 

material and the difficulty to prevent particles from sticking to the wall during 

processing which can lead to thermal runaway as shown earlier with the seaweed. 

Another weakness is the need for high quantity of inert gas for fluidisation which 

increase the size and duty of the condenser needed for condensing the pyrolysis 

vapours. 

One of the possible ways to overcome these weaknesses is to replace the gas with 

an inert liquid to provide the inert atmosphere needed for the pyrolysis. The liquid 

needs to transparent to the microwaves to allow for selectively heating the biomass 

material. 

The liquid system can provide many advantages over the gas-based systems. It can 

help limit the implications of any thermal runaway that may happen during heating 

as the liquid can prevent the formed char from sticking to the wall of the reactor. 

The presence of the liquid can also limit the possibility of electric field breakdown 

as the electric breakdown voltage of liquids in general is substantially greater than 

that of gases (Wong and Forster, 1982). The liquid system would require less 

condensation duty compared to the gas system as the condensation of the pyrolysis 

vapours can take place within the liquid. The condenser would be needed only for 

condensation and recycle of any evaporated solvent. The liquid can provide more 

flexibility in terms of the shape and size of the biomass material as the fluidisation 
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and flow in liquids is more homogenous and more predictable in the liquids 

compared to the gases (Richardson et al., 2002). 

The following chapter is dedicated for investigating the feasibility of microwave 

pyrolysis in an inert liquid where the proposed liquid system will be discussed in 

more details. The feasibility of the system will initially be investigated theoretically 

including numerical modelling of the heat transfer which will be followed by batch 

microwave pyrolysis experiments. 
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8 MICROWAVE PYROLYSIS IN A LIQUID SYSTEM 

8.1 Introduction 

This chapter investigates the microwave pyrolysis of biomass in a liquid system. 

The proposed system uses liquid instead of gas to provide the inert atmosphere 

required for the pyrolysis reaction. The biomass material is to be selectively heated 

by the microwaves while submerged in the cold liquid. The liquid system can provide 

many advantages over the gas-based systems. It can help limit the implications of 

any thermal runaway that may happen during heating as the liquid can prevent the 

formed char from sticking to the wall of the reactor. The presence of the liquid can 

also limit the possibility of electric field breakdown as the electric breakdown of 

liquids in general is substantially greater than that of gases (Wong and Forster, 

1982). This would give an extra space for increasing the electric field intensity in 

the reactor and, therefore, increasing the heating rate. When considering 

continuous processing, the liquid system would require less condensation duty 

compared to the gas system as the condensation of the pyrolysis vapours can take 

place within the liquid. The condenser would be needed only for condensation and 

recycle of any evaporated solvent.  

The liquid used in the process needs to have certain qualities. It should be inert with 

regards to the pyrolysis reaction. It should also be transparent to the 

electromagnetic field to allow for selectively heating the biomass material without 

losing energy for heating its environment. Aliphatic and aromatic hydrocarbons are 

examples of low loss materials (Metaxas and Meredith, 1983; Robinson et al., 2014) 

that could be used for the current application. The oxygen content of the bio-oil 

makes it immiscible with the hydrocarbon liquids (Bridgwater, 2003; Zhang et al., 

2007). This allows for separating the produced bio-oil from the inert liquid through 

decantation. The boiling point of the liquid is an important factor as the bulk 

temperature of the liquid during processing will be at or below its boiling point. The 
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liquid temperature will have a significant influence on the temperature on the 

surface of the biomass material and the heat flow from the biomass material.  

The aim of this chapter was to investigate the microwave pyrolysis of biomass in a 

liquid system through batch pyrolysis experiments. First, the dielectric properties of 

these liquids and their temperature dependencies were studied. The effect of the 

particle size, the applied power, and the energy input on the degree of pyrolysis 

was investigated. The effect of using different hydrocarbon liquids with different 

boiling points on the degree of pyrolysis was also explored. The degree of pyrolysis 

and energy consumption obtained from the liquid system were compared with the 

fluidised bed process. However, before moving to the experimental part, the energy 

requirement for pyrolysis in the liquid system and the temperature gradient within 

the particle were studied through numerical modelling of the heat transfer within 

the system. 

8.2 Heat Transfer in the Liquid System 

8.2.1 Background 

The heat transfer in the microwave pyrolysis of biomass submerged in a liquid can 

be understood through pool boiling mechanisms. Pool boiling is a type of boiling in 

which a heating surface is submerged in a relatively large body of stagnant liquid 

agitated by the motion of the bubbles (Green and Perry, 2007). 

Pool boiling is commonly divided into four main boiling regions/regimes according 

to the heat flux which is a function of the difference between the hot surface 

temperature and the liquid saturation temperature. These regions/regimes as 

shown in Figure 8-1 are natural convection, nucleate boiling, transition boiling and 

film boiling. They are described as follows (Coulson et al., 1999; Green and Perry, 

2007): 
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Figure 8-1: Boiling curve over the pool boiling regions/regimes. Tsur and Tsat are the surface 
temperature and the liquid saturation temperature respectively. Adopted from (Dhir, 1998; 
Coulson et al., 1999; Green and Perry, 2007) 

 

1. Natural convection: purely convective heat transfer by the superheated 

liquid which forms at the interface between the liquid and the hot surface, 

rising towards the surface. The heat flux in this boiling region increases with 

the increase in the temperature difference as shown in Figure 8-1. 

2. Nucleate boiling: bubbles are formed at the interface between the liquid and 

the hot surface and rise rapidly. The liquid can be subcooled resulting in a 

collapse of the bubbles before reaching the surface (line AB in Figure 8-1), 

or at the saturation temperature resulting in a net vapour evaporation (line 

BC in Figure 8-1). The heat flux in the nucleate boiling regime increases with 

the temperature difference until it reaches a maximum point called the 

critical heat flux or Nukiyama point (point C in Figure 8-1).  

3. Transition boiling: this is a transition region between nucleate boiling the 

film boiling. It is characterised by partial nucleation and the formation of an 

unstable film at the interface between the hot surface and the liquid. The 
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heat flux in this region drops with the temperature difference until it reaches 

a minimum value at the start of the film boiling region called the Leidenfrost 

point (point D in Figure 8-1). 

4. Film boiling: takes place at high values of the temperature difference 

between the hot surface and the bulk liquid leading to rapid formation of 

bubbles, creating a film of vapour. This vapour film prevents the liquid from 

flowing onto the surface causing a substantial reduction in the heat flux. At 

a very high temperature difference, the heat flux rises again due to the effect 

of radiative heat transfer. 

Among the boiling regions, nucleate boiling is the most favourable boiling regime in 

industrial reboilers due to its ability to provide high heat transfer rates. However, 

for the current application, the higher heat transfer rate means greater heat loss 

from the biomass material to the liquid. From the heat losses point of view, film 

boiling is the best boiling region for microwave pyrolysis in the liquid system as it 

provides the minimum heat flux. 

