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Abstract

In this thesis, the viscous fingering instability of radial immiscible displacement is

analysed numerically using novel mesh-reduction and interface tracking techniques.

Using a reduced Hele-Shaw model for the depth averaged lateral flow, viscous fingering

instabilities are explored in flow regimes typical of subsurface carbon sequestration

involving supercritical CO2 - brine displacements, i.e. with high capillary numbers,

low mobility ratios and inhomogeneous permeability/temperature fields.

A high accuracy boundary element method (BEM) is implemented for the solution of

homogeneous, finite mobility ratio immiscible displacements. Through efficient, explicit

tracking of the sharp fluid-fluid interface, classical fingering processes such as spreading,

shielding and splitting are analysed in the late stages of finger growth at low mobility

ratios and high capillary numbers. Under these conditions, large differences are found

compared with previous high or infinite mobility ratio models and critical events such as

plume break-off and coalescence are analysed in much greater detail than has previously

been attempted.

For the solution of inhomogeneous mobility problems, a novel meshless radial basis

function-finite collocation method is developed that utilises a dynamic quadtree dataset

and local enforcement of interface matching conditions. When coupled with the

BEM, the numerical scheme allows the analysis of variable permeability effects and

the transition in (de)stabilising mechanisms that occurs when the capillary number is

increased with a fixed, spatially varying permeability. Finally, thermo-viscous fingering is

explored in the context of immiscible flows, with a detailed mechanistic study presented

to explain, for the first time, the immiscible thermo-viscous fingering process.
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1. Introduction

1.1 Background and motivation

Interfacial instabilities may arise and subsequently evolve at the interface between

displacing fluids due to the growth of perturbations, forming complex interface

topologies. These perturbations will grow and compete with one another in a non-linear

fashion, altering the overall fluid flow and resulting displacement characteristics. A

common interfacial instability, induced by a disparity in the fluids’ viscosity is the viscous

fingering instability. During the displacement of a high viscosity fluid by a low viscosity

fluid, perturbations greater than a certain wavelength create instabilities along the fluid

interface and promote the growth of long fingers which penetrate into the more viscous

fluid [1] (see Figure 1.1).

The viscous fingering process is an important feature in many practical applications,

particularly those involving the flow through porous media, such as enhanced oil recovery

[2], geothermal heat extraction [3] and carbon sequestration [4]. In these flows, the

‘solutal’ front marks the compositional transition from the injected fluid to the resident

fluid and can occur in a smooth or sharp fashion. In immiscible displacements the

transition is sharp and controlled by capillary forces, where the fluid properties exhibit

discontinues profiles, whilst in miscible displacements the front is smoothed as dispersion

and molecular diffusion mix the fluid properties of the injected and resident fluid [5].

During immiscible displacement in porous media, the flow regime depends greatly on

the capillary number at the interface between the fluids, describing the ratio of viscous

driving forces to capillary forces [6]. The capillary number Ca is defined as µU/γ, where

µ is the dynamic viscosity of the displaced fluid, U is the interfacial velocity and γ is

the surface tension. At capillary numbers above roughly 1× 10−4 with an unfavourable

1
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viscosity contrast, viscous fingering can occur, where long fingers extend into the porous

domain [7]. At capillary numbers lower than 1 × 10−4, capillary fingering can occur,

where the plume advances in a ‘random walk’ fashion, and disconnected globules of the

displaced fluid can remain trapped in the pores of the porous media.

By assuming that the fluid properties vary sharply over the fluid-fluid interface, the

displacement in the porous media can be considered completely immiscible. One

such flow, and the motivation behind the current work is the injection and storage

of supercritical carbon dioxide (CO2) in deep subsurface aquifers, known as CO2

sequestration. In this process, CO2 is captured from industrial processes and stored in

a variety of natural geological structures in supercritical form, in an attempt to reduce

greenhouse gas emissions and rising global temperatures. Suitable geological structures

include depleted oil/gas reservoirs and deep saline aquifers containing brine and mineral

deposits, with storage capacity and safety being of primary importance when assessing

the suitability of an injection site [8]. To have any impact on atmospheric concentration

levels, the CO2 must be stored at least until the end of the fossil fuel era, meaning an

expected storage life of around 100-1000 years [9].

For the site to be suitable for geological storage, the presence of a large enough formation

with high permeability at suitable depth is required. To avoid the loss of injected CO2,

the target formation needs to be overlain by a layer of very low permeability (cap

rock), thus creating both a permeability barrier and a capillary barrier to the upwards

migrating CO2. As the rising CO2 plume reaches the cap rock a layer of the injected

CO2 spreads under the cap rock at some distance from the injection well, of almost

constant thickness.

The lateral spreading and structural trapping of CO2 represents a large proportion of the

CO2 injection and storage life, with complex interfacial interaction occurring between

the CO2, brine and porous media. As the CO2 spreads through a deep saline geological

formation, it will replace the indigenous fluid (brine), thus creating a two-phase flow

system. At the depth of the target formation considered as appropriate for injection,

the injected CO2 is in a supercritical condition with a temperature of the order of 35◦C,

pressure ranging from 10 to 20 MPa and having a density between 0.4 to 0.8 times that

of the surrounding brine. The mobility ratio (inverse of the viscosity ratio) between the

CO2 and brine is typically of the order 10-30 [10]. Under these conditions in a deep
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subsurface aquifer, the CO2 - Brine displacement is immiscible [11]. There is inherent

instability at the interface in the CO2 spreading, due to the difference in fluid properties,

which can give rise to the viscous fingering phenomenon.

The injection of supercritical CO2 will typically occur at a temperature different to

that of the resident brine, creating temperature gradients in the domain that will alter

mechanical fluid quantities such as diffusivity, viscosity, density and surface tension. The

CO2 can be injected at a colder temperature than the resident brine, due to heat loss

en-route to the downhole injection site [12], or through very deep suburface injection

where the resident brine temperature is very high (typically at depths > 3km), e.g.

the In Salah formation in Algeria [13]. CO2 can also be used for combined storage

and extraction in geothermal reservoirs, in which very high temperature brine (T >

150◦C) can be extracted for energy use [14]. The CO2 may also be injected at a higher

temperature than the resident brine, for pre-conditioning purposes [15] or for plume

evolution monitoring [16]. These temperature gradients can create a process known

as thermo-viscous fingering, whereby the thermal dependence of viscosity affects the

underlying mechanisms of the fingering process.

The structural properties of the aquifer can also dramatically affect the CO2 plume

evolution and viscous fingering process. A typical subsurface aquifer will have an

inhomogeneous permeability that varies in space as a consequence of the way it has

been formed and re-shaped over many millions of years, altering the natural stress state

of the aquifer [17]. Abrupt changes in aquifer permeability can exist due to fault lines and

changes in the aquifer material [17]. As well as pre-existing variations in permeability,

the CO2 injection process itself can alter the permeability of the aquifer. During CO2

injection, formation dry-out and precipitation of minerals (such as salt from pre-existing

brine) near the injection well can reduce the porosity and permeability of the aquifer

[18]. The formation of carbonic acids in the brine due to reactions with the injected CO2

can dissolve the calcite in sandstone aquifers, increasing the permeability [19]. Injection

pressures over the formation pressure of the aquifer can also induce fracturing and fault

slip, which can increase the permeability in a region surrounding the injection well

[20]. Understanding the effect of these permeability variations on the flow regime and

interfacial evolution of injected CO2 is critical in understanding the long term storage

capabilities of supercritical CO2.
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Due to the uncertainty associated with deep geological injection, numerical models are

often used to predict the movement of CO2, to back-up experimental observations and

assess the life-cycle of the CO2 [4]. Since the structural trapping regime accounts for the

majority of the storage capacity in a subsurface aquifer, the viscous fingering process

that can occur during the lateral spreading of the CO2 under the cap rock must be fully

understood in order to predict the life cycle of the CO2. In recent years there have been

significant breakthroughs in understanding the viscous fingering process, however, there

still exist many unknown factors associated with the fingering process, especially under

the conditions found in CO2 sequestration.

Due to the practical difficulties associated with monitoring the viscous fingering process

in detail in a subsurface aquifer, there has been extensive research on viscous fingering

occurring in Hele-Shaw cells, where the fluid flows between two thinly separated plates

[21]. The mobility of a fluid within a Hele-Shaw cell is defined by the cell separation and

the viscosity, giving rise to an intrinsic permeability, analogous to that in porous media

flows. The study of viscous fingering in Hele-Shaw cells is often used to provide insight

into the more complex problem in porous media, allowing reduced models to shed light

on the mechanisms controlling the viscous fingering regime [1]. As well as analytical

and numerical models of the flow, detailed experimentation is possible under laboratory

conditions using a relatively simple Hele-Shaw cell setup [22].

There is substantial experimental evidence previously reported in the literature, where it

is shown that the core immisicible viscous fingering processes of shielding, spreading, and

splitting are present during displacements in both Hele-Shaw cells and porous media,

determining the pattern of the fluids’ interface (see for example [1, 22, 23]). Chouke et

al. observed the formation of fingering patterns in immiscible displacement in porous

media, which show variation of the length scales with increasing velocity and viscosity

contrast, i.e. with increasing capillary number [24]. Fingering takes place on many scales,

including a macroscopic one, suggesting the existence of a characteristic macroscopic

length scale or wavelength.

The analysis of the immiscible viscous fingering process in a Hele-Shaw cell although not

directly analogous to the two-phase flow in porous media ([1]) can be used to provide

insight into the basic fingering mechanisms that could occur during the flow in porous

media. The immiscible Hele-Shaw system is a member of Stefan-type moving boundary
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1

2

3

Figure 1.1: Viscous fingering occurring during the radial injection of air into a Hele-Shaw
cell filled with glycerine. Numbers correspond to the three basic fingering mechanisms:
1 - Spreading; 2 - Shielding; 3 - Splitting. Figure reproduced from [22].

problems (at the quasi-static limit), which occur in many other natural processes (such

as dendritic solidification [25]), making the study of the fingering process in Hele-Shaw

cells of fundamental interest in its own right [23].

The three main mechanisms governing the immisicible viscous fingering process are

shown in Figure 1.1, namely: spreading, shielding and splitting. As a finger grows due

to the injection of an inner, less viscous (more mobile) fluid, the front of the advancing

finger is spread continuously, creating a fan like structure with an increasingly flat front.

The early stages of finger growth occur in a linear regime, where perturbations greater

than the critical wavelength form into separate fingers. The fastest growing fingers

have a wavelength proportional to the square root of the capillary number of the flow

[22, 26, 27]. Linear stability analysis gives good correspondence with both radial and

channel flows, during the early stages of finger growth. However, when the coupling

of the different modes of perturbation becomes significant, the regime becomes weakly

non-linear and processes such as shielding and splitting occur [28]. By including second

order terms in the Fourier decomposition of the modes of perturbation, [28] shows that
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harmonic and sub-harmonic perturbation modes are responsible for tip splitting and

finger competition respectively.

Past the weakly non-linear stage, during the later stages of finger evolution, finger growth

is only fully described by the full coupling of modes in the Fourier decomposition of the

perturbation. When flat sections at the front of the advancing finger become larger

than the critical length scale of bifurcation, tip-splitting occurs, whereby the tip will

bifurcate into smaller fingers creating a more convoluted surface. These fingers will

grow and compete with each other, with larger fingers shielding the growth of smaller

fingers in a non-linear regime controlled by interfacial dynamics. The non-linear finger

evolution is key to predicting the late stage interfacial behaviour and controls the extent

to which the injected plume displaces in the domain. Since current stability analyses are

valid only in the linear or weakly non-linear stages of finger growth, it is necessary to

use numerical methods to fully explore the non-linear regime and describe the resulting

finger growth and interaction.

This thesis aims to explore the non-linear stages of the viscous fingering instability in

immiscible flows, furthering understanding of the underlying mechanisms and shedding

light on the various processes that can occur during the CO2 - brine displacement

process. By studying the problem in Hele-Shaw cells using advanced numerical methods,

the mechanisms for the instability in the non-linear stages of finger growth can be

explicitly studied and the different thermal and structural effects explored in detail.

The thesis does not aim to model the full, complex 3D evolution of the CO2 plume in

porous media, instead exploring certain aspects of the displacement regime and viscous

instability to better understand the underlying mechanisms that control the immiscible

viscous fingering process.

1.2 Thesis aims and objectives

The study of immiscible viscous fingering in this thesis is motivated by the interfacial

processes and conditions that are found during the injection and storage of supercritical

CO2 in brine filled subsurface aquifers. The type of viscous fingering that occurs in

these injection scenarios has not been explored in detail and there is a lack of knowledge

regarding the key mechanisms that control the flow in these regimes. In order to study
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the viscous fingering phenomena at these conditions, a Hele-Shaw approach will be

used to reduce the complexity of the full porous media problem and focus on the key

mechanisms that govern the immiscible viscous fingering process.

The main objective of this work is to develop a suitable model and numerical methods

to track two-phase interfacial flows in a Hele-Shaw cell at finite mobility ratios and

capillary numbers typical of CO2 injection and storage. This will allow the exploration

of mobility ratio, capillary number and dynamic wetting layer effects on the late stage

non-linear viscous finger growth, specifically under the conditions found in subsurface

aquifers during CO2 injection.

This study also aims to provide insight into the thermal and structural effects that are

likely to occur during the injection and storage of CO2 in subsurface aquifers, using

the Hele-Shaw model. Through development of novel numerical methods, the effects of

inhomogeneous permeability and temperature dependent viscosity should be quantified

and their relative importance in the immiscible viscous fingering regime assessed.

Although this study concerns the viscous fingering problem in Hele-Shaw cells, the

numerical methods are developed with general applicability to moving multi-zone

transport problems in fluid mechanics. All numerical methods in this study are

programmed by the author using the FORTRAN language for both regular desktop

PC architectures and high performance computing clusters.

1.3 Thesis Structure

In each chapter, a summary is first given, followed by a detailed literature review

pertaining specifically to the content of the chapter. At the end of each chapter a

brief conclusion is also presented. References for each chapter are included in a single

bibliography at the end of the thesis.

In chapter 2 finite mobility ratio immiscible displacement in Hele-Shaw cells is explored.

A novel boundary element method is implemented which utilises a hypersingular integral

subtraction technique, in order that high order cubic B-Spline boundary elements can be

employed. The effects of finite mobility ratio and high capillary number on the viscous

fingering regime are explored at the early and late stages of finger growth. The chapter
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concludes with long time scale simulation results of viscous fingering using realistic CO2

injection conditions and asymmetric initial conditions.

Chapter 3 introduces a Picard iteration scheme to evaluate the non-linear capillary

pressure associated with dynamic wetting layers in Hele-Shaw cells. This allows the

analysis of wetting layer effects, and their contribution to the late stage tip-splitting

instability of viscous fingering.

For the solution of moving boundary transport problems with a multi-zone interface

(for use in chapter 5 & 6), an adaptive radial basis function-finite collocation (RBF-FC)

numerical method is developed in chapter 4. The method is validated on several

transport problems, including steady-state and transient convection-diffusion problems

both with single and multi-zone representations.

The embedded multi-zone RBF-FC method is used in chapter 5 in conjunction with

the BEM from chapter 2 to solve immiscible displacement in Hele-Shaw cells with

inhomogeneous mobility. Specifically, the case of inhomogeneity arising from a variable

plate separation (cell permeability) is explored, with detailed analysis on the effects of

variable cell permeability on the viscous fingering evolution.

In chapter 6, the adaptive multi-zone RBF-FC method is used with the BEM to solve the

problem of transient heat transfer between immiscible fluids at different temperatures

in a Hele-Shaw cell. The transient heat transfer is solved using the auxiliary multi-zone

method presented in chapter 4 in order to evaluate the temperature dependent viscosity.

This model and the numerical methods allow thermo-viscous fingering to be explored

for the first time in the context of immiscible flows, at the conditions apparent in CO2

injection.

Finally, in chapter 7 the thesis is concluded, and recommendations for future work are

given.



2. Finite mobility ratio immiscible

displacement in Hele-Shaw cells

Summary

In this chapter, the interaction between two immiscible fluids with a finite mobility ratio

is investigated numerically within a Hele-Shaw cell. Fingering instabilities initiated at

the interface between a low viscosity fluid and a high viscosity fluid are analysed at

varying capillary numbers and mobility ratios using a finite mobility ratio model.

Firstly, the governing lubrication model and the specific radial injection Hele-Shaw case

are formulated for use throughout the thesis. A boundary element numerical scheme is

then presented for the finite mobility ratio case, based on the work of [29]. The original

work is extended to allow the solution of finite mobility ratio flows through the direct

evaluation of a hypersingular integral. The boundary integral equation is solved using

a Neumann convergent series with cubic B-Spline boundary discretisation, exhibiting

6th order spatial convergence. The convergent series allows the long term non-linear

dynamics of growing viscous fingers to be explored accurately and efficiently.

Simulations are presented in low mobility ratio regimes, revealing large differences in

fingering patterns compared to those predicted by previous high (and infinite) mobility

ratio models. Most significantly, classical finger shielding between competing fingers is

inhibited. Secondary fingers can possess significant velocity, allowing greater interaction

with primary fingers compared to high mobility ratio flows. Eventually, this interaction

can lead to base thinning and the breaking of fingers into separate bubbles.

9
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2.1 Introduction

Viscous fingering occurs during the displacement of a high viscosity fluid by a low

viscosity fluid, in which instabilities may evolve to form complex interface topologies.

Perturbations greater than a certain wavelength create instabilities along the fluid

interface and promote the growth of long fingers which penetrate into the more viscous

fluid. The fingering regime under consideration in this work stems from the immiscible

displacement of CO2 and brine in a deep subsurface aquifer, in which the mobility ratio

between the fluids is low and the characteristic capillary number is high, creating highly

ramified structures.

Since the work of Saffman and Taylor in 1958 [21], there has been extensive research on

viscous fingering occurring in Hele-Shaw cells, where the fluid flows between two thinly

separated plates. The mobility of a fluid within a Hele-Shaw cell is defined by the cell

plate separation and the viscosity, giving rise to an intrinsic permeability, analogous to

that in porous media flows.

The case of immiscible displacement is characterised by a sharp interface, across which

the properties of the fluids (such as viscosity and density) vary discontinuously [1].

The first attempt to provide a theoretical analysis of the onset of immiscible viscous

fingering in porous media was by Chouke et al. in 1959 [24]. They assumed that

there was complete displacement of one fluid by the other, using the similarity between

Hele-Shaw and porous media flows and ignoring the zone of partial saturation or volume

concentration of the displacing fluid behind the front. In the case of two dimensional

immiscible displacement in a porous medium, the finger characteristic width scale

predicted by a Hele-Shaw approximation under predicts the experimental observations.

This has led to the hypothesis of an effective surface tension, larger than the molecular

surface tension and function of the wetting conditions, that varies with the large-scale

curvature at the macro-scale (see [30]). The use of a modified jump condition in terms of

the effective surface tension is known as Chouke’s boundary condition and the resulting

interface instability analysis is referred to Hele-Shaw-Chouke theory (for more details

see the review article [1]).

An alternative approach to study the viscous fingering instability of the displacement

of immiscible fluids in a porous media can be obtained from the classical porous
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media formulation of multiphase flows in terms of the saturation index, Sw, where an

overlapping region between the fluids is considered for 0 ≤ Sw ≤ 1, without definition of

the fluid interface. This type of formulation is now one of the most popular approaches

used in the numerical solution of immiscible displacement in porous media (see [10] and

[31]).

In the multiphase flow approach, the variation in saturation in the overlapping region

results in a gradual change of the mobility of both phases. This type of analysis is closely

related to the stability of graded mobility processes, see [32] and [33], where depending

upon the mobility function a displacement that has an unfavourable viscosity ratio may

still be linearly stable, even at infinite capillary number.

Both types of models for immiscible displacement in porous media, i.e. the saturation

index (multiphase flow) and sharp front (Hele-Shaw-Chouke), are consistent with

the main hypothesis of Darcy flow, i.e. seepage average flow. In the saturation

index approach, the flow field of both fluids in the region near the front is averaged

in a representative elementary volume (REV) resulting in a type of fluid mixture

characterised by the saturation index, Sw. On the other hand, in the sharp front

approach, the irregular and complex interface at the porous media is averaged in a

representative smooth surface.

In this thesis, a 2D Darcy model is used to analyse the simplified problem of viscous

fingering in a Hele-Shaw cell, using a sharp front approach. By considering that the flow

between the plates in the Hele-Shaw cell follows a Poiseuille profile, the Stokes equations

can be reduced to a Darcy equation by depth-averaging across the gap. The immiscible

displacement of the fluids is then described by 2D potential flow in the plane of the

Hele-Shaw cell.

The sharp front Hele-Shaw approach is used in preference to the saturation index

approach in order to better characterise the basic fingering mechanisms that occur at the

immiscible interface between two fluids. Since the saturation approach uses a smooth

approximation for the interface location, some details of the fingering process may be lost

at the smaller lengthscales. The approach used in this work does not intend to analyse

the full complexity of the 3D porous media flow, instead providing insight into the basic

mechanisms for the viscous fingering instability between two immiscible fluids, which
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is inherent in many physical situations - beyond those found solely in porous media.

The Hele-Shaw approximation allows the fundamental characteristics of the fingering

regime to be explored in greater detail than is possible with a large scale simulation of

the analogous flow in a porous medium. The full porous media problem requires the

solution of a different set of partial differential equations (PDEs) that are beyond the

scope and intent of this work.

During immiscible displacement, the advancing front is defined by kinematic and

dynamic matching conditions at the interface of the two fluids. The surface tension and

curvature cause a jump in the pressure which along with continuity of normal velocities

at the interface must be matched by the solutions in both fluid domains. Detailed and

robust analyses of immiscible displacement in Hele-Shaw cells have been the subject of

many publications in the literature including the review article “Surprises in viscous

fingering” by Tanveer [26].

Most previous work in the literature has focussed on flow regimes where the mobility

ratio of the fluids is typically very large, such as gas-oil displacement occurring in

enhanced oil recovery. Therefore, most numerical approaches consider only the external

fluid, with an injected fluid of negligible viscosity, resulting in an infinite mobility ratio

model [34–36]. Immiscible displacement with finite mobility ratio (occurring in CO2

injection) has not been as extensively explored, mainly due to difficulties associated

with matching the conditions for both internal and external flows at the interface.

Boundary element methods (BEMs) are one of the most popular techniques for solving

immiscible displacement in a Hele-Shaw cell, whereby the dimensionality of the problem

is reduced by one and accurate representation of the surface is provided, explicitly

tracking it through time. Although only the surface of the problem has to be discretised,

a fully populated collocation matrix is generated due to the integral equations being

used. This can lead to very slow solution times and poor scaling. Li [36] uses scaling

techniques to rescale time and space so that the interface can evolve significantly faster

without changing the interface, allowing much longer simulated times to be run.

In addition to BEMs for use in the limit of infinite mobility ratio, BEMs have also

been applied for finite mobility ratio flows, where the viscosity of both fluids is

considered, resulting in a finite mobility ratio. These methods typically solve immiscible
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displacement between fluids with high mobility ratio, effectively reducing the model

to that of an infinite mobility ratio [35, 37, 38]. Utilising a direct boundary integral

approach, [37] and [38] are able to solve directly for the surface velocity to create a

finite mobility ratio model applicable in both fluid domains. [37] evaluates a set of

integral equation systems expressing the internal and external fluid domains in terms of

their corresponding integral equation formulations with an auxiliary external boundary

enclosing the outer fluid domain. Using an auxiliary external boundary introduces

additional error into the solution, which can be reduced by moving the boundary far

into the external domain at the expense of increased computational cost.

The auxiliary external boundary can be evaluated analytically in the limit that the

boundary tends to infinity. When the external boundary is evaluated asymptotically at

infinity, it gives rise to the solvability condition for the unique solution of the infinite

mobility ratio problem [39]. An alternative approach to deal with the external boundary

is presented in [38], in which the integral equation is transformed using a Green’s function

and periodic boundary conditions, meaning the evaluation of an auxiliary external

boundary (S∞) can be avoided. This comes at the expense of introducing a periodic

solution in the domain and the need to solve a Cauchy weakly singular integral.

Some authors propose the use of an indirect boundary integral approach, whereby a

fictitious density variable is computed before the velocity is reconstructed at the interface

between the two fluids [36, 40]. By utilising an indirect approach solely in terms of double

layer potentials, the need to evaluate an auxiliary external boundary is avoided due to

the double layer potential asymptotic condition at infinity.

To ease the computational cost imposed by the front tracking methods above, alternative

approaches can be used whereby the interface is captured implicitly, such as the volume

of fluid method [41], the diffuse interface method [42] and the level set method [43]. In

these works, long term dynamics can be efficiently modelled as fully populated matrices

are not encountered. However, as the interface is not explicitly tracked, events that occur

at a length scale smaller than the volume size or transition region cannot be accurately

captured.

Experimental results from [44], along with numerical results from [42] and [41] suggest

that the basic fingering mechanisms such as shielding, spreading and tip-splitting that
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occur in low mobility ratio flows are vastly different to those in infinite (or very high)

mobility ratio flows. Due to the small fingers in the domain (typically those that have

branched from the side of a primary finger) possessing significant velocity compared to

those in infinite mobility ratio models, finger interaction becomes much more prominent

and the resulting competition can lead to coalescence and breaking [41].

To study the interaction processes and the long term evolution of low mobility ratio

flows characterstic of CO2 sequestration, a non-dimensional finite mobility ratio model

is formulated based on a direct boundary element approach first presented in [29].

The finite mobility ratio formulation proposed by Power and Wrobel [29] has not been

previously implemented in the literature with high order boundary elements. Previous

work has focused on indirect methods with constant boundary elements, or infinite

mobility ratio approaches [29, 40]. In the proposed method, the hypersingular integral

arising from the single integral equation is evaluated explicitly, resulting in a second kind

Fredholm equation, which can be solved through the use of an analytical Neumann series.

Numerically, the Neumann series is truncated using a finite number of terms, giving rise

to a convergent series solution with good agreement to the analytical Neumann series.

The need to evaluate an auxiliary external boundary is present in all direct formulations.

However, in the proposed method, by evaluating the auxiliary external boundary

asymptotically at infinity, the resulting integral equation avoids direct surface integration

of the auxiliary external boundary, whilst maintaining solvability of the internal and

external domains. Using explicit interface tracking, the velocity of the interface can

be accurately computed allowing high capillary number flows to be explored. The

computational cost of the convergent series scales with the square of the number

of boundary elements (quadratic scaling), meaning the long term effects of finger

interaction can be examined more efficiently than previous direct numerical approaches

that exhibit cubic scaling [37]. The resulting numerical method allows the effective

modelling of a moving interface in a Hele-Shaw cell, using a physically realistic mobility

ratio.

In this chapter, the mathematical model for Hele-Shaw flow is first presented, followed

by the model for radial immiscible displacement and the boundary element method.

Numerical performance and validation studies of the numerical scheme are then

performed. After validation of the numerical method, results for varying mobility ratio
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and capillary number are shown, concluding in simulations focusing on longer term

interface evolution to showcase the new finite mobility ratio approach.

2.2 The flow in a Hele-Shaw cell

In this section, the lubrication equations for the flow in a Hele-Shaw cell will be derived.

Throughout this thesis, the indices i, j, k are used for spatial coordinates and are summed

in the usual Einstein notation convention, the index l is used to indicate the fluid zone.

A schematic representation of a typical Hele-Shaw cell is shown in Figure 2.1, where the

fluid-fluid interface is shown by the blue line. The three dimensional flow in each fluid

region in the Hele-Shaw cell is governed by the incompressible Navier-Stokes equation

for the conservation of momentum and the equation governing conservation of mass, in

Cartesian coordinates given as:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂P

∂xi
+ µ

∂2ui
∂xj∂xj

(2.1)

∂ui
∂xi

= 0 (2.2)

Where, P is the pressure, u is the fluid velocity, ρ is the density and µ is the

viscosity. Gravitational body accelerations have been neglected due to the very small

variation in the vertical direction. To derive the lubrications equations, the following

non-dimensional scalings are used:

x1 = Lx′1, x2 = Lx′2, x3 = δLx′3

u1 = Uu′1, u2 = Uu′2, u3 = δUu′3

b = δLb′, P =
µU

δ2L
P ′, t =

L

U
t′

(2.3)

Here, L and U are the long wave length and velocity scales respectively, which are chosen

based on the problem being solved. For example, in the rectilinear Hele-Shaw cell (akin

to that shown in Figure 2.1), the length and velocity scale could be L = W, U = Un

where W is the cell width, and Un is the normal front velocity. However in radial

injection problems, they may be chosen as L = R, U = Q/R where R is the interfacial

radius and Q is the injection flux. For this derivation however, it is adequate to consider



Chapter 2. Finite mobility ratio immiscible displacement 16

them purely as long wave scales in the problem domain. At the smaller scale, b is the

plate separation with the ratio δ = b/L defining the relative magnitude of the small

and large length scale variations in the domain. t is the time, and P is the pressure.

The pressure length scale is chosen to balance viscous and pressure terms that will

become apparent later in the derivation. Substituting the non-dimensional variables

x1

Plate separation, b

Injection

Flux, Q

R Un

x2

x3

Figure 2.1: Sketch of a typical Hele-Shaw cell and injected fluid, the blue line represents
the fluid-fluid interface.

into the original equations (2.1) and (2.2), after rearranging the following equations can

be formed:

δRe

(
∂u′1
∂t′

+ u′1
∂u′1
∂x′1

+ u′2
∂u′1
∂x′2

+ u′3
∂u′1
∂x′3

)
= −∂P

′

∂x′1
+ δ2∂

2u′1
∂x′21

+ δ2∂
2u′1
∂x′22

+
∂2u′1
∂x′23

(2.4)

δRe

(
∂u′2
∂t′

+ u′1
∂u′2
∂x′1

+ u′2
∂u′2
∂x′2

+ u′3
∂u′2
∂x′3

)
= −∂P

′

∂x′2
+ δ2∂

2u′2
∂x′21

+ δ2∂
2u′2
∂x′22

+
∂2u′2
∂x′23

(2.5)

δ3Re

(
∂u′3
∂t′

+ u′1
∂u′3
∂x′1

+ u′2
∂u′3
∂x′2

+ u′3
∂u′3
∂x′3

)
= −∂P

′

∂x′3
+ δ4∂

2u′3
∂x′21

+ δ4∂
2u′3
∂x′22

+ δ2∂
2u′3
∂x′23

(2.6)

0 =
∂u′1
∂x′1

+
∂u′2
∂x′2

+
∂u′3
∂x′3

(2.7)

Where, Re = ρUb/µ is the Reynolds number that quantifies the relative importance of

inertial and viscous forces in the flow using the plate separation as the characteristic

length. The lubrication approximation assumes that the reduced Reynolds number

Re′ = δRe and δ are both small, i.e., Re′ << 1, δ << 1. At the first order of

approximation for small δ, and returning back to dimensional form, the above equations
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reduce to:

µ
∂2u1

∂x2
3

=
∂P

∂x1
(2.8)

µ
∂2u2

∂x2
3

=
∂P

∂x2
(2.9)

0 =
∂P

∂x3
(2.10)

0 =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
(2.11)

It is worth noting, that in equations (2.8) to (2.11) the pressure has been kept in the

formulation due to the viscosity scaling used in (2.3). If the pressure had been scaled

with inertial terms, as in common in high Reynolds number flows, the pressure would

have been lost in the formulation, resulting in a trivial solution. Integrating equations

(2.8) and (2.9) across the cell gap from 0 ≤ x3 ≤ b, using the boundary conditions

u1 = u2 = 0 at x3 = 0 and x3 = b, the following equations are formed:

u1 = − 1

2µ

∂P

∂x1

(
bx3 − x2

3

)
(2.12)

u2 = − 1

2µ

∂P

∂x2

(
bx3 − x2

3

)
(2.13)

The average velocities ui are given by:

ui =
1

b

∫ b

0
ui dx3 (2.14)

Using the average velocity and integrating equations (2.12), (2.13) and (2.11) across the

cell gap, the following lubrication equations are formed:

u1 = − b2

12µ

∂P

∂x1
(2.15)

u2 = − b2

12µ

∂P

∂x2
(2.16)

∂ (bu1)

∂x1
+
∂ (bu2)

∂x2
= 0 (2.17)

Equations (2.15) to (2.17) represent the average flow field in the gap, i.e. the Darcy flow

in a Hele-Shaw cell. Note, to form equation (2.17), Leibniz’s rule was used assuming

the cell plates are not moving. Using scalings appropriate to the thin cell, slow flow

problem, inertial effects are removed from the original Navier-Stokes equations and by
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depth-averaging in the vertical direction, velocity dependence through the thin film is

removed. These equations will be used in the rest of the thesis as the basis behind the

different Hele-Shaw models. Although the equations describe the fluid flow in each flow

region, they also require suitable conditions at the interface between the two fluids and

at the x1-x2 plane boundaries to close the problem.