8.2.2 Heat transfer Model Setup 

Numerical modelling was used to study the heat transfer in the liquid system and 

estimate the energy requirement and the temperature gradient within the biomass 

particle. This was achieved by using the same set of equations used for the fluidised 

bed system (Equations 5.7 to 5.9) which were discussed in Section 6.3. 

As in the fluidised bed system, the specific heat capacity of the biomass material in 

the liquid system was included within the equations as a function of temperature 

using the same third-order polynomial displayed in Figure 5-13. The main difference 

between the fluidised bed system and the present liquid system was in estimating 

the particle-to-fluid heat transfer coefficient. 

In the liquid system, the heat transfer coefficient could be estimated from the pool 

boiling theory discussed earlier in this section. For the heat transfer modelling, 
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hexane was used as the liquid in which the biomass particles are submerged. 

However, other hydrocarbon liquids were used in the pyrolysis experiments as will 

be shown later in Section 8.3. Hexane is a hydrocarbon solvent that meets the 

requirement for the liquid pyrolysis of having a low loss factor and being immiscible 

with the pyrolysis oil. It has been used previously for high-pressure liquid-phase 

catalytic pyrolysis (Klaigaew et al., 2015). 

There is a lack of published studies on the pool boiling of hydrocarbons in general. 

One of the few published studies on the pool boiling of hexane that covers a wide 

range of temperature is the work reported by Fardad and Ladommatos (1999). They 

studied the heat flux from a hot surface to hexane up to 300oC surface temperature. 

They reported a critical heat flux of 724 kW·m-2 at around 120 oC and a minimum 

heat flux (Leidenfrost point) of 32 kW·m-2 at around 180 oC as shown in Figure 8-

2.  

 

Figure 8-2: Pool boiling curve of hexane. Adopted from (Fardad and Ladommatos, 1999) 

 

The results reported by Fardad and Ladommatos (1999) and displayed in Figure 8-

2 were used to estimate the particle-to-fluid heat transfer coefficient for the 

numerical modelling in the present study as follows: 
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 ℎ =
𝑞

(𝑇𝑠𝑢𝑟 − 𝑇𝑠𝑎𝑡)
 

8-1 

Where ℎ is the particle-to-fluid heat transfer coefficient (W·m-2·K-1), 𝑞 is the heat 

flux (W·m-2), 𝑇𝑠𝑢𝑟 and 𝑇𝑠𝑎𝑡 are the surface temperature and the liquid saturation 

temperature respectively. 

To solve Equations 5.7 to 5.9 numerically for the liquid system the following 

assumptions were made: 

 The microwave power is absorbed only by the biomass material.  

 Homogenous electric field distribution within the biomass material. 

 A spherical biomass particle with a constant volume during pyrolysis. The 

reduction in the particle weight is accounted for in the specific heat capacity 

calculated from Differential Scanning calorimetry (DSC) measurements, 

which were based on the initial weight. 

 Both the biomass material and the liquid are at 20 oC before starting the 

heating. The liquid temperature increases at the same rate as the particle 

surface temperature until it reaches the liquid saturation temperature. The 

liquid then remains at its saturation temperature even when the solid surface 

temperature continues increasing. 

 The particle-to-fluid heat transfer coefficient below the liquid saturation 

temperature is calculated from the minimum Nussult’s number, 𝑁𝑢, value for 

a spherical particle in a stagnant fluid which is given as 𝑁𝑢 = ℎ𝑑𝑝/𝑘 = 2 

(Coulson et al., 1999). Where 𝑑𝑝 is the particle diameter and 𝑘 is the thermal 

conductivity of the liquid which is 0.126 W·m-1·K-1 for hexane (Green and 

Perry, 2007). 

 Above the liquid saturation temperature, the heat transfer coefficient is 

assumed to increase linearly with the temperature up to the critical heat flux, 

then decrease linearly with the temperature down to the minimum heat flux 

(Leidenfrost point). The heat transfer coefficient is then assumed to stay 

constant throughout the film boiling region. 
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Similar to the fluidised bed system, the calculations for the power density 

requirement and the temperature gradient inside the particle were carried out by 

dividing the particle into 20 control volumes (elements), a core and 19 shells with 

equal thicknesses as shown in Figure 5-11. The temperature within each of these 

elements was assumed constant. Equations 5-7 to 5-9 were then solved for each 

element iteratively with time steps of 0.5 ms adopting the explicit finite difference 

method reported by Versteeg and Malalasekera (2007). The properties of the 

biomass materials (sycamore) were the same as those used in the fluidised bed 

system as listed in Table 5-3. 

8.2.3 Heat Transfer Modelling Results 

Equations 5-7 to 5-9 were solved to estimate the minimum power density required 

to reach 400 oC which is the temperature identified for “safe” pyrolysis without 

slipping into the thermal runaway region as discussed in Section 5.5. Figure 8-3 

shows the increase in the temperature at the centre and on the surface of 1.0 mm 

sycamore particle with the heating time.  

 

Figure 8-3: Temperature rise at the centre and on the surface of 1 mm sycamore particle at 
10.5×108 W·m-3 power density. 
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As can be seen in Figure 8-3, the minimum power density required to reach 400 oC 

at the centre of the particle is 10.5×108 W·m-3. Only 1.5 seconds is needed to reach 

that temperature where an equilibrium is established between the absorbed 

microwave power and heat loss to the liquid leading to no further increase in the 

temperature with time. The minimum power density required to reach 400 oC in the 

current system is an order of magnitude greater than that required in the fluidised 

bed system for similar particle size as shown in Section 5.3. This large power density 

is because of the high rate of heat transfer (loss) to the liquid compared to the gas. 

As shown in Figure 8-3, the temperature at the centre of the particle is 310 degrees 

higher than that of its surface. This large temperature gradient can also be 

attributed to the high heat transfer coefficient to the liquid resulting in a small 

temperature gradient at the interface between the solid and the bulk fluid. 

Increasing the particle size led to a reduction in the power density requirement. 

Only 4.4×107 W·m-3 power density and 32 seconds were needed to reach 400 oC at 

the centre of the particle when a 5.0 mm particle was used. This power density 

resulted in a specific energy of around 1.61 kJ·g-1 compared to 1.75 kJ·g-1 in the 

case of 1.0 mm particle. This reduction in both the power density and specific energy 

with the increase in the particle size is due to the reduction in the heat loss to the 

surrounding liquid caused by the reduction in the specific surface area. 