2.2.1 Radial immiscible displacement

In this thesis, a circular Hele-Shaw cell of infinite radius is considered, in which high

viscosity fluid is displaced by the injection of a less viscous fluid. The low viscosity

invading fluid (such as CO2) occupies region Ω1 whilst a high viscosity fluid (such as

brine) occupies the external region Ω2, shown in Figure 2.2. The initial interface has

a perturbation given in Figure 2.2 as ε = r0ε0 cos (6θ) where r0 is the unperturbed

interface radius, ε0 is the perturbation amplitude and θ is azimuthal angle around

the interface. A symmetric perturbation is shown in Figure 2.2, which is used as the
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Ω2

x1

x2

r0

ε

r

Figure 2.2: Planar view of the radial injection Hele-Shaw configuration. The initial
interface here has a radius given by r = r0 + ε
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initial interface conditions in this chapter. The symmetric perturbation acts to initiate

instability so that fingering effects can be seen at several locations on the interface. An

asymmetric perturbation is used later in section 2.7, to mimic naturally occurring noise

and disturbance within the system.

The fluid mobility in region l at a point x = (x1, x2) is related to the Hele-Shaw plate

separation b(x) and the fluid viscosity µl(x) by:

Ml(x) =
b(x)2

12µl(x)
(2.18)

The b(x)2/12 term in the mobility refers to the intrinsic permeability of the Hele-Shaw

cell, defined by the plate separation. Note, that in (2.18), both the plate separation and

viscosity can vary in space, which is important for the analyses in chapter 5 and 6. For

the flow between two thinly separated plates in a Hele-Shaw cell, the depth averaged

pressure Pl and two dimensional cross-sectional average Darcy velocity uli in each fluid

region l can be expressed through Darcy’s law:

uli(x) = −Ml(x)
∂Pl(x)

∂xi
(2.19)

Note, the over-bar on the average velocity has been dropped here for convenience, since

the depth averaged velocities are used throughout this thesis as the velocities in the

two-dimensional Hele-Shaw problem. The flow field satisfies conservation of mass that

can be written in terms of the Darcy velocity and the plate separation as:

∂(b(x)uli(x))

∂xi
= 0 (2.20)

Substituting the Darcy velocity (2.19) into the conservation of mass equation (2.20):

∂

∂xi

(
b(x)Ml(x)

∂Pl(x)

∂xi

)
= 0 x ∈ Ωl, l = 1, 2 (2.21)

At a boundary point ξ = (ξ1, ξ2) on the fluid interface S between Ω1 and Ω2, there are

two matching conditions (kinematic and dynamic) that must be met by the advancing

interface. Firstly, the kinematic condition requires the continuity of normal velocity
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ui(ξ)ni(ξ), i.e.

−M1(ξ)
∂P1(ξ)

∂n
= −M2(ξ)

∂P2(ξ)

∂n
(2.22)

Secondly, the dynamic condition describes the pressure jump across the interface:

P1(ξ)− P2(ξ) = γ

(
2

b(ξ)
+ k(ξ)

)
(2.23)

Where γ is the surface tension and k(ξ) is the curvature. k(ξ) is considered a continuous

function on the interface surface. The pressure jump condition above represents one of

the most basic forms of the Young-Laplace equation. Numerous studies use the curvature

representation given above, with some also including a π/4 scaling term for consistency

with the asymptotic analysis of [45]. In this thesis, various forms of the pressure jump

condition are considered, to compare with previous works. In all forms, the contact

angle of the meniscus has been assumed to be zero, to be consistent with the limit

that the outer fluid (brine) is perfectly wetting, and the inner fluid (CO2) is perfectly

non-wetting. Dynamic wetting effects have not been shown in equation (2.23), but

can have a considerable effect on the interfacial displacement in a Hele-Shaw cell at

high capillary numbers [46–48]. Specific wetting effects are considered explicitly in the

formulation in chapter 3.

The displacement of the outer fluid is initiated by the injection of the inner fluid with a

point source of strength Q at the origin, with velocity given by:

ui =
Qxi
2πr2

(2.24)

Here, r is the distance from the collocation point, x, to the source point located at the

origin; i.e. r = |x|. The far field pressure tends to that generated by the source at a

distance x→∞:

P2(x)
x→∞

→ − Q

2πM2(x)
ln

(
r

r0

)
(2.25)

Equation (2.21), subject to matching conditions (2.22, 2.23), and asymptotic conditions

(2.24) and (2.25) represents a well posed problem that can be solved with a variety of

numerical methods in order to find the pressure in the domain and subsequently the

interface velocity. This model represents the basis to analyse the different processes in
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this work, with any necessary alterations included in the relevant chapter formulations.

2.3 Finite mobility ratio formulation

Here, a non-dimensional Hele-Shaw model is presented specific to the radial injection

case with a constant mobility in each region, allowing simplification of the equations

described in the previous section. Utilising the characteristic length, time, velocity

and pressure of the radial injection problem, the field variables can be represented in

non-dimensional form:

(x,y, r) = r0

(
x′,y′, r′

)
(2.26)

t =
r2

0

Q
t′ (2.27)

uli =
Q

r0
ul

′
i l = 1, 2 (2.28)(

P, φ̂
)
l

=
Q

M2

(
P ′, φ̂′

)
l
l = 1, 2 (2.29)

In equalities (2.26) - (2.29), apostrophes identify non-dimensional variables. t, u, P

and φ̂ represent time, two-dimensional velocity, depth averaged pressure and surface

potential pressure respectively. The parameters Q and M2 are the radial injection flux

and the mobility of the displaced fluid respectively. The depth averaged pressure and

two dimensional velocity in each fluid region can be expressed through Darcy’s law along

with the conservation of mass in non-dimensional form as:

u1′
i (x) = −β∂P

′
1(x)

∂x′i
(2.30)

u2′
i (x) = −∂P

′
2(x)

∂x′i
(2.31)

∂ul
′
i (x)

∂x′i
= 0 x ∈ Ωl, l = 1, 2 (2.32)

Note that the plate separation b does not appear in (2.32) due its constant value in this

model. In equation (2.30), β is the ratio of mobilities between the two fluids:

β =
M1

M2
(2.33)
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For β values greater than 1, the inner fluid is less viscous than the external fluid. For

infinite mobility ratio models β =∞. With a constant, finite β, equations (2.30) - (2.32)

can be reduced to Laplace’s equation:

∂2P ′l (x)

∂x′2i
= 0 x ∈ Ωl, l = 1, 2 (2.34)

From this point on in the chapter, the apostrophe of all dimensionless variables will be

dropped for clarity, and every variable will be assumed to be in its non-dimensional form,

unless otherwise stated. In this chapter, a boundary element method is constructed to

solve the Laplace equation above. Firstly, to form a boundary integral equation, the

pressure field can be represented as a sum of the pressures due to an injection potential

source Q and a surface potential term φ̂l:

P1(x) = φ̂1 −
1

2πβ
ln(r) (2.35)

P2(x) = φ̂2 −
1

2π
ln(r) (2.36)

Note, Q does not appear on the far right term in equations (2.35) and (2.36) due to the

non-dimensional scaling of the pressure. At a boundary point ξ on the fluid interface

S between Ω1 and Ω2, the matching conditions can now be described as continuity of

normal potential fluxes:

q = β
∂φ̂1

∂n
=
∂φ̂2

∂n
(2.37)

and secondly, the pressure jump across the interface due to the surface tension, γ:

φ̂1 − φ̂2 =
1

Cag

(
2r0

b
+ k(ξ)

)
−
(
β − 1

2πβ

)
ln(r) = (1 + β) fs (2.38)

Where:

fs =
1

Cag(1 + β)

(
2r0

b
+ k(ξ)

)
− 1

1 + β

(
β − 1

2πβ

)
ln(r) (2.39)

In equations (2.38) and (2.39), the global capillary number Cag has been introduced,

which describes the ratio of viscous driving forces to surface tension forces. Classically,

a modified capillary number can be used to completely describe infinite mobility ratio

rectilinear Hele-Shaw flow [1]. Due to the the radial setup of the Hele-Shaw injection,
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this modified capillary number must be adapted to adequately describe the flow regime.

The capillary number produced from the dimensional analysis of the radial Hele-Shaw

flow above and that presented by [1] are shown below, with the classical rectilinear

version shown with an apostrophe.

Cag =
12µ2Q

γr0

(r0

b

)2
=

r0Q

γM2
Ca′ =

12µ2Un
γ

(
L

b

)2

(2.40)

In the modified capillary number for rectilinear flow Ca′, the half Hele-Shaw cell width

L is used as the macroscopic length scale, with the cell plate separation b used as the

microscopic length scale. For radial flow, the initial unperturbed radius r0 is chosen as

the macroscopic length scale as there is no characteristic cell width in the fully circular

domain. The initial source injection velocity, Q/r0 is chosen as the characteristic velocity

of the problem. The capillary number presented here for radial Hele-Shaw flow, and that

presented by [1] are equivalent, with a difference only in the macroscopic length scale of

the problem and the characteristic velocity.

The r0/b scaling term in equation (2.40) relates the initial unperturbed bubble radius to

the Hele-Shaw plate separation, which modifies the physical capillary number to include

the effective permeability of the cell. The capillary number together with the mobility

ratio uniquely describe radial Hele-Shaw flow, and as such are the main parameters used

to analyse and describe different flow regimes in this chapter.

The signed curvature, k is considered a continuous function on the parametric interface

surface S(t) = S(x(t), y(t)), given by equation (2.41) below.

k = r0
(xtytt − ytxtt)[
(xt)

2 + (yt)
2
] 3

2

(2.41)

Where ytt refers to the dimensional second derivative with respect to t. The final

condition required to close the system is given by the far field pressure condition:

P2(x)
x→∞

→ − 1

2π
ln r (2.42)

The Laplace equation (2.34), subject to matching conditions (2.37) and (2.38) and the far

field condition (2.42) represents a well posed problem, that can be solved directly using

a boundary element approach. This formulation is possible due to the constant, finite
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mobility in each region that reduces the elliptic PDE (2.21) to the simplest form of elliptic

PDE in (2.34); the Laplace equation. This mathematical model forms the basis to form

a boundary integral equation which can be discretised with a B-Spline boundary element

method with hypersingular integral treatment, presented in the following sections.

2.4 Boundary element method

2.4.1 Boundary integral formulation

Following from the pressure field representation in Equation (2.35) and (2.36), the surface

potentials in zone 1 and zone 2, φ̂1 and φ̂2 respectively can be expressed in terms of

their corresponding Green’s formulae at the fluid interface [39], using the two dimensional

fundamental solution, φ∗.

∫
S∞

φ∗(ξ,y)
∂φ̂2(y)

∂ny
dSy −

∫
S∞

φ̂2(y)
∂φ∗(ξ,y)

∂ny
dSy

+

∫
s
φ̂2(y)

∂φ∗(ξ,y)

∂ny
dSy −

∫
s
φ∗(ξ,y)

∂φ̂2(y)

∂ny
dSy =

1

2
φ̂2(ξ)

(2.43)

∫
s
φ̂1(y)

∂φ∗(ξ,y)

∂ny
dSy −

∫
s

∂φ̂1(y)

∂ny
φ∗(ξ,y)dSy = −1

2
φ̂1(ξ) (2.44)

The difference in sign between the two equations is due to the direction of the outward

facing normal ~n with respect to the domain. In the above equation ny refers to the normal

direction at field point y. The continuity and discontinuity properties of the single-layer

and double-layer potential are used to evaluate the integrals along the curve S. For the

external problem in equation (2.43), both the internal boundary at the interface and the

auxiliary external boundary at infinity S∞ must be considered. The external boundary

can be evaluated at a fixed location in the far field and treated as a regular surface

integral, introducing extra computation and constraining the interior fluid to the region

inside the external boundary [37]. The evaluation of the external surface can be removed

by utilising a Green’s function with periodic boundary conditions [38].

The external boundary at infinity can also be evaluated asymptotically, considering the

perturbation flux to approach zero as the radial distance from the source approaches
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infinity. This allows the fluid domain to extend to infinity, so the evolution of the inner

fluid interface can continue unrestricted, without having to re-scale an exterior bounding

surface. Batchelor [49] has shown that asymptotic evaluation introduces a constant into

the equation, replacing the external boundary surface integral:

kas
2π

+

∫
s
φ̂2(y)

∂φ∗(ξ,y)

∂ny
dSy −

∫
s

∂φ̂2(ξ,y)

∂ny
φ∗(ξ,y)dSy =

1

2
φ̂2(ξ) (2.45)

The constant kas becomes an unknown variable to be found, which along with the

zero-flux condition of the surface potential pressure across the interface ensures the

solvability of the exterior problem:

∫
s
q(ξ)dSξ = 0 (2.46)

Equations (2.45) and (2.46) represent an infinite mobility ratio model for the exterior

problem, considering solely the displaced fluid in region two. This model has been

implemented by [40] and more recently by [50] including a dissolution velocity at the

interface. To combine the interior and exterior boundary integral equations to produce a

finite mobility ratio model applicable in both domains, the limiting value of the normal

derivatives of equations (2.44) and (2.45) can be taken:

∫
s
φ̂2(y)

∂2φ∗(ξ,y)

∂nξ∂ny
dSy −

∫
s

∂φ̂2(y)

∂ny

∂φ∗(ξ,y)

∂nξ
dSy =

1

2

∂φ̂2(ξ)

∂nξ
(2.47)

∫
s
φ̂1(y)

∂2φ∗(ξ,y)

∂nξ∂ny
dSy −

∫
s

∂φ̂1(y)

∂ny

∂φ∗(ξ,y)

∂nξ
dSy = −1

2

∂φ̂1(ξ)

∂nξ
(2.48)

Subtracting the above two equations and using the matching conditions (2.37) and

(2.38), the following second kind Fredholm integral equation can be formed [29]:

−1

2
q(ξ) +

(
1− β
β + 1

)∫
s
K(y, ξ)q(y)dSy = g(ξ) (2.49)

The regular kernel, K(y, ξ) in equation (2.49) is given by:

K(y, ξ) =
1

2π

∂

∂nξ

(
ln

1

R(ξ,y)

)
=

1

2π

yj − ξj
R2

nj(ξ) (2.50)
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Noting from [29] that,

lim
y→ξ

K(y, ξ) = −k(ξ)

2
(2.51)

The R term in the regular kernal is the non-dimensional absolute distance from the

collocation point ξ to the point of integration on the surface y. The non-homogeneous

boundary term g(ξ) is given by the following hypersingular integral.

g(ξ) =
β

2π

∫
s
fs(y)

∂2

∂nξ∂ny

(
ln

1

R(ξ,y)

)
dSy (2.52)

The second kind Fredholm equation in (2.49) permits an analytical Neumann series

solution, owing to the fact that it is the adjoint of the corresponding indirect equation,

which has been proven to have an analytical Neumann series solution (for more details

see [29]). Before the solution technique for equation (2.49) is given, it is worth noting

that by combining the two integral equations for the different fluid domains, (2.47) and

(2.48), the constant kas obtained from the asymptotic limit of the surface integral at

infinity in equation (2.45) does not need to be evaluated. To show that the no-flux

condition of the surface potential across the interface is still met by equation (2.49),

without the need to explicitly include it in the equation, firstly the potential flux can be

integrated over the interface surface:

∫
s
−1

2
q(ξ)dSξ +

(
1− β
β + 1

)∫
s
q(y)

∫
s
K(y, ξ)dSξdSy =

∫
s
g(ξ)dSξ (2.53)

The integral of the kernel K(y, ξ), over the surface has a value of 1/2 meaning equation

(2.53) can be simplified to:

β

β + 1

∫
s
q(ξ)dSξ =

∫
s
g(ξ)dSξ (2.54)

The right hand side of equation (2.54), can be written as:

∫
s
g(ξ)dSξ =

β

2π

∫
s
fs(y)

∫
s

∂2

∂nξ∂ny

(
ln

1

R(ξ,y)

)
dSξdSy

=
β

2π

∫
s
fs(y)

∫
s

∂

∂nξ
K(ξ,y)dSξdSy = 0

(2.55)
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Since,

∫
s

∂

∂nξ
K(ξ,y)dSξ = 0 (2.56)

Using the above expressions and equation (2.54), it follows that the no-flux condition of

the surface potential at the interface has been met:

∫
s
q(ξ)dSξ = 0 (2.57)

The above analysis shows that the no-flux condition at the interface is met by equation

(2.49). By combining the integral equations for each fluid domain into one single

equation, the need to explicitly evaluate the no-flux condition at the interface has been

avoided, at the expense of introducing a hypersingular integral.

Equation (2.49) can be solved using a convergent series for q, as long as 0 ≤ β <∞ [29].

Using infinitely many terms results in an analytical Neumann convergent series solution.

The series can be simplified by taking λ = (1−β)
(β+1) and using a discrete number of terms,

m, to truncate the solution of equation (2.49).

q(ξ) = q0(ξ) + λq1(ξ) + · · ·+ λmqm(ξ) (2.58)

The terms in equation (2.58) can be calculated recursively, via the following formulae:

q0(ξ) = −2g(ξ) (2.59)

qm(ξ) = 2

∫
s
K(ξ,y)qm−1(y)dSy m 6= 0 (2.60)

The movement of the fluid-fluid interface is then calculated via a forward Euler time

stepping approach, where ∆Ln(ξ) represents the dimensionless distance moved by a

boundary point in a single time-step:

Un =
∆Ln(ξ)

∆t
= −q(ξ) +

xi(ξ)ni(ξ)

2πr2
(2.61)

Where Un is the total normal interface veloicity.
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2.4.2 B-Spline representation

The surface integrals in the boundary integral equations in the previous section are

solved by discretising the boundary using uniform cubic B-Spline boundary elements,

first shown in [51]. Every variable that requires interpolation along the interface can be

represented by a B-Spline, using the following equations [51].

q(x) = N c(t(x))qc c = 1, 2, 3, 4 (2.62)

In equation (2.62), the surface potential flux q has been used to represent a continuous

scalar field along the interface, with corresponding control points qc. t(x) is the intrinsic

coordinate of the element of length 0 ≤ t ≤ 1. The continuous field can be any scalar

or vector component with corresponding control points, e.g. x, y, φ̂1 etc. The shape

functions N c over each element are given by:

N0(t) =
−t3

6
+
t2

2
− t

2
+

1

6

N1(t) =
t3

2
− t2 +

2

3

N2(t) =
−t3

2
+
t2

2
+
t

2
+

1

6

N3(t) =
t3

6

(2.63)

Equation (2.62) can be formed for each nodal location along the boundary, producing a

system of equations that may be solved to find the control points for each element. To

close the curve of the control points, the following conditions must be met at the start

and end of the elements:

N0 = NNb

NNb+1 = N1
(2.64)

Here, Nb is the total number of boundary elements. The system of equations for the

control points can be solved to find the control points for the variable in question.

This has to be done at each time step to find the new x and y control points, given

the new interface that has been calculated. The resulting cyclic tri-diagonal system is

efficiently solved utilising the Sherman-Morrison formula [52]. Given the shape functions

and control points, the discretised form of equation (2.60) can be written in terms of a
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boundary element formulation as:

qm(ξ) =

Nb∑
k=1

Ng∑
j=1

Nc∑
i=1

(
WjK (ξ,y(tj))N

ki(y(tj))q
ki
m−1J(y(tj))

)
(2.65)

Where, Nb are the number of boundary elements, Ng are the number of Gaussian

integration points and Nc are the number of control points (here taken as 4). Wj are

the Gaussian quadrature weighting functions at intrinsic locations tj . J is the Jacobian

transforming the surface integral into the local element integral over the range of the

intrinsic coordinate, i.e. 0 ≤ tj ≤ 1. qki is the ith control point for element k, with

corresponding shape function Nki(y(tj)) at the field points of integration (y(tj)). The

sum over all elements represents all elements that don’t coincide with the collocation

point ξ; for these two elements a hypersingular integral technique has to be used,

discussed in detail later.

The B-spline boundary elements are adaptively fitted to the interface as it grows at

each time step. A target element size (arc length) is fed into the program, which is

maintained at each time step. At each time step, with the new interface position, the

control points for the B-Spline curve can be calculated. With this, the total arc length

of the interface can be calculated, and the number of elements that are needed can be

evaluated from the desired element size. This number is always an integer multiple of

the number of fingers in a symmetric simulation, to maintain symmetry.

With the desired number of elements, an iterative Newton-Raphson scheme is

implemented using the current elements to locate the new element nodal positions. This

takes a guess at the correct nodal position using the midpoint of the current element

and compares it to the desired element length. Based on this, and the Jacobian of the

surface derivatives, the guess can be updated and moved along the element. When the

error between the desired arc length and the arc length using the new nodal position

is less than 1 x 10−12 the iteration stops, and the next nodal point can be calculated.

With the new nodal points, the new control points for the B-Spline can be calculated

and the discretised form of the integral equations can be solved.
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2.4.3 Local curvature evaluation

Along with the B-Spline representation of the curve, a 4th order Lagrangian polynomial

is used to compute the local curvature, k(ξ) at a nodal point. A Lagrangian polynomial

accurately represents second derivatives at nodal points, which are second order accurate

with a B-Spline representation. The Lagrangian polynomial is adaptively fitted to the

B-spline curve, reconstructing locally using the surrounding nodal points. A non-uniform

polynomial was tested, but since the locations must be reconstructed using the B-Spline

rather than the raw nodal positions, the accuracy was only as good as the B-spline itself.

Table 2.1 shows the 4th order Lagrangian polynomial and cubic B-Spline schemes used

to calculate the curvature of a test function, y = 1
2 + 3

10sin (2πx), which was also

presented in [41] and [53] with a 20x20 grid. There are N elements used to approximate

the function, with N + 1 nodal points. The Lagrangian polynomial has a much better

approximation to the curvature than the cubic B-Spline scheme, which when centred

on the nodal points is second order accurate. The L1 error norm between the 4th order

Lagrangian polynomial and the analytical solution using 20 elements is 0.003%, with

the numerical points being indistinguishable from the analytical function when viewed

graphically. This is a much better approximation than the schemes used in [41] and [53],

in which the numerical approximation shows noticeable discrepancy from the analytical

function graphically.

Number of elements, N 20 40 60 80

L1 Error Norm
B-Spline 1.18 x 10−3 3.00 x 10−4 1.34 x 10−4 7.58 x 10−5

Lagrangian 3.03 x 10−5 1.80 x 10−6 3.61 x 10−7 1.15 x 10−7

L2 Error Norm
B-Spline 1.76 x 10−3 4.42 x 10−4 1.97 x 10−4 1.11 x 10−4

Lagrangian 3.58 x 10−5 2.18 x 10−6 4.32 x 10−7 1.37 x 10−7

L2 Conv rate
B-Spline – 1.98 1.98 1.99
Lagrangian – 4.07 3.97 3.97

Table 2.1: L1 and L2 error norms and convergence rate of the 4th order Lagrangian
polynomial and B-Spline approximations to the curvature of y = 1

2 + 3
10sin (2πx).

After discretising the boundary into B-Splines, and effectively evaluating the curvature,

the hypersingular integral in equation (2.52) must be handled numerically. In [29],

the surface integral could be simplified by using constant elements. This allowed the

hypersingular integral to be equated to the integral over the remaining elements making

up the surface. However, in the present scheme using non-linear B-Spline elements,
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the hypersingular integration must be handled explicitly. B-spline boundary elements

are favoured over constant, linear or quadratic elements, due to their accuracy when

approximating highly curved surfaces, which are typical of the ramified patterns seen in

viscous fingering phenomena.

2.4.4 Hypersingular integral treatment

The hypersingular integral in (2.52) is treated using a semi-analytical approach

implemented in [54], first proposed by Mikhlin in 1957 [55]. The limiting process will not

be performed here due to its length; only the resulting formulae final will be presented,

for thorough details of the derivation see [54]. The hypersingular integral in equation

(2.52) becomes an issue when the field points of integration, y lie close to a collocation

point, ξ. This is most significant on elements that coincide with the collocation point,

shown in Figure 2.3. The hypersingular integral must be evaluated in the sense of

Hadamard finite parts in order to guarantee its existence over the two elements where

the hypersingular point η coincides [56], i.e., for a hypersingular integral Ih on an element

with intrinsic limits 0 ≤ t ≤ 1 the integral can be represented in finite parts as:

Ih =

∫ 1

0

f(t)

(t− η)2
dt = lim

ε→0+

(∫ η−ε

0

f(t)

(t− η)2
dt+

∫ 1

η+ε

f(t)

(t− η)2
dt− 2f(η)

ε

)
(2.66)

The Hadamard finite parts representation forms the basis behind evaluating the

hypersingular integral. The hypersingular integrals of equation (2.52) that must be

evaluated on the two elements coincinding with each collocation point are defined here

as gh:

Hypersingular 
Point,   t = η 

η

tt

0

1 0

1

= 1 = 0

Asymmetric
neighbourhood

η

Figure 2.3: Collocation point ξ on the same elements as the quadrature points y creating
a hypersingular point η and corresponding hypersingular integral over these elements.
Unbold t and η represent intrinsic locations along the element of integration.
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gh(ξ) =
βni(ξ)fas (ξ)

2π

2∑
m=1

(∫ 1

0
Vi(ξ, t(y))Na(t(y))J(t(y))dt

)
(2.67)

Where, J is the Jacobian to transform from the global surface to the intrinsic coordinate t

of the elements J(t(y)) = |dyi/dt|. The summation in (2.67) is used to compute the total

hypersingular integral from both elements. Na are the shape functions in (2.63) which

are non-zero at the hypersingular point, using corresponding function control points fas .

Only shape functions that are non-zero at η are considered here since the remainder of

the integral gr(ξ) = g(ξ)− gh(ξ) for equation (2.52) includes the components from the

shape functions that tend to zero at η. These shape functions produce regular integrands

on the two hypersingular elements and are included in the normal integration scheme,

along with the other elements that do not coincide with the hypersingular point. In

(2.67) the specific hypersingular component of the expression is given by:

Vi(ξ, t(y)) =
∂2

∂ξi∂ny

(
ln

1

R(ξ, t(y))

)
=

1

R2

(
−2

∂R

∂ξi

∂R

∂n
+ ni(t(y))

)
(2.68)

In order to perform the limiting process in (2.66), the integral expression in (2.67) can

be expanded in terms of a Laurent power series about η [54].

Vi(ξ, t(y))Na(t(y))J(t(y)) = Fi(η, t) =
F−2(η)

(t− η)2 +
F−1(η)

t− η
+O(1) (2.69)

The F−2 and F−1 terms depend only on the derivatives of the B-spline shape functions

Na that are non-zero at the hypersingular point, i.e.:

F−2(η) =
ni(ξ)Na(η)

J(η)
F−1(η) =

ni(ξ)

J(η)

dNa

dt

∣∣∣
t=η

(2.70)

By introducing the power series (2.69) into the hypersingular integral (2.67), the limits

may be evaluated analytically in order to remove unbounded terms. This results in a

regular integral and analytical expression.

gh(ξ) =
βni(ξ)fas (ξ)

2π

2∑
m=1

(∫ 1

0

[
Fm(η, t)−

(
Fm−2(η)

(t− η)2 +
Fm−1(η)

t− η

)]
dt

+ Fm−1(η) ln

∣∣∣∣ 1

βm(η)

∣∣∣∣ sgn(t− η)− Fm−2(η)

[
sgn(t− η)

γm(η)

β2
m(η)

+ 1

]) (2.71)



Chapter 2. Finite mobility ratio immiscible displacement 33

The terms Fm−2, represent those given by F−2 in equation (2.70) evaluated on element

m. In equation (2.71), the βm and γm terms account for any possible distortion from an

asymmetric neighbourhood around the hypersingular point:

βm =
1

J(η)
, γm = − 1

J4(η)

dyi
dt

d2yi
dt2

∣∣∣
t=η

i = 1, 2 (2.72)

In Figure 2.4 the hypersingular function and the subtraction terms have been evaluated

over two B-Spline elements. The hypersingular function, Fm and the power series

terms tend towards infinity when nearing the hypersingular point at t − η = 0.

However, the regular function produced by subtracting the power series terms from the

hypersingular function is finite and regular at all points in the domain, meaning it can be

integrated using standard Gaussian quadrature techniques. The regular integrands are

evaluated using 10 quadrature points for each element, with further quadrature points

not improving the accuracy of the scheme significantly.
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Figure 2.4: Hypersingular integrand, power series and resulting regular function over
two elements coinciding with the collocation point.

A simple test of the validity of the hypersingular scheme is to evaluate the integrals on

a circle. Here, due to the constant curvature and radius of the circle f(y) is a constant,

meaning that the integrals are effectively evaluating the normal derivative of a double

layer potential with a constant density, which is identically zero everywhere. It has been
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verified that the sum of the hypersingular integrals is equal to the negative sum of the

remaining element integrals, giving a net zero potential flux q = 0. This means the

circle radius r(t) evolves solely with the potential source velocity, r(t) = ((π + t)/π)0.5

as expected.

Due to the lack of finite mobility ratio boundary element schemes using a low mobility

ratio, a classical viscous fingering example is presented to verify the new finite mobility

ratio model. In the classical fingering case presented in [29, 34, 50], air displaces oil in

a fully circular Hele-Shaw cell, with a capillary number Cag = 2000 and mobility ratio

β =∞.

To compare the infinite mobility ratio schemes in [29, 34, 50], with the finite mobility

ratio method developed here, the mobility ratio of the two fluids is varied between 1

and 1000. By varying the mobility ratio, the viscosity of the injected fluid is changed

whilst keeping the resident oil viscosity the same. The different mobility ratio cases are

compared with an infinite mobility ratio solution in Figure 2.5. The infinite mobility

ratio result was created using equations (2.45) and (2.46), which is identical (and

produces identical results) to those presented in [29]. The solutions shown in Figure

2.5 are both mesh and time independent (see the next section for verification), with

∆x ≈ 0.06, ∆t = 0.02.

Note that the global coordinates used in the interface plot (and all others throughout

the thesis) are x and y for clarity, i.e. x = ξ1, y = ξ2.

In Figure 2.5 the finite mobility ratio solutions tend to the infinite mobility ratio solution

when the mobility ratio is increased. The base and front of the fingers for the β = 1000

case agree very well with the β = ∞ case, with an L1 error of 0.9%. This shows that

the finite mobility ratio model with hypersingular integral evaluation is tending to that

of the infinite mobility case that does not require hypersingular evaluation, verifying

the numerical scheme. If the mobility ratio is raised further to β = 10000 (not shown

here) the results are graphically indistinguishable. The case of β = 10 has a somewhat

different shape to the infinite case, with the finger base extending much further into

the liquid domain. This is due to the significant velocity possessed by the inner fluid,

working to push the bases out. This process is explored more in section 2.5, where

mobility ratio effects are examined.
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Figure 2.5: Interface of an infinite mobility ratio gas injection at t= 80, showing the
classical fingering problem presented in [29, 34, 50], and the interfaces of finite mobility
injections utilising the new finite mobility ratio model.

By verifying that the finite mobility ratio scheme tends to the infinite mobility ratio

scheme when β is raised, the numerical scheme effectively reproduces the well known

results from [29, 34, 50]. This verifies that both the hypersingular integral is contributing

correctly to the potential flux calculation and that the other numerical techniques are

working correctly to track and update the interface. With this, the finite mobility ratio

scheme can be used to explore effects that are not accessible when β = ∞. In the

next section, specific performance issues of the finite mobility ratio scheme are discussed

before presenting results using the new scheme.

2.4.5 Numerical performance

Here, the numerical performance of the finite mobility ratio model is examined using

various small scale simulations. From equations (2.58) - (2.60), it can be seen that the

computational cost scales with NpN
2
b , where Np is the number of terms in the convergent
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Figure 2.6: Residual error convergence with number of terms in the convergent series
and varying mobility ratio.

series, and Nb is the number of boundary elements. Therefore, for a fixed Np the scheme

will exhibit close to second order scaling. This is much better than direct solvers for the

corresponding matrix system (typically LU decomposition), which exhibit cubic scaling.

During the early stages of interfacial evolution in which the number of boundary elements

is low (typically <1000), a direct LU solver can outperform the convergent series.

However, as the size of the dataset grows, the convergent series will eventually run

faster than a direct LU solver due to the second order scaling.

The number of terms used in the convergent series plays an important role in the

accuracy and speed of solution. Figure 2.6 shows that as the mobility ratio of the

two fluids becomes larger, the number of terms required by the convergent series to

reach a desired error increases. This is because the value of λ approaches -1, and

successive terms in the convergent series do not decay as rapidly. When λ = −1 there

is no unique solution to equation (2.49), due to a singular value in the corresponding

spectrum of the integral operator. For most simulations, a residual error of 10−6 provides

an acceptable convergence level. This typically gives an L1 error between the interface

positions obtained from the series solver and direct matrix solver of less than 0.05%.
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Figure 2.7: Number of terms (Np) needed in the convergent series to produce an L1

residual error of 1x10−6, with varying numbers of boundary elements.

When the mobility ratio increases beyond 100, the number of terms required in the

convergent series to get a low residual error becomes much larger (> 500) than the

number of starting elements used (∼ 100). This means that for high mobility ratios,

the convergent series solution can be significantly slower than a corresponding direct

matrix solver, showing that this method is much more applicable for the solution of

low mobility ratio flows. In simulations when the mobility ratio β ≥ 1000, a direct

LU solver is used in favour of the series solver, due to solution speed. The resulting

interfacial displacements are almost identical between the two methods (i.e. graphically

indistinguishable), as long as the residual error in the series solution is maintained below

10−6.

The convergence of the series solution is determined by the residual error between

successive terms and is therefore largely independent from the number of boundary

elements. Figure 2.7 shows the number of series terms (Np) needed to achieve a L1

residual error of 1x10−6 as the number of boundary elements Nb increases during the

evolution of the interface in the β = 10 case in Figure 2.5. Multiple points at the same

value of Nb correspond to outputs from different time steps in the simulation that used

the same number of boundary elements in the interface profile. As the interface grows

the number of elements are adaptively increased to maintain a target size. However, as

the growth rate is so small per time step, the same number of elements can be used for
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several steps whilst still maintaining an element size under the target maximum size,

resulting in several points with the same value of Nb. It can be seen that the number of

terms needed in the convergent series varies between 30-50 as the number of elements

is increased from 100-2000. The number of terms in the series is generally much lower

than the number of boundary elements required to accurately compute the solution.

Due to the small number of terms required in low mobility cases, this method is

particularly well-suited to solving low mobility ratio regimes, compared to previous

direct matrix solutions. As the number of terms in the series solution is typically several

orders of magnitude less than the number of boundary elements, long time evolutions

can be analysed quickly in comparison to direct matrix solver approaches and as such

are one of the main focuses of this work.

2.4.6 Numerical stability and convergence analysis

Along with the number of terms in the convergent series, the number of boundary

elements, and time step size also affect the accuracy of the resulting solution. To

investigate mesh and time independence, the model was tested under various capillary

number regimes.

Figure 2.8 shows the relationship between the capillary number and the solution

discretisation. At certain values of mesh spacing and time step size, the solution becomes

numerically unstable, with the solution quickly blowing up after only a few time steps.

The proposed numerical approach is conditionally stable, as expected by the use of the

explicit forward Euler time integration scheme (equation (2.61)). When the capillary

number is decreased, the solution becomes more numerically unstable as the equations

become stiff, and a lower ∆t
∆x3

must be used so that the solution does not blow up, as

can be seen in Figure 2.8.

The expression represented by the line in Figure 2.8 relates the capillary number

to the mesh spacing and time step size. Equation (2.73) for the instability limit

shows similarities with a Courant - Friedrichs - Lewy condition in finite difference

approximation. The cubic mesh dependence comes from the cubic B-Spline discretisation

that is used, with the Euler time stepping technique producing first order temporal
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5
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Numerical experiments were performed to produce Figure 2.8, whereby many simulations

were run with varying values of ∆t/∆x3, until the observed stability criterion became

apparent. Although only six points per capillary number are shown in Figure 2.8, many

trial cases were used around the limit of stability to explicitly define the limiting value

of stability. The instability expression can be used for all simulations as a check to

ensure that the solution is stable under the ∆t/∆x3 value being used. Fortunately, as

the capillary number increases, the restriction of ∆t/∆x3 for a stable solution slackens

and a more refined data set can be used without the solution becoming numerically

unstable. As most of the flows and mechanisms under investigation in this work occur

at higher capillary numbers, the instability limit is generally not encountered frequently,

but is a defining feature of the numerical method.

To illustrate the physical instability of the problem caused by a high capillary number,
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a test case was run with identical conditions to that as the β = 10 case in Figure 2.5,

but with the volume flux, Q increased by a factor of 5, producing a capillary number of

10000. When using an element size of ∆x = 0.1, it can be seen in Figure 2.9 that the

boundary has become highly convoluted, compared to the stable shape of the solution

with ∆x = 0.02. The problem has become much more sensitive with the increase

in capillary number, and as such large number of elements are required to accurately

capture the interface. By increasing the number of elements, the solution becomes more

stable and flattens out. With a factor of 2.5 decrease in the element size, the solution has

effectively converged to a mesh independent solution, with no change to the boundary

position. Care has to be taken when solving high capillary number systems as the highly

unstable nature of the problem can permit a very different solution if the element density

is not sufficiently high.

In Figure 2.10, the spatial convergence of the solutions can be seen. The L1 error norm

quoted is the error between the position of the boundaries of the numerical solution and

a mesh independent, pseudo analytical case. This pseudo analytical case was obtained

using a very small time step (∆t < 0.005) and element size (∆x < 0.02), meaning that

using any lower time step or element size did not change the position of the interface.

To compare interfacial positions, the nodal positions (in the azimuthal direction around
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Figure 2.10: Mesh independence study, showing the effect of mesh resolution on the L1

error norm between the numerical solution and a mesh independent (pseudo analytical)
case. Dashed lines show 6th order convergence.

the solution interface) were reconstructed at the same location on the pseudo analytical

case, and then the radial extents of the nodes compared.

Spatially, the solution seen in Figure 2.10 converges very quickly; for large ∆x roughly

6th order is observed. This accounts for the mesh independence in Figure 2.9 whereby

doubling the number of elements has produced a mesh independent solution. This

excellent spatial convergence means that relatively few elements can be used to begin

the simulation, with very high accuracies being achieved.

Temporally the solutions converge linearly, as expected from the forward Euler time

stepping scheme. Higher order time integration schemes were considered, such as the

midpoint and Runge-Kutta methods, however, the spatial resolution was found to be

much more of a limiting factor in the overall solution accuracy than the temporal

resolution. The Darcy flow model is quasi-static, meaning that the velocity does not vary

significantly between time steps. A relatively low temporal resolution could therefore be

used without affecting the solution quality, and hence much greater attention was paid

to the spatial resolution; in which a small change in the number of elements could create

a large difference in the interface position.

The small gain in accuracy from the higher order integration schemes was deemed
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unnecessary when considering the extra computation required to sub-divide the time

steps and calculate the weighted average of the resulting interfacial velocities to calculate

the subsequent interface position.

Through the numerical testing and convergence analysis above, the spatial and temporal

resolutions of the scheme can be quantified, and practical limits put in place for

subsequent runs. These limits are both to avoid the numerical instability at low

capillary numbers, and ensure an accurate solution at high capillary numbers. For the

cases in this chapter (and as a general rule of thumb for the rest of boundary element

simulations) a spatial resolution of ∆x ≈ 0.03 and temporal resolution of ∆t = 0.02 is

sufficient to achieve a mesh and time step independent solution when Cag = 4000. For

different values of capillary number, the spatial and temporal resolutions can be changed

proportionally from these values, in order that a spatially and temporally independent

solution is achieved.

When testing the very high capillary number regimes, and those involving bubble

break-off in the following sections, several runs were performed at varying discretisations

to ensure that the results were independent of mesh and time step discretisation. This

involved testing up to a 4 four-fold increase in the number of elements and time steps

(with simulation times changing from several hours to a week), to ensure a fully accurate

solution had been obtained.

As well as mesh and time step analysis above, the number of Gaussian quadrature points

were varied to check the integration accuracy. The same number of quadrature points

are used for each element, even though significantly less could be used on elements far

away from the collocation point. This is done in order to maintain simplicity within

the numerical program. It was found that once Ng ≥ 8, the integration accuracy was

invariant to increases in the number of Gaussian points. For this reason, Ng = 10

integration points are used for the simulations in this work.

At points in the simulation where elements grow very close to each, such as breaking

and coalescing events, the number of integration points is increased. If the distance

between nodal points r is 0.25rd ≤ r ≤ 0.5rd, where rd is the element arc length, then

the number of integration points is increased to 50 on the corresponding elements. If the

distance gets closer, 100 integration points will be used when 0.1rd ≤ r < 0.25rd. Below
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r < 0.1rd, the interface points have effectively coincided, and the interface should either

coalesce or break, discussed in more detail in the long time scale evolution section.

2.5 Mobility ratio effects

This work is motivated by CO2 injection and storage during carbon sequestration,

in which the injection is performed supercritically, with the mobility ratio between

supercritical CO2 and brine of the order 10-30 [10].

The finite mobility ratio model developed in this chapter allows the efficient solution

of low mobility ratio flows, and can be used to characterise the transition through a

range of mobility ratios. Several finite mobility ratios are presented in Figure 2.11, in

which the the capillary number is 4000. With the mobility ratio as β = 1, the initially

perturbed solution stabilises after around t = 20 and expands to form a stable circle as

there is no critical length scale for which bifurcation will occur due to there being no

difference in viscosities. At all mobility ratios above 1, the interface eventually evolves

to form a complex viscous fingering pattern, with higher mobility ratios promoting the

onset of viscous fingering.

With a relatively low mobility ratio, such as the β = 10 case, the bases of the fingers

continue to advance with time. However, once the mobility is taken higher, the finger

base evolution slows as the base position approaches a near constant radius. During the

β = 1000 case, the finger bases effectively become stagnation points, where the interface

velocity at the base drops to near zero. This characteristic is a well known feature of

high mobility ratio displacement, causing highly convoluted surfaces and a much lower

swept volume of the higher viscosity fluid. A consequence of the slowed base evolution

and quickly growing primary fingers is that competing fingers’ growth is hindered by

the larger primary fingers and shielding occurs [1].

However, in the low mobility ratio regime, the growing finger bases allow secondary

growing fingers to be fed by fluid, meaning that they can possess significant velocity.

Shielding between competing fingers is inhibited as the fluid flow is not forced from

the secondary finger into the primary finger, meaning much greater interaction and

non-linear dynamics are seen between growing fingers.



Chapter 2. Finite mobility ratio immiscible displacement 44

x

y

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(a) β = 1

x

y

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

1

(b) β = 10

x

y

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(c) β = 100

x

y

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(d) β = 1000

Figure 2.11: Interface evolution plots showing the effect of varying the mobility ratio,
β. Each sub-plot shows the interface every ∆t = 20 from t = 0− 80. Location 1 shows
the finger base used for the velocity field analysis in Figure 2.13.

By explicitly tracking the base position of the fingers for varying mobility ratio runs,

the radial extent of the finger bases can be seen to reach an almost constant value for

high mobility cases in Figure 2.12. The lower mobility ratio cases show a much greater

evolution of the base position once the profile of the interface has developed. This

evolution continues until the non-linear regime, where the fingers interact significantly

with each other affecting the base position.

To further emphasise the difference between the base profiles and the velocity of the

fluid at the base regions, a velocity field can be generated at grid points throughout

the domain. Utilising Green’s formulae for the surface potential in the fluid domain

(as opposed to at the fluid interface, equation (2.43)), the surface potential can be
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Figure 2.12: Evolution of the finger bases with time and varying mobility ratio.

reconstructed using the known interface values. Using equations (2.35), (2.36), (2.31)

and (2.30) the velocity at any point in the interior or exterior domains can then be

reconstructed, once the surface potential and flux is known at the interface.

Figure 2.13 shows the velocity field generated around the finger base at location 1 in

Figure 2.11, for the β = 10 and β = 1000 mobility ratio cases. In both plots, there is

significant velocity in the interior domain, with the fluid flowing preferentially around

the finger base, due to the high surface tension and curvature at the bottom of the base.

However, in the β = 1000 case, the fluid velocity drops much more significantly in the

exterior fluid close to the finger base, than in the β = 10 case. The finger base in the

higher mobility example has a higher curvature which makes it harder for the fluid to

displace the surface, and as such the velocity drops to near zero in the exterior fluid.

This explains the near stagnation of the finger bases found in the high mobility ratio

examples in Figures 2.11 and 2.12.

In Figure 2.13, the velocity of the inner fluid just inside the finger base has been labelled,

along with the x, y position of the vector. The velocity is approximately 7 times less

in the β = 1000 case than the β = 10 case. It can also be seen that the velocity

vectors immediately adjacent (left and right) to the base velocity are much larger in

the β = 1000, and in a tangential direction to the base profile, showing the preferential

movement of the fluid around the base in higher mobility ratio flows. The velocity
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Figure 2.13: Fluid velocity vector ~u plots at the base of a finger in the β = 10 and
β = 1000 cases in Figure 2.11 at t = 20.

vectors close to the finger base in the low mobility regime have a large component in

the normal direction, which gives rise to the movement of the base.

The significant velocity possessed by the finger base and the exterior fluid close to it

in Figure 2.13(a) causes the finger base to displace and not stagnate near the starting

profile. This velocity explains the greater finger interaction between competing fingers

in the low mobility ratio regime, and finger breaking/coalescing mechanisms, that will

be discussed in section 2.7.

2.6 Capillary number effects

As a consequence of the N2
b scaling of the convergent series numerical method, high

capillary number cases can be accurately resolved using many elements. High injection

rates typically found in CO2 sequestration processes give rise to large capillary numbers

that promote finger instability. In section 2.4.6, large capillary numbers were found

to create highly unstable interfaces between the fluids, requiring many elements to

accurately solve.
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Several high capillary number flows are shown in Figure 2.14 with a mobility ratio of 10.

The number of fingers created on the first bifurcation increases from two to six through

the range of capillary numbers due to a decrease in critical length at which bifurcation

occurs. The dimensional critical length scale of bifurcation of a finger growing into a

parallel flow is given by [57]:

Lc = πb

√
γ

µUn
(2.74)

Where, Un represents the normal interface velocity. The critical length scale was

originally obtained in the linear stability of [24], and represents the most unstable

wavelength, i.e., the lengthscale which must be overcome by a ‘flat’ front perpendicular

to the flow for a bifurcation to occur. The term bifurcation refers to the point at which

the interface curvature changes in sign.

Observations confirm that generally the number of fingers at the first bifurcation increase

with capillary number, although there are several different modes of bifurcation that can

occur. This means that bifurcations such as side branching can occur in preference to

generating more primary fingers at several values of capillary number, as can be seen in

Figure 2.14.

An important point about the position of the profiles shown in Figures 2.14(a) to 2.14(f)

is that the base positions show almost exactly the same radial evolution with time, but

their fronts show vastly differing profiles. In Figure 2.15, the evolution of the base of the

fingers is shown for varying capillary number where it can be seen that as the capillary

number is increased, the base position starts to converge to the same value.

As the capillary number is increased, preferential movement of the inner fluid causes the

finger fronts to exhibit vastly different profiles, while the base positions remain fairly

constant. The convergence of the base position is due to the relatively large, smooth

curvature of the finger base profile acting to stabilise the flow. As the driving force of

the fluid increases with capillary number, the lower curvature finger front becomes more

likely to destabilise and the flow is forced to this region in preference to the finger base,

leaving it unaffected.

It should be noted, that for the late stage displacements in highly ramified cases, as seen

in Figure 2.14(f) (and Figure 2.20 in the next section), many boundary elements have
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Figure 2.14: Interfacial evolution plots showing the effect of varying capillary number.
Each sub-plot shows the interface every ∆t = 20 from t = 0− 80.
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Figure 2.15: Position of the finger base with time and varying capillary number

to be used. For t > 70, this is generally in the range 4000 < Nb < 6000 depending on

the capillary number of the flow. The simulation time for these runs on an Intel Core

i3-4130 CPU, with 8GB RAM takes several hours (< 10).

The different finger front profiles in the two cases presented in Figure 2.14 are caused by

the critical length of bifurcation being smaller for the higher capillary number case. At

the point of the first bifurcation, there are more ‘flat’ sections of the finger larger than

the critical length and hence more fingers are able to form.

Once the front velocity Un reaches a low enough speed and there is a flat section in

the interface that exceeds the critical length scale, the front starts to destabilise and

bifurcate. The exact point of bifurcation is difficult to identify, due to the small length

scale at which bifurcation initiates. Therefore, a dimensionless parameter, W (θ) can be

used to provide a robust measure of the point at which the first bifurcation occurs in

radial Hele-Shaw flow [57]. This parameter defines when bifurcation occurs based on

the interior angle occupied by the finger θr, the radial extent of the finger r, and the

critical length of bifurcation Lc. These parameters are shown in Figure 2.16, at the first

bifurcation of a radial viscous finger.

W (θ) =
θrr

Lc
(2.75)
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Figure 2.16: Initial bifurcation of two viscous fingers, showing critical length scales.
Dashed line shows the interface position ∆t = 20 after the solid line interface.

The value of W (θ) at which bifurcation occurs shows much less variance than the critical

length scale, hence, if the time at which bifurcation first occurs is misjudged slightly,

the value of W (θ) changes by only a fraction of a percent.

By performing similar tests to [57] at varying capillary numbers, the first point of

bifurcation may be measured. In the results of [57], the front velocity was kept constant

unlike the simulations run here that have a constant volume flux injection and hence

decreasing front speed with increasing radial distance from the source. Also, [57] used a

wedge shaped cell with only one finger, compared to the fully circular cell with multiple

fingers used here.

In Figure 2.17 the value of W (θ) increases with increasing capillary number, as expected

due to the critical length scale decreasing. However the mobility ratio does not alter the

value of W (θ) at which bifurcation occurs. In [57] the value of W (θ) is constant for all

capillary numbers, however by having a non-constant front velocity, this value is able to

change with capillary number. In Figure 2.17 the bifurcation value of W (θ) follows an
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Figure 2.17: Variance of W(θ) with capillary number and mobility ratio.

explicit trend given by:

Wcrit(θ) =

√
Cag
96π

(2.76)

At any point in the simulation, if the front velocity and internal angle of the finger is

great enough to cause W (θ) to be above the critical value defined in equation (2.76),

bifurcation will occur. This expression holds for all capillary numbers up until the first

bifurcation, after which the fingers can grow non-linearly and interact significantly with

each other. W (θ) does not predict the type of bifurcation that will occur, only the point

at which a bifurcation will occur. Whether the front splits into 2 fingers or 5 fingers

is determined by the critical length scale at that point in time and the number of flat

sections running perpendicular to the flow that are longer than this length scale.

2.7 Long time scale evolution

The work presented in this thesis is motivated by the need to investigate low mobility

ratio, high capillary number flows that occur in supercritical CO2 sequestration in deep

subsurface aquifers. While the current model cannot predict the full complexity of the

CO2 plume evolution in the injected porous media aquifer, it can provide qualitative

understanding of the mechanisms and plume growth that can occur due to the low



Chapter 2. Finite mobility ratio immiscible displacement 52

Property Value (SI Units)

Gaseous injection depth 100m

Supercritical injection depth 1000m

TCO2(sc) 50 ◦C

TCO2(g) 25 ◦C

PCO2(sc) 20 MPa

PCO2(g) 1 MPa

NaCl concentration in brine 0.5 mol/kg

µBrine 7.60 x 10−4 Pa.s

µCO2(sc) 7.00 x 10−5 Pa.s

µCO2(g) 1.52 x 10−5 Pa.s

MBrine 0.1827 x 10−6 m3.s/kg

MCO2(sc) 1.9834 x 10−6 m3.s/kg

MCO2(g) 9.1342 x 10−6 m3.s/kg

β CO2(sc) - brine 10.86

β CO2(g) - brine 50

β Infinite mobility ratio model ∞
Intrinsic permeability, k 1.4 x 10−10m2

γ 0.03 kg/s2

Cag 4561

Table 2.2: Injection Properties of gaseous and supercritical CO2

mobility ratio, high capillary number flow regime, using the assumption of a perfectly

sharp interface between the CO2 and brine.

To understand the long term mechanisms that occur during low mobility ratio flows, long

time evolutions of the interface are presented in this section, in order to see the effect

of finger interaction when shielding is inhibited. [44] and [58] show that mechanisms

such as finger coalescing and finger break-off could be observed under certain flow

regimes. In reaction models and diffuse-interface models, similar mechanisms have also

been observed [42, 50, 59]. However with truly immiscible models with sharp fronts,

these mechanisms have not been explored, due to most former models concentrating

on cases of high mobility ratio (generally using very viscous displaced fluids) where

shielding inhibits break-off and coalescing [35, 37]. These mechanisms will be explored

by studying long term interface growth using realistic injection parameters.

Presented in Figures 2.18 - 2.22 are long time evolutions of three different injection

scenarios using fluid parameters defined for supercritical CO2, gaseous CO2 injection and

an infinite mobility ratio brine displacement. All simulations use brine as the displaced

fluid, with a suitable deep aquifer salinity, and only differ by the mobility of the injecting
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fluid. Table 2.2 shows the fluid properties for the test cases, with supercritical CO2

properties calculated using [60]. The brine salinity, viscosity and surface tension were

calculated using standard chemical data tables, under deep subsurface aquifer ambient

conditions [61, 62].

To investigate the complex interfacial dynamics and non-linear growth that could occur

in an injection, asymmetry can be introduced into the starting perturbed interface.

By including different wavelengths of perturbation along the interface, multiple length

scales are produced, mimicking that which would be found in reality due to random noise

and disturbance. The initial displacement of the interface is given by the asymmetric

condition below.

r = 1 + ε0 cos

(
6

√
θ3

2π

)
(2.77)

Equation (2.77) allows different wavelengths of perturbation to be produced along the

interface in a controlled manner, in contrast to using a randomly generated noise

function. By utilising the asymmetric condition, the effect of different wavelengths of

perturbation can be analysed in a reproducible manner, allowing the specific effects of

the low mobility ratio environment to be studied accurately. In equation (2.77) ε0 = 0.1.

Similar to porous media, the flow in a Hele-Shaw cell has an intrinsic permeability,

given by the ratio b2/12. In table 2.2, the intrinsic permeability of the Hele-Shaw cell

configuration being used corresponds to that of oil reservoir/fractured rock in porous

media flow [63]. The three simulations utilising the injection parameters outlined in

table 2.2 can be seen in Figures 2.18, 2.19 and 2.20, with dotted lines showing the initial

interface perturbation.

In Figures 2.18, 2.19 and 2.20, differences in interface patterns can be seen, due to

the different mobility ratios in each simulation. The infinite mobility ratio and gaseous

injection cases share several similarities, most prominently the near stagnant finger bases

that have not moved significantly from their starting positions. This is a common

feature of infinite mobility ratio models, and due to the relatively high mobility ratio

of the gaseous injection, the finger bases show considerable likeness. This is further

emphasised by Figure 2.21, where the base position of the finger at location 1 in Figure

2.18 has been tracked with time for the three different injection scenarios. For the infinite

mobility ratio case, the base can be seen to move very little once the initial profile has
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Figure 2.18: Interface plot of the asymmetric, infinite mobility ratio injection at t = 90,
β =∞. 1 shows base tracking location in Figure 2.21.
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Figure 2.19: Interface plot of the asymmetric gaseous CO2 injection at t = 90, β = 50.
Dashed box shows zoomed area for subfigures (a) - (c) in Figure 2.22.
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Figure 2.20: Interface plot of the asymmetric supercritical CO2 injection at t = 90,
β = 10.86. Dashed box shows zoomed area for subfigures (d) - (f) in Figure 2.22.

been set up, however, both the CO2(g) and CO2(sc) injection cases show considerable

base movement.

At the moderate mobility ratio of 50, the gaseous injection can be seen to exhibit

significant finger interaction in Figure 2.19. The finger shielding effect present in the

infinite mobility ratio case has not occurred as significantly in the gaseous injection case

and the fingers shown in the dashed box in Figure 2.19 are moving into each other. At

the moderate mobility ratio of gaseous CO2 injection, the inner fluid still possesses some

velocity, and hence shielding is inhibited. It is therefore inadequate to use an infinite

mobility ratio model for gaseous CO2 injection into brine, with infinite mobility ratio

models only being applicable for cases of mobility ratio of 100 or more, common in

gas-oil displacements.

The supercritical CO2 injection case shown in Figure 2.20 shows less shielding than the

gaseous injection case. The smallest wavelength fingers on the right of the domain have

a large interaction with each other, with severe base thinning occurring at two different

locations. Due to the relatively large capillary number, the critical length scale is small,

allowing side branching to form on some of the larger fingers. More fingers have been
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Figure 2.21: Evolution of finger bases (at location 1 in Figure 2.18) for infinite mobility
ratio (β =∞), gaseous (β = 50) and supercritical (β = 10.86) CO2 injection.

allowed to develop, unhindered by the growth of larger fingers, resulting in a larger

number of fingers present in the domain.

In both the gaseous and supercritical CO2 injection cases, competing fingers can grow

very close to each other, creating a small immiscible lubrication layer between them.

This kind of interaction needs to be monitored closely to study what happens when the

fingers are separated by a very small distance. There are two possible outcomes when

the fingers grow very close to each other, either the two fingers merge together creating

one finger and the inclusion of a brine bubble, or one finger causes the base of the other

to thin to such an extent that the finger breaks off.

2.7.1 Coalescence and breaking

A rudimentary breaking algorithm was developed that detects the separation between

adjacent sections in the viscous fingers. These sections can be external (i.e two fingers are

travelling into each other) or internal (i.e the finger’s base is thinning). By constructing

local B-spline curves, the separation can be analysed efficiently to see whether fingers

are likely to collide and coalesce, or if a finger’s base is thinning and the finger will

break off. The algorithm then pinches off fingers that have a sufficiently thin base,

or merges fingers that are sufficiently close to each other, forming new B-spline curves
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around each of the disconnected domains. The integral equation formulation allows easy

extension of surface integrals over the new disconnected bubbles. As discussed in the

previous section, for nodal points that displace very close to each other, the number of

integration points is increased from 10− 100 over the affected elements, to evaluate the

near-hypersingular integrands.

The specific time that the interfaces are captured in Figures 2.18, 2.19 and 2.20 allows

the interaction between fingers to be seen and the difference in mobility ratio assessed.

After this time, the interaction between fingers in the finite mobility ratio cases becomes

highly complex, in particular from fingers that have evolved from the small wavelength

perturbations, shown in the dashed boxes. To analyse this interaction and the effect of

the lubrication layer between the competing fingers, zoomed in plots of several events

have been shown in Figure 2.22.

Figure 2.22 shows the breaking mechanism of two events in the gaseous and supercritical

CO2 injection cases. These occur at different stages in the overall interface evolution due

to the difference in finger shielding between the cases. In the gaseous injection, there is

still significant finger shielding present, which has caused the finger growing into the base

of the primary finger in Figure 2.22(a) to be hindered in its early growth, meaning it did

not develop into a primary finger advancing at the forefront of the evolution. However, as

it still possesses some velocity, the finger has continued to grow, and eventually thins the

base of the primary finger causing it to break off, seen in Figure 2.22(b). This breaking

is a combined effect of shielding and the velocity of the inner fluid. If the mobility ratio

were pushed much higher, the shielding would have been more significant and the finger

would have been almost completely hindered in its early growth and would never have

grown to any scale to affect the primary finger.

After the primary finger has broken off in Figure 2.22(c), the secondary finger grows

towards it. The breaking of the fingers occurs in a ‘snapping’ reaction, whereby the

fingers break back from each other very rapidly. As the secondary finger is still being

fed by the inner fluid, it continues to grow with a significant rate, which is faster than

the detached finger. However, a small immiscible lubrication layer of the resident brine

separates the two, which is maintained throughout the subsequent evolution and prevents

the two fingers from coalescing. The two fingers are immiscible with the brine, and as

such cannot transfer mass across the interface and coalesce if this layer is maintained.
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Figure 2.22: Zoomed in plots of finger break-off for the gaseous CO2 injection (left), β
= 50 and supercritical CO2 injection (right), β = 10.86
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The secondary finger continues to distort the detached bubble, which will eventually

cause it to split. This mechanism is very difficult to capture, due to the very large

amount of elements needed to maintain the lubrication layer.

A similar process occurs in the supercritical injection case shown in Figures 2.22(d) -

2.22(f), in which two fingers detach from the main injection plume. The first finger to

detach is caused by the primary finger growing behind it, however the second finger

break-off is due to a combination of thinning caused by fingers growing into the left

and right side of it. After the second break-off, the finger that is still attached to the

main plume acts to push the trailing edge of the detached bubble, which along with

surface tension quickly forms it to a droplet shape. The attached finger left from the

second break-off quickly recedes due to the very high curvature and re-stabilising effect

of surface tension.

This kind of breaking has been reported before in [42] and [41], however using a diffuse

interface model or volume tracking technique does not as accurately resolve the interface

between the fluids, introducing a level of uncertainty about the exact position. As the

interface is captured implicitly, the lubrication layer between advancing fingers cannot

be as accurately defined, meaning that the preference of coalescing or breaking of fingers

is unclear. The lubrication layer is vital in defining the movement of fingers in the sharp

interface model and as such needs to be accurately resolved. With the current method,

the lubrication layer between fingers can be maintained efficiently, allowing the breaking

to be seen in much greater detail, with events being explicitly tracked.

In all simulations run, if a sufficiently high element density was used, finger break-off

would always occur in preference to coalescence. Both mechanisms occur due to the

same process of finger interaction and the inhibition of shielding, but as long as the

immiscible lubrication layer between the two fluids is maintained, breaking will always

occur in preference. The breaking algorithm will detach bubbles that have a neck width

under a certain prescribed ‘breaking distance’. If this breaking distance is decreased to a

very small value much smaller than the element size, the point of separation occurs just

before the two surfaces of the interface actually overlap in the next time step, indicating

clearly that a break should have occurred.
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Experimentally in [44], coalescing and breaking of fingers are reported for immiscible

flows. Due to the large aspect ratio of the channel being used, there is considerable

interaction between fingers, and breaking is found with air injection into resident silicone

oil. The finger interaction is promoted by the aspect ratio rather than a low mobility

ratio of the fluids, as is the case in the results presented here. Also, in [44] coalescing

occurs between competing fingers under certain conditions after they initially broke.

This is due to the fluids having some small amount of miscibility with each other,

allowing the rapidly growing finger to coalesce with the bubble that had just detached.

Due to the microscopic scale of fluid interaction that occurs experimentally, and the fact

that the fluids under consideration in [44] have a small level of miscibility with each

other, there will be a very small miscible region between the fluids. If the fingers are

moving with sufficient speed the fingers could overcome the miscible region separating

the fingers, and coalesce. However, as there is no microscopic miscible layer in the sharp

interface model presented here, coalescing cannot occur at the macroscopic scale. The

sharp interface model assumes the displacement of the resident fluid occurs much faster

than the miscible mixing of the fluids and that there is a discontinuity of properties over

the fluid interface. The fluids are considered to be completely immiscible and therefore

no coalescence should occur, as a lubrication layer should always separate the two fluids.

2.8 Conclusion

A BEM formulation for solving finite mobility ratio flows has been used to investigate

radial viscous fingering mechanisms in a Hele-Shaw cell. The Hele-Shaw model was used

to investigate the mechanisms and plume evolution associated with viscous fingering that

could occur during CO2 injection and storage in deep porous media aquifers, during

carbon sequestration.

The finite mobility ratio model allowed investigation into the effects that a low mobility

ratio and high capillary number have on the plume evolution. When the mobility ratio

of the two fluids is of order 10 - 50, the fingering characteristics are vastly different

to those predicted by infinite mobility ratio models. Finger base movement was found

to be independent of capillary number, but strongly dependent on mobility ratio, with

the bases moving significantly away from their starting positions. The near stagnation
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points on the bases of the fingers found in infinite mobility ratio flows were not found

when using the finite mobility ratio model for low mobility ratio flows.

The validity and the numerical performance of the BEM was studied in detail, showing

its applicability to finite mobility ratio flows. The quadratic scaling of the solution

time shows large improvements over traditional matrix solvers and lifts the restriction

of previous models on short time scale solutions. The numerical stability of the solution

has been shown to rely heavily on the temporal and spacial discretisation, providing

an upper limit for stability. Similarly, the physical instability of bifurcating fingers was

analysed with an expression found to predict the point at which the first bifurcation of

a finger will occur.

Long time interface evolutions were run to showcase the numerical method for predicting

the large time scale dynamics of viscous fingering. Finger interaction was found to be

much more significant than in infinite mobility ratio models, and on small wavelength

perturbations could lead to base thinning and eventual finger breaking. After breaking,

the detached bubbles would continue with the velocity of the surrounding fluid. The

numerical method allowed the resolution of the immiscible lubrication layer between

fingers meaning the finger breaking and coalescing mechanisms could be explored more

explicitly than in previous models.

The results obtained in this chapter indicate that the low mobility ratio flows present

during supercritical CO2 injection could significantly alter the storage capacity compared

to gaseous CO2 injection. The base movement is much more prominent, meaning the

overall surface area is less for supercritical injections, which would lead to less storage

through dissolution. The amount of CO2 structurally trapped for the gaseous and

supercritical cases would be equal, but dissolution trapping would be increased in the

gaseous case through increased surface area. The bubble break off mechanisms found

under low mobility ratio regimes in a supercritical injection would be beneficial from

a CO2 injection standpoint, since the detached bubbles would slowly dissolve in the

surrounding brine and increase the total amount of trapped CO2.



3. Dynamic wetting effects

Summary

In this chapter the effects of dynamic wetting on the immiscible displacement of a

high viscosity fluid subject to the radial injection of a less viscous fluid in a Hele-Shaw

cell are studied. The displaced fluid in a Hele-Shaw cell can leave behind a trailing

film that coats the cell walls, dynamically affecting the pressure drop at the fluid

interface. By considering the non-linear pressure drop in the direct boundary element

formulation, a Picard scheme is implemented to iteratively predict the interfacial velocity

and subsequent displacement in finite mobility ratio flow regimes.