Further increase in the particle size leads to further reduction in the power density 

and specific energy requirement. Figure 8-4 shows that for 10 mm, a power density 

value as low as 1.4×107 W·m-3 can be enough to raise the temperature at the centre 

of the particle to 400 oC in 60 seconds. As can be seen in Figure 8-4, increasing the 

power density results in an increase in the heating rate and, therefore, a reduction 

in the time required to reach 400 oC at the centre of the particle.  
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Figure 8-4: Temperature rise at the centre of 10 mm sycamore particle at different power 
densities. 

 

Increasing the power density also leads to a reduction in the specific energy as 

shown in Table 8-1. This can be attributed to the reduction in the heat loss to the 

surrounding fluid by reducing the heating time. Similar relationships were found in 

the fluidised bed system as discussed in Section 6.3 with differences in the 

magnitudes with regards to the power density and the heating rate. 

Table 8-1: The specific energy required to heat 10mm sycamore particle up to 400oC at the 
centre as a function of the power density. 

Power density (×107 W·m-3) 1.4 2.0 3.0 4.4 

Heating time (s) 60 37 23.5 16 

Specific energy (kJ·g-1) 0.933 0.822 0.783 0.782 

 

It can be seen from Table 8-1 that the specific energy required to reach 400 oC at 

the centre of the particle at 4.4×107 W·m-3 is only 0.78 kJ·g-1. This value is lower 

than the enthalpy for pyrolysis at 400 oC which was found to be 0.88 kJ·g-1 as shown 

in Table 6-3 in Section 6.3. The enthalpy for pyrolysis is the minimum energy 

required to achieve the pyrolysis without taking into account any heat losses. The 
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reason for obtaining a specific energy lower than the enthalpy of pyrolysis is the 

large variation in the degree of pyrolysis between the centre of the particle and its 

surface due to the large temperature gradient. Figure 8-5 shows the change in the 

temperature gradient inside 10 mm particle with time at 4.4×107 W·m-3. It can be 

seen from Figure 8-5 that the temperature gradient increases with time until it 

reaches about 320 oC after 16 seconds. The temperature at the centre reaches 400 

oC leaving the surface temperature at around 80 oC, which is far below the pyrolysis 

temperature. Under these conditions, less than 10 % of the particle volume is at or 

greater than 400 oC. The degree of pyrolysis over the particle volume could be 

improved by allowing the material to be heated for a longer time and increasing the 

temperature at the centre. As displayed in Figure 8-5, after 25 seconds of heating 

at 4.4×107 W·m-3, the temperature at the centre reaches 500 oC resulting in about 

40 % of the particle volume to be at or greater than 400 oC. 

 

Figure 8-5: Temperature gradient within 10 mm sycamore particle under 4.4×107 W·m-3 

 

Allowing the temperature at the centre of the particle to exceed 400 oC would lead 

to entering the area of char formation and increasing the possibility of the thermal 

runaway. However, the effect of the thermal runaway at the centre of the particle 
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is not as severe as having it on the surface of the particle as the cold surface would 

act as an insulator containing the char and preventing it from sticking to the walls 

and damaging the reactor. 

It is to be noted here that in all the modelled cases, the temperature on the surface 

of the biomass particle was always lower than the critical heat flux temperature 

(Nukiyama point) indicating that the boiling mechanism in these cases is nucleate 

boiling. 

The numerical modelling of the heat transfer showed that pyrolysis in a liquid 

system is theoretically viable if the biomass solid could be selectively heated by the 

microwave energy. In the following sections, the microwave pyrolysis of biomass 

solid submerged in a liquid is investigated experimentally. 

8.3 Dielectric Properties of the Solvents 

The dielectric properties of the hydrocarbon solvents involved in the microwave 

pyrolysis experiments were studied. Figure 8-6 shows the dielectric constant and 

loss factor of the three solvents at 2.47 GHz as functions of temperature. It can be 

seen that over the studied temperature ranges, the hydrocarbon solvents have a 

loss factor of less than 0.005, which is greater than the minimum loss factor value 

of sycamore over the pyrolysis temperature range*. This suggests that the biomass 

material can be selectively heated when submerged in these solvents. A limited 

drop in both the dielectric constant and loss factor of the solvents with temperature 

can be seen in Figure 8-6. This drop can be explained by the reduction in the sample 

mass during measurement due to evaporation. An average reduction of 5.5 %, 10.1 

% and 12.2 % was observed in the volume of the hexane, iso-octane and kerosene 

respectively after the end of the measurements. 

 

                                           
* As shown in Section 5.4, the minimum loss factor value of sycamore at 2.47 GHz and 0.5 g·cm-3 density 

is 0.0075. For the same conditions at room temperature the loss factor of sycamore is 0.117. 
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Figure 8-6: The dielectric constant and loss factor of the three solvents involved in this 
study at 2.47 GHz measured using the cavity perturbation technique. Three repeats were 
made for each measurement and the standard uncertainty is indicated as error bars. 

 

8.4 Batch Pyrolysis Experiments in the Hydrocarbon Solvents 

Description of the experimental setup and methods followed for microwave pyrolysis 

in hydrocarbon solvents are detailed in Section 4.6. The pyrolysis experiments were 

first run using hexane and small sycamore blocks of around 1.0 cm size. Figure 8-

7 (a) shows the reactor and its contents after microwave heating while Figure 8-7 

(b) shows a cross-section cut of the solid blocks after drying them. These results 

prove that a biomass solid can be selectively heated while submerged in a 

hydrocarbon liquid and pyrolysis can happen. It is to be noted here that when the 

biomass blocks are submerged in the solvent, the liquid might seep into the biomass 

because of its porosity. However, the solvent will start evaporating out as soon as 

the temperature inside the biomass block reaches the boiling point of the solvent 

which is much lower than the pyrolysis temperature. 

Figure 8-7 (b) shows that there is a significant variation in the degree of pyrolysis 

between the centre of the block and its surface with char (black in colour) formed 

at the centre indicating a greater degree of pyrolysis. It was found that the overall 
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mass loss was only 25 % for 18 kJ·g-1 specific energy for the case shown in Figure 8-

7. This overall degree of pyrolysis is considerably lower for this level of specific 

energy when compared to the fluidised bed system which showed 60 to 70 % mass 

loss for around 3.5 to 4.0 kJ·g-1 energy input. 

 

 
 

 

 
(a) (b) 

Figure 8-7: The product after heating 1.0cm sycamore blocks in hexane for 72 seconds with 
a specific energy of 18 kJ·g-1: (a) the solid product submerged in the liquid inside the 
reactor, (b) cross-section cut of the dried product.  

 

To improve the degree of pyrolysis and reduce the energy consumption, the biomass 

particle (block) size was increased. Increasing the block size would reduce the heat 

loss to the surrounding fluid resulting in an increase in the temperature at the centre 

at a given energy input as shown through the numerical modelling in Section 8.2. 