Dynamic wetting is found to delay the onset of finger bifurcation in the late stages of

interfacial growth, and at high local capillary numbers can alter the fundamental mode

of bifurcation, producing vastly different finger morphologies. In low mobility ratio

regimes, finger interaction is reduced and characteristic finger breaking mechanisms are

delayed but never fully inhibited. In high mobility ratio regimes, finger shielding is

reduced when dynamic wetting is present. Finger bifurcation is delayed which allows

the primary fingers to advance further into the domain before secondary fingers are

generated, reducing the level of competition.

3.1 Introduction

During immiscible displacement in porous media, the flow regime depends greatly on

the capillary number at the interface between the fluids, describing the ratio of viscous

driving forces to capillary forces [6]. As well as the capillary number, the wetting

conditions of the fluids in the porous media play a crucial role in defining the capillary

62
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pressure at the interface between the fluids and the resulting interfacial displacement

[30, 64]. The contact angle of the displaced fluid with respect to the porous media

affects the viscous finger width, which is comparable to the pore size if the displaced

fluids wets the medium [65]. The displaced fluid can also leave behind a trailing film of

finite thickness that wets the porous medium, resulting in the capillary pressure having a

non-linear dependence on the interfacial velocity in a process known as dynamic wetting

[30].

To provide analysis of the CO2 injection process and explore the dynamic wetting effects

above, a detailed study of the wetting layer effects and flow in a Hele-Shaw cell are

presented in this chapter. By considering fluid properties that are directly analogous to

those found in supercritical CO2 injection, and cell geometry that mimics the continuum

length scales in a typical subsurface aquifer, dynamic wetting effects can be explored in

the context of immiscible viscous fingering.

At the interface between the fluids in a potential flow Hele-Shaw model, two boundary

conditions must be met; the capillary pressure jump and the continuity of normal

interface velocity. In the previous chapter, and classically in many viscous fingering

works, the capillary pressure jump is given by Young-Laplace theory, which describes

the pressure jump as the sum of the in-plane curvature and the curvature of the fluid

meniscus, multiplied by the surface tension. By assuming that the displaced fluid is

perfectly wetting, the meniscus curvature is proportional to 2/b, where b is the plate

spacing. While this boundary condition has been used by many authors and proved

successful in matching theory with experiment in the limit of low capillary number

flows, in the case of higher capillary number flows the condition must be modified to

take into account non-linear wetting terms [45].

A non-linear term appears in the pressure jump condition due to the trailing film left

behind by the displaced fluid (see Figure 3.1). In the pioneering experimental work

by Fairbrother and Stubbs in 1935 for air displacing water in circular capillary tubes,

they observed a wetting water film with thickness of the order of Ca
1/2
l in the range

7.5× 10−5 < Cal < 0.014 [66]. Here, Cal is defined as the local capillary number given

by Cal = µ2Un/γ. Bretherton (1961) studied two phase flow displacement in a two

dimensional channel by using a patching analytical approach between the Stokes flow

describing the displaced fluid and a lubrication approximation of the thin film left behind
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Figure 3.1: Side view of the Hele-Shaw cell showing trailing film of displaced brine (in
blue).

the moving interface, as shown in Figure 3.1. In the limit of small capillary number,

Bretherton found a film thickness of the order of Ca
2/3
l instead of the Ca

1/2
l value found

experimentally by Fairbrother and Stubbs [67].

A formal double asymptotic expansion approach for three dimensional disturbances of

a planar flow between two plates was presented by Park and Homsy in 1984, formally

proving that in the limit of small capillary number Bretherton’s wetting film thickness

of the order of Ca
2/3
l is obtained [45]. Besides, the Park and Homsy asymptotic

analysis also shows that until order Ca
1/3
l , the wetting film thickness does not have

a correction term even though the profile of the transition region at the from tip does

have a correction at this order. Bretherton infers that a possible explanation for the

discrepancy between the theory and the experimental values is the existence of small

impurities on the experiments [67]. Recently several works have addressed this issue

theoretically and experimentally, showing the possibility of thicker films when small

impurities (surfactants) are included in the analysis; see [68, 69]. As pointed out by

Park and Homsy, the effect of the trailing wetting film can be taken into account in the

cross average Hele-Shaw cell approximation (Darcy flow) by including in the pressure

jump condition across the fluid interface a term linearly proportional to the wetting film

thickness, see equation (3.5) [45].

Since the work of Park and Homsy in 1984, there has been considerable research

comparing this modified boundary condition with experimental findings. Early channel

flow stability analyses by Schwartz in 1986 and Reinelt in 1987 find that including a

non-linear velocity term in the pressure jump improves the agreement between theory

and experiment [70, 71]. Schwartz also shows that the linear growth rate of the fingers

is reduced when dynamic wetting is included. Later, Maxworthy compares various

theoretical boundary conditions for predicting the wavelength of the most unstable
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wave in a radial Hele-Shaw cell under different capillary numbers and compares these

to experimental findings [27]. His results indicate that for high capillary number flows,

3D effects can become significant and could account for the discrepancy between theory

and experiment.

More recently, there has been renewed interest in the stability analysis of the radial

injection case [47, 72, 73]. [72] and [73] deal with the linear regime of finger growth,

deriving dispersion relations for the growth rate. Without wetting effects, the fastest

growing fingers have a wavelength proportional to the square root of the capillary number

[22]. However, [73] find that dynamic wetting effects stabilise perturbations and decrease

the growth rate of fingers, similar to the findings of [27]. [47] takes the analysis further

and explores the weakly non-linear regime of finger splitting and competition. They

investigate the pattern forming mechanism of the problem, finding that dynamic wetting

effects stabilise the fingers and lead to the formation of short stubby fingers in contrast

to the classical fan-like patterns [47].

Several papers also exist for the radial injection cases with rotating Hele-Shaw cells

[46, 74] and lifting Hele-Shaw cells [75], showing similar stability analyses and wavelength

selection for the linear and weakly non-linear growth regimes. To the author’s knowledge,

there does not exist any analysis on the highly non-linear regime occurring after finger

bifurcation in radial injection whereby finger competition is prominent and mechanisms

such as finger break-off can occur in low mobility ratio flows, as shown in the previous

chapter.

In this chapter, a numerical scheme using the boundary element method presented

previously is developed, to study the morphological changes that occur due to dynamic

wetting in the late stages of intefacial evolution. To include the effects of dynamic

wetting, a Picard iteration scheme is utilised that iteratively improves the pressure jump

boundary condition and subsequent interfacial velocity calculation at each time step.

This scheme allows the effective evaluation of the non-linear term, and the prediction

of the late stage pattern forming mechanisms due to dynamic wetting in low mobility

ratio regimes found in CO2 injection.
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3.2 Mathematical formulation

The dynamic wetting formulation follows from the finite mobility ratio model in the

previous chapter, with modifications to take into account the wetting layer present in

Figure 3.1. Due to the constant plate separation, the Laplace equation is again solved

using the non-dimensional parameters in (2.26) - (2.29):

∂2Pl(x)

∂x2
i

= 0 x ∈ Ωl, l = 1, 2 (3.1)

The pressure is represented as that due to an injection potential source and a surface

potential:

P1(x) = φ̂1 −
1

2πβ
ln(r) (3.2)

P2(x) = φ̂2 −
1

2π
ln(r) (3.3)

The matching conditions at the interface have to be changed to take into account the

wetting layer. Firstly, continuity of normal fluxes:

q = β
∂φ1

∂n
=
∂φ2

∂n
(3.4)

Secondly, the pressure jump across the interface due to the Hele-Shaw meniscus (2r0/b

term), the dynamic wetting layer (Cal term) and the in-plane curvature (k(ξ)) term:

P1(ξ)− P2(ξ) =
1

Cag

(
2r0

b
(1 + J0|Cal|2/3) +

π

4
k(ξ)

)
(3.5)

The pressure jump in equation (3.5) includes both the Hele-Shaw meniscus and the

dynamic wetting film layer, with J0 being a constant derived in [45] as 3.8. In the above

equations, the global capillary number Cag has been used in the non-dimensional scaling,

whilst the local capillary number Cal modifies the effective out of plane curvature term

(Hele-Shaw meniscus). The two forms of capillary number are repeated here:

Cag =
r0Q

γM2
Cal =

µ2Un
γ

(3.6)

Without any wetting effects, the global capillary number and mobility ratio uniquely

describe the radial Hele-Shaw flow. However, with the non-linear dynamic wetting term,
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J0|Cal|2/3 given in equation (3.5), the problem now also depends on the local capillary

number at the interface of the two fluids.

In the present two dimensional Hele-Shaw flow problem, the injected fluid spreads

radially through the space with an interface velocity that decreases with time as the

fluid interface evolves. It follows that the local capillary number also decreases as time

progress. The defined global capillary number is prescribed by the initial value of the

local capillary number along the unperturbed bubble radius:

Cag = Cal(0, r0)
(r0

b

)2
24π (3.7)

Where Cal(0, r0) represents the local capillary number at time t = 0 along the

unperturbed bubble radius, r0. The 24π comes from the definition of the mobility and

the velocity from the source injection. Due to the controversy between the experimental

results and theoretical values, in the present work the Park and Homsy (1984) pressure

jump condition is used, since it corresponds to the theoretical value at small capillary

number [45]. Besides, as previously mentioned, in the present radial injection problem

with a constant injection flux, the local capillary number reduces in magnitude as time

progresses, reaching the limit of a small value at a short time in the evolution. This

is in contrast with the cases of flow in a capillary pipe or channel where the finger tip

velocity remains constant with an associated constant capillary number.

Following from the pressure field representation in equations (3.2) and (3.3), the surface

potentials φ̂1 and φ̂2 can be expressed in terms of their corresponding Green’s formulae

at the fluid interface using the two dimensional fundamental solution, φ∗. Taking the

limiting value of the normal derivatives of these equations and subtracting the results

from one another, the following second kind Fredholm integral equation can be formed

as in the previous chapter:

−1

2
q(ξ) +

(
1− β
β + 1

)∫
s
K(y, ξ)q(y)dSy = g(ξ) (3.8)

g(ξ) =
β

2π

∫
s
fs(y)

∂2

∂nξ∂ny

(
ln

1

R(ξ,y)

)
dSy (3.9)
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Where,

fs(y) =
1

1 + β

(
(P1(y)− P2(y))−

(
β − 1

2πβ

)
ln(r)

)
(3.10)

Now, the boundary term (3.9) depends on the (P1 − P2) given by equation (3.5),

which includes the dynamic wetting component. Equation (3.8) can be solved using

a convergent series for q in exactly the same manner as presented previously, using the

same hypersingular integral evaluations and numerical procedures, giving the interfacial

displacement as:

Un(ξ) =
∆Ln(ξ)

∆t
= −q(ξ) +

xi(ξ)ni(ξ)

2πr2
(3.11)

The major difference between the solution of (3.11) and that of (2.61) is the appearance

of the interfacial velocity in the non-homogeneous boundary term in (3.9). As the

normal velocity for use in fs(y) and hence g(ξ) is not known a priori, a guessed value

is used initially, so that the capillary number can be predicted. Un(ξ) can then be

calculated based on the predicted boundary term g(ξ). After calculation of this new

velocity, the local capillary number can be updated and the process repeated until the

updated interface velocity does not change from one iteration to the next. At each

Picard iteration, k, the normal interface velocity is updated using:

Ũkn = Ũk−1
n + λr

(
Ukn − Ũk−1

n

)
(3.12)

Where Ukn represents the value of Un, calculated using (3.11), at Picard step k. The

relaxation factor, λr in equation (3.12) ensures that the velocity does not vary too

dramatically with each Picard iteration in highly non-linear cases, where Cal is large.

After each Picard iteration, the updated velocity is used to calculate the local capillary

number for the next Picard step, i.e:

Cal =
µ2Ũ

k−1
n

γ
(3.13)

The scheme converges once the L2 relative error norm between successive velocity

updates is less than a specified tolerance. In all cases, a tolerance of 1 × 10−3 was

found to be low enough that any further updates to the velocity field were negligible at

each time step, generally requiring around 10-50 Picard iterations. Relaxation factors in
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the range of 0.1 - 0.5 were used to ensure convergence in high Cal cases. On the first time

step, the initial guessed velocity is taken as zero. In subsequent time steps, the initial

guessed velocity can be taken as the final converged velocity value from the previous

time step. As the surface grows at each time step according to equation (3.11), the

number of boundary elements along the interface are adaptively increased to maintain

a target element size. The target element size varies with each case (as higher capillary

number flows require a finer dataset), but is typically of the order 0.05.

This numerical method forms the basis to investigate the effects of dynamic wetting

on viscous fingering morphologies during the non-linear stages of finger bifurcation and

competition. By setting J0 to zero in the pressure jump condition, the dynamic wetting

term can be removed, and the usual viscous fingering regime will be recovered. In the

next section the effects of dynamic wetting are numerically investigated by varying the

local capillary number, the global capillary number and the mobility ratio between the

fluids.

3.3 Numerical results and discussion

3.3.1 Local capillary number effects

The trailing film left by the displaced fluid in the Hele-Shaw cell has a thickness

proportional to Ca
2/3
l . To investigate how the local capillary number affects the

interfacial displacement after bifurcation, Cal can be varied whilst maintaining the same

global capillary number and mobility ratio. If the viscosity of both the injected fluid

and displaced fluid are increased by the same factor, and the Hele-Shaw plate separation

b is increased by the square root of this factor, the global capillary number can be

kept constant whilst varying the local capillary number. In effect, the wetting layer

thickness is increased by using more viscous fluids, but the mobility of those fluids is the

same through the cell, so the effect of dynamic wetting can be evaluated independently.

Without wetting effects, having the same Cag and mobility ratio would produce exactly

the same interfacial displacement.

Several different fluids are injected under the same global capillary number and mobility

ratio regime, producing different local capillary numbers. In the results that follow, the
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Figure 3.2: Effect of varying the local capillary number on interfacial displacement. (a)
t = 55, (b) t = 110. Cag = 1000, β = 10.

local capillary number that is stated in the figures is the maximum found along the

interface at t = 0, i.e. |Cal(0, r)|max.

The local capillary number will decay as the radial distance of the interface from the

source point increases, but it is convenient to use this initial value for discussion purposes

as the local capillary number can vary significantly around the interface at later stages

in time. The initial value gives an indication of the level of dynamic wetting that will be

present in the regime. By ensuring that Cal is above 1 × 10−4 initially, insight can be

provided into the viscous fingering regime that would occur in a corresponding porous

medium subject to the same capillary number flow.

By altering the viscosity of the fluids, the local capillary number for each simulation is

changed. Brine, low viscosity oil and high viscosity oil are used as the resident fluids

and in each simulation, a fluid with a viscosity an order of magnitude lower than the

resident fluid is injected, giving a mobility ratio of 10. When testing capillary number

dependence, an initial 6 perturbation symmetric interface is used shown in Figure 2.2,

with an initial perturbation amplitude of ε0 = 0.1.

In Figure 3.2, the J0 = 0 interface represents a simulation where the effect of dynamic

wetting has been excluded. It can be seen that by including the effect of dynamic

wetting (J0 = 3.8), the onset of bifurcation has been delayed. With an increasing local

capillary number the thickness of the wetting film increases, which causes the point of



Chapter 3. Dynamic wetting effects 71

bifurcation to be delayed, as a small pressure jump is generated that works to stabilise

the interface (Figure 3.2(a)). The increase in wetting layer thickness causes an increase

in the capillary pressure (Pc = P1−P2), which makes it harder for the fluids to displace

and smooths the advancing interface. This is because the injected non-wetting fluid

is effectively trying to displace a wetting fluid out of a ‘smaller’ capillary tube, which

requires more force. At this low global capillary number, the solution is reasonably

stable, generating just two fingers at the first bifurcation due to the relatively large

critical length scale of bifurcation.

Dynamic wetting effects also alter the evolution of the finger bases, and can be seen to

push the bases further into the domain in Figure 3.2(b). At low values of Cal, the bases

follow a very similar evolution to that with no dynamic wetting effects, however, above

Cal = 1.05× 10−3, the base is pushed significantly away. The effect of dynamic wetting

in the Cal = 1.05×10−2 case is very significant. The finger fronts are displaced less and

have a much smaller perturbation in comparison to the other cases, causing the bases

of the fingers to be pulled much further forwards into the domain.

It is worth noting that in this model, dynamic wetting has no historical hysteresis, that

is, if the finger moves back into a region it has previously been, the wetting layer behaves

exactly the same as if the finger had never been there (hence the absolute value of Cal

in the pressure jump condition). This assumption has been discussed in [46] concluding

that thorough experimental work is needed to test the validity of this assumption.

The results in Figure 3.2 show very similar properties to the analytical results of Anjos

and Miranda [47]. In their case, several modes of perturbation are analysed, with

displacement computed for the early stages of finger growth and the weakly non-linear

stage of bifurcation (finger splitting). They use local capillary numbers in the order of

0.01− 0.1 (initially), and find that the dynamic wetting layer hinders finger growth and

can almost completely inhibit bifurcation, creating short stubby fingers. Similar results

are found here, however, in the later stages of finger growth, bifurcation can still occur

even with large values of local capillary number.

The local capillary number decreases with time, meaning in later stages it can be small

enough that the usual viscous fingering dynamics occur and bifurcation will proceed.
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Figure 3.3: Local Capillary number variation with time for the dashed line case (Cal
initial = 1.05× 10−2) in Figure 3.2.

If the bifurcation is delayed significantly, the mode of bifurcation can change and the

resulting interface can be significantly different.

In Figure 3.3, it is reported how the local capillary number changes with time for the

highest initial Cal case from Figure 3.2. The local capillary number decreases quickly,

and reaches the small capillary number limit of the Park and Homsy correction used in

equation (3.5) early in the simulation. Even in the highest initial Cal case, the Park

and Homsy small capillary number limit is quickly reached, showing the applicability of

the correction term for the radial injection cases presented here.

3.3.2 Global capillary number effects

In this section, the effect of changing the global capillary number and resulting wetting

layer is investigated. Increasing the global capillary number lowers the critical length

scale of bifurcation and generally means that more fingers are generated on the first

bifurcation, leading to a more convoluted interface. With an increase in Cag, the local

capillary number Cal is also increased, meaning the effects of both a more unstable

solution globally, and an increased thickness of dynamic wetting layer can be seen.

The changing global capillary number results are presented in Figure 3.4. A mobility

ratio of 10 is used in all cases, with brine as the displaced fluid, and supercritical CO2 as

the injected fluid. To increase the global capillary number, the surface tension between
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Figure 3.4: Effect of varying Cal and Cag on interfacial evolution, t = 88. (a) Cag =
2000, initial Cal = 2.19 × 10−4. (b) Cag = 4000, initial Cal = 4.47 × 10−4. (c)
Cag = 8000, initial Cal = 9.04× 10−4. — J0 = 0, ---- J0 = 3.8. β = 10.

the fluids is correspondingly decreased (equally the injection flux could be increased for

the same change in global capillary number) . The local capillary number stated in each

figure refers to the initial maximum along the interface calculated at t = 0.

With the relatively high local and global capillary numbers tested in Figure 3.4 it can

be seen that bifurcation is delayed and the fundamental mode can be changed when

dynamic wetting effects are included (J0 = 3.8). It should be noted that due to the

inclusion of the π/4 pre-factor in the in-plane curvature term here (equation (3.5)), the

base cases without wetting layer effects (J0 = 0) show different bifurcation regimes to

the corresponding cases in Figure 2.14 in chapter 2. The inclusion of the π/4 term

in the capillary pressure (to be consistent with the Park and Homsy analysis [45]) has
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effectively reduced the surface tension in comparison to the cases in Figure 2.14, meaning

the interfaces are more unstable and exhibit more fingers on bifurcation.

In the Cag = 2000 case in Figure 3.4, the three finger split has been inhibited, and only

two primary fingers form from the first bifurcation through the inclusion of the dynamic

wetting layer. The bifurcation has been delayed, and in doing so the fundamental

splitting mode has been changed due to the inhibition of the middle finger.

Similar effects are seen at higher global capillary numbers, although the number of

fingers that form on the first bifurcation is not always reduced due to dynamic wetting.

The critical length scale of bifurcation decreases at higher capillary numbers, meaning

it is easier for more fingers to form upon bifurcation. However, as the interface is

generally ‘smeared’ and made more uniform by the inclusion of dynamic wetting, there

can be more parts of the interface greater than the critical length scale of bifurcation.

This means more fingers can sometimes be formed due to the presence of the dynamic

wetting layer (see Figure 3.4(b)).

When the global capillary number is increased, the overall stability of the solution is

reduced. The interface becomes more ramified and an increased number of boundary

elements must be used to accurately capture the displacement. However, the stabilising

effect of dynamic wetting also increases with global capillary number, meaning that

there is competition between the destabilising effect of increasing the viscous driving

force and the stabilising effect of increasing the thickness of the dynamic wetting layer.

Through many numerical experiments, it was observed that even at very large local

capillary numbers, bifurcation could never be completely inhibited. The system would

eventually become unstable due to the viscosity contrast between the fluids and the fact

that the wetting layer thickness reduces with time.

3.3.3 Late stage interfacial displacement

Here the late stage interfacial evolution is considered, given an asymmetric starting

interface in order to more closely mimic the different perturbation wavelengths that

may occur naturally in a real injection scenario. An asymmetric boundary is used,
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which is similar to that presented previously with a radius defined by:

r = 1 + ε0 cos

(
6

√
θ3.5

2π2.5

)
(3.14)

Equation (3.14) with ε0 = 0.1 is a slightly different asymetric form to equation (2.77).

The form in (3.14) is used in order to create perturbations of longer wavelength around

the interface, which create more fingers on bifurcation where dynamic wetting effects can

be analysed. The displaced fluid is taken as brine with suitable deep aquifer properties

as per the previous chapter (i.e. injection depth 1000m, Pamb = 10MPa, T = 35◦C,

γ = 0.03kg.s−2, µ = 7.6 × 10−4Pa.s). Supercritical CO2 is injected into the system

with a pressure of 20MPa, and a viscosity ten times lower than that of the resident

brine. This gives a global capillary number of 5000, with a initial local capillary number

of 5.33 × 10−4. The plate separation is 0.0123cm, giving an intrinsic permeability of

1.26× 10−5cm2 equivalent to highly fractured porous rock [63].

Time plots of the injection can be seen in Figure 3.5. The onset of fingering has been

delayed significantly in the dynamic wetting case, especially on the more stable fingers

in the left of the domain. At t = 20, the interfaces show considerable likeness, with only

minor deviation from each other. However, as time progresses, the effects of the dynamic

wetting layer can be seen, whereby the bifurcation of fingers are inhibited significantly.

In the areas where small fingers have formed with a large curvature, dynamic wetting

has only slightly hindered the growth and subsequent bifurcation (mainly in the right

of the domain). The large curvature means that the effects of dynamic wetting are

proportionally less pronounced compared to areas with a small curvature.

Due to the very flat interface at the bottom right of the domain and the relatively large

global capillary number, many small fingers are able to form at the first bifurcation.

Dynamic wetting has delayed the fingers from forming, but the bifurcation mode is very

similar. The bases of the newly generated fingers have been pushed further into the

domain due to the dynamic wetting layer.

In Figure 3.6 the zoomed in area from the dashed box in Figure 3.5 can be seen. This

plot highlights the finger interaction occurring between several small fingers with large

curvature and rapid growth rates. The solid line shows that without dynamic wetting,

the side branching finger is thinning the base of the other primary finger significantly.
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Figure 3.5: Asymmetric interfacial displacement with a mobility ratio of 10 at different
times. Dashed box represents zoomed in area for Figure (3.6). — J0 = 0, ---- J0 = 3.8

This will eventually lead to finger breaking, shown in the previous chapter as a result of

the small immiscible lubrication layer separating the fingers and the significant velocity

possessed by the side branching finger. The base thinning is only slightly inhibited when

dynamic wetting effects have been included (dashed line). The side branching finger is

less defined than the case without dynamic wetting, but it is still advancing at nearly

the same rate, and thinning the base of the other primary finger significantly. Both

cases lead to finger break-off, with dynamic wetting effects delaying the base thinning

mechanism but still having the same overall outcome once time has progressed.

To compare the above case with a classical negligible viscosity injection, the same

simulations are run but the mobility ratio between the two fluids is increased to 250.

This case is presented purely for comparison purposes, as most previous work in the
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Figure 3.6: Zoomed in plot of finger interaction in Figure 3.5. — J0 = 0, ---- J0 = 3.8

field (when wetting effects are not considered) show flow regimes where the inner fluid

has negligible viscosity.

Comparing the non-dynamic wetting cases in Figure 3.5 and Figure 3.7 the effect of

increasing the mobility ratio between the fluids can be seen. Classical effects such as

finger shielding are present in the high mobility ratio case, in which the secondary and

side branching fingers’ growth has been inhibited by the growth of primary fingers.

The combination of finger shielding and dynamic wetting have a noticeable effect on

the number of fingers that are able to form in Figure 3.7(c). There are several fingers

(notably those appearing after bifurcation on the far right primary finger) that advance

more significantly into the domain than in the non-dynamic wetting case. Dynamic

wetting hinders the bifurcation of the finger, which means that the initial growth of the

primary finger to the side is unable to shield its growth (shown by the note in Figure

3.7(c)). This means that later on in time when the finger does eventually bifurcate,

the primary finger has already grown beyond it, and there is much less competition.

The smaller finger can then grow relatively unhindered, and become a primary finger

advancing at the forefront of the plume.

Raising the mobility ratio has introduced the shielding effect to the viscous fingering

problem, but this has been somewhat inhibited by the inclusion of the dynamic wetting

layer. The delaying of bifurcation means that several previously competing fingers are
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Figure 3.7: Asymmetric interfacial displacement with a mobility ratio of 250 at different
times. — J0 = 0, ---- J0 = 3.8

not present until later in the simulation, when the primary fingers have advanced much

further into the domain. The primary fingers do not compete as directly with these

newly formed fingers, as the fronts are further into the domain and not advancing at the

same rate as the new fingers.

Finger competition was also found to be reduced by Anjos and Miranda in the weakly

non-linear stages of finger growth [47]. They measure finger variability in the domain

and find that dynamic wetting produces fingers with a more uniform radial extent,

i.e., competition has been reduced. Similar features are observed here in the non-linear

stages of finger growth, whereby the shielding effect is reduced due to delayed bifurcation.

Fingers compete less with each other and the difference in radial extent of the different

finger fronts is reduced.
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Figure 3.5 and 3.7 show considerable likeness to the experimental results presented

in Figure 2 of [76]. Ward and White analyse the trailing film thickness left by a

glycerol-water mix displaced by air, studying the bursting time, average film thickness

and total area. Although finger morphology is not the focus of the paper, their

qualitative results show remarkably similar fingering patterns to those found here,

especially at the high mobility ratios presented in Figure 3.7.

3.4 Conclusion

In this chapter, a direct boundary element method and Picard iteration scheme have been

developed for the solution of immiscible displacement in a Hele-Shaw cell with non-linear

wetting effects. The numerical method allows accurate and efficient evaluation of the

interface velocity, permitting long term exploration of the effects of dynamic wetting in

the non-linear regime of viscous finger bifurcation and competition.

During the non-linear stages of interfacial evolution, dynamic wetting delays the onset

of finger splitting and changes the fundamental mode of bifurcation. Dynamic wetting

smooths the interface, creating a less convoluted surface that takes longer to bifurcate.

The smoothing of the interface also means that, once bifurcation starts to occur, the

number of fingers produced is generally different to that when no dynamic wetting is

included.

Asymmetric interface simulations reveal that finger interaction is reduced by the

inclusion of dynamic wetting in low mobility regimes and that previously found finger

breaking mechanisms can be delayed but can never be completely inhibited. The

dynamic wetting layer thickness decreases with time, meaning that eventually classical

viscous fingering patterns emerge in the solution.

When the mobility ratio is raised to simulate negligible viscosity, finger shielding is less

prominent. Secondary and side branching fingers appear later in the simulation due to

delayed bifurcation meaning less competition is encountered with the primary growing

fingers.



4. A local RBF method for moving

multi-zone transport problems

Summary

This chapter develops a local radial basis function - finite collocation method (RBF-FC)

that utilises an adaptive quadtree dataset to cluster nodes around critical features in

the domain, for the solution of transport processes occurring in moving front problems.

This method is developed specifically for the viscous fingering problem when the mobility

varies inhomogeneously in the domain, requiring the solution of convection-diffusion type

multi-zone problems with a moving interface.

The numerical method utilises an adaptive quadtree dataset to generate an improved

distribution of solution centres in the domain, around which local Hermitian collocation

systems are formed. In these local systems, the governing PDE and boundary operators

of the problem are enforced by collocation. Globally, the systems are linked via

reconstruction of the solution variable in terms of the solution value at neighbouring

nodes producing a sparse global matrix with a solution cost that scales linearly with

the number of nodes in the domain. Two new multi-zone methods are developed; an

embedded method which enforces the multi-zone matching conditions globally in the

sparse matrix system, and an auxiliary method which enforces the matching conditions

in the local RBF systems.

The RBF-FC method with adaptive quadtree dataset and new multi-zone formulations

are verified on several steady-state and transient test cases. Stencil configurations

are analysed on a steady-state boundary layer problem, highlighting the most optimal

PDE centre location using the adaptive dataset. Transient single-zone testing using an

80
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infinite Peclet number advection problem is performed to analyse the most effective way

to update the inhomogeneous PDE term at each time step, showing the basic stencil

configuration to perform best in transient cases.

The multi-zone methods are demonstrated on a steady-state fixed interface problem

showing very similar performance attributes and consistent 3rd order convergence for

both schemes. In the transient fixed interface case, the embedded method performs

significantly better due to the enforcing of the PDE from both zones on the interface,

however the auxiliary method is still able to achieve 2nd order convergence. Final testing

on a full moving boundary problem with the auxiliary method highlights the robustness

of the scheme and the accuracy that can be achieved without the need for ghost-node

extrapolation.

4.1 Introduction

Interfacial displacements involve transport processes such as mass, heat and momentum

transfer occurring across the interface, which generate solution fields that vary sharply

through the domain. In this work, the effects of inhomogeneous mobility arising from

variable cell permeability and thermally dependent viscosity are to be considered under

the conditions found in CO2 injection. To this end, in order to evaluate the effect

of an inhomogeneous mobility on immiscible viscous fingering, two convection-diffusion

transport problems have to be considered. Firstly, equation (2.21) can be expanded

considering a non-constant b(x) and µl(x) as:

∂

∂xi

(
b3(x)

12µl(x)

)
∂Pl
∂xi

+

(
b3(x)

12µl(x)

)
∂2Pl
∂x2

i

= 0 x ∈ Ωl, l = 1, 2 (4.1)

The plate separation b(x) in equation (4.1) can vary in space, either subject to a known

analytical function (as in chapter 5) or using physical point data. The viscosity µl(x)

can also vary in space due to an imposed temperature field, i.e. µl(x) = f(Tl(x, t)), and

can change dramatically in a small range of temperatures (especially in CO2 injection

scenarios). It is therefore necessary to evaluate the heat transfer in each fluid zone l to
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calculate the transient temperature field and viscosity for equation (4.1):

∂Tl(x, t)

∂t
= Dl

∂2Tl(x, t)

∂x2
i

− uli(x, t)
∂Tl(x, t)

∂xi
l = 1, 2 (4.2)

Where, Dl is the thermal diffusivity, Tl is the temperature and uli is the fluid velocity.

The expanded form of the elliptic equation (4.1) and the heat transfer equation (4.2)

represent multi-zone convection diffusion type transport problems, in which appropriate

solution and flux matching conditions have to be imposed on the moving interface.

Suitable boundary conditions also need to be applied to fully close the system. The

effective solution of the above equations introduces two main issues:

1. The transport of mass in equation (4.1) and temperature in (4.2) involves several

length scales throughout the domain [77], requiring a numerical scheme that can

accurately and efficiently capture sharply varying profiles near the interface and

smooth details in the outer regions of the domain.

2. Both equations have discontinuities in the effective diffusivity at the interface, as

well as rapidly varying (discontinuous in (4.1)) velocity fields, creating a sharp

multi-zone representation of the problem that cannot be solved using smooth

interpolating functions. The multi-zone interface is explicit and forms an integral

part of the solution that may not necessarily be known a - priori.

Developing a suitable numerical technique that can effectively handle the issues above

is challenging, and has been the focus of many recent works. The two issues can

arise separately, as in single-zone convection-diffusion problems [78–80], or in a coupled

manner in moving boundary transport problems [81–83]. The moving interface must

be accurately represented, with many previous works focusing on level set methods to

implicitly capture the interface location [77, 84, 85] or boundary element methods, as

are used in this work, to expliclty track the interface [36, 37, 86].

Since an accurate boundary element method has been presented in chapter 2, which

can be adapted to suit the problems above, this chapter focuses on developing a

technique to capture the rapidly varying solution profile in fixed and moving multi-zone

convection-diffusion problems where the sharp interface location is known. The

developed method will then be used alongside the BEM in chapters 5 and 6 for the

solution of inhomogeneous mobility viscous fingering problems.
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4.1.1 Polynomial methods for multi-zone transport

When considering convection-diffusion type problems in general, numerical methods that

employ polynomial interpolations are typically used to find approximate solutions to the

governing equations, e.g. the finite difference (FD), finite volume (FV) or finite element

(FE) methods. When the solution is strongly convective, these numerical methods

generally use some form of upwinding, where the polynomial interpolation is biased

in the upstream direction [78, 79, 87]. This helps to damp numerical oscillations that

can grow over time and destroy the solution [87]. However, using purely upwinded

stencils for convective situations can introduce significant numerical diffusion over time,

smearing sharp solution profiles. Also, extra complexity is introduced into the numerical

scheme since stencils must be properly aligned with the flow direction; a task which is

non-trivial in two or three dimensional problems, or if the velocity is computed as part

of the solution.

A common technique to minimise numerical smearing whist maintaining stability in the

solution is to use a combination of different stencils; biasing between centrally-defined

stencils and upwind-biased stencils depending on the flow regime, minimising the

variation in the solution. See for example total variation diminishing (TVD) methods

[88] or weighted essentially non-oscillatory (WENO) methods [89]. In WENO methods

various large stencils (with a range of spatial accuracy’s) are formed around the

rapidly varying solution profile, with the most optimal stencil being chosen to minimise

oscillations and capture sharp solution profiles very accurately.

Although there has been significant progress in creating non-diffusive, high-accuracy

stable polynomial based techniques for single-zone convection-diffusion problems, there

are still significant drawbacks when the approaches are considered for multi-zone

problems. When meshed based methods are explicitly conformed to an interface, either

through coordinate transforms or by directly deforming mesh points to coincide with the

interface, the resulting solution quality is strongly dependent on the mesh quality [90].

For moving interface problems with highly deformable interfaces, the resulting mesh can

be highly skewed leading to inaccurate solutions. Also, the mesh has to be updated at

each time step, which is non-trivial when the mesh quality is of prime importance and

the interface can experience large deformations.
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Multi-zone matching conditions in conformed meshes can be enforced using a variety

of techniques that vary in their order of approximation. Non-overlapping alternative

Schwarz iteration procedures can be implemented, whereby the two zones use different

boundary conditions at the interface that are iteratively updated from the solution of

the alternate zone [91]. Neumann or Robin boundary conditions may be employed in

one zone to represent the surface flux, whilst the other zone may use a corresponding

Dirichlet condition to enforce the surface solution. The procedure then iterates between

each zone, with the first zone reconstructing the solution on the interface for use as the

second zone Dirichlet condition, and the second zone reconstructing the surface flux for

use as the Neumann or Robin boundary condition for the first zone. Once the variation

in flux and solution drops below a prescribed tolerance the procedure ends, with the

matching conditions enforced globally.

Another technique is to use fictitious points in each zone, extending the solution of

each domain over the interface, allowing the use of Taylor series expansions [92]. Since

a Taylor series expansion is only valid for continuous data, by extending the inner

and outer zone solution to a small region outside the interface, the expansion can be

completed. This technique also forms the basis behind many immersed boundary and

interface type problems, see [93–95]. The expansion of the solution using the inner

and outer fictitious points allows two equations to be formed for the interface solution,

which when coupled with a suitable flux matching condition equation can close the

problem. Three equations are formed, with three unknowns: the interface solution and

two fictitious point solutions. Note that if the interface solution is constructed using

polynomial interpolations coming from a single zone without fictitious points (i.e. using

backward or forward differences), only one matching condition equation can be enforced

without solving an overdetermined system.

Due to the issues associated with mesh generation and quality in conformal methods,

improvements can be made by using regular Cartesian meshes with an underlying

representation of the boundary, as in common in Stefan and Dendritic solidification heat

transfer problems [81, 96, 97]. Here, at locations where the interface cuts the regular

mesh, a similar procedure to the fictitious point method above can be implemented

whereby the solution is extended in a small band out of the zone [96]. For grid points

next to the interface, the solution can be extrapolated to the grid point past the interface
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Figure 4.1: Diagram showing the ghost region. ∂Ω refers to the interface at time steps
n and n + 1. Ω1/Ω2 are the interior and exterior zones respectively. Crosses show a
regular Cartesian grid, with diamonds representing the underlying interface points.

in terms of the interface solution and inner zone nodes. When this is done for both grid

points on either side of the interface two equations are produced with three unknowns.

The flux matching condition can then be used to close the system. The extrapolation

can be performed to various orders [98], allowing the extension of the sharp interface

problem to regular grids with arbitrarily complicated interfaces.

As well as the extrapolation procedure to approximate the interface solution, a further

issue associated with the transient multi-zone problem using fixed Cartesian grids is

that of ghost nodes, illustrated in Figure 4.1 [81, 99]. This problem occurs when the

moving interface travels over a regular interior node, and the zone switches from 2 to 1

between time step n and n+ 1. This means the value of previous time step data needs

to be calculated for the node, but at time step n the node was positioned in zone 2;

no data exists for the node in zone 1 at time step n. Transport data such as the fluid

velocity and temperature are only known in the specified zones at a specified time step,

and do not exist outside of these regions, meaning the zone 1 fluid velocity at time step

n cannot be reconstructed accurately by the numerical method in zone 2. Since the

mesh nodal points cluster in a rigid orthogonal manner around the interface, and do not

sit explicitly on the interface location, points frequently pass through the ghost region

shown in Figure 4.1. Extrapolation schemes can again be used to reconstruct the data

needed from the previous time step in a small band outside of the interior zone [98].

However, this limits the convergence and accuracy of the numerical method to that of
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the extrapolation scheme, which can be very poor when the data varies sharply over the

interface.

4.1.2 RBF methods for multi-zone transport

Natural alternatives to the mesh based polynomial techniques described above are

meshless techniques that don’t require explicit meshes to be created at each time step.

One prominent technique, and the basis behind this work is the strong form, radial

basis function (RBF) collocation technique [100–103]. Here, polynomial interpolating

functions are replaced with radial basis functions, which use the radial distance between

points r = |x| to construct interpolating functions between nodal points. Since

partial derivatives can be reconstructed simply based on the derivatives of r, there

are no restrictions on orthogonality as in methods based on Taylor expansions, and

extending the method to higher dimensions is relatively straightforward. This makes

RBF methods highly suited to tackle problems using scattered, irregular datasets with

high dimensionality, requiring no formal mesh connectivity.

There exist many global implementations of RBF schemes, in which the entire dataset

is interpolated and used to reconstruct the solution, where exponential convergence

rates (spectral accuracy) can be observed producing highly accurate solutions [104].

However as the size of the dataset grows the resulting matrix systems suffer from

severe ill-conditioning and since the cost of solving the fully populated global matrix

grows with N3, there is a practical limit to the dataset size and accuracy that can

be achieved using standard hardware (8 or 16 byte precision) arithmetic. Although

arbitrary-precision arithmetic (> 100 decimal points) can be implemented in software

to solve the ill-conditioned matrices, the solution time can increase significantly for

practical problems [105].

To alleviate the global issues above, the RBFs can be formed locally on small overlapping

systems that are linked via global reconstruction of appropriate operators [106]. A

straightforward localised implementation of RBFs can be found in the finite difference

style approach - RBF-FD. The polynomial interpolants in regular finite difference

schemes are replaced by radial basis functions, with the same global differencing

procedure applied to reconstruct the PDE at the global level at solution nodes (see
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[107–110]). Since the principle is the same as traditional finite differences (albeit with

significantly increased accuracy and flexibility), upwinded stencils can also be employed

for highly convective regimes [111, 112]. In [113, 114] improved accuracy and stability

is achieved through the use of auxiliary PDE points. The auxiliary PDE points appear

solely in the local interpolation, having no global context, giving rise to an implicit

upwinding effect and improved solution stability.

Since the solution is meshless, nodal points can be placed directly on the interface with

relative ease, and grouped into local stencils. Multi-zone matching conditions can be

applied at the global level utilising the flux as an operator in the RBF interpolation

at the local level. This means that the flux and solution can appear as unknowns in

the resulting global system. By reconstructing the PDE from the two different zones

at the same interface point, two equations are formed in the global system with 4

unknowns. By equating the flux and solution variables to each other using the matching

conditions, the problem is reduced to 2 equations in the global matrix with 2 unknowns.

This global multi-zone reconstruction was performed in [113] on various steady-state

and transient cases, demonstrating the robustness of the method and accuracy when

capturing discontinuous multi-zone interfaces, with large changes in fluid properties.

A further extension to the RBF-FD methods described above are RBF-finite collocation

(RBF-FC) schemes that allow non-oscillatory solutions to highly convective regimes,

even in the presence of discontinuous shocks [115]. Here, the local interpolation uses the

boundary operators and PDE centres in a similar way to the auxiliary nodes in [113]

producing similar implicit upwinding effects. However, instead of global differencing, the

systems are linked through reconstructing of the field variable in terms of the field value

at neighbouring nodes producing a sparse global matrix [116]. The PDE is only enforced

locally, and does not appear at the global level, meaning that the resulting global matrix

is well conditioned, and scales linearly with the number of nodes in the domain. In this

way, the RBF-FC method is a direct analogue to the global RBF method applied at the

local scale, where small boundary value problems are formed that are then linked via

global solution collocation.

The RBF-FC method has been previously demonstrated on various steady and transient

convection-diffusion problems using uniform, geometrically refined and scattered

irregular datasets, showing consistent spatial and temporal convergence [115, 116]. Local
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stencil configuration and spatial refinement play a crucial role in the overall accuracy

of the scheme, with uniform datasets showing much more predictable scaling properties

and lower solution errors than their scattered irregular counterparts [116]. However,

uniform datasets generally use many more points than are necessary in areas where the

solution profile is varying gradually, in the outer limits of the domain in moving front

problems. To maintain the regular systems present in uniform datasets whilst allowing

significant spatial refinement throughout the domain, a quadtree data structure can

be implemented that clusters the nodal points of the RBF-FC method around critical

features in the domain.

Quadtree datasets are typically used as mesh pre-processors for finite difference or finite

volume schemes, where mesh orthogonality is crucial, particularly for the finite difference

scheme, where unless special treatment is to be given to spatial derivatives, orthogonality

is a binding restriction. When the FD method is coupled with a level set front capturing

technique, quadtree meshes have effectively been used to solve the well known Stefan

problem and other heat transfer problems [77, 99]. However, these methods generally

have limited spatial convergence (typically supra-linear). Similar schemes have also been

implemented using quadtree datasets with a volume of fluid front capturing technique,

showing considerable improvement over their uniform dataset counterparts [117].

By utilising a quadtree data set for the nodal point generation for the RBF-FC

scheme, a sparse global dataset can be created that alleviates issues with convergence

and upwinding criteria. Consistent nodal refinement can be achieved, that allows

local systems to maintain regularity and consistency, whilst grading from a coarse

discretisation in the far field to a fine discretisation near the interface.

In this chapter the RBF-FC method described above is developed for use with adaptive

quadtree datasets that cluster and ‘snap’ directly to the moving interface. Two new

multi-zone methods are also introduced, one which follows the same procedure as the

global formulation in [113], collocating two systems at each interface point, and a second

method which only collocates the matching conditions locally in a fashion in keeping

with the original boundary value style of the RBF-FC scheme. These new schemes are

suited to different forms of the problems presented at the start of this chapter, and are

developed specifically for different tasks.
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In the following sections, the new RBF-FC multi-zone formulations are first presented for

general moving multi-zone transport problems, followed by stencil configuration testing

and transient verification. The chapter concludes with multi-zone verification on three

test problems.

4.2 The multi-zone RBF-FC method

The RBF-FC method presented in this section covers new formulations for moving

multi-zone problems, with adaptive multi-zone features added to the original RBF-FC

method first presented in [116]. For more details on the base RBF-FC method, along with

comparison to other RBF schemes, see [115, 116]. The convection-diffusion problems

under consideration in this work can be described generally as initial boundary value

problems of the form:

∂φl(x, t)

∂t
= Ll[φl(x, t)] + Sl(x, t) x ∈ Ωl (4.3)

φl(x, 0) = pl(x) x ∈ Ωl (4.4)

Bl[φl(x, t)] = gl(x) x ∈ ∂Ωl (4.5)

C1[φ1(x, t)]− C2[φ2(x, t)] = h(x) x ∈ ∂Ωint (4.6)

Q1[φ1(x, t]−Q2[φ2(x, t] = f(x) x ∈ ∂Ωint (4.7)

Here, Ωl is the interior of zone l, ∂Ωl is the boundary of zone l and ∂Ωint is the fluid-fluid

interface. φl represents the field variable solution in zone l. L and B are linear partial

differential operators on the domain Ωl and the boundary ∂Ωl respectively. C and Q are

solution and flux operators acting at the interface ∂Ωint with corresponding matching

conditions h(x) and f(x). If h(x) = f(x) = 0, the solution and flux are continuous

across the interface. Equation (4.4) represents the initial conditions of the problem in

each zone. A Crank-Nicholson approximation can be applied to the time derivative:

φn+1
l − φnl

∆t
= θL

[
φn+1
l

]
+ (1− θ)L [φnl ] + Sl (4.8)
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From (4.8), modified PDE governing operators can be obtained:

L = I − θ∆t L (4.9)

L̂ = I + (1− θ) ∆t L

such that

Ll
[
φn+1
l

]
= L̂l [φ

n
l ] + Sl = Ŝl (4.10)

In the equations above, I is the identity matrix (dimension 1 here). By using this type of

time stepping algorithm, the transient problem is reduced to a series of inhomogeneous

steady-state problems, with the inhomogeneous term Ŝl a function of the solution at

the previous time step. Steady-state problems are achieved by setting L̂l to zero and

Ll = Ll in the above equations.

The Hermitian collocation approach constructs the value of the solution φ as a weighted

sum of partial differential operators applied to a set of radial basis functions that are

centred on nodes yj (here j refers to the specific node in the summation, not the spatial

components y1/y2 of y). In the Hermitian RBF interpolation in equation (4.11), the

boundary operator B is applied at the domain boundary, the governing PDE L operator

is applied at the domain interior, and the flux and solution operators Q and C are

applied at the multi-zone interface:

φn+1
l (x) =

NB∑
j=1

τjBl,yΨ (‖x− yj‖) +
NB+NI+1∑
j=NB+1

τjLl,yΨ (‖x− yj‖) (4.11)

+
NB+NI+NF+2∑
j=NB+NI+2

τjCl,yΨ (‖x− yj‖) +
NB+NI+2NF+3∑
j=NB+NI+NF+3

τjQl,yΨ (‖x− yj‖)

In equation (4.11), NB is the number of boundary nodes, NF is the number of flux

(interface) nodes and NI is the number of internal nodes. τj are the unknown RBF

weights. For operators with two subscripts, i.e. Bl,y, the l refers to the zone, whilst

the y refers to the node at which the operator is applied, i.e. they are not Einstein

notation subscripts representing spatial or temporal components. The RBF operators

in equations (4.11) are Hardy Multiquadric RBF interpolants:

Ψ (r) =
(
r2 + c2

) 1
2 (4.12)
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Figure 4.2: Typical RBF-FC stencil types. (a) Interior stencil. (b) Two Embedded
multi-zone stencils collocated on the interface. (c) A single Auxiliary multi-zone stencil
collocated on the interface. Black diagonal lines indicate the fluid-fluid interface. The
grey hatching highlights separate RBF stencils.

The c term in (4.12) is known as the shape parameter, and describes the relative ‘flatness’

of the RBF functions about their centres. In this work, a non-dimensional version given

as c∗ = c/∆ is used. ∆ is the average nodal separation in the local stencil.

The value of c∗ has been investigated previously in [115, 116]. Values of c∗ that are too

small can lead to a loss of accuracy, however sufficiently large values of c∗ are found

to provide a solution of consistent accuracy. The use of extremely flat basis functions

is therefore desirable; however, this leads to more poorly conditioned local collocation

systems which may require high-precision arithmetic. Throughout this work, a relatively

high shape parameter (c∗ ≥ 50) is coupled with quad precision arithmetic to ensure high

solution accuracy and numerical stability.

In the RBF-FC method, the global domain is broken down into a series of overlapping

local stencils. These stencils are formed at every interior node x in the domain, with

three examples shown in Figure 4.2. Enforcing the PDE system (4.3 - 4.7) at a set

of test locations, equal to the set of functional centres yj in a local stencil in zone l,

a collocation matrix can be formed. The node around which the stencil is formed is

identified as the centrepoint for the stencil, see Figure 4.2.
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For a general interior stencil in zone l shown in Figure 4.2(a), that does not coincide

with the interface, the following system of equations is formed:

 Bl,xBl,y [Ψij ] Bl,xLl,y [Ψij ]

Ll,xBl,y [Ψij ] Ll,xLl,y [Ψij ]

 τj =

 gl,i

Ŝl,i

 (4.13)

In the above matrix equation, the operators with y subscript are applied to the functional

centres, and the operators with x subscript are applied to the test locations. The RBF

Ψij is given by Ψij = Ψ (‖xi − yj‖).

For stencils with centrepoints on the interface, the two multi-zone methods have slightly

different formulations. For the embedded multi-zone method, two stencils are formed

at each interface point (shown in 4.2(b)), with the interface flux and boundary field

variables (including those on the interface) appearing as unknowns in the corresponding

data vector. At the stencil centrepoint the corresponding zone PDE value Ll is enforced,

giving rise to the following system for zone 1 and zone 2 respectively:


B1,xB1,ξ B1,xL1,ξ B1,xC1,ξ B1,xQ1,ξ

L1,xB1,ξ L1,xL1,ξ L1,xC1,ξ L1,xQ1,ξ

C1,xB1,ξ C1,xL1,ξ C1,xC1,ξ C1,xQ1,ξ

Q1,xB1,ξ Q1,xL1,ξ Q1,xC1,ξ Q1,xQ1,ξ

 τj =


g1,i

Ŝ1,i

C1[φ(x, t)]

Q1[φ(x, t)]

 (4.14)


B2,xB2,ξ B2,xL2,ξ B2,xC2,ξ B2,xQ2,ξ

L2,xB2,ξ L2,xL2,ξ L2,xC2,ξ L2,xQ2,ξ

C2,xB2,ξ C2,xL2,ξ C2,xC2,ξ C2,xQ2,ξ

Q2,xB2,ξ Q2,xL2,ξ Q2,xC2,ξ Q2,xQ2,ξ

 τj =


g2,i

Ŝ2,i

C1[φ(x, t)]− hi

Q1[φ(x, t)]− fi

 (4.15)

Note, the RBF functions [Ψij ] have been left out to save space. The data vectors (on the

RHS of the equations) contain the unknown interior solution values gl,i and the unknown

interface solution and flux values C1[φ(x, t)] and Q1[φ(x, t)] respectively. From these the

corresponding zone 2 interface solution and flux values can be calculated using equation

(4.6) and (4.7).

In contrast to the embedded method, the auxiliary multi-zone method collocates only

one stencil at each interface point (see 4.2(c)), enforcing operators from zone 1 and zone
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2 in the same matrix system, i.e.:



B1,xB1,ξ 0 B1,xL1,ξ 0 B1,xC1,ξ B1,xQ1,ξ

0 B2,xB2,ξ 0 B2,xL2,ξ B2,xC2,ξ B2,xQ2,ξ

L1,xB1,ξ 0 L1,xL1,ξ 0 L1,xC1,ξ L1,xQ1,ξ

0 L2,xB2,ξ 0 L2,xL2,ξ L2,xC2,ξ L2,xQ2,ξ

C1,xB1,ξ −C2,xB2,ξ C1,xL1,ξ −C2,xL2,ξ C1,xC1,ξ − C2,xC2,ξ C1,xQ1,ξ − C2,xQ2,ξ

Q1,xB1,ξ −Q2,xB2,ξ Q1,xL1,ξ −Q2,xL2,ξ Q1,xC1,ξ −Q2,xC2,ξ Q1,xQ1,ξ −Q2,xQ2,ξ


τj =



g1,i

g2,i

Ŝ1,i

Ŝ2,i

hi

fi


(4.16)

In the auxiliary system, the unknown solution fluxes do not appear in the data vector,

with fi instead enforcing the flux matching condition locally. Similarly, the field variable

matching condition appears locally in the form hi. The auxiliary system only enforces

corresponding zone operators on each other, so that the interpolation is valid in a

particular zone. A smooth interpolation cannot be performed using a single interpolating

function if there are discontinuities in the operators, hence the need for zone specific

interpolations that creates a block structure in (4.16). The PDE centres present at

the system centrepoints of the two embedded systems are not apparent in the auxiliary

system. This is because the local enforcement of the matching conditions provides a

strong collocation at the centrepoint, which already takes into account the multi-zone

transport scalars that appear in the PDE centres, so there is no need for a third/fourth

collocation here.

If interface points fall on the periphery of an interior stencil (i.e. not at the actual

centrepoint of the stencil), then the embedded method collocates both flux and solution

around the periphery in keeping with the rest of the formulation (with the flux and

solution appearing globally). In the auxiliary method however, only solution points

are collocated on the boundary of interior stencils, with the matching conditions only

enforced in the system that has a centrepoint directly on the interface. This is because

a block structure would be introduced with only a limited number of flux and solution

points, without any points in the interior of the alternative zone. This weakens the

matrix system, making it more beneficial to use a standard interior collocation system

with points solely from the zone in which the centrepoint exists.

Given known data vectors (the right hand side of (4.13)-(4.16)) τj can be found, which

may be used to obtain the value of φl at any location x within the domain or on its

boundary via equation (4.11).
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Around each internal node a local stencil is formed, which connects the node to its

neighbours (specific stencil configuration is explored in section 4.4). An RBF collocation

is formed over each of the N stencils using (4.13)-(4.16) depending on the centrepoint

location in the domain, leading to [116]:

A(k)
s τ (k) = d(k)

s k = 1, ..., N (4.17)

Where As are the local RBF collocation systems and ds are the corresponding local data

vectors (the right hand side of (4.13)-(4.16)). Here, ds contains both known values, i.e.

Ŝnl and unknown solution values, i.e. φn+1
l .

To link the systems together in a global manner, φn+1
l can be reconstructed at each

system centrepoint x
(k)
c using (4.11) [116], i.e.:

φ
(k)n+1
l

(
x(k)
c

)
= H

(k)
l

(
x(k)
c

) [
A(k)
s

]−1
d(k)
s k = 1, ..., N (4.18)

where the reconstruction vector corresponds to that given in (4.11). For example, the

reconstruction vector H
(k)
l of a point on the interface is given by:

H
(k)
l

(
x(k)
c

)
=
[
Bl,x [Ψ] , Ll,x [Ψ] , Cl,x [Ψ] , Ql,x [Ψ]

]
(4.19)

By performing the reconstruction (4.18) at the centrepoint of each local system k, a

sparse global system can be formed expressing the N unknown values of φn+1 at the

system centrepoints:

Ag[φ
n+1] = Dg (4.20)

In the global system (4.20) above, Ag is the sparse global matrix formed of N

rows/columns from the multiplication of the reconstruction vectorsH
(k)
l and local system

matrices A
(k)
s for each system centrepoint. Dg is the global data vector containing only

known values. The unknown values of φn+1 appearing in each local data vector ds are

retained on the LHS of (4.20), with the known values (such as the boundary values and

matching conditions etc.) moved to the RHS to form Dg.

Solving the sparse global system (4.20), the value of φn+1 are obtained at the N internal

nodes. The newly computed nodal values of φn+1 may then be fed back into the the
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local data vectors, d
(k)
s , allowing the value of L̂l

[
φn+1
l

]
or any other operators to be

reconstructed at the end of each time step.

The sparse global system is well conditioned and contains only several values on each

row (equal to the number of unknowns in the local systems), meaning it can solved with

any standard sparse LU solver. A direct sparse LU solver adapted for quad-precision

arithmetic is used (developed by D. Stevens at the University of Nottingham), which

has been tested in many instances (see for examples [86, 113, 115, 116]. A non-sparse

version is used for the factorisation of the fully populated local systems.

It should be noted that for each node that lies on the interface between the fluids, two

reconstructions are performed for the embedded method, one for each RBF system with

a centrepoint at that node. Since the PDE operators are different in each zone, the

reconstructions will form two linearly independent rows in the global matrix. By solving

this sparse global system the values of φn+1
l (x) are obtained at the N internal nodes

as well as Ql,x(φn+1
l (x)) at each interface point. For the auxiliary method, since the

unknown flux terms do not appear in the data vectors, only the values of φn+1
l (x) are

obtained from the solution of the sparse global system and any other operators have to

be reconstructed using appropriate reconstruction vectors.

At the first time step the value of L̂0
l and hence Ŝ0

l is unknown, and must be

approximated from the initial solution field. The most straightforward way to obtain

this estimate is to perform an initialisation time step of zero size; i.e. setting ∆t = 0 and

utilising the existing local systems and reconstruction algorithms to perform a simple

RBF interpolation of the initial data field in order to obtain Ŝ0
l (x, 0).

4.3 Adaptive quadtree datasets

The RBF-FC method described previously requires a distribution of nodal points

over the domain. These can be distributed uniformly, using a geometric refinement

or randomly scattered (see [113, 114, 116]). Alternatively, the nodal points can be

distributed in a more optimal way in the domain to reduce the global solution error,

whilst maintaining a low number of overall points. One popular method is the Greedy

algorithm, demonstrated in [118]. Here the nodal points are iteratively moved until a
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dataset that shows the smallest residual error is achieved. This technique along with

other optimising methods are best suited to very smooth problems (particularly elliptic

PDEs) and are generally computationally expensive due to their full-domain application.

Since the critical areas of computation are known in the moving interface problems here,

an alternative method can be employed that clusters nodal points around the interface

based on a quadtree data structure. Although this method might not produce an optimal

dataset with a minimal amount of nodal points as per the greedy algorithm, it should

dramatically reduce the number of nodal points in the domain whilst maintaining a low

solution error in comparison to uniform or geometrically refined datasets.

Figure 4.3: An example of a quadtree data set with corresponding levels. Dashed lines
represent quadtree cell boundaries, crosses represent quadtree dataset points. Figure
adapted from [99].

The quadtree data structure provides an efficient way of recursively subdividing a domain

into smaller and smaller cells, based on a simple splitting criterion, such as the distance

away from a critical feature, or the value of the solution gradient [119]. The process

starts with a simple cell (level zero) bounding the entire domain, which is split into four

level one children. In turn, each of these four children are split if they pass the splitting

criterion, and splitting continues until the smallest cell size allowable in the domain is

reached. The tree structure and numbering scheme used in this quadtree implementation

are shown in Figure 4.3.

Each quadtree cell has a bounding domain represented by the dotted lines in Figure 4.3,

where the original domain is embedded. As the bounding domain is a square in 2D, the
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Figure 4.4: Example quadtree dataset formed around a circle with distance based
grading. Circular interface shown by the bold line. Crosses represent nodal points.

side length of each cell is given by:

∆ =
(xmax − xmin)

2n
(4.21)

Where, xmax and xmin are the bounds of the global domain, and n is the level that

the cell exists at. At each recursive split, the level increments by one. By recursively

splitting each cell, the data set can be stored in a linked list, where each parent cell

points dynamically to its child cells (if it has them). The list can be followed down the

tree until leaf cells are reached which have no further children. Leaf cells are used to

produce the nodal points for the RBF-FC method.

An example of a typical quadtree dataset is shown in Figure 4.4 where a simple distance

based criterion has been applied to split the tree around a circle. The splitting criterion

in this example works by comparing the diagonal length of the cell to the radial distance

to the circle interface; if the diagonal is greater than the distance, the cell will split into

four.

The quadtree data structure can easily be extended to 3D where it is known as an octree,
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and cells are recursively split into 8 children. The splitting of a cell into geometrically

equal children creates a data set in which the aspect ratio of cells is maintained at unity,

unlike a geometrically refined data set, where cells far from the refinement can have very

poor aspect ratios, which is undesirable to achieve a stable, accurate solution.

The quadtree dataset used in this work has cells representing parents and children at

various levels in the tree, however, there is no explicit mesh being generated by the

quadtree itself. There is no line connectivity between nodes, and no flux conditions etc

imposed through the boundaries connecting the nodes together to form cells. The cells

are used purely to generate discrete data points at their vertices and centres, which are

passed to the strong form local RBF-FC method as nodal points.

Although the RBF-FC method can work on completely scattered irregular datasets, it

is desirable to try and keep the local stencils as uniform and consistent throughout the

domain as possible in order to maximise spatial convergence and accuracy [116]. The

quadtree data structure provides an efficient way of generating nodal points throughout

the domain with varying spatial discretisation whilst maintaining local system regularity.

Fast tree searching algorithms and neighbour finding routines can be used to effectively

traverse the tree and pull out the required information for the nodal points of the

RBF-FC method.

Using linked lists to represent the parents and children in the tree, removal or addition

of cells is straightforward from a programming context in comparison to dynamically

allocating array structures. Using the cells as user defined objects, key features such as

fluid velocity and PDE values can be stored directly at the cell level and accessed easily,

making the program structure simple and easy to extend to very large problems.

4.3.1 Quadtree grading criteria

For the quadtree dataset examined in this work several requirements are imposed to

maintain consistency throughout the domain, to ensure that the stencils used for the

local RBF systems have nodal points of similar spatial refinement within them. To do

this, certain restrictions are enforced on the quadtree data set:
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1. The number of cells directly neighbouring any cell side must be no greater than

two.

2. The difference in level between a cell and a neighbouring corner cell must be no

greater than one.

3. Any cell that neighbours a leaf cell and is at the same grading level must not

contain any children that are not leaf cells.

The above three grading criteria limit the variance of nodal separation throughout the

domain, and ensure that the difference in nodal separation in an RBF stencil can be a

maximum of one grading level. These restrictions are in place to ensure nodal separation

consistency in the local stencils, as well as in the whole domain. These grading criteria

will become apparent later in the stencil configuration section, whereby changing the

uniformity of nodal separation within a stencil can have a dramatic effect on the resulting

solution error.

The grading criteria enforce that the quadtree is graded and cannot jump more than

one level between adjacent cells. Although non-graded quadtree datasets have been

used by various authors, notably [77], a less severe grading is required here compared

to their level set implementation due to the convection-diffusion problem being solved.

The level set problem depends almost entirely on information very close to the interface,

meaning it can grade very quickly down to very coarse cell sizes. However, for the

case of convection-diffusion problems, the solution may still be changing in areas away

from the interface and hence still requires a reasonably fine nodal distribution, limiting

the amount of grading that can occur. Although this puts a limit on how quickly the

scheme can refine from coarse cells to to fine cells, the ability to jump more than one

level between cells does not dramatically increase the number of nodal points in the

domain compared to a non-graded quadtree.

4.3.2 Quadtree dataset generation

To generate the quadtree one of two splitting criteria are utilised; a distance based

scheme and a solution gradient based scheme. The distance scheme checks each cell
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recursively and splits a cell if the following equality is met:

Diag ×Bt > Rt (4.22)

In (4.22), Diag refers to the diagonal length of the cell, Rt is the distance from the

cell centre to the closest point on the critical feature and Bt is the band thickness. By

increasing Bt, it is easier for the cells to be split, creating larger ‘bands’ of constant cell

size in the solution domain. The critical feature could be a fluid-fluid interface, solid

boundary etc. The cells can be checked at their centre, or at the centre location of the

four children that could potentially be created.

The distance based scheme is efficient and simple to implement, but has a relatively

slow refining rate. This is because the distance Rt changes linearly through the domain

and hence splitting occurs gradually, meaning that there are sometimes more cells than

required in areas of small solution gradient. To contrast this, a solution gradient scheme

can be used, whereby the following criteria must be met for cells to split:

∣∣∣∣ ∂φ∂xi
∣∣∣∣×Diag × 10Bt >

∣∣∣∣ ∂φ∂xi
∣∣∣∣
max

×Diagmin (4.23)

In (4.23), Diagmin refers to the minimum diagonal length in the domain (defined by the

maximum grading level the user specifies).
∣∣∣ ∂φ∂xi ∣∣∣max is the magnitude of the maximum

solution gradient in the domain (can be approximated on the first set-up initialisation

time step, or is known analytically). This splitting criteria produces a much sharper

refinement (if the solution gradient changes rapidly) than the distance based refinement,

but requires more post-processing to ensure that the three grading criteria have been

met.

The solution gradient scheme will add more nodal points than the distance based scheme

in areas of high solution gradient, which do not necessarily coincide with the interface.

The solution gradient scheme is therefore more applicable to general transport problems,

that may have areas of rapidly changing solution away from the interface.

Both of the splitting schemes also have two more criteria for splitting a cell. Firstly,

if the cell level is below the minimum specified by the user, the cell will automatically

split. Secondly, if the cell is at the maximum level specified by the user, no further

splitting of that cell is possible. Using either of the two splitting equalities along with
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the maximum and minimum level criteria, the quadtree dataset specific for the RBF-FC

scheme can be constructed using the following algorithm:

1. Generate the root cell (level 0) that bounds the solution domain.

2. Check the splitting criteria at each of the cell centre locations for the four possible

children of the Root cell.

3. If a split is required, split the cell and create four new children. Perform the

splitting check on each of the four children in turn.