Therefore, single larger blocks with the dimensions of approximately 1.5×1.5×4.0 

cm were used. Using such size made the biomass block to float near the surface of 

the solvent as shown in Figure 8-8 (a). The floating of the biomass block was 

attributed to the reduction in its bulk density with the increase in its size. Larger 

sizes have more pores per unit volume contained within the structure reducing the 

overall bulk density.  

To overcome this, a microwave-transparent load/weight was placed on the top of 

the biomass block to support it at the bottom of the reactor as shown in Figure 8-8 

(b). Figure 8-8 (c) shows the reactor contents after the microwave pyrolysis when 

one large biomass block was used. 
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(a) (b) (c) 

Figure 8-8: Processing one large block: (a) the sycamore block floating at the top near the 
liquid surface, (b) the block supported at the bottom of the reactor using a cylindrical 
hollow glass load, (c) the product after the microwave heating. 

 

Figure 8-9 shows the product after microwave pyrolysis of sycamore block in 

hexane. Using the larger single block led to an increase in the degree of pyrolysis 

with a substantial reduction in the energy consumption compared to the smaller 1.0 

cm blocks. Only 2.75 kJ·g-1 was needed to obtain about 40 % mass loss for the 

sample displayed in Figure 8-9, compared to 18 kJ·g-1 to achieve 25 % mass loss 

for the 1.0 cm blocks. 

  
(a) (b) 

Figure 8-9: The solid product after microwave pyrolysis in hexane with 2.75 kJ·g-1 specific 
energy at 1.0 kW forwarded power. (a) Dried block, (b) The block cross-section cut. 
Samples were taken from the centre of the block for TGA analysis as indicated. 

 

Samples 
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Samples from the centre of the block (as indicated in Figure 8-9(b)) and its surface 

(less than 1.0 mm from the edge) were taken. The samples were analysed using 

Thermogravimetric Analysis (TGA) to study the variations in the degree of pyrolysis 

between the centre of the block and its surface. The TGA measurement procedure 

was the same as described in Section 4.3 with a 10 oC·min-1 ramp heating.  

Figure 8-10 shows the weight loss as a function of temperature for the samples 

taken from the processed biomass block as well as a raw biomass sample. It 

confirms the large variation in the degree of pyrolysis between the centre of the 

block and its surface.  

 

Figure 8-10: The weight loss as a function of temperature for the samples taken from the 

centre and the surface of the processed sycamore block shown in Figure 8-9 together with 
an unprocessed sample. 

 

As can be seen in Figure 8-10, the samples from the centre of the block showed 

very limited weight loss with the increase in temperature up to 500 oC, indicating 

that most of the volatile content had already been consumed in the pyrolysis 

reaction. The samples from the surface of the block showed large weight loss similar 

to that from the raw sample suggesting that the surface had experienced a limited 
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degree of pyrolysis. The variation in the degree of pyrolysis can be attributed to the 

large temperature gradient between the centre of the biomass block and its surface 

as explained through the numerical modelling discussed in Section 8.2. The 

microwave power is absorbed by the biomass particle, and not the solvent. 

Therefore, heat is transferred from the particle to the bulk fluid creating an inter- 

and intra-particle temperature gradients, with the temperature on the surface of 

the particle higher than that of the bulk liquid, and lower than that at the centre of 

the particle. 

The effect of the applied power and the energy input on the degree of pyrolysis 

were studied. Figure 8-11 shows the increase in the degree of pyrolysis with the 

energy input at different values of applied power.  

 

Figure 8-11: Increase in the solid pyrolysed with the specific energy at different values of 
incident power.  

 

It can be seen from Figure 8-11 that the applied power has a significant effect on 

the degree of pyrolysis as increasing the applied power leads to an increase in the 

degree of pyrolysis. This can be seen clearly in the greater degree of pyrolysis in 

the case of 1.8 kW compared to 1.0 kW and 1.25 kW. With the 1.8 kW applied 
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power, up to 50 % solid pyrolysed could be achieved at around 1.90 kJ·g-1 specific 

energy while with 1.0 and 1.25 kW power, the degree of pyrolysis is limited to 

around 40 % to 45 % with up to 2.75 kJ·g-1 specific energy as shown in Figure 8-

11. The increases in the degree of pyrolysis with the applied power density was 

discussed through the numerical models in Section 8.2. It was shown that increasing 

the power density leads to a reduction in the specific energy required to reach a 

certain temperature. This was attributed to the reduction in the heating time, 

caused by the higher heating rate, leading to a reduction in the heat loss to the 

surrounding fluid. 

Increasing the energy input beyond 1.9 kJ·g-1 at 1.8 kW applied power resulted in 

the ”explosion” of the biomass block, and some char particles moving from the 

biomass block to the bulk fluid. This “explosion” happened through the bottom face 

of the biomass block as shown in Figure 8-12 which indicates that thermal runaway 

took place on or near the surface of the block at that area.  

  

Figure 8-12: Explosion at the base-face of the biomass block after being heated in hexane 
at 1.8 kW with 2.0 kJ·g-1. 

 

The thermal runaway on the surface could be caused by one of two possible reasons 

or a combination of them. The first is that the narrow space between the reactor 

wall and the biomass block prevents the liquid from flowing back to the bottom of 

~1.5cm ~1.5cm 
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the reactor creating a dry zone of just vapour where the heat transfer coefficient is 

substantially decreased. The second possible reason for the thermal runaway on the 

surface is that the minimum heat flux temperature (Leidenfrost point) is reached at 

the bottom face of the block entering the film boiling regime where the heat flux 

reaches its minimum. Both explanations results in a significant increase in the 

heating rate at the surface due to the reduction in the heat transfer to the 

surrounding fluid. 

As mentioned earlier in Section 8.2, the effect of the thermal runaway becomes 

more severe when it reaches the surface of the particle/block as it may damage the 

reactor. But, when it happens inside the block, the outer layers act as an insulation 

containing the char and protecting the reactor wall. However, this insulation layer 

contributes to the reduction in the overall degree of pyrolysis. 

The effect of using different hydrocarbon solvents with a different boiling point on 

the degree of pyrolysis was studied. Figure 8-13 shows the increase in the degree 

of pyrolysis with the specific energy at 1.8 kW applied power using different 

hydrocarbon solvents.  

 

Figure 8-13: Increase in the solid pyrolysed with the energy input for different solvents. 
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It was found that both iso-octane and kerosene allow for more energy input to be 

applied before the “explosion” caused by the thermal runaway on the surface takes 

place. Both solvents can allow for a specific energy of more than 2.5 kJ·g-1 at 1.8 

kW applied power for the ~1.5×1.5×4 cm sycamore blocks compared to a 

maximum of 1.9 kJ·g-1 for hexane. This is due to the higher boiling points of iso-

octane and kerosene compared to hexane as shown in Table 4-4. Their higher 

boiling points and, therefore, higher Leidenfrost points* give them extra heating 

time before entering the film boiling region where thermal runaway could take place 

on the surface. 