4. Repeat step three until the criterion for splitting is not met and a leaf cell is

created. The splitting is performed recursively, i.e. upon creation of new cells,

each new cell is checked before checking the next cell in the level above. After

checking the 4th child, the system will then go up a level and check the next child

of the parent cell.

5. When all cells have been checked and no further children can be created the

algorithm ends.

Upon completion of the algorithm detailed above, there will exist a simple quadtree data

structure specific to the problem. The three grading criteria are then performed in order

for the quadtree to meet the constraints of the RBF-FC local stencils. Firstly, the tree is

graded based on its neighbours using grading criteria one and two from Section 4.3.1. If

either of these criteria are not matched, the cell in question will be continually split with

the four children being checked recursively until the criteria are matched. Finally as a

last check the most stringent constraint is applied. This constraint requires that any

neighbouring cell of a leaf cell must not have any cells within it (children, grandchildren

etc.) that are more than one level different to the leaf cell. If this constraint is not met,

the cell in question will be split, and the process repeated. This final constraint makes

sure that the RBF stencils only contain nodes that are seperated by a maximum of one

cell level.

After the quadtree has been generated, the nodal points for the RBF-FC local systems

can be created based on the vertices and cell centres of the leaf cells. A simple tree search

can be performed, with nodal locations picked out as the tree is recursively traversed,

and grouped into local stencil configurations. The stencil configuration has a significant
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effect on the resulting solution, and care has to be taken with auxillary PDE centres,

which will be investigated in the next section.

4.4 Stencil configuration

The local stencils that form the basis for the Hermitian interpolation systems in the

RBF-FC method can contain a number of additional PDE points to increase the accuracy

and stability of the resulting solution [120]. The inclusion of these additional points in the

local stencils formed using the quadtree data structure will be explored in this section.

To test various stencil configurations, a steady-state convection-diffusion-reaction (CDR)

problem is considered:

∂2φ

∂x2
i

−
(
u1x1

∂φ

∂x1
+ u2x2

∂φ

∂x2

)
− (u1 + u2)φ = 0 (4.24)

Equation (4.24) has a particular solution given by:

φa = e

u1x
2
1

2
+
u2x

2
2

2


(4.25)

To create a sharp solution profile simulating that which could be found in a 2D boundary

layer problem, a high velocity and large reaction term are used to push the field variable

into the corner of the domain, with u1 = 6 and u2 = −2. This produces a large drop in

the field variable over a small space, shown in Figure 4.5(a).

Figure 4.5: (a) Particular solution contours for the 2D CDR PDE. (b) Quadtree dataset
for stencil configuration testing for the 2D CDR PDE.
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For boundary operators the Dirichlet solution value is imposed over the top and left

boundary, along with the normal gradient of (4.25) as a Neumann condition over the

bottom and right boundaries. This means that the maximum field value in the domain

occurring at (2,0) is not given by a boundary operator and instead must be predicted by

the solution. Before different quadtree grading configurations are given and compared

with uniform datasets, the different stencil configurations will be analysed. One specific

quadtree grading is used for this test, given in Figure 4.5(b).

x 2

x1

Figure 4.6: Zoomed in display of the quadtree dataset in Figure 4.5(b), showing the
different stencil configurations. 1 - Normal 3x3 stencil. 2 - Crossover stencil. 3 -
T-junction stencil. Red boxes indicate the stencil centrepoint.

The quadtree dataset in Figure 4.5(b) has a Bt value of 4.3 with the analytical

value of the solution gradient used as the splitting criteria. In general the analytical

value of the solution gradient is unknown, in which case the solution gradient can be

approximated numerically, or a combination of distance based splitting and solution

gradient approximation can be used to refine the dataset. The minimum cell level in

the domain is 5, with a maximum of 9. The quadtree sharply transitions from level 5 -

9, due to the low Bt value combined with the solution gradient splitting criteria.

Throughout all simulations in this section and the transient performance section, a

non-dimensional shape parameter c∗ value of 90 is used, providing a good balance

between matrix conditioning and accuracy. Increasing the shape parameter increases

the basis function flatness and hence the solution accuracy. However taking the
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shape parameter too high creates collocation matrices which are poorly conditioned

and require high-precision arithmetic to solve accurately. Using a relatively high

non-dimensional shape parameter of 90, the solution accuracy is invariant to increases

in shape parameter, and the collocation matrices are well conditioned enough to be

solved using quad-precision arithmetic (see [115, 116] for more detail on c∗). The

shape parameter c used for each RBF collocation system is found by scaling the

non-dimensional shape parameter with the average side length of the cells used to

generate the nodal points in the corresponding local stencil. This means that the shape

parameter varies throughout the domain based on the local nodal separation.

Using the quadtree dataset there is the possibility of three different kinds of local stencils

using the base 3x3 node configuration. The stencil configurations form the basis of the

RBF-FC collocation systems, which use the points from the corresponding stencils to

form local Hermitian interpolation systems centred at the stencil centrepoint. The 3x3

local stencil is used as the base throughout, as no special truncation or extension needs

to be applied at the boundary of the domain, and the solution time of the resulting

local systems is very small. Using larger 5x5 stencils would also require the grading to

transition more gradually from coarse to fine.

A typical 3x3 stencil generally sits at the centre of four quadtree cells (stencil 1 in Figure

4.6). The standard 3x3 stencil is used when all surrounding cells are of the same level,

in the interior of a band. When crossing from one level to the next at a band boundary,

there will be two further types of stencils: crossover stencils, and T-junction stencils

shown in Figure 4.6. No PDE centres or solution centres are shown in Figure 4.6, only

the raw quadtree nodal points.

Crossover stencils cover four cells, some of which have children associated with them.

This leads to a stencil containing nodes with varying spatial discretisation, unlike the

standard 3x3 node stencil. T-junction stencils on the other hand cover only three cells,

and as such have a hanging node where there is no direct neighbour. These stencils

have the smallest number of nodes and are generally the weakest part of the solution.

The T-junction and crossover stencils can include a varying number of additional PDE

centres to increase solution stability and to try and maintain consistent accuracy with

the standard 3x3 stencils. The different configurations that can be used for the crossover

and T-junction stencils are shown in Figure 4.7 and 4.8 respectively.
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(1) (2) (3)

(4) (5) (5e)

Figure 4.7: Different crossover stencil configurations. Diamonds represent solution
centres. Crosses represent PDE centres. The black box indicates the system centrepoint.

(1) (2) (3)

Figure 4.8: Different T-junction stencil configurations. Diamonds represent solution
centres. Crosses represent PDE centres. The black box indicates the system centrepoint.

The PDE points shown as crosses in Figures 4.7 and 4.8 are added into the local stencils

when they are formed from the raw nodal points of the quadtree dataset. PDE points

are not included in the global system and instead act solely at the local interpolation

level, as in the enhanced RBF-FD method. To highlight the differences in the stencil

configurations, and their effect on the overall solution error, results are presented from

the 2D convection-diffusion-reaction test case shown above in Figure 4.5. The dataset

in Figure 4.5(b) is used, with 3508 solution centres in the domain. To compare the

different global solutions errors, the L1, L2 and Linf relative error norms are used:

L1 error =

∑N
1 (φ− φa)

N(φa,max − φa,min)
(4.26)
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Crossover
Stencil
type

T-junction
Stencil
type

L2 Relative
Error Norm

Linf Relative
Error Norm

Uniform dataset, Lvl 6 1.22× 10−4 1.24× 10−3

1 1 9.22× 10−5 1.28× 10−3

2 2 5.72× 10−4 2.86× 10−3

3 2 5.94× 10−4 2.95× 10−3

4 2 1.06× 10−4 1.22× 10−3

5 2 7.57× 10−5 7.99× 10−4

5 3 1.80× 10−5 2.99× 10−4

5e 1 2.38× 10−4 1.32× 10−3

5e 2 1.04× 10−4 1.22× 10−3

5e 3 1.40× 10−5 2.74× 10−4

Table 4.1: L2 and Linf relative error norms for various stencil configurations on the 2D
CDR problem using the 3508 solution centre dataset in Figure 4.5(b).

L2 error =

√ ∑N
1 (φ− φa)2

N(φa,max − φa,min)2
(4.27)

Linf error =
Max|φ− φa|

φa,max − φa,min
(4.28)

Here, φ, φa, φa,max and φa,min represent the calculated solution value, the analytical

solution value and the maximum and minimum analytical solution value in the domain

respectively. N is the number of solution centres in the domain. The various stencil

configuration L2 and Linf errors for the 2D CDR problem are shown in table 4.1, with

the corresponding uniform dataset shown for comparison.

From table 4.1, it can be seen that the L2 and Linf errors can vary by one order of

magnitude depending on the stencil configuration used, according to how the points are

distributed in the stencils. Although all the non-uniform distributions have at least the

same order of accuracy as the uniform stencil, some errors are slightly higher whilst

other datasets have an order of magnitude lower error.

Generally, by increasing the number of points within a stencil the L2 error drops.

However, this is not always the case, especially when extra PDE points are introduced

into some parts of the stencil but not others. If a disparity in length scales exists

within the stencil (for example crossover stencil types 3, 4 and 5) then the error can be

increased. This is due to the global reconstruction of the solution at the centre of the

stencil.
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Locally, increasing the number of PDE points in the stencil always gives a more accurate

reconstruction of the solution. However, in the global reconstruction of the system

centrepoint, several overlapping stencils use the same point, with the point appearing

as a solution centre for several systems, a boundary point for several systems and an

internal PDE point for several other systems. The number of overlapping systems can

be as high as 10, meaning the accuracy of that one point affects the accuracy of many

others. It is therefore paramount that the point exists within stencils that have as near

to a uniform nodal discretisation as possible to maintain uniformity with overlapping

stencils. If overlapping stencils use the same point but the stencils have different length

scales within them then the crossover systems hold back the solution error, even though

there are some stencils with very fine uniform nodal discretisation using that same point,

for example in the 3-2 stencil configuration. The 3-2 stencil configuration refers to a

quadtree dataset using crossover stencils of type 3 and T-junction stencils of type 2.

By keeping the length scale within the local systems uniform, and making sure that

overlapping systems are all using a similar nodal discretisation, the L2 error is kept to

a minimum. This can be seen with the 1-1, 5-3 and 5e-3 configurations in Table 4.1.

Using the extended T-junction system type 3 makes the T-junctions become much more

accurate as their range of influence is extended. This is highlighted by the drop in Linf

error, which indicates that the maximum error found in the domain (generally located

around the T-junction stencils) is reduced by around an order of magnitude compared

to the cases with T-junction system type 2. For the steady-state case presented here,

the 5e-3 configuration is preferred.

The crossover stencils can contain as many as 41 points (equivalent to a regular 5x5 node

stencil), however, the global solution time does not increase significantly compared to

a case with much smaller system sizes. The crossover and T-junction stencils only

represent around 10% of the total number of stencils, and as such the solution of

the local collocation systems and weights vectors uses a very small proportion of the

overall solution time. Introducing extra PDE points does not affect the number of

global solution centres and hence the solution time of the sparse global matrix remains

unchanged.

To compare different refinements, various quadtree datasets are used to compute the

solution to the 2D CDR equation (4.24). Changing the maximum and minimum cell
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levels within the domain and the band thickness creates different quadtree datasets

which can be compared to uniform datasets. In Figure 4.9, the error from different

dataset configurations can be seen. The a and b datasets refer to cases that differ only

in Bt value, in which b datasets have larger Bt values than a, creating more nodal points

in the domain. All of the configurations use the 5e-3 stencil set-up shown previously,

and all show a much lower solution error than the corresponding uniform dataset. The

average nodal separation was calculated by taking the number of solution centres in the

quadtree dataset and equating the average separation to that of the equivalent uniform

case with the same total number of solution centres, i.e. solutions with the same average

separation have the same total number of solution centres.

The error in Figure 4.9 can be seen to be largely dominated by the maximum cell level

in the domain. The maximum cell level dictates the smallest nodal separation, with the

maximum level occurring in the bottom right of the domain. As the maximum cell level

in the domain increases (denoted by the numbers next to the data-points in Figure 4.9),

the error reduces.

It is worth noting, that some datasets, specifically those with a minimum cell level 5,

exhibit lower error than a corresponding dataset with the same maximum level but with

a higher minimum level (i.e. the dataset with levels 5-10 compared to 6-10). This is

because the dataset with levels 5-10 exhibits a more strongly varying dataset, with more

nodes at the level 10 refinement than in the 6-10 dataset. In the level 6-10 dataset,

there are more nodal points in the outer regions of the domain where the solution is

not varying significantly. Therefore the level 6 nodal points do not improve the solution

accuracy, but decrease the average nodal spacing in the domain. However, in the level

5-10 dataset, there is a similar average nodal separation, but there are significantly more

nodes at the higher refinement, leading to an improved solution.

In Figure 4.9 there appears to be optimum datasets for the domain size and problem

being solved; those with a minimum cell level of 5. In these cases the solution exhibits

around eight times lower error than the corresponding uniform datasets with the same

number of solution centres. When comparing to a higher resolution uniform dataset

(such as the level 7 uniform case), there is roughly the same solution error but only 3508

solutions centres (Minimum level 5, maximum level 9 dataset in Figure 4.9) compared

to the 16129 solution centres used by the uniform case, a factor of 4.6 less. The
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minimum level 5 datasets give a good range of nodal discretisations in the domain,

whilst maintaining an accurate coarse representation of the solution, resulting in more

optimal performance than the minimum level 3, 4 or 6 datasets. The difference between

the maximum and minimum cell level within the domain is largely controlled by the

domain size and the sharpness of the solution. For this test case, a maximum difference

of around five levels could be achieved in the domain.
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4.5 Transient verification

The quadtree dataset has been shown to work well for a steady-state 2D CDR PDE, with

the solution exhibiting a boundary layer type profile. Although the quadtree dataset

shows significant improvements over the uniform dataset for steady-state problems, even

greater benefits can be found in transient cases.

The transient time stepping algorithm proceeds as a series of inhomogeneous steady-state

problems, with the inhomogeneous term storing information from the previous time step.

Therefore, using a quadtree dataset can bring significant reductions to the wall clock

time for each time step whilst still maintaining an accurate solution. In this section

the evolution of a two-dimensional advection problem is analysed, described by the first

order hyperbolic equation:
∂φ

∂t
+ ui

∂φ

∂xi
= 0 (4.29)

In the case of a constant velocity (along a specific curve), the initial condition should be

advected by the hyperbolic PDE without a change of shape. To compare the quadtree

dataset to uniform cases, the rotation of a Gaussian packet is studied in 2D, subject to

an irrotational velocity field. The advection of a Gaussian packet is considered in the

absence of diffusion at infinite peclet number using equation (4.29) above. The initial

condition of the Gaussian packet is defined in the interior of the domain x = (x1, x2)

with −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 by:

φ(x, 0) = e−αg ||x−x̂||2 (4.30)

Where, x̂ is the centrepoint of the Gaussian packet at t = 0 and αg is the relative width

of the packet about the centrepoint. Dirichlet boundary conditions are enforced around

the edge of the domain, which must be updated at each iteration based on the analytical

position of the Gaussian packet. The irrotational convective field is given by:

~u = (x2,−x1) (4.31)

The Gaussian packet is centred initially at x̂ = (0.5, 0.0) and allowed to rotate for

t = 2π, completing one full revolution. The irrotational convective field means the

flow is not aligned with the direction of the dataset. The centre of the Gaussian packet
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Figure 4.10: (a) 1D Cross-section along y = 0 for two different Gaussian packet initial
conditions. (b) Typical graded quadtree dataset for a Gaussian packet with αg = 500
at t = 0.

should translate along the arc of a circle centred at the origin with radius r = |x̂|. In this

transient example, two different values of αg will be demonstrated, showing the quadtree

dataset on a relatively smooth function with αg = 100, and a very sharp function with

αg = 500, shown as a 1D cross-section through the domain in Figure 4.10(a).

Figure 4.10(b) shows a typical quadtree dataset used in the transient simulations, refining

from levels 3-7 around an αg = 500 Gaussian packet. The transient nature of the problem

introduces several extra steps in the quadtree generation and updating at each time step.

These steps have been summarised below:

1. At the first time step, perform the initial grading, interpolate the value of L̂ using

a time step size of zero and then perform the first time step. Advance time by ∆t.

2. Using the analytical solution gradient of the Gaussian packet at the current time

step, update the quadtree dataset. Firstly, perform the splitting check for gradient

based refinement on each cell centre. If any cells are above the minimum permitted

cell level but fail the splitting criteria, the cell can be removed and all associated

nodes removed from the domain. If the cell is below the maximum level permitted

and passes the splitting check, split the cell and create new nodes at the cell centres

and cell vertices according to the stencil configuration being used.

3. For all nodes in the domain, reconstruct the value of L̂ using the existing local

systems with updated RHS vectors containing the corresponding field values at

the current time.
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4. Solve for the next time step. Advance time by ∆t.

5. Repeat steps 2 - 4 until the required number of time steps have been performed.

In the above procedure, the cost of NT time steps, with Nsys local systems of size Nm

is approximately equal to [115]:

COST ≈ NT

Nsys∑
k=1

βcN
(k)
m +

Nchanged∑
k=1

[
αc

(
N (k)
m

)2
+

2

3

(
N (k)
m

)3
]

+ SPARSE

 (4.32)

Where, αc represents the number of operations to compute each entry in the collocation

matrix and βc represents the number of reconstructions (there can be as many as 10

overlapping systems) required to compute each inhomogeneous PDE value. SPARSE

refers to the cost of solving the global matrix at each time step, which varies linearly

with the number of local systems. Both Nsys and Nchanged can vary between time steps,

as nodal points are added or removed from the domain. On the first time step, Nchanged

= Nsys. Equation (4.32) does not include the cost of initialising or updating the quadtree

dataset, as these operations are typically orders of magnitude quicker than solving the

local systems or sparse global matrix.

In equation (4.32), there is the cost of changing local systems at each time step, due

to the changing geometry of the quadtree given by the Nchanged summation. If nodes

are added or removed from the domain, the collocation systems must be reformed and

solved. This introduces extra cost compared to a fixed spatial discretisation of nodes if

the velocity and diffusivity fields remain constant (i.e Nchanged = 0 after the first time

step). However, this extra cost is typically very small as Nchanged is generally smaller

than Nsys by more than an order of magnitude. Also, in practical problems, where the

velocity/diffusivity field will likely change between time steps, the local systems must

be re-formed and solved at each time step, meaning there is no additional cost penalty

for changes in geometry of the local systems.

The updating of the inhomogeneous PDE value at the end of each time step (step

3 above) in preparation for the next time step is critical to the performance of the

scheme, and must be performed accurately to ensure information is propagated through

time. The inhomogenous PDE term, L̂ can be reconstructed from several stencils that

overlap the node in question, using a weighted average of the stencils. The weighted
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Figure 4.11: (a) - L2 error norm at 10 time step intervals as an αg = 100 Gaussian packet
is convected one revolution using a 1-1 stencil configuration. The quadtree dataset is
graded from level 3-7 with 600 points (b) - Initial time steps of the same Gaussian packet
convection using two different stencil configurations. The circle highlights two poor L̂
reconstructions.

average can be undertaken in a partition of unity sense, whereby different weights are

given to surrounding stencils based on their distance from the nodal point. However,

in the case of the quadtree dataset, there exist several overlapping stencils of differing

nodal discretisations and accuracy, and hence the coarser stencils can weaken the L̂

reconstruction and skew the weighted average to be less accurate. These stencils can be

removed from the reconstruction algorithm, but it is not always obvious which stencils

are causing the inaccuracies.

Using a stencil configuration that allows crossover stencils to have different nodal

discretisations within them (such as the 5-1 configuration), creates overlapping stencils

that have different accuracies of reconstruction within the stencil. In areas of the stencil

where there are many nodal points, the reconstruction is generally strong, but in the

coarser regions reconstruction can be weaker.

If several of these crossover stencils overlap a node where the L̂ value is being

reconstructed, the reconstructions from these stencils can vary quite dramatically. This

means that the L̂ can be approximated poorly for the next time step and the accuracy

of the scheme is reduced. This is highlighted by the circle encompassing two points in

Figure 4.11(b) in which two poor L̂ reconstructions in the domain have lead to a step

jump in the L2 error, which eventually leads to the error spiralling up. These poor

reconstructions can be avoided by selecting the higher resolution overlapping stencils
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and stencils that are not crossover stencils for the nodal reconstruction. However, this

requires selective biasing of the reconstruction, and can lead to using stencils purely

in the upwind or downwind direction, removing the implicit upwinding feature of the

centrally defined stencils.

The most effective technique to maintain the accuracy of the L̂ reconstruction is to use

the most basic 1-1 stencils throughout the domain (stencils shown in Figures 4.7 and 4.8).

Although there are less overlapping stencils for each node, the L̂ reconstruction is much

more consistent for the stencils that do overlap, and hence a straightforward weighted

average can be used, rather than selective biasing of stencils. The global solution error

at each time step is slightly higher than the larger stencil configurations (as can be seen

in Figure 4.11(b) in the first 5 time steps), but the L̂ reconstruction is significantly

more accurate meaning that consistent errors are obtained at each time step. The error

grows linearly with time, as can be seen in Figure 4.11(a), which is expected due to the

inhomogeneous boundary value problem being solved at each successive time step.

Temporal convergence studies are now presented for two Gaussian packet convection

cases, with αg = 100 and αg = 500. These cases were run using the 1-1 stencil

configuration (crossover stencil 1 and T-junction stencil 1 in Figures 4.7 and 4.8

respectively), and various band thickness values to generate a suitable grading, the

results of which are shown in Figures 4.12 and 4.13.

In Figure 4.12 it can be seen that all quadtree datasets outperform the corresponding

uniform datasets, providing lower error for the same number of points. The Quadtree

grading from level 5-7 uses 1260 points, but exhibits the same error at small time step

sizes as the uniform level 6 data set with 3969 solution centres, a factor of three greater.

This trend continues with higher resolution datasets, where a factor of three fewer points

can be used to generate the same level of error using a quadtree dataset.

A similar trend can be seen in the αg = 500 graph, however due to the much sharper

Gaussian packet, the quadtree datasets perform much better relative to the uniform

datasets. Using a uniform data set with level 8 cells throughout, giving N = 65025

points the same error is produced as the quadtree dataset graded from level 5-9 with

only 3825 points. This is a factor of 17 less in the total number of points, but with the

same level of error.
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Between the uniform datasets in both Figure 4.12 and 4.13 there is roughly a 4th order

spatial convergence between the datasets. Using the 2nd order Crank-Nicholson scheme

for the time derivatives, 2nd order temporal convergence is exhibited when the datasets

have a fine enough spatial resolution to allow the temporal resolution to be the limiting

factor in the error.

It is worth noting that some of the plots in Figure 4.12 and 4.13 do not extend all the way

to the first time step size being tested using the coarsest spatial resolutions. This is due

to instability that can occur using the RBF-FC scheme with very fine spatial resolutions

and very coarse temporal resolutions. Although the 2nd order Crank-Nicholson method

is an implicit method and is unconditionally stable for several PDEs (notably the heat

equation), oscillations can occur which grow with time when using a very large time

step size and fine spatial resolution with infinite Peclet number flows, for more details

about this anomaly in the RBF interpolation see [115]. This instability is exacerbated

when using the quadtree data set, as the spatial resolution can vary throughout the

domain, meaning oscillations can occur within the very refined parts of the domain and

be magnified in the coarser regions later in time. However, using a large time step size

and fine spatial resolution is generally not considered in practical applications, as the

error will be limited by the large time step size. The oscillations can also be damped by

using an artificial diffusion term, demonstrated in [115].

The quadtree datasets demonstrate clear improvement over uniform datasets for

capturing sharp functions through time. Using a 1-1 stencil configuration ensures

consistent and accurate L̂ reconstruction at each time step, allowing effective propagation

of previous time step information.

To further demonstrate the robustness of the adaptive RBF-FC method, specific solution

contours can be extracted at time increments through the simulation. A specific contour

value can be found using a Taylor expansion with nearby grid points, shown in Figure

4.14.

The function, φ(x1, x2) can be represented through a Taylor series as:

φ(x) = φ(a1, b1) + (x1 − a1)
∂φ(a1, b1)

∂x1
+ (x2 − b1)

∂φ(a1, b1)

∂x2
+O(δ2) (4.33)
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ϕ(a1, b1)
ϕ(a2, b2)

ϕ(x1,x2)

Figure 4.14: Diagram showing known test points, (a1, b1), (a2, b2) and unknown contour
point for extraction (x1, x2).

φ(x) = φ(a2, b2) + (x1 − a2)
∂φ(a2, b2)

∂x1
+ (x2 − b2)

∂φ(a2, b2)

∂x2
+O(δ2) (4.34)

In equations (4.33) and (4.34), δ represents the distance between the points. Through

substitution of the known function values and spatial derivatives at the test points,

equations (4.33) and (4.34) can be solved to find the location (x1, x2) of the contour.

The derivatives at the test points (a1, b1), (a2, b2) can be calculated using the overlapping

RBF local Hermitian systems. Applying the derivative operators to equation (4.11),

the existing local systems can be used to obtain the spatial derivative values at the

test points. It is worth noting that the Taylor expansion above could be extended to

include second order and mixed spatial derivatives to extend the order of approximation,

however, in practice with suitably close test points, the first order Taylor series is

sufficient. Candidate test points can be found by choosing existing nodal points whose

solution falls within a suitably small tolerance of the contour value.

In Figure 4.15 the φ(x, y) = 0.1 contours from the αg = 100 Gaussian profile can be

seen. Here, a quadtree level 5-7 dataset is used with 2000 time steps, with the contour

output every 200 time steps. Figure 4.15 shows that the φ(x, y) = 0.1 contour remains

circular throughout the simulation. There is no oscillation or change in shape of the

contour, and the circle retains a constant area as the Gaussian packet is advected. The

contour remains centred on the analytical centrepoint of the Gaussian packet, with the

solution showing no lag or change in shape, meaning the initial condition has been almost

perfectly advected along the curve dx1/dx2 = u1(x1, x2, t)/u2(x1, x2, t).

In more traditional polynomial based FD or FV approaches where upwinded stencils
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Figure 4.15: φ = 0.1 contour evolution with time. Solid lines represent the φ = 0.1
contour at 200 time step intervals. The crosses are the analytical centrepoints of the
Gaussian packet.

are used, the solutions tend to lose mass with time, and the contour reduces in size

as the Gaussian packet is advected. Using centrally defined stencils can also result in

a deformed contour, as oscillations at the solution front can change the profile. The

contour extraction demonstrates the robustness of the RBF-FC scheme with a quadtree

dataset, showing that stable, non-diffusive solutions can be obtained with centrally

defined stencils on infinite Peclet number problems

4.6 Multi-zone verification

The adaptive quadtree dataset has been verified in the previous sections on single-zone

convection-diffusion cases, which was necessary to assess the quality of the adaptive

quadtree method in the RBF-FC context and the appropriate stencil and PDE update

configurations to use. In the next sections, the embedded and auxiliary multi-zone

methods are verified on three test case to demonstrate the robustness of the proposed

multi-zone schemes and their accuracy on some well known test cases. The following

examples are presented: a fixed interface steady-state multi-zone case, a fixed interface
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transient case and a moving interface transient case to verify the performance for

problems similar to those in the full viscous fingering problem.

4.6.1 Steady-state fixed interface

Here, a steady-state convection-diffusion problem is considered with a discontinuous flux

across the interface. The problem is solved using a two-dimensional Cartesian coordinate

system assuming zero lateral flux and Dirichlet temperatures at the outer walls, shown

in figure 4.16. The convection-diffusion problem in each zone l can be expressed in

Cartesian form as:

Dl

(
∂2φl
∂x2

1

+
∂2φl
∂x2

2

)
+
Dl

x1

(
∂φl
∂x1

)
= 0 l = 1, 2 (4.35)

The matching conditions of solution and flux at the zone interface are given by:

φ1 = φ2 (4.36)

D1
∂φ1

∂x1
+
D1

x1
φ1 = D2

∂φ2

∂x1
+
D2

x1
φ2 (4.37)

ϕ1(x1 = 0.01) = 1 ϕ2(x1 = 1) = 0

Zone Interface ∂ϕ
∂n

= 0

∂ϕ
∂n

= 0

(x1 = 0.505)

Figure 4.16: Two-dimensional Cartesian setup for the multi-zone convection-diffusion
problem. The zone interface marks the transition between different material properties.



Chapter 4. A local RBF method for moving multi-zone transport problems 122

The flux in equation (4.37) is discontinuous across the zonal interface, since the

diffusivities in each zone differ. Equation (4.35), subject to the interface matching

conditions (4.36, 4.37) and boundary conditions in Figure 4.16 represents a 1D

convection-diffusion problem, which has the following analytical solution [121]:

φl = Al +Bl ln(x1) (4.38)

where Al and Bl can be found using the appropriate boundary and interface conditions.

Equation (4.35) is solved on a square problem domain, with 0.01 ≤ x1 ≤ 1, 0.01 ≤ x2 ≤

1. The zonal interface is located at x1 = 0.505. Since there is a strong convective field

near x1 = 0.01, and a discontinuous flux at the interface, a uniform distribution of nodes

are used in the relatively small domain to test the RBF-FC multi-zone methods. c∗ = 70

throughout.

x
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Figure 4.17: Solution profiles for the fixed interface steady state problem at x2 = 0.
Solid lines represent the analytical solution, crosses and plus signs are the numerical
solution with ∆x = 0.0309375, log10(∆x) = -1.50951.

With 31 interior nodes in both the x1 and x2 directions (∆x = 0.0309375), the solution

profiles with two different diffusivity combinations can be seen in Figure 4.17 for the

embedded method (note, the auxiliary method data points would be indistinguishable

from the embedded method points if displayed). With a relatively small dataset, the

RBF-FC embedded multi-zone method is able to accurately reproduce the solution

profiles in Figure 4.17. The solution profile is only C0 continuous at the interface due

to the discontinuous diffusivities (a factor of 100 difference) and the associated jump

in flux. The numerical method has accurately captured this discontinuity, without any
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Figure 4.18: Solution errors for the auxiliary and embedded multi-zone methods for
the steady state fixed interface problem. Dashed lines show theoretical 3rd order
convergence.

refinement around the interface and with a relatively course dataset. The velocity field,

which is a factor of 50.5 times higher at the start of the domain, has not caused any

spurious oscillations. The Peclet number using a global lengthscale (L = 1) ranges from

100 at the start of the domain, to 1 at the end of the domain.

The convergence properties of both the embedded and auxiliary methods are displayed

in Figure 4.18, in which the L2 errors are plotted against the nodal separation. Both

multi-zone methods in Figure 4.18 exhibit remarkably similar accuracies and both follow

similar 3rd order convergence trends. As the methods only differ in the implementation of

the multi-zone matching conditions at the interface, it is not unexpected that the solution

accuracies are very similar for this test case where the solution changes significantly away

from the interface. Both methods accurately represent the solution and flux matching

conditions, with the auxiliary method being very slightly more accurate at the finest

nodal discretisations in case (b). This test case demonstrates the high convergence of

the multi-zone schemes and their applicability for steady-state cases.

4.6.2 Transient fixed interface

Here, a transient fixed interface test case is presented detailing the embedded and

auxiliary multi-zone RBF-FC methods. A problem presented in [113] is considered,

using linear superposition to form a suitable analytical solution valid over a discontinuous
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interface. The one dimensional convection-diffusion in each fluid domain l is given as:

∂φl
∂t

= Dl
∂2φl
∂x2

1

− u ∂φl
∂x1

l = 1, 2 (4.39)

Where Dl is the thermal diffusivity, u is the fluid velocity and l is the zone. Continuity

of solution and flux are enforced at the zone interface:

φ1 = φ2 (4.40)

D1
∂φ1

∂x1
= D2

∂φ2

∂x1
(4.41)

In each zone a cosine or sinusoidal general solution to (4.39) can be formed, which when

combined over the two zones lead to the following analytical solution valid when u = 1

and the fixed interface is located at x1 = 0 [113]:

φ(x, t) =


(

cos
(

x1
2D1D2

)
+ sin

(
x1

2D1D2

))
e

x1
2D1
−D1+D2

4D1D2
t
, if x1 ≤ 0.(

cos
(

x1
2D1D2

)
+ D1

D2
sin
(

x1
2D1D2

))
e

x1
2D2
−D1+D2

4D1D2
t
, if x1 > 0.

(4.42)

Equation (4.39) is solved on a square 2D domain, with −2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2, using

zero flux conditions at the top and bottom boundaries to ensure a 1D solution profile.

For the x1 direction boundary conditions, the analytical solution is used to prescribe

the Dirichlet condition at time t. For fluid parameters, D1 = 0.1, D2 = 10, u = 1. For

initial conditions, the analytical solution (4.42) is prescribed with t = 0. Under these

conditions, the Peclet number for zone 1 and 2 using a global lengthscale (L = 4) are

Pe1 = 40 and Pe2 = 0.4 respectively.

Both auxiliary and embedded methods use a 2nd order Crank-Nicholson time stepping

scheme (θ = 0.5) using ∆t = 1 x 10−5 for 0 ≤ t ≤ 0.2, c∗ = 50. The solution of

(4.39) behaves as a decaying exponential solution which very quickly becomes temporally

independent as ∆t is lowered. When temporal convergence studies were performed, the

convergence was very quick, and did not allow the 2nd order (or 1st order if θ = 1)

nature of the convergence to become prominent with the solution depending much more

on the spatial discretisation and multi-zone scheme. For this reason a small time step is

used to ensure that all datasets are temporally independent and the spatial properties

of the schemes can be explored. In all quadtree cases, a constant Bt value of 4 is used
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Figure 4.19: (a) Solution profile for the transient fixed interface problem at x2 = 0.
Numerical solution uses the auxiliary method with quadtree cell level 3-5. (b) Solution
errors for the two multi-zone methods using uniform datasets. Dashed lines show
theoretical 2nd and 4th order convergence.

to ensure several nodes appear in each refinement banding.

In Figure 4.19(a) the numerical solution profile using the auxiliary method with a

quadtree cell level 3-5 dataset can be seen. This coarse dataset is able to very accurately

capture the sharp solution profile around the interface and appears indistinguishable

from the analytical solution. The zoomed in plot in figure 4.19(a) more clearly shows

the matching flux condition, in which both zone solution gradients (∂φl/∂x) are positive

at the interface. In Figure 4.19(b) corresponding L2 solution errors are presented, which

show the consistent spatial convergence of the auxiliary and embedded schemes with

uniform nodal distributions. The embedded method shows greater solution accuracy

and near to 4th order convergence, whereas the auxiliary method shows only 2nd order

spatial convergence. The methods only differ in the local system formation on stencils

directly falling on the interface, meaning the difference in solution accuracy must come

from the multi-zone respresentation.

In the auxiliary method, there are no PDE operators placed on the interface (in

anticipation of extrapolation problems in moving interface cases), with local flux and

solution matching conditions collocated instead. The embedded method on the other

hand has two PDE operators at each interface location, one for each zone, as well as

the globally enforced matching conditions. This creates a stronger representation of the

underlying PDE at the interface, and means that the transient PDE operator update

is applied directly to the interface, yielding a better representation of the transiently
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evolving solution. PDE operators could be included in the auxiliary method here to have

a like for like comparison with the embedded method, however the auxiliary method is

designed with moving interface problems in mind where PDE operators cannot be placed

on the interface if extrapolation is to be avoided.

By presenting the auxiliary method without PDE operators on the interface, it is shown

that the method still exhibits 2nd order convergence on transient problems, and can

still very accurately represent a sharp solution profile in a transient convection-diffusion

problem. It is worth noting that without PDE operators on the interface, the embedded

method performs very poorly as it does not contain any other local collocation at the

interface (the auxiliary method has flux and solution matching collocation). It only

reconstructs the solution at the global level, but does not have an underlying collocation

point applied at the local level, severely limiting solution accuracy.

Quadtree
cell level

Average Nx log10(∆x)
Auxiliary

log10(L2 err)
Embedded

log10(L2 err)

Uniform level 4 15 -0.6021 -2.397 -2.192

Uniform level 5 31 -0.9031 -2.953 -3.380

Uniform level 6 63 -1.2041 -3.468 -4.778

Quadtree level 2-4 13.96 -0.5730 -2.364 -2.161

Quadtree level 3-5 22.20 -0.7635 -2.834 -3.219

Quadtree level 4-6 33.54 -0.9363 -3.251 -3.581

Table 4.2: Transient fixed interface solution errors with dataset density for the auxiliary
and embedded multi-zone methods.

Examples of uniform and quadtree dataset solution errors are shown in table 4.2.

The quadtree cases show comparable solution error to the uniform dataset at the

corresponding maximum level, with the quadtree datasets exhibiting marginally more

error but with significantly reduced nodal points. The difference between the embedded

and auxiliary methods using the quadtree dataset is less pronounced as in the uniform

datasets. The solution error in the fine quadtree datasets starts to drift further from the

uniform datasets as the spatial resolution is increased. This suggests the quadtree has

limited the convergence of the spatial schemes, meaning the representation of the outer

solution field must be key to maintaining consistent convergence properties in this case.

As both multi-zone methods use the same local systems in in the outer domain, the drop

in accuracy must be due to the coarseness of the datasets in these areas (especially as

x⇒ 2 where the solution is still varying significantly).
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The auxiliary and embedded multi-zone methods both perform well on the transient fixed

interface problem presented in this section. They demonstrate good spatial convergence

properties (2nd order and 4th order for the auxiliary and embedded methods respectively)

and high accuracy using coarse quadtree datasets when compared to the analytical

solution. These results provide excellent verification of the methods for transient,

multi-zone convection diffusion problem that will be further supported by a moving

interface example in the next section.

4.6.3 Transient moving interface

In this section, the auxiliary method is verified on a transient convection-diffusion

problem with a moving interface. The 1D transient convection-diffusion equation is

again solved in each fluid zone i.e.:

∂φl
∂t

= Dl
∂2φl
∂x2

1

− u ∂φl
∂x1

l = 1, 2 (4.43)

Where Dl is the thermal diffusivity, u is the fluid velocity and l is the zone. Continuity of

flux and solution are enforced at the interface, which is convected with the fluid velocity

u:

φ1 = φ2, (4.44)

D1
∂φ1

∂x1
= D2

∂φ2

∂x1
(4.45)

At the boundaries (−L ≤ x1 ≤ L), Dirichlet boundary conditions are enforced:

φ1(x1 = −L, t) = 1 (4.46)

φ2(x1 = L, t) = 0 (4.47)

The initial conditions for the problem, with the interface located at −L/2 are:

φ1(x1 ≤ −L/2, 0) = 1 (4.48)

φ2(x1 > −L/2, 0) = 0 (4.49)
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The auxiliary multi-zone method can be used to solve the above problem, with the nodal

points near the interface displaced at each time step to lie directly on the interface. PDE

operators close to the interface are similarly displaced so that at each time step they

have available data from the same zone at the previous time step. Since there are also

no PDE operators directly on the interface, no extrapolation has to be performed for

any PDE operators, with the nodal points being suitable displaced due to the meshless

nature of the scheme.

The above problem was tested using the embedded multi-zone method with 1st and

2nd order Taylor series extrapolation (since PDE points have to exist on the interface

for global accuracy), however, the extrapolation severely limited the accuracy of the

scheme and made it ineffective for moving interface problems in its current form. Unless

impractically small time step values were used, so that the interface movement was

very small between each time step, the solution error would blow up over the course of

the simulation. Since the problems under consideration have high Peclet numbers, the

extrapolation schemes presented in [98] did not perform well in these cases, with small

errors produced in the extrapolation propagating through the solution. For this reason,

only results using the auxiliary method without extrapolation are presented here.

Although analytical solutions exist for various transient convection-diffusion type

problems, the solutions are typically hard to construct and involve complex functions

of exponentials, Fourier series and infinite sums (see for example [122, 123]). These

solutions become even harder to construct for moving interface, multi-zone transient

convection-diffusion problems, even with constant coefficients. Therefore, to verify the

performance of the auxiliary problem, the above moving multi-zone convection-diffusion

problem may be transformed to a static linear diffusion problem using a moving reference

system with velocity u [124]. The transformed variables are introduced as:

X∗ = x1 − ut, t∗ = t (4.50)

Using these variables, the convection-diffusion problem (4.43) reduces to the following

diffusion problem:

∂φl
∂t∗

= Dl
∂2φl
∂X∗2

l = 1, 2 (4.51)
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Typically, closure of equation (4.51) involves boundary and matching conditions that

move with time, equivalent to those in (4.44) to (4.47) since these are on a fixed domain.

Also, the domain range for equation (4.51) would also change with time. However, since

the interface in the original problem is moving (with positive velocity), the two zones

are effectively moving reference frames that displace with the interface velocity u. The

inner zone size increases with time, whist the outer zone decreases with time. Therefore

an approximate solution to equation (4.43) can be sought by solving (4.51) on a fixed

domain, and mapping the results back, in a reverse fashion to what is classically done.

As long as certain conditions are held, these solutions are equivalent for a finite amount

of time until the mapping passes beyond the original domain.

Equation (4.51) is solved on a static frame from (−L ≤ X∗ ≤ L), with the results then

mapped back to the original x domain. Since the newly mapped points in x will be

displaced to the right of the original domain, i.e. −L + ut ≤ x1 ≤ L + ut, any points

that lie −L ≤ x1 ≤ −L + ut are set to the boundary condition at x1 = −L. This is

valid as long as the Peclet number is much greater than 1 meaning the solution near

the left boundary at x1 = −L will remain at the Dirichlet boundary condition and

simply be convected into the domain. Any points that map to the region outside of

the original domain, i.e., x1 ≥ L are not used. The mapped and original results will

only be comparable if the solution at the points X∗ ≥ L− ut is equal to the boundary

condition at x1 = L. As long as the solution profile is sharp, the solution at the right

of the domain remains near zero for a long time, allowing the solutions to be compared.

For this procedure to work, the boundary conditions for the fixed X∗ domain have to

be interpolated from the mapped domain, i.e.:

φ1(X∗ = −L, t∗) = φ1(x1 = −L+ ut, t) (4.52)

φ2(X∗ = L, t∗) = φ2(x1 = L+ ut, t) = 0 (4.53)

Since the interface is displacing in time with position x1 = −L/2 + ut, the transformed

matching conditions are:

φ1 = φ2, (4.54)

D1
∂φ1

∂X∗
= D2

∂φ2

∂X∗
at X∗ = −L/2 (4.55)
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Finally the initial conditions for the transformed problem are:

φ1(X∗ ≤ −L/2, 0) = 1 (4.56)

φ2(X∗ > −L/2, 0) = 0 (4.57)

Solving equation (4.51) subject to boundary, matching and initial conditions (4.52) to

(4.57) and mapping the results to the domain x1 = X∗ + ut following the assumptions

above, is equivalent to solving (4.43) subject to boundary, matching and initial conditions

(4.44) to (4.49) on the original x domain.

Although the solution to equation (4.51) can be sought analytically (e.g. [125, 126]),

the analytical solutions typically involve eigenvalue problems, whose solution is usually

sought numerically. To this end, a very fine resolution finite difference scheme is used

to solve the governing equation (4.51) directly. Equation (4.51) is solved using finite

differences on the domain (−2 ≤ X∗ ≤ 2). 2nd order central differencing is used for

the spatial derivatives, and a 1st order fully implicit time stepping procedure for the

temporal derivatives. A fictitious node either side of the interface is used to close the

system of equations arising from the extra flux and solution matching conditions at the

interface. Initially the interface is located at x1 = −1, which with a velocity of u = 1

and simulation time of t = 1 results in an end location at x1 = 0. To achieve a spatial

and temporally independent solution, 511 solution nodes are used in the X∗ domain

with a time step size of ∆t = 1x10−7. Even though implicit time stepping is used, the

boundary conditions must be taken at the previous time step where the mapped solution

is known (it is not known at the current time when the solution is sought).

Equation (4.43) is solved in a square 2D domain −2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2 using the

auxiliary multi-zone RBF-FC method, with zero flux Neumann conditions at the top

and bottom boundaries to ensure a 1D solution. Several different nodal discretisations

are tested, with a time step size of ∆t = 1x10−3. The same velocity field and starting

interface location are used as above with c∗ = 50.

In the results that follow, the finite difference and RBF solutions are compared at the

time t and spatial locations x1 set by the original convection-diffusion problem, meaning

the finite difference solution has be mapped to the original domain, i.e. x1 = X∗ + ut,

with the approximations above. By ensuring that the simulations only run until t = 1,
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(b) D1 = 0.01, D2 = 0.10.

Figure 4.20: Moving interface solution profiles. RBF-FC solutions taken using quadtree
cell level 4-6 dataset at the centreline x2 = 0, average 40.37 nodes in x1 direction.
Solutions shown at ∆t = 0.25 increments from 0 ≤ t ≤ 1.

the solution at the outer nodes in the FD scheme never rises above the outer boundary

condition in the original domain.

Figure 4.20 shows the auxiliary RBF-FC and FD method solution profiles for two

diffusivity regimes with time. Both solutions show sharp multi-zone interfaces where

the diffusivity ratio causes a corresponding transition in the solution gradient. Since the

interface moves with the convective field, the transient profile does not show the usual

solution trapping at the discontinuity common in fixed interface problems [113]. In the

cases here, it can be seen that as the inner zone expands, the solution cannot stagnate

near the interface and increase with time, instead the solution is ‘swept’ along with

the interface. In this way, once the transient profile has been setup after t = 0.25,

the solution at the interface does not change significantly, as any increase through

convection/diffusion is matched by an expanding zone acting to lower the solution value.

The Peclet number in both zones is high for each diffusivity case presented in Figure

4.20, with the solution dominated by convection. Using a global lengthscale (L = 4),

the Peclet numbers in each zone for the two cases are: (a) Pe1 = 40, Pe2 = 400 (b)

Pe1 = 400, Pe2 = 40.

The RBF solution in Figure 4.20 shows a highly accurate solution profile that is

indistinguishable from the FD profile, with over 12 times fewer nodal points. The

FD profile represents a highly accurate solution to the problem, since it solves a simple

diffusion problem with changing boundary conditions that is then simply mapped to the
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original domain. The RBF method has to update the interface location and displace the

nodal points at every step, but is able to accurately capture the solution with very few

points.

Quadtree cell Level Average Nx Average ∆x
L2 difference

Case 1
L2 difference

Case 2

Uniform level 5 31 0.1250 4.01 x 10−3 5.69 x 10−3

Uniform level 6 63 0.0625 1.27 x 10−3 2.14 x 10−3

Quadtree level 4-6 40.37 0.0967 1.59 x 10−3 2.60 x 10−3

Table 4.3: Moving interface relative errors between the auxiliary multi-zone RBF-FC
method and the FD method at t = 1.

The solution differences taken at t = 1 between the FD and RBF-FC method for different

datasets are shown in table 4.3. As expected, the uniform level 6 RBF dataset shows the

lowest difference, with a significantly refined mesh. Due to the relatively coarse time step

size used, the errors do not drop significantly with an increase in the maximum cell level,

since the error is controlled by the 2nd order Crank-Nicholson time marching scheme.

The error in the level 4-6 RBF dataset is very close to the uniform level 6 dataset, despite

the significantly reduced number of nodes. Since the solution field changes sharply at

the interface, very few nodes can be used in the outer domain, whilst nodes are clustered

around the interface.

These results highlight the highly robust auxiliary multi-zone method for moving

multi-zone problems. The solutions errors are low when compared to a transformed

FD solution using only very few nodal points. Without extrapolation the scheme is

also able to accurately capture the interface and surrounding solution profile, that make

it very robust and not limited in spatial convergence to the extrapolation order. This

represents a large improvement over fixed mesh schemes that have to use extrapolation

when the interface moves over the nodes, and makes it highly suited for the moving

interface problems that are tackled in this work.

4.7 Conclusion

In this chapter, a new multi-zone RBF-FC method utilising adaptive quadtree

datasets has been developed and validated using various steady-state and transient

convection-diffusion problems, showcasing the accuracy and robustness of the method.
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Single-zone test cases were used to understand the stencil configuration behaviour when

using a non-uniform adaptive quadtree dataset that evolved with time. Results showed

that the local stencil configuration and the location of PDE points played a crucial role

in reconstructing the previous time step data, L̂l, and the resulting solution accuracy.

Interior, crossover and T-junction stencils were analysed, with optimal results obtained

using a 1-1 stencil configuration, allowing accurate PDE reconstruction and low global

solution error for use within the adaptive dataset RBF-FC framework.

These stencil configurations were then used with the new multi-zone methods to test

several well known multi-zone problems. Both methods exhibited very low solution

error on steady-state fixed interface problems, with high 3rd order convergence. In

the moving multi-zone problem, only the auxiliary method could be used effectively as

the extrapolation procedure for the embedded method rendered the scheme inaccurate

unless impractically small time step sizes are used. The auxiliary method demonstrated

accurate solution profiles when compared to a very high-resolution finite difference

scheme, without the need for extrapolation, using a fraction of the nodal points to

capture the sharp, discontinuous solution profile.

From the testing presented in this chapter, it is clear that the new adaptive, auxiliary

multi-zone RBF-FC scheme is effective at solving moving multi-zone problems, in which

the PDE being solved is itself transient. The ability to accurately compute solutions

without the need for extrapolation makes the scheme highly suited to transient PDEs

where the inhomogeneous L̂l must be computed at each time step. The embedded

method has proved more effective for the solution of steady-state multi-zone problems,

where there can be a greater linking between stencils along the interface, increasing the

solution accuracy. This general methodology for the multi-zone RBF-FC method can be

used in subsequent chapters to solve the cases of inhomogeneous mobility in immiscible

viscous fingering.



5. Immiscible displacement with

inhomogeneous mobility

Summary

In this chapter, the previously presented BE and RBF-FC methods are coupled to

track the radial displacement and viscous fingering between two immiscible fluids with

inhomogeneous mobility in a Hele-Shaw cell. The fluid mobility is a function of the cell

plate separation, which is varied spatially in order to explore the effects of inhomogeneous

mobility on immiscible viscous fingering. The analogy between Hele-Shaw and porous

media flow can again be used to draw conclusions about the immiscible viscous fingering

regime during CO2 injection and storage.

Systematic numerical experiments with uniformly converging radial cells confirm recent

analytical and experimental results under low capillary number regimes, in which

stabilising effects become prominent and perturbations can be damped. By increasing

the capillary number a transition point is identified, after which the effect of the

converging geometry reverses. At high capillary numbers, the stabilising capillary

pressure is overcome by the increased pressure gradient through the converging aperture

and finger growth is promoted.

In sharply varying geometries at the late stages of interfacial growth, the finger fronts

create a bottleneck and could detach into separate bubbles when entering regions

of sharply expanding geometry. In corresponding converging cases, the finger fronts

spread azimuthally creating a highly stabilised interface with fingers separated by

thin lubrication layers. Investigations into highly anisotropic Hele-Shaw cells reveal

134
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the fingering complexity that can occur in periodic and channelled Hele-Shaw cells,

demonstrating the robustness of the numerical scheme.

5.1 Introduction

A typical subsurface aquifer will have an inhomogeneous permeability that varies in

space as a consequence of the way it has been formed and re-shaped over many millions

of years, altering the natural stress state of the aquifer [17]. Abrupt changes in aquifer

permeability can exist due to fault lines and changes in the aquifer material [17]. As well

as pre-existing variations in permeability, the CO2 injection process itself can alter the

permeability of the aquifer. During CO2 injection, formation dry-out and precipitation

of minerals (such as salt from pre-existing brine) near the injection well can reduce the

porosity and permeability of the aquifer [18]. The formation of carbonic acids in the brine

due to reactions with the injected CO2 can dissolve the calcite in sandstone aquifers,

increasing the permeability [19]. Injection pressures over the formation pressure of the

aquifer can also induce fracturing and fault slip, which can increase the permeability in a

region surrounding the injection well [20]. Understanding the effect of these permeability

variations on the flow regime and interfacial evolution of injected CO2 is critical in

understanding the long term storage capabilities of supercritical CO2 and forms the

motivation behind this chapter.

A spatially varying permeability can be considered in a Hele-Shaw cell context as a

variation in the plate separation, in effect altering the cell’s intrinsic permeability (k=

b2/12) analogous to that in a porous medium. This also gives rise to an inhomogeneous

fluid mobility that varies spatially. The fluid mobility can also vary with the viscosity,

which can be spatially dependent (due to an imposed temperature field) within the

fluids. The mathematical model is general and can be applied to any form of spatially

varying mobility, however, in this chapter, the case of an inhomogeneous fluid mobility

arising purely from the spatial variation in plate separation is studied. The case of a

spatially varying viscosity is analysed in the next chapter.

Recently, several analytical and experimental works have shown that small changes in

the plate separation in a Hele-Shaw cell can have significant effects on the interface

evolution, allowing the control and suppression of fingering instabilities [127]. Using
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a rectilinear Hele-Shaw cell set-up, [128] investigate secondary tip-splitting instabilities

occurring under high capillary number regimes when the cell has a small gradient in the

plate separation in the flow direction. Experiments show that a small positive gradient

flattens the finger tip, making it easier for the finger to bifurcate. In the converging

cell case, the finger sharpens, and remains stable for a much longer period compared to

the flat plate configuration. Physically, with an almost constant curvature around the

finger front in the rectilinear set-up, the finger tip is accelerated first by the converging

geometry, creating a sharper tip. The analytical stability analysis of [128] reveals a large

dependence of the growth rate of instabilities with the magnitude of the plate separation,

but no dependence on the sign of the separation gradient, contrary to experimental

results.

[129] use a similar stability analysis to [128] but employ mode coupling theory to provide

analysis into the slightly non-linear regime of finger tip splitting in a rectilinear cell. They

find dependence on the sign of the plate separation gradient on the finger tip growth in

contrast to [128]. Their findings agree with the experimental findings published by [128]

for the case of high capillary numbers in the weakly non-linear stage of finger growth.

In contrast to [128] and [129], [130] present results in a rectilinear cell with a gradually

varying plate separation under much smaller capillary number regimes, looking at the

onset and subsequent control of the fingering instability. In very low capillary number

flows, the gradually converging cell can completely stabilise the flow due to the variation

in transverse curvature around the interface. Areas of the interface displaced further into

the cell have a larger transverse curvature, resulting in a larger capillary pressure and

stabilising action from the surface tension. The large capillary pressure helps to stabilise

the front and can produce a completely flat interface if the capillary number is below

a critical value. [130] predict a critical capillary number through experimental testing

and analytically using an equation derived from a linear stability analysis (LSA) of the

governing Darcy flow regime. This analysis gives a critical capillary number under which

perturbations of any wavelength can be stabilised, depending on the viscosity contrast,

contact angle and plate gradient. The analytical predictions agree remarkably well with

the experimental findings, with small discrepancies likely due to dynamic wetting effects

[130].
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Utilising a radial Hele-Shaw cell set-up, [27] provides early insight into the case of a

slightly diverging cell, showing that viscous fingering is initially delayed. This was later

confirmed analytically by [127], who show that the radial growth of a finger has an offset

given by −αr0/b0, where α is the gap gradient, r0 is the interface position and b0 is the

plate separation respectively. This offset is negative in the diverging geometry causing

the interface to be slowed and viscous fingering delayed. [127] also analyse how the radial

set-up is affected by converging geometry, showing a similar capillary number limit for

which viscous fingering can be completely suppressed.

Another strategy to suppress the fingering instability is the use of a Hele-Shaw cell with

an elastic upper membrane, replacing the classic rigid plate. The elastic membrane

displaces vertically upon the injection of the less viscous fluid, creating a profile that

converges to a uniform plate separation far from the injection site. The expansion of

the elastic upper membrane occurs at a rate much faster than the displacement of the

outer fluid, meaning the viscous fingering stability can be modelled in a similar vane

to the radial case presented by [127], i.e. in a static manner. [131] and [132] show

that the converging geometry caused by the rapid cell expansion helps to stabilise the

interface between the fluids. This is also demonstrated experimentally by [133], where

the interface can be completely stabilised using an elastic membrane for short time

periods under low capillary number regimes. At higher capillary numbers, the interface

proceeds to form short stubby fingers, also identified by the numerical model in [132].

More recent studies by [134] and [135] analyse single and two-phase axisymmetric radial

flow in a Hele-Shaw cell with an elastic upper membrane. [134] perform experiments

and direct numerical simulations using a Navier-Stokes and lubrication theory model;

both of which agree very well with experimental results for the profile evolution of the

upper membrane. However, the lubrication model shows some discrepancy with the

experimental results for the radial evolution of the injection plume, due to the omission

of the dynamic-wetting layer in the capillary pressure jump formulation. This is later

incorporated by [135], with results showing remarkable agreement with the experimental.

Due to the large expansion of the upper membrane and hence significant volume of

trailing fluid left behind, incorporating the dynamic wetting layer is crucial to accurately

predict the radial front evolution.



Chapter 5. Immiscible displacement with inhomogeneous mobility 138

As well as static cell geometries and the use of elastic membranes, time dependent

strategies can be used to control the growth of instabilities and the resulting interfacial

evolution. [136], [137] and [138] use Hele-Shaw cells with time dependent lifting or

squeezing rigid upper plates. With a diverging lifting plate, [136] find that the growth

rate of unstable modes can be reduced, helping to stabilise a system that would be

unstable in a parallel plate situation. Using a plate separation b that scales in time

with b(t) = b1t
1/7, [138] are also able to suppress the onset of fingering instabilities,

or maintain non-splitting self-similar fingers throughout time. Similarly, using a time

dependent injection rate that scales with the inverse of the fastest growing fingers (Q(t) =

Q1t
−1/3), [139] show that self-similar finger morphologies can be created that do not split

or form highly branched structures.

These theoretical and experimental findings confirm that the evolution of viscous

fingering has a large dependence on the plate separation variation (and hence

inhomogenous mobility) in both rectilinear and radial Hele-Shaw flows. Although a

significant amount of previous work exists on the linear growth and early stages of the tip

splitting instability with a variable plate separation, analysis of the long term non-linear

evolution is lacking. Research has focused on control of the fingering instability, where

linear stability theory can be effectively used to analyse the growth rate and finger

morphology if the instabilities are suppressed early in time. However, to fully understand

the non-linear finger interactions and late stage interfacial evolution in radial Hele-Shaw

flow, subject to a variable plate separation, requires extensive numerical simulation [129].

The contrasting results at low and high capillary numbers in rectilinear cells mentioned

previously (in converging cells, fingers are smoothed at low capillary numbers and

sharpened at high capillary numbers) indicate a transition in fingering mechanisms with

capillary number. This transition has not been explored in detail, with previous authors

generally focusing on one region due to the application of their study. However, in the

present work the transition region is explicitly explored, in order to provide detail on

the regimes that could occur under the flow regimes present in CO2 sequestration. Here,

the capillary number is initially high, but decreases with time, indicating that both high

and low capillary number regimes may be experienced by the advancing plume.

This work aims to numerically model the long time scale interfacial evolution between

two fluids in a radial Hele-Shaw cell with a spatial variation in the plate separation.
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To this end, a coupled boundary element - radial basis function method is developed

to accurately track the interfacial displacement of fluids with inhomogeneous mobility

in Hele-Shaw cells. Unlike previous studies, this work doe not aim to provide a control

strategy for the fingering instabilities, instead presenting analysis and discussion on the

long term effects of plate separation variation on the interfacial evolution.

In the following chapter, the mathematical model is first formulated in section 5.2

followed by an overview of the numerical methods (which have mainly been introduced

in the previous chapters). Mass conservation verification is performed in section 5.4

followed by numerical results with detailed discussion and comparison with previous

work in section 5.5. This chapter concludes with final remarks and findings in section

5.6.

5.2 Mathematical model

A circular Hele-Shaw cell of infinite radius is again considered, in which high viscosity

fluid is displaced by the injection of a less viscous fluid. The initial interface has a

perturbation given in Figure 5.1, where ε0 and θ are the perturbation amplitude and

the azimuthal angle around the interface.
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Figure 5.1: (a) Planar view of the 2D radial injection problem, with 8 finger symmetric
perturbation. (b) Side view of a radially symmetric converging Hele-Shaw cell.
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The governing equations of the flow follow from Darcy’s law and conservation of mass

with suitable matching conditions, given in section 2.2.1 in chapter 2. These equations

are repeated here for convenience, firstly the conservation of mass with substituted Darcy

velocity:

∂

∂xi

(
b(x)Ml(x)

∂Pl
∂xi

)
= 0 x ∈ Ωl, l = 1, 2 (5.1)

The kinematic condition requires the continuity of normal velocity ui(ξ)ni(ξ), i.e.

−M1(ξ)
∂P1(ξ)

∂n
= −M2(ξ)

∂P2(ξ)

∂n
(5.2)

The dynamic condition describes the pressure jump across the interface:

P1(ξ)− P2(ξ) = γ

(
2

b(ξ)
+
π

4
k(ξ)

)
(5.3)

Note that here the original Young-Laplace condition is used without dynamic wetting

effects. This is because the dynamic wetting effect adds significant extra computation to

the numerical schemes, and in this chapter the focus is solely on inhomogeneous mobility

effects. The final conditions to close the problem are the near and far field asymptotic

conditions, i.e.:
∂P1(x)

∂r
x→0

→ − Q

2πM1r
(5.4)

P2(x)
x→∞

→ − Q

2πM2(x)
ln

(
r

r0

)
(5.5)

Equation (5.1), subject to matching conditions (5.2, 5.3), and asymptotic conditions

(5.4) and (5.5) represents a well posed problem that can be solved with the previously

developed numerical methods. In this chapter, in order to characterise the specific effects

of the varying plate separation in comparison to the uniform cell case (which has been

discussed in chapter 2), the variables that depend on the plate separation are decomposed

into homogeneous and perturbed components. In this way, the homogeneous components

can be solved with the BEM in a similar fashion to chapter 2 and the perturbed

components using the RBF-FC method in chapter 4 in order to characterise the effect

of the variable plate separation from the homogeneous case.
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Firstly, the plate separation can be represented with homogeneous and perturbed

components as:

b(x) = b+ b̃(x) (5.6)

The perturbed component, b̃(x) represents the variation in b(x) with respect to

the homogeneous separation (the characteristic value defined at the origin) and the

corresponding variation in permeability from the homogeneous base value in a porous

medium. This gives the mobility of the fluid in zone l as:

Ml(x) =
(b+ b̃(x))2

12µl
= M l(x) + M̃l(x) (5.7)

M l =
b2

12µl
, M̃l(x) =

b̃2(x) + 2bb̃(x)

12µl
(5.8)

From equation (5.1) the plate separation b(x) can now be incorporated into a new

modified mobility term:

ml(x) = b(x)Ml(x) =
(b+ b̃(x))3

12µl
= ml + m̃l(x) (5.9)

ml =
b3

12µl
, m̃l(x) =

b̃3(x) + 3bb̃2(x) + 3b2b̃(x)

12µl
(5.10)

Non-dimensional variables can be introduced utilising the characteristic length, time,

velocity, pressure and mobility of the problem, given by:

(x, r, b) = r0

(
x′, r′, b′

)
, t =

r2
0

Q
t′, (5.11)

uli =
Q

r0
ul

′
i , Pl =

Q

M2

P ′l , (Ml,ml) = M2(M ′l ,m
′
l) l = 1, 2 (5.12)

In equalities (5.11) - (5.12), apostrophes identify non-dimensional variables with t as

time and M2 as the the homogeneous mobility of the displaced fluid (corresponding to

the homogeneous thickness b). From this point onwards in the chapter, the apostrophe

of all non-dimensional variables will be dropped, and all variables will be assumed to be

in their non-dimensional form unless otherwise stated.

Consistent with the above representation of the mobility, in order to analyse the flow

effects arising from the perturbed plate separation b̃(x), the total pressure can be



Chapter 5. Immiscible displacement with inhomogeneous mobility 142

represented as a sum of homogeneous and perturbed components:

Pl(x) = pl(x) + p̃l(x) (5.13)

Expanding (5.1), noting that ∂ml/∂xi = 0, the following equation is obtained:

ml(x)
∂2pl
∂x2

i

+ml(x)
∂2p̃l(x)

∂x2
i

+
∂m̃l(x)

∂xi

∂p̃l(x)

∂xi
= −∂m̃l(x)

∂xi

∂pl(x)

∂xi
(5.14)

The homogeneous pressure is constrained to satisfy Laplace’s equation, in order to

characterise the case of uniform plate separation and the effects of variable plate

separation:

∂2pl(x)

∂x2
i

= 0; (5.15)

To derive the correct matching and boundary conditions for the pressure field at

the interface and the far field, the homogeneous and perturbation pressures can be

substituted into (5.2) and (5.3). The homogeneous pressure is subject to the following

matching and asymptotic conditions:

p1(ξ)− p2(ξ) =
1

Cag

(
2

b(ξ)
+
π

4
k(ξ)

)
for ξ ∈ S (5.16)

M1(ξ)
∂p1(ξ)

∂n
= M2(ξ)

∂p2(ξ)

∂n
for ξ ∈ S (5.17)

∂p1(x)

∂r
x→0

→ − 1

2πr
(5.18)

p2(x)
x→∞

→ − 1

2π
ln(r) (5.19)

Here, Cag is the global capillary number, appearing due to the non-dimensional scaling

of the problem. The global capillary number in (5.16) describes the ratio of viscous

driving forces to surface tension forces in terms of the characteristic mobility M2 and

plate separation b at the origin:

Cag =
12µ2Q

γr0

(
r0

b

)2

=
r0Q

γM2

(5.20)

where r0 is the initial unperturbed interface radius. By considering the global conditions

given by (5.2), (5.3) and (5.5), equation (5.14) is then subject to the following matching
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conditions at the interface and asymptotic conditions near the origin and in the far field:

p̃1(ξ)− p̃2(ξ) = 0 for ξ ∈ S (5.21)

m1(ξ)
∂p̃1(ξ)

∂n
= m2(ξ)

∂p̃2(ξ)

∂n
for ξ ∈ S (5.22)

∂p̃1(x)

∂r
x→0

→ 0 (5.23)

p̃2(x)
x→∞

→ 0 (5.24)

Asymptotic conditions (5.18), (5.19), (5.23) and (5.24) ensure that the total pressure

and total velocity tend toward that arising solely from the injection source near the

origin and in the far field. Since b(x→ 0) = b, the velocity field is defined solely by the

homogeneous solution arising from p(x) near the origin; see for example Figure 5.10,

where ∂p̃(x)
∂x ≈ 0 around the origin.