Comparing the degree of pyrolysis in the liquid system represented by Figure 8-13 

to that of the gas-based fluidised bed system represented by Figure 6-9 shows that 

the degree of pyrolysis in the liquid system is limited to around 50 % while with the 

fluidised bed system nearly 70 % pyrolysis could be achieved. This limited degree 

of pyrolysis in the liquid system is mainly due to the large temperature gradient 

within the biomass particle, resulting in unpyrolysed solid on and near the surface. 

This is consistent with the numerical modelling in Section 8.2, and the experimental 

results in Figure 8-9 and Figure 8-10. 

However, in the liquid system, pyrolysis up to 50 % could be achieved with much 

lower energy input compared to the fluidised bed system. Around 2.0 kJ·g-1 specific 

energy is needed to reach 50 % pyrolysis with the liquid system as shown in 

Figure 8-13 compared to more than 3.0 kJ·g-1 needed to achieve the same degree 

of pyrolysis with the fluidised bed system as shown in Figure 6-9. This is due to the 

large particle size used in the liquid system, which allowed the centre of the particle 

to be thermally insulated by the outer layers allowing the temperature at the centre 

to increase rapidly. 

                                           
* Mills and Fry (1982) found a linear relationship between the Leidenfrost point and the boiling point of 
different hydrocarbons. 
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8.5 Conclusions 

In this chapter, the microwave pyrolysis of biomass materials in hydrocarbon liquids 

was investigated. Numerical modelling was used to study the heat transfer in the 

liquid system. It was shown that pyrolysis of a biomass solid submerged in a cold 

liquid is theoretically viable if the biomass can be selectively heated by the 

microwave energy. The results of the numerical modelling also showed large 

temperature gradient between the biomass particle and its surface which was 

attributed to the high heat transfer rate to the surrounding liquid. This large 

temperature gradient was confirmed by the experimental results. 

The dielectric properties of the hydrocarbon liquids involved in the study and their 

temperature dependencies were studied. It was found that the loss factor of the 

hexane, iso-octane, and kerosene is lower than 0.005 suggesting that the biomass 

materials could be selectively heated when submerged in these liquids.  

Batch pyrolysis experiments confirmed that the biomass solid can be selectively 

heated by the microwave energy while being submerged in a hydrocarbon liquid, 

allowing for the pyrolysis to take place. The biomass particle size was found to have 

a significant effect on the degree of pyrolysis. It was shown that using a single block 

of ~1.5×1.5×4 cm gives around 40 % solid pyrolysed with only 2.75 kJ·g-1 specific 

energy at 1.0 kW applied power compared to only 25 % solid pyrolysed with 18 

kJ·g-1 when multiple 1.0 cm blocks were used. Increasing the applied power was 

found to improve the degree of pyrolysis with up to 50 % solid pyrolysed was 

achieved at 1.8 kW incident power. However, it was observed that increasing the 

applied power leads to thermal runaway on/near the bottom face of the biomass 

block. The hydrocarbon solvents with a higher boiling point were found to allow for 

more specific energy before thermal runaway can take place on the surface of the 

biomass block. This was regarded to the longer time that the solvent with higher 

boiling point spend before intering the film boiling region. 
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It was found that the overall degree of pyrolysis obtained using the present liquid 

system is lower than that obtained from the fluidised bed system discussed in 

Chapter 7. This was regarded to the large temperature gradient between the centre 

of the particle/block and its surface in the liquid system leaving a considerable 

fraction of the outer layer of the block unpyrolysed. 

The present liquid system can provide many advantages over the gas-based 

systems. It can help controlling the thermal runaway as the cold surface acts as an 

insulator containing the char and preventing it from sticking to the walls and 

damaging the reactor. The presence of the liquid can also eliminate the possibility 

of electric breakdown even at high electric field intensity as the electric breakdown 

voltage in liquid is extremely high compared to gases. When considering continuous 

processing, the liquid system would require less condensation duty compared to the 

gas system as the condensation of the pyrolysis vapours can take place within the 

liquid. The condenser would be needed only for condensing and recycling the 

evaporated solvent. For a continuous processing system, the liquid inside the 

reactor could be kept at its boiling point temperature. Part of the liquid would 

evaporate as soon as it absorb heat from the biomass material equivalent to its 

latent heat of vaporisation. The condenser would then be needed to compensate for 

only the latent heat of the liquid. The minimum liquid-to-biomass ratio inside the 

reactor and the flowrate of the liquid can be calculated based on the applied 

microwave power density.  

Table 8-2 summarises the advantages and limitations of the gas-based and liquid 

based systems for microwave pyrolysis of biomass. 

Future work should consider studying the quality of the bio-oil produced from the 

liquid system and comparing it to the gas-based microwave pyrolysis systems and 

the conventionally heated systems. Pyrolysis under continuous liquid flow should 

also be considered as a step towards scaling up. The multiphase flow behaviour of 

the liquid and the evaporated vapour needs to be taken into consideration.  
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Table 8-2: Summary of the advantages and disadvantages of the gas- and liquid-based 
systems for microwave pyrolysis of biomass. 

Gas-based microwave pyrolysis Liquid-based microwave Pyrolysis 

Common processing method for pyrolysis. 

Commercial-scale plants (conventionally 

heated) are gas-based. 

 

Not common as processing method for 

pyrolysis. Needs further research and 

development before scaling-up. 

Limitations in terms of particle size and 

shape in fluidised bed systems, which is 

the most common processing technology. 

 

Fluidisation and flow in liquids is more 

homogenous and more predictable 

compare to gases, allowing wider range of 

particle size and shape to be processed. 

 

Large volumes of inert gas is needed for 

fluidisation which lowers the vapour 

pressure of the pyrolysis vapours in the 

condenser. Thus, large condenser would be 

needed. 

 

Condensation of the pyrolysis vapours can 

happen in bulk inert-liquid. Condensers 

would be needed only for the recovering 

and recycling the evaporated inert-liquid. 

Electric breakdown (in the form of arcing 

or plasma) can take place if the electric 

field intensity reaches 30 kV/cm. This 

limits the maximum applicable power for 

large-scale processing. 

 

Electric breakdown voltage in liquids is 

extremely high compared to gases. Thus, 

high electric field intensities (and powers) 

can be applied. 

Thermal runaway may damage the 

processing equipment if char particles 

produced during pyrolysis stick to the 

reactor wall during processing. 

 

High temperature gradient within the 

particle compared to gas-based systems, 

creating a layer of unpyrolysed solid on the 

outer surface of the particle containing the 

char inside. Further, the liquid can help 

preventing the solid particles from sticking 

to the reactor walls. 

However, the high temperature gradient 

limits the degree of pyrolysis.  
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9 CONCLUSIONS AND FUTURE WORK 

The aim of thesis was to study the interactions between biomass materials and 

microwave energy over the pyrolysis temperature range, and to develop a reliable 

and scalable microwave pyrolysis process. 

Dielectric properties of selected biomass materials were studied over the pyrolysis 

temperature range, and their variations with temperature were related to the 

physical and structural changes during pyrolysis. As an attempt to overcome the 

challenges associated with microwave pyrolysis of biomass, a microwave fluidised 

bed process was developed. Batch pyrolysis experiments were carried out to assess 

the yield and quality of the products obtained from the developed process as well 

as the energy requirement. 

Microwave pyrolysis in a hydrocarbon liquid was investigated as a potential 

alternative to overcome some of the limitations and weaknesses associated with the 

gas-based fluidised bed process.  

9.1 Materials Characterisation 

Different biomass materials were chosen for characterisation as possible candidates 

for microwave pyrolysis. The biomass materials involved in this study were pine, 

sycamore, pine bark, wheat straw and seaweed. These materials were chosen 

because of their abundance, low economic value, and suitability for pyrolysis. The 

characterisation involved mainly thermogravimetric analysis and dielectric 

properties measurement. 

The thermogravimetric analysis (TGA) over the range of pyrolysis temperature 

showed different decomposition behaviour for the different biomass materials which 

was related to variations in their chemical composition.  

High-temperature dielectric measurements showed significant variations in the 

dielectric properties of the biomass material with temperature in the range between 

20 oC and 600 oC. These variations were linked to the TGA results and the physical 
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and chemical transformations happening during the heating. It was found that the 

loss factor of the biomass materials reaches a minimum value in the range between 

300 oC and 400 oC. This minimum value is followed by a sharp increase in the loss 

factor due to the char formation, and this is what causes the thermal runaway during 

the microwave heating. It was concluded that for the woody biomass, the operating 

temperature during microwave pyrolysis should be in the range between 350 oC and 

400 oC, which can secure around 70 % to 80 % weight loss. Increasing the 

temperature more than 400 oC would lead to falling into the steadily increased loss 

factor area with no much gain in terms of the weight loss. 

9.2 Microwave Fluidised Bed Process 

A microwave fluidised bed process was proposed as an attempt to overcome the 

challenges associated with microwave pyrolysis of biomass including the heating 

heterogeneity caused by the nature of the standing waves. A systematic approach 

was followed for the process design taking into account the pyrolysis process 

requirements, the microwave-material interactions and the fluidisation behaviour of 

the biomass particles. 

As one of the steps towards designing the microwave fluidised bed process, cold 

fluidisation experiments were carried out for pine, sycamore and seaweed with 

different particle size groups in the range between 45 µm and 2.36 mm. This was 

to study their fluidisation behaviour and to determine their minimum fluidisation 

velocities. It was found that woody biomass particles have a complex fluidisation 

behaviour due to their irregular shape. Fluidisation was achieved at relatively high 

velocities with a turbulent behaviour. It was also found that raw biomass particles 

have greater minimum fluidisation velocities compared to char prepared using 

similar particle size feed. This was related to a drop in the particle’s size and density 

after pyrolysis. During processing, this would lead to particle segregation and could 

be used to control the char deposition and residence time in the bed. 
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The enthalpy for pyrolysis was determined using differential scanning calorimetry 

(DSC). It was found that the enthalpy for pyrolysis of sycamore at 400 oC is about 

0.88 kJ·g-1. Energy balance calculations were performed to estimate the power 

density and the energy requirement in the fluidised bed system including the heat 

loss to the fluidising gas. It was found that the minimum power density required for 

the pyrolysis of 600 µm sycamore particles at 400 oC is 54 MW·m-3. It was also 

shown that the specific energy required for the pyrolysis of the sycamore particles 

in the fluidised bed system can range from 1.07 kJ·g-1 to 4.85 kJ·g-1 depending on 

the power density. 

Electromagnetic simulations were performed to support the cavity design. A 

multimode cavity was chosen based on the lower Q factor and the heating 

homogeneity. 

The microwave fluidised bed system was built, and batch pyrolysis experiments 

were carried out to assess the yield and quality of the products obtained from the 

developed process as well as the energy requirement. It was possible with the 

developed microwave fluidised bed process to achieve homogeneous pyrolysis for 

up to 70 g biomass feed. The pyrolysis experiments were carried out for sycamore, 

pine and seaweed of different particle size groups. For each particle size group, the 

gas velocity was set between two limiting values, a higher value, above which 

unpyrolysed particles are entrained with the fluidising gas, and a lower value below 

which thermal runaway takes place before fluidisation. The movement of the 

particles within the bed acted as a sweeper preventing the solid particles from 

sticking to the wall of the reactor. However, for the seaweed, a layer of solid 

particles was formed on the wall of the reactor during pyrolysis due to the 

condensation of a significant amount of pyrolysis vapours within the bed which led 

to thermal runaway. The fluidising particles were not able to clean the wall because 

that the sticking particles were strongly bound to the wall through the viscous 

condensed liquid. 
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It was shown through the pyrolysis experiments that increasing the particle size 

increases the solid pyrolysed at a certain specific energy input. This was attributed 

to the reduction in the heat losses to the fluidising gas which is caused by the 

reduction in the specific surface area of the particles. Processing larger biomass 

particles adds the advantage of reducing the energy costs for crushing the raw 

feedstock. However, the extent to which the particle size could be increased is 

restricted by the ability of the particles to fluidise.  

The energy consumption in the developed microwave fluidised bed system was 

found to be higher than that obtained previously by Robinson et al. (2015) in a fixed 

bed reactor which was 2.2 to 2.5 kJ·g-1 for 60-70 % solid pyrolysis compared to 3.5 

to 4.2 kJ·g-1 in the present study. This was attributed to the heat loss to the 

fluidising gas which was fed at room temperature. The unique advantage of the 

developed fluidised bed process is that it can process larger feed sizes than the fixed 

bed system which had failed to control the thermal runaway and provide 

homogeneous heating for samples size larger than 1.5 cm (around 5 g) as shown 

by Robinson et al. (2015). The other advantage of the present microwave fluidised 

bed system is that it is scalable, and the bed temperature and the solid residence 

time could be controlled by changing the gas velocity. 

The developed microwave fluidised bed process has shown an ability to overcome 

many of the challenges associated with microwave pyrolysis of biomass including 

the improvement in heating uniformity and the ability to control the solid deposition 

in the process, placing it as a viable candidate for scaling-up. However, it has some 

weaknesses including its limitation with regards to the shape and size of the biomass 

material and the difficulty to prevent particles from sticking to the wall during 

processing which can lead to thermal runaway as shown earlier in the case of 

seaweed. Another weakness is the need for high quantity of inert gas for fluidisation 

which increase the size and duty of the condenser needed for condensing the 

pyrolysis vapours. 
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Future studies on the microwave fluidised bed system should investigate mixing the 

biomass feed with another inert microwave-transparent solid such as dry sand to 

assist the fluidisation and allow for a wider range of particle size and shape to be 

processed.  

Future studies should also investigate the potential improvements in the fluidised 

bed process to reduce the energy consumption. These improvements could include 

preheating the fluidising gas which would reduce the heat loss to the gas. Applying 

higher power density would also reduce the heating time and, therefore, reduce the 

heat losses. However, increasing the power density and preheating the gas could 

make it more difficult to control the bed temperature and avoid thermal runaway.   

Future work should also consider continuous processing as a step towards scaling 

up the process. The relationship between the power density, gas velocity and the 

particle residence time during continuous processing, and their effect on the product 

yield and energy consumption should be investigated. 

9.3 Microwave Pyrolysis in a Liquid System 

Microwave pyrolysis in a hydrocarbon liquid was investigated as a potential 

alternative to overcome some of the limitations and weaknesses linked to the gas-

based fluidised bed process. 

Numerical modelling was used to investigate the heat transfer in the liquid system. 

It was shown that pyrolysis of a biomass solid submerged in a cold liquid is 

theoretically viable if the biomass can be selectively heated by the microwave 

energy. The results of the numerical modelling also showed large temperature 

gradient between the centre of the biomass particle and its surface which was 

attributed to the high heat transfer rate to the surrounding liquid. This large 

temperature gradient was confirmed by the experimental results as shown in 

Section 8.4. 
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Dielectric properties of the hydrocarbon liquids involved in the study and their 

temperature dependencies were investigated. It was found that the loss factor of 

the hexane, iso-octane, and kerosene is lower than 0.005 suggesting that the 

biomass materials could be selectively heated when submerged in these liquids.  

Batch pyrolysis experiments confirmed that the biomass solid can be selectively 

heated by the microwave energy while being submerged in a hydrocarbon liquid, 

allowing for pyrolysis to take place. The biomass particle size was found to have a 

significant effect on the degree of pyrolysis. It was shown that using a single block 

of ~1.5×1.5×4 cm gives around 40 % solid pyrolysed with only 2.75 kJ·g-1 specific 

energy at 1.0 kW applied power compared to only 25 % solid pyrolysed with 18 

kJ·g-1 when multiple 1.0 cm blocks were used. Increasing the applied power was 

found to improve the degree of pyrolysis. Up to 50 % solid pyrolysed was achieved 

at 1.8 kW incident power with only 1.9 kJ·g-1 energy input. However, it was 

observed that increasing the applied power leads to thermal runaway on/near the 

bottom face of the biomass block. The hydrocarbon solvents with a higher boiling 

point were found to allow for more specific energy before thermal runaway can take 

place on the surface of the biomass block. This was regarded to the longer time that 

the solvent with higher boiling point spend before intering the film boiling region. 

It was found that the overall degree of pyrolysis obtained in the liquid system is 

lower than that obtained from the fluidised bed system. This was regarded to the 

large temperature gradient between the centre of the particle/block and its surface 

in the liquid system leaving a considerable fraction of the outer layer of the block 

unpyrolysed. 

The liquid system can provide many advantages over the gas-based systems. It can 

help controlling the thermal runaway as the cold surface acts as an insulator 

containing the char and preventing it from sticking to the walls and damaging the 

reactor. The liquid can also eliminate the possibility of electric breakdown even at 

high electric field intensity as the electric breakdown voltage in liquids is extremely 
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high compared to gases. When considering continuous processing, the liquid system 

would require less condensation duty compared to the gas system as the 

condensation of the pyrolysis vapours can take place within the liquid. The 

condenser would be needed only for condensing and recycling the evaporated 

solvent. 

Future work on the microwave pyrolysis in a liquid should investigate the quality of 

bio-oil produced from the liquid system and compare it to the gas-based microwave 

pyrolysis systems and conventionally heated systems. Pyrolysis under continuous 

liquid flow/recycling through fixed and/or fluidised bed should also be considered as 

a step towards scaling up. The multiphase flow behaviour of the biomass solid, the 

liquid, and the evaporated vapour needs to be studied. 
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11 APPENDICES 

11.1 Appendix A: Particle Size Distribution 

 

Figure A-1: Particle size distribution of the biomass materials after crushing them in a 
shredder using 0.75 mm shredder mesh.  

 

 

Figure A-2: Particle size distribution of char particles after pyrolysis of particles with the 
size distribution shown in Figure A-1. 
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11.2 Appendix B: Mercury Porosimetery Results 

 

Figure B-1: Mercury intrusion results for the biomass particle of the size 212 – 850 µm. 

 

 

Figure B-2: Mercury intrusion results for the char produced from biomass of particle size 
212 – 850 µm. 
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Figure B-3: Density of the biomass particle determined using the Mercury Porosimetery 
technique. The densities were calculated from the mercury intrusion volume at each 
intrusion pressure following the method reported by Mukaida (1981). 

 

 

Figure B-4: Density of the char particles determined using the Mercury Porosimetery 
technique. The densities were calculated from the mercury intrusion volume at each 
intrusion pressure following the method reported by Mukaida (1981). 
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11.3 Appendix C: Numerical Models for the Heat Transfer in the Fluidised 

Bed System 

The temperature gradient within the particle was studied by dividing the spherical 

particle into 20 control volumes (elements); a core and 19 shells with equal 

thicknesses as explained in Figure A-7. The assumptions listed in Section 5.3 were 

applied. The temperature within each of these elements is assumed constant. 

(a) General 

5 
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(b) Core element 
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(c) Outer shell 
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Figure C-1: Control volumes (elements) used for estimating the temperature gradient 
within a particle during the microwave pyrolysis in a fluidised bed process.  

 

The heat conduction, 𝑄, through a spherical shell with an inner diameter, 𝑟1, and an 

outer dimeter, 𝑟2, is given as (Coulson et al., 1999):  
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𝑄 =

4𝜋𝑘(𝑇2 − 𝑇1)

1
𝑟2

−
1
𝑟1

 
C-1 

 

At each element, the increase in the element’s thermal state is the sum of the 

absorbed microwave power by the element and the heat transferred from the 

previous element minus the heat transferred to the next element.  

The heat transfer equations were solved at each element iteratively in both space 

and time. Adopting the explicit finite difference method reported by Versteeg and 

Malalasekera (2007) in which the temperature from the previous time step is used 

to calculate the heat transfer between element at the new time step. A general 

equation for calculating the temperature at each element can be written as follows: 

 
𝑚. 𝑐𝑝

(𝑇𝑛 − 𝑇𝑛
0)

∆𝑡
= 𝑃 +

4𝜋𝑘(𝑇𝑛
0 − 𝑇𝑛−1

0 )

1
𝑟′𝑛

−
1

𝑟′𝑛−1

−
4𝜋𝑘(𝑇𝑛+1

0 − 𝑇𝑛
0)

1
𝑟′𝑛+1

−
1

𝑟′𝑛

 
C-2 

Where: 

𝑚 is the mass of biomass particles per unit volume, g/ m3; 

𝑐𝑝 the specific heat capacity of the biomass particle, J/g.oC.; 

𝑇𝑛 and 𝑇𝑛
0 are the temperature of the 𝑛𝑡ℎ element at time 𝑡 (in seconds) and 

(𝑡 − ∆𝑡) respectively, oC; 

𝑃 is the absorbed microwave power per unit volume, W/m3; 

𝑟′𝑛 is the average of the inner and the outer diameter of the 𝑛𝑡ℎ element, m; 

𝑘 is the thermal conductivity of biomass,  W/m.oC; 

The left-hand side of Equation C-2 refers to the change in the thermal state of the 

nth element. The first term in the right-hand side refers to the microwave power 

absorbed by the nth element. The second term in the right-hand side refers to the 

heat transferred between the n-1th element and the nth element. The third term in 
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the right-hand side refers to the heat transferred between the nth element and the 

n+1th element. 

For the core element, the heat is exchanged with only one side which is the outer 

shell. Therefore, after eliminating the second term of the right-hand side, Equation 

C-2 could be reduced to: 

 𝑚. 𝑐𝑝
(𝑇1 − 𝑇1

0)

∆𝑡
= 𝑃 −

4𝜋𝑘(𝑇2
0 − 𝑇1

0)

1
𝑟′2

−
1

𝑟′1

 
C-3 

For the outer shell, the heat is exchanged with the previous shell and the 

surrounding fluid instead of an outer shell. Therefore, Equation C-2 is replaced by:  

 
𝑚. 𝑐𝑝

(𝑇𝑛 − 𝑇𝑛
0)

∆𝑡
= 𝑃 +

4𝜋𝑘(𝑇𝑛
0 − 𝑇𝑛−1

0 )

1
𝑟′𝑛

−
1

𝑟′𝑛−1

− ℎ. 𝑆(𝑇𝑛
0 − 𝑇𝑎) 

C-4 

 

Where:  

ℎ is the particle-to-fluid heat transfer coefficient, W/m2.oC; 

𝑆 is the surface area of the particles per unit volume, m2/m3; 

𝑇𝑎 is the temperature of the surrounding fluid, oC. 

The third term of Equation C-4 refers to the heat transferred between the outer 

element (shell) of the particle and the surrounding fluid. 

Rearranging Equations C-2, C-3 and C-4 gives: 

The general equation: 

 𝑇𝑛 = 𝑇𝑛
0 +

∆𝑡

𝑚. 𝑐𝑝
[𝑃 +

4𝜋𝑘(𝑇𝑛
0 − 𝑇𝑛−1

0 )

1
𝑟′𝑛

−
1

𝑟′𝑛−1

−
4𝜋𝑘(𝑇𝑛+1

0 − 𝑇𝑛
0)

1
𝑟′𝑛+1

−
1

𝑟′𝑛

] 
C-5 

For the core element: 

 𝑇1 = 𝑇1
0 +

∆𝑡

𝑚. 𝐶𝑝
[𝑃 −

4𝜋𝑘(𝑇2
0 − 𝑇1

0)

1
𝑟′2

−
1

𝑟′1

] 
C-6 
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For the outer shell: 

 𝑇𝑛 = 𝑇𝑛
0 +

∆𝑡

𝑚. 𝐶𝑝
[𝑃 +

4𝜋𝑘(𝑇𝑛
0 − 𝑇𝑛−1

0 )

1
𝑟′𝑛

−
1

𝑟′𝑛−1

− ℎ. 𝑆(𝑇𝑛
0 − 𝑇𝑎)] 

C-7 

 

Equations 8-1,4-13 and 4-14 were solved iteratively with time steps of 0.5 ms. The 

calculations were carried out using Microsoft Excel® 2013 spreadsheets.   
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11.4 Appendix D: Calculations for Inerting the Fluidised Bed Column for 

Pyrolysis 

Base on the British Standards (CEN/TR 15281:2006), the following equation can be 

used for the flow-through inerting calculations: 

 𝐶𝑓 = 𝐶𝑖 +
(𝐶𝑜 − 𝐶𝑖)

𝐸𝑋𝑃(
𝑄 × 𝑡

𝑉
)
 

D-1 

Where: 

𝐶𝑓 = oxygen content after flow purging 

𝐶𝑖 = oxygen content of inert gas which is 0% for the nitrogen feed  

𝐶𝑜 = initial oxygen content which is 21% for fresh air 

𝑄 = inert gas flow-rate. Nitrogen was used with a minimum flowrate of 40 

L/min  

𝑡 = time required for purging. At least 10 second was allowed 

𝑉 = system volume. The volume of the fluidised bed column is ~1.24 L 

 

It can be seen from Figure D-1 that after 10 seconds, the oxygen concentration in 

the bed falls to less than 0.1% at 40 L/min nitrogen flow. 

The same method was used to calculate the time needed to inert the cavity in the 

liquid system discussed in Chapter 7. 
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Figure D-1: The oxygen concentration as a function of time inside the fluidised bed column 
when a nitrogen flowing at 40L/min is fed to the system.  

  

10, 0.097

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

O
x
y
g
e
n
 c

o
n
c
e
n
tr

a
ti
o
n
 (

%
)

Time (s)



228 

 

11.5 Appendix E: Error and Uncertainty 

11.5.1 Standard Uncertainty 

The standard uncertainty, 𝑢𝑖(𝑥), of an 𝑛 measurement repeats of a quantity, 𝑥, is 

the standard deviation of the results, and it is calculated by the following formula: 

 𝑢𝑖(𝑥) = √
∑ (𝑥𝑗 − �̅�)2𝑛

𝑗=1

𝑛 − 1
 E-1 

Where �̅� is the average of measurement results of the quantity, 𝑥. 

In this thesis, the uncertainty intervals (error bars in graphs) were based on the 

standard uncertainty. The results of repeated measurements were, therefore, 

represented as: 𝑥 ± 𝑢𝑖(𝑥). The standard uncertainty provides a level of confidence of 

approximately 68%. 

11.5.2 Relative Standard Uncertainty 

The relative standard uncertainty, 𝑢𝑟(𝑥), is the standard uncertainty divided by the 

average value: 

 𝑢𝑟(𝑥) =
𝑢𝑖(𝑥)

�̅�
 

E-2 

 

 