The perturbed pressure flux matching condition (5.22) is scaled by the plate variation

b(x) in order to maintain consistency with the effective diffusion in equation (5.14). In

this way, the homogeneous pressure evaluates the flow in a constant plate separation,

and the perturbed pressure the effect due to changes in geometry of the flow path.

The obtained values of pl and p̃l can be used to reconstruct the normal velocity at an

interface point, ξ, in order to track the fluid:

Un(ξ) = un(ξ) + ũn(ξ) (5.25)

Un(ξ) = −M1(ξ)
∂p1(ξ)

∂n
−M1(ξ)

∂p̃1(ξ)

∂n
(5.26)

The evaluation of the perturbed and homogeneous pressure requires discretisation of the

domain and interface as well as the use of a coupled BE-RBF-FC numerical method,

discussed in the next section.

5.3 Numerical methods

Here, the solution procedures to evaluate the perturbed and homogeneous pressure

components are described, along with the reconstruction of the interface velocity with

equation (5.26). The homogeneous pressure is solved using a boundary element method
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line indicates the fluid-fluid interface over which the boundary elements are formed.
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similar to that shown in chapter 2 utilising an indirect formulation instead of a direct

formulation.

The perturbed pressure equation (5.14) is solved via the strong form radial basis function

finite collocation method presented in chapter 4 utilising the embedded multi-zone

method. This requires both internal and boundary nodes as seen in Figure 5.2.

To decrease the solution cost for the methods an 8 finger symmetric interface is used

throughout the numerical simulations. This enables the RBF-FC method to make use of

symmetry in the domain and solve only 1/8th of the entire domain (shown in Figure 5.2).

The boundary element method still solves the full interface, since it is typically an order

of magnitude faster to solve than the RBF-FC method, and the formulation requires a

closed interface. The perturbed velocities reconstructed by the RBF-FC method can be

copied to the unsolved 7/8ths of the domain utilising symmetry, to reconstruct the full

interface velocity to displace the interface.
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5.3.1 Homogeneous pressure solution

The homogeneous pressure can be represented as a sum of the pressures due to an

injection potential source, Q, and the double layer potential density, W (x, ψ).

p1(x) = W (x, ψ)− 1

2πβ
ln (r) (5.27)

p2(x) = βW (x, ψ)− 1

2π
ln (r) (5.28)

where ψ is the double layer potential density. In equations (5.27) and (5.28) β is the

mobility ratio between the two fluids, β = M1/M2 and W (x, ψ) is the double layer

potential, defined as:

W (x, ψ) =

∫
s
K(x,y)ψ(y)dSy (5.29)

The regular kernal, K(x,y) is the normal derivative of the fundamental solution of

Laplace’s equation. Substituting the homogeneous pressures (5.27) and (5.28) into (5.16)

and taking the limit at the interface of the two fluids, the following 2nd kind Fredholm

equation is obtained:

−1

2
ψ(ξ) + λ

∫
s
K(ξ,y)ψ(y)dSy = fs(ξ) (5.30)

where:

λ =
1− β
β + 1

(5.31)

fs(ξ) =
1

Cag(1 + β)

(
2

b(ξ)
+
π

4
k(ξ)

)
+

(
λ

2πβ

)
ln(r) (5.32)

The indirect formulation here has produced equation (5.30) which is the adjoint of

equation (2.49) formed in the dirct method. For this reason, the solution procedure can

be formed in a very similar way, using the convergent series, i.e.:

ψ(ξ) = ψ0(ξ) + λψ1(ξ) + · · ·+ λmψm(ξ) (5.33)
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The terms in equation (5.33) can be calculated recursively, via the following formulae:

ψ0(ξ) = −2f(ξ) (5.34)

ψm(ξ) = 2

∫
s
K(ξ,y)ψm−1(y)dSy for m 6= 0 (5.35)

Once ψ has been calculated around the interface, the spatial derivatives of the double

layer potential can be found to reconstruct the homogeneous normal velocity at the

interface (and the source term for the perturbation pressure equation (5.14) in the

corresponding zone):

un(ξ) = −M1(ξ)ni
∂p1(ξ)

∂xi
= −M1(ξ)ni

(
∂W (ξ, ψ)

∂xi
− xi

2πβr2

)
(5.36)

The reconstruction of the derivative of the double layer potential in (5.36) requires

the evaluation of a hypersingular integral. The hypersingular integral evaluation is

performed in exactly the same way as that in the direct formulation in equation

(2.49), using the semi-analytical subtraction technique. The only major difference

between the two hypersingular integral evaluations, is that the evaluation is used for

the inhomogeneous source term on the RHS of the direct equation, whilst the evaluation

is done as a post-processing stage with the indirect method.

The indirect method is preferred here since the derivatives of the homogeneous pressure

(needed for equation (5.14)) are easily reconstructed anywhere in the domain using the

double layer potential, i.e.:

∂p1(x)

∂xi
=
∂W (x, ψ)

∂xi
− xi

2πβr2
(5.37)

∂p2(x)

∂xi
= β

∂W (x, ψ)

∂xi
− xi

2πr2
(5.38)

In the direct method, the constant for the no-flux condition kas must be found before the

surface potentials can be reconstructed in equations (2.43) and (2.44) to find the spatial

derivatives of the pressure. This introduces extra computation that is not necessary

with the indirect method. The direct method is preferred for solutions that only require

the interface velocity (since only one equation has to be solved), whereas the indirect

method is preferred when domain velocities must also be calculated.

The boundary element representation for equation (5.30) uses the same cubic B-spline
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formulation as in chapter 2. When solving the homogeneous velocity on the interface,

the direct and indirect methods give exactly the same solution (down to the double

precision implementation), with identical mesh and time step characteristics due to the

equivalence of the adjoint equations being solved.

The spatial derivatives of the double layer potential for the domain source terms in

(5.14) can exhibit near hypersingularities when the domain point is very close to the

interface. This only occurs on PDE points from cells that coincide with the interface,

since solution points from the cell will be directly displaced onto the interface. When

this happens, the PDE points are simply removed from the formulation, since the regular

integration scheme will be poor. If the PDE point is close to the interface due to the

deformed vertices of a cell, but not from a cell directly coinciding with the interface, the

integration scheme can subdivide nearby elements and use many integration points to

accurately resolve the near singular integration.

5.3.2 Perturbed pressure solution

In this section, the RBF-FC method is formulated to evaluate the perturbed pressure in

equation (5.14). The solution method uses the embedded multi-zone method presented

in chapter 4 utilising the quadtree dataset based on the 1-1 stencil configuration. Nodal

points close to the interface are deformed to lie directly on the interface so that flux and

field variable matching conditions can be applied consistently. The cell centroids (where

the PDE nodal points are place) are also deformed so that they lie in the geometric

centre of the cell.

An example problem domain is presented in Figure 5.2 for the perturbed pressure

solution, showing an example nodal discretisation generated by the quadtree dataset.

The quadtree is initialised using a distance based scheme to cluster cells around the

boundary element interface, in which a cell will split if the following equality is met:

DcBt > Rc. Here, Dc refers to the diagonal length of the cell, Rc is the distance from

the cell centre to the closest point on the interface and Bt is the band thickness. After

initialisation, the cells closest to the interface are deformed such that their vertices lie

directly on the interface and the centres lie at the geometric centre of the cell. Vertices

move in a purely orthogonal direction to maintain spatial consistency. After the quadtree
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has been generated, the nodal points for the 1-1 RBF-FC local systems can be created

based on the vertices and cell centres of the leaf cells.

As the present Darcy formulation is quasi-static, the perturbed pressure equation

(5.14) can be described generally as a steady-state multi-zone transport boundary value

problem of the form:

Ll,x[p̃l(x)] = −Sl(x) x ∈ Ωl (5.39)

Bl,x[p̃l(x)] = gl(x) x ∈ ∂Ωl (5.40)

Ql,x[p̃l(x)] = fl(x) x ∈ ∂Ωint (5.41)

where:

Ll,x = ml(x)
∂2

∂x2
i

+
∂m̃l(x)

∂xi

∂

∂xi
x ∈ Ωl (5.42)

Sl(x) =
∂m̃l(x)

∂xi

∂pl(x)

∂xi
x ∈ Ωl (5.43)

BDU
l,x = BDK

l,x = 1, BN
l,x = ni

∂

∂xi
x ∈ ∂Ωl (5.44)

gDUl (x) = p̃l(x), gDKl (x) = 0, gNl (x) = 0 x ∈ ∂Ωl (5.45)

Ql,x = m̃l(x)ni
∂

∂xi
x ∈ ∂Ωint (5.46)

fl(x) = m̃l(x)ni
∂p̃l(x)

∂xi
x ∈ ∂Ωint (5.47)

In equations (5.39) to (5.47), subscript l refers to the zone. Ll, Bl and Ql are linear

partial differential operators on the domain Ωl, the boundary ∂Ωl and the fluid-fluid

interface ∂Ωint respectively. The operator Ql,x refers to the flux operator in zone l

acting on node x. Sl(x) is the source term coming from the homogeneous pressure p(x)

in domain Ωl. Superscript DU,DK and N refer to Dirichlet unknown, Dirichlet known

and Neumann boundary operators respectively.

The value of the perturbed pressure p̃l(x) can be reconstructed as a weighted sum of

partial differential operators applied to a set of radial basis functions that are centred on

nodes yj . At nodes lying on the domain boundary the boundary operator B is applied

to the corresponding RBF, and at nodes within the domain interior the governing PDE

operator L is applied. For nodes which exist on the fluid-fluid interface, both the solution
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operator C and the flux operator Q are applied:

p̃l(x) =

NB∑
j=1

τjBl,yΨ (‖x− yj‖) +

NB+NI+1∑
j=NB+1

τjLl,yΨ (‖x− yj‖) (5.48)

+

NB+NI+NF+2∑
j=NB+NI+2

τjCl,yΨ (‖x− yj‖) +

NB+NI+2NF+3∑
j=NB+NI+NF+3

τjQl,yΨ (‖x− yj‖)

In equation (5.48), NB is the number of boundary nodes, NF is the number of flux

(interface) nodes and NI is the number of internal nodes, τj are the unknown weights.

The RBF operators Ψ in equation (5.48) are Hardy Multiquadric RBF interpolants.

Enforcing the PDE system (5.39 - 5.41) at a set of test locations, equal to the set

of functional centres in a local stencil in zone l, a collocation matrix can be formed.

These collocation matrices can be formed at every interior node, creating N local RBF

collocation systems.

To link the systems together, p̃l(x) is reconstructed at each system centrepoint using

the RBF reconstruction formula (5.48). By performing the reconstruction of p̃l(x) at

the centrepoint of each local system k, a series of N simultaneous equations are formed

for the N unknown values of p̃l(x) and Qx(p̃l(x)) at the system centrepoints. For each

node that lies on the interface between the fluids, two reconstructions are performed

in the emebedded multi-zone method, one for each RBF system with a centrepoint at

that node. By solving this sparse global system the values of p̃l(x) and Qx(p̃l(x)) are

obtained at the N internal nodes.

After the solution of the sparse global system, the normal perturbation velocity ũn(ξ), at

a location ξ on the interface can be reconstructed using the nearest overlapping system,

i.e.:

ũn(ξ) = −M1(ξ)
∂p̃1(ξ)

∂n
(5.49)

5.3.3 Coupled solution algorithm

To solve the coupled homogeneous and perturbed pressure problem, the following

algorithm is used:

1. Initialise the interface with an 8 finger perturbation and discretise into B-Spline

boundary elements.
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2. Initialise the quadtree dataset, deforming it around the initial interface position.

3. Solve the double layer potential density around the interface, equation (5.30).

4. Reconstruct the normal homogeneous velocity at every boundary element node

around the interface using equation (5.36). Reconstruct the spatial derivatives of

the homogeneous pressure at every internal (RBF) node in the domain, for use in

the source term for equation (5.14).

5. Solve equation (5.14) using the RBF-FC method. Reconstruct the normal

perturbation velocity at every boundary element node using using the nearest

overlapping systems with equation (5.49).

6. Find the total normal velocity at the interface nodes using equation (5.25).

7. Advance the interface nodes using a forward Euler time stepping scheme: ∆xi =

niUn∆t.

8. Re-form the boundary elements around the new interface position. Adapt the

quadtree dataset to the new interface position. Increase time by ∆t.

9. Repeat steps 1 to 8 until the simulation end time has been reached.

5.4 Mass conservation verification

In this section, the coupled numerical scheme is used to solve the displacement of an

initially circular interface, with zero perturbation. Perturbations will only grow after a

long period of time due to numerical error, meaning that the interface should propagate

as a growing circle with an increasing volume equal to that injected at the origin. The

numerical volume of the growing plume and the volume of fluid injected at the origin

can be compared to verify that the numerical scheme is mass conservative (since the

density is constant) and that the governing equation of the flow (5.1) is being satisfied.

The total volume of fluid in the cell is given in non-dimensional form as:

Va = V0 + bt (5.50)
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Where V0 is the initial volume of fluid in the cell. If the interface displaces as an

unperturbed circle with radius r(t) in a uniform cell with b(x) = b, the volume can be

expressed as:

Va = πbr(t)2 = b(π + t) (5.51)

r(t) =

√
π + t

π
(5.52)

To ensure that mass has been conserved in the numerical method, the volume of fluid can

be calculated through numerical integration of the evolving interface (using the average

interface position r) and compared to the value given by equation (5.50). Although

there are no fingering effects present due to the constant curvature, the problem still

provides validation of the coupling of the RBF method and the BEM. The BEM has been

validated for homogenous mobility cases in chapter 2, meaning the mass conservation

tests presented here will validate that the RBF-FC method is contributing a correct

velocity to displace the interface. The RBF method still solves the full multi-zone

steady-state pressure problem, but with the interface given by a simple circle instead of

the convoluted interface usually found in viscous fingering problems.
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~
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Figure 5.3: Gradually diverging Hele-Shaw cell diagram (gradient exaggerated for
display purposes). The dashed line at the far left of the domain shows the line of
symmetry at the origin.

For an inhomogeneous test case, a gradually varying cell geometry is studied, shown in
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Figure 5.3. The cell is axisymmetric around the origin, with values of b̃(x) and ∂b̃(x)/∂xi

at the different radial locations r = |x| in Figure 5.3 as:

b̃(x) = 0,
∂b̃(x)

∂xi
= 0 r < R1, r > R4 (5.53)

b̃l(x) = ±
(
R2
w − (r − fl(1))2

) 1
2 + fl(2)− b, ∂b̃(x)

∂xi
= ∓

( (
xi
r

)
(r − fl(1))

(R2
w − (r − fl(1))2)

1
2

)
R1 < r < R2, R3 < r < R4 (5.54)

b̃(x) = α(r −Rs),
∂b̃(r)

∂xi
= α

(xi
r

)
R2 < r < R3 (5.55)

In equation (5.54), subscript l refers to fillet 1 or 2 in Figure 5.3. fl is the centrepoint of

fillet l with coordinates (fl(1), fl(2)), with radius of curvature kr. The +/− sign in b̃l(x)

refers to a converging/diverging fillet (2nd/1st fillet in Figure 5.3). Rw is the length of

the fillet, i.e., Rw = Rs − R1. The fillet is defined by inputs of Rs, Re, Rw and simple

trigonometric identifies. In the simulations in this section b = 0.01, the gradient of the

slope |α| = 0.001, Rs = 0.6, Re = 5 and Rw = 0.1. These parameters ensure that

plate separation varies gradually through the cell and that the circular interface, with

an unperturbed radius of r = 1, exists entirely in the constant gradient section from

t = 0 to the end of the simulation.

Given the symmetry of the problem, a triangular solution domain is used for the RBF-FC

method, similar to that shown in Figure 5.2, with an outer boundary at x = 32. For

the validation cases the maximum quadtree cell level (MQL) is varied from 8 - 10 whilst

maintaining a minimum quadtree cell level of 3. The band thickness values Bt are varied

for each cell level, in contrast to the constant values used in chapter 4. Varying Bt with

each level allows greater control of the individual band thickness and fine-tuning for

the specific problems. Here, the maximum cell level has Bt = 3, which is increased

in increments of 0.5 up to the minimum cell level. A constant non-dimensional shape

parameter value of c∗ = 70 is used for all simulations. The time step size is varied to

showcase the temporal convergence properties. In the boundary element method the

full interface is solved, around which a target element size is maintained throughout the
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simulations at ∆x ≈ 0.06, ensuring a mesh-independent boundary element solution (see

chapter 2, section 2.4.6).

Property Value (SI Units)

µBrine 1 x 10−3 Pa.s

µCO2(sc) 1 x 10−4 Pa.s

µMineralOil 2.5 x 10−2 Pa.s

µAir 2 x 10−5 Pa.s

β CO2(sc)/ brine 10

β Air/Mineral Oil 1250

γ(CO2-Brine) & γ(Air-Mineral Oil) 0.03 kg/s2

Table 5.1: Fluid properties used in the numerical experiments

The fluid properties used for the numerical experiments in both this section and the

results section are summarised in table 5.1. The properties are taken at suitable

aquifer conditions, with mineral oil and air properties used in results that compare

with corresponding previous works. In this validation study, CO2 and brine are used as

the working fluids, with a global capillary number Cag = 1000.

The results showing the relative error between the numerical and analytical volumes of

fluid in the Hele-Shaw cells at a time t = 10 are displayed in table 5.2. It can be seen

that the relative errors for all time step and mesh discretisations shown are relatively

low, with the largest error being only 3.97 x 10−3. The dataset with MQL = 8 shows

the largest error generally, due to the very coarse discretisation around the interface.

With MQL = 8, the RBF dataset is roughly 2x coarser then the boundary element

mesh, meaning that several elements can exist between RBF nodes. This is undesirable

as the interface could curve significantly between data points, meaning the interface

matching conditions are not adequately represented in the RBF dataset. As the nodal

points are ‘snapped’ to the nearest position on the boundary element mesh, the resulting

RBF dataset is not as uniform if the nodal discretisation is very much larger than the

boundary element discretisation.

When the MQL is increased from 8 through to 10, the relative error drops significantly,

especially at the smaller time step sizes. At the lowest time step size of ∆t = 0.005, the

error is 9 to 16 times lower than at MQL = 8, representing close to 2nd order spatial

convergence. The increased solution quality is due to the MQL = 10 dataset being

twice as refined as the boundary element mesh around the interface. This means that in
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between the RBF nodes, the interface is much closer to a linear approximation, making

the strong form RBF collocation of matching conditions more consistent, leaving less

space for the flux and solution matching conditions to vary between points. At MQL

= 10, the time stepping scheme exhibits 1st order convergence as expected due to the

forward Euler implementation.

In some instances of the diverging cases with the larger time step sizes, the MQL = 9

dataset performs slightly better than the MQL = 10 dataset. This is because at these

larger time step values in the diverging case, the scheme has reached the limit of solution

accuracy, and needs a further decease in the time step size to see a significantly reduced

error. This is not seen in the converging case since the error is generally larger and has

not reached the limit of spatial accuracy at the large time step values.

Hele-Shaw
cell case

Time step
size, ∆t

MQL = 8
∆x = 0.125

MQL = 9
∆x = 0.0625

MQL = 10
∆x = 0.03125

Relative error Relative error Relative error

Converging,
α = -0.001

0.040 3.97 x 10−3 2.14 x 10−3 1.29 x 10−3

0.020 3.35 x 10−3 1.51 x 10−3 6.60 x 10−4

0.010 3.05 x 10−3 1.18 x 10−3 3.45 x 10−4

0.005 2.90 x 10−3 1.04 x 10−3 1.87 x 10−4

Diverging,
α = 0.001

0.040 3.02 x 10−3 9.46 x 10−4 1.56 x 10−3

0.020 2.22 x 10−3 1.77 x 10−4 7.57 x 10−4

0.010 1.83 x 10−3 2.02 x 10−4 3.67 x 10−4

0.005 1.64 x 10−3 4.02 x 10−4 1.78 x 10−4

Uniform,
α = 0.000

0.040 1.43 x 10−3 1.43 x 10−3 1.43 x 10−3

0.020 7.16 x 10−4 7.16 x 10−4 7.16 x 10−4

0.010 3.58 x 10−4 3.58 x 10−4 3.58 x 10−4

0.005 1.79 x 10−4 1.79 x 10−4 1.79 x 10−4

Table 5.2: Relative errors between the numerical and analytical volumes of fluid in the
cell at t = 10 with different mesh and time step discretisations. MQL = maximum
quadtree cell level.

The time evolution of the relative errors between the numerical and analytical volume

of fluid can be seen in Figure 5.4. For a fixed low time step of ∆t = 0.005 in Figure

5.4(a), the error for the different nodal discretisations becomes much more consistent

as ∆x is lowered. The coarse discretisation of ∆x = 0.125 (MQL = 8), shows fairly

erratic behaviour due to the interface representation. However, the error evolution

becomes much smoother as ∆x→ 0.03125. As time progresses the error drops since the

interfacial velocity becomes lower and the fixed Euler time stepping scheme becomes

more accurate.
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Figure 5.4: Time evolution plots of the relative error between analytical and numerical
volume of fluid in the converging Hele-Shaw cell α = −0.001. (a) Different nodal
discretisations, ∆t = 0.005. (b) Different time step discretisations, ∆x = 0.03125.

The first order temporal convergence can be seen in Figure 5.4(b), where the time

step size is varied for the finest spatial discretisation (∆x = 0.03125). Due to the

smoothness of the error evolution and the generally low relative error, the finest dataset

(∆x = 0.03125, MQL = 10) is chosen for simulations in the following results sections.

For practicality, ∆t = 0.02 is used to provide a good balance between solution accuracy

and simulation running times.

5.5 Numerical results and discussion

In this section, results are presented from several numerical experiments exploring the

variable plate separation problem. In order to compare with previous work, studies

based on air injection into mineral oil are presented, corresponding to the cases of

negligible viscosity of the injected fluid considered by [128], [130] and [133]. In the

current formulation, the low viscosity of the injected fluid is included in the model,

resulting in a (high) finite mobility ratio between the air and mineral oil. As well as

the high mobility ratio regime, a low mobility ratio regime is also considered in order to

analyse the injection of supercritical CO2 into brine. The fluid properties used for the

numerical experiments are summarised in the previous section in table 5.1.
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Throughout the numerical simulations, an 8 finger symmetric pattern is used as the

initial interface condition, given in Figure 5.1(a) as:

r = 1 + ε0 cos(8θ) (5.56)

where ε0 and θ are the perturbation amplitude and the azimuthal angle around

the interface respectively. A symmetric 8 finger perturbation is used in contrast to

the 6 finger perturbation in chapter 2 and 3 so that a reduced 1/8th domain can

be implemented simply using the quadtree nodal arrangement. In a 1/6th domain

representation using the 6 finger perturbation, points have to be deformed to lie on the

symmetric boundary, producing sub optimal boundary systems in the RBF-FC method.

5.5.1 Uniformly converging/diverging Hele-Shaw cells

This section explores the immiscible displacement in a uniformly varying cell geometry

with a small constant gradient α in the radial direction, as shown in Figure 5.3 in the

previous section. In the simulations in this section b = 0.01, Rs = 0.6, Re = 5 and

Rw = 0.1. The initial perturbation amplitude ε0 = 0.05. These parameters ensure

that plate separation varies gradually through the cell and that the interface, with an

unperturbed radius of r = 1, exists entirely in the constant gradient section from t = 0

to the end of the simulation.

Given the symmetry of the problem, a triangular solution domain can be used for the

RBF-FC method, similar to that shown in Figure 5.2, with an outer boundary at x = 32.

The minimum quadtree cell level is 3 with a maximum level of 10, Bt varies uniformly

from 3 at cell level 10 to 6.5 at cell level 3, c∗ = 70. In the boundary element method

the full interface is solved, around which a target element size is maintained throughout

the simulations at ∆x ≈ 0.06 and time step size of ∆t = 0.02. This ensures that the

RBF-FC nodal refinement is around twice that of the BEM around the interface, and

that both solutions are mesh and time step independent.

In Figure 5.5, results are presented for different capillary number and mobility ratio

flows in uniform, converging and diverging cell geometries. β = 1250 corresponds to

air injection into mineral oil, and β = 10 corresponds to supercritical CO2 injection

into brine. In the converging cases in Figures 5.5(a) and 5.5(d), the interfaces have
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been stabilised in the low capillary number regimes, where the bases of the fingers have

been pushed outwards, resulting in more circular interfaces. The lower mobility ratio in

Figure 5.5(d) has stabilised the interface even further compared to Figure 5.5(a). This

is due to the higher finger base velocities present in low mobility ratio cases, as the inner

fluid has a non-negligible viscosity. This, coupled with the converging cell geometry,

produces a very stable interface that shows almost no signs of the usual viscous fingering

regime. The stabilising effect of the converging geometry is also present in Figures 5.5(b)

and 5.5(e), however, with an increasing capillary number the stabilisation becomes less

prominent.

The stabilisation in the low capillary number regime in the converging cases is due to the

dominating effect of the transverse curvature in the capillary pressure jump condition.

Here, as Cag is taken lower, the 2/b(x) transverse curvature term has more effect.

Parts of the interface which are further back in the plane of the cell are at a larger

plate separation than those further forward, and hence the 2/b(x) term is smaller. The

capillary pressure is smaller, meaning it is easier for the viscous forces to overcome

capillary forces. However, at the finger front where the plate separation is smaller, the

capillary pressure is higher which stabilises the interface.

At higher capillary numbers, the effects of the stabilisation due to the transverse

curvature are smaller, and the interfaces in the converging cases can actually be seen

to displace beyond the uniform cases in Figures 5.5(c) and 5.5(f). The stabilisation

from the transverse curvature is weakened, and the velocity is increased due to the

converging geometry. The magnitude of the pressure gradient |∂P (x)/∂r| increases in

the converging section to ensure mass conservation, accelerating the interface. This

acceleration effect directly competes with the stabilisation from the capillary pressure

and the reduction in fluid mobility through the converging section. The converging

cell therefore induces the following effects that control the stability of the displacing

interface:

1. Stabilisation through an increased transverse curvature.

2. Deceleration due to a reduced fluid mobility.

3. Acceleration due to an increased pressure gradient.
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Figure 5.5: Interface plots at t = 24 for different cell geometries. |α| = 0.001. —
Uniform cell, – – – Converging cell, — – – — Diverging Cell

These effects can be thought of as aperture effects, as they result directly from the

spatial change in cell aperture (plate separation). In Figure 5.5 it can be seen that the

combined effects of the converging geometry appears to transition from stabilising at

a low capillary number (aperture effect 1 and 2 dominate), to destabilising at a high

capillary number (aperture effect 3 dominates). These effects are relative in relation

to the uniform cell cases, i.e., at lower capillary numbers the interface is stabilised in



Chapter 5. Immiscible displacement with inhomogeneous mobility 159

comparison to the uniform cell, but it may still be ‘unstable’ in an absolute sense and

exhibit viscous fingering instabilities.

In contrast to the converging cases, the aperture effects listed above are exactly opposite

for the diverging cases. The diverging cells in Figures 5.5(a) and 5.5(d) create a more

convoluted interface with a high surface area in the low capillary number regime. The

finger bases remain closer to the injection source, and the fingers are elongated from their

original Saffman-Taylor shape. The lower mobility ratio regime in Figure 5.5 damps the

effects of the diverging cell in a similar manner to the converging cases. There also

appears to be a transition in the high capillary number regime whereby the diverging

cell smooths the interface in Figures 5.5(c) and 5.5(f).

The transition in relative stability for the converging/diverging cases between low and

high capillary numbers can be analysed by considering the growth rate of the finger

front perturbation. In the converging cases, the fronts lag behind those of the uniform

case at low capillary numbers, representing a more stable interface. At higher capillary

numbers, the fronts extend beyond those of the uniform case. The reverse is true of

the diverging cases, meaning the growth rate of the front perturbation can highlight

the relative stability between cases. The dimensionless non-linear growth rate of a

perturbation with radial position r is given by:

σt = Un(r, t)− Un0(r, t) (5.57)

Where, Un(r, t) is the normal velocity at the perturbed interface and Un0(r, t) is the

normal velocity at the unperturbed interface (in a uniform cell). The velocity of the

unperturbed interface with time is given purely by the source injection velocity at

the corresponding radius given by equation (5.52). The non-linear growth rate (5.57)

subtracts the linear velocity of the base growth giving the non-linear growth of the

perturbation with time. The non-linear growth rate for the finger fronts (using the

rightmost finger in each plot in Figure 5.5 along y = 0) has been plotted with time for

the Cag = 500, 1000 and 2500 cases in Figure 5.6.

Figure 5.6 shows that the converging cell has a smaller growth rate than the uniform

cell at Cag = 500, supporting the stabilising mechanism of the transverse curvature

highlighted by Figure 5.5(d). Increasing the capillary number to Cag = 1000, the growth
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Figure 5.6: Plots showing the non-linear growth rates with time for uniform, converging
and diverging cells. β = 10

rate increases beyond that of the uniform cell, as the front becomes more unstable.

Interestingly, the diverging case at Cag = 1000 also exhibits a very slightly higher

growth rate than the uniform, with remnants from the destabilising mechanism of the

transverse curvature still apparent (see the resemblance of the fronts in Figures 5.5(b)

and 5.5(e)). In this transition regime, the growth rates show similar profiles due to

the combined magnitude of the aperture effects. Prediction of the relative stabilisation

compared to the uniform case in the transition regime therefore becomes very difficult

in the full non-linear state.

At the highest capillary number of Cag = 2500 in Figure 5.6, the cases all show

post-transition properties, whereby the converging case has a higher growth rate than

the uniform, and the diverging case has a smaller growth rate than the uniform. This

relationship holds until t ≈ 14 in the figure, at which point bifurcation starts to occur.

After this, due to the increased destabilisation of the converging case, the growth rate
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drops below that of the uniform case, as it bifurcates sooner and the front velocity drops.

The reverse is true of the diverging case.

The low capillary number results in converging cases in the figures above show similar

stabilising attributes to those presented by [130], in which air is injected into wetting

mineral oil, with similar fluid properties to the high mobility ratio case presented here.

They inject with a constant volumetric injection into a gradually converging rectilinear

cell. As is the case with our converging cell, at low capillary numbers, [130] find that

the interface can be almost completely stabilised to form a flat front.

Further work by [127] formulates the analytical growth rate for a circular fluid-fluid

interface subject to an initial perturbation ε0 with a constant radial injection flux and

a constant radial gradient in the cell separation. For this linear stability analysis to

be valid at early times, the length scale of interface perturbation r0/n should be much

smaller than the variation of the cell separation |b0/α|. The non-dimensional growth

rate σa is given by [127] as:

σa = −
(
β + 1

β

)(
1 +

αr0

b0

)
+

(
β − 1

β
+

2α+ (π/4)b20/r
2
0

Cala

)
n− (π/4)b20/r

2
0

Cala
n3 (5.58)

Cala =
12µ2QUn(r0)

γr0
(5.59)

In equations (5.58) and (5.59), Un(r0) refers to the non-dimensional normal interface

velocity at a radial location r0 with corresponding plate separation b0. n is the

non-dimensional wavenumber of the perturbation (8 in the current work). Cala is the

local capillary number used by [127], with slightly different scalings to those in Cal in this

work. The parameter Q/r0 in (5.59) appears due to the non-dimensional velocity Un(r0).

Note the mobility ratio β has been included instead of the viscosity ratio originally used

by [127] as well as a correction of π/4 to be consistent with the Young-Laplace matching

condition used in this work.

To compare the early time frame linear stability of the numerical system with that given

by the equation (5.58), a linear numerical growth rate σi may be formed:

σi =

(
Un(r0 + ε)− Un(r0)

ε0Un(r0)

)(
β + 1

β

)
(5.60)
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(a) ε0 = 0.01 (b) ε0 = 0.05

Figure 5.7: Plots showing the linear analytical and numerical growth rates for different
initial perturbations ε0 at the initial state. β = 10. Solid lines and crosses represent
the analytical solution, diamonds represent the numerical solution. — Uniform cell, —
Converging cell, — Diverging Cell

The linear numerical growth rate in (5.60) represents the growth rate of the interface

at the perturbed initial state minus the growth rate at the unperturbed initial state.

This growth rate differs from (5.57) in that it subtracts the non-linear velocity of the

unperturbed interface as opposed to linear velocity in (5.57). The non-linear growth rate

includes a component due to the changing geometry, meaning at small initial amplitudes

(5.60) gives a linearised approximation to the growth rate. Using corresponding scalings

ε0, β and Un(r0), the linear numerical growth rate in (5.60) is comparable to the

analytical linear stability given in (5.58) at small initial perturbations ε0 and at early

time stages.

The linear analytical and numerical growth rates have been plotted for two different

perturbation amplitudes in Figure 5.7. The growth rate is plotted against the global

capillary number, rather than the local capillary number in (5.58) to be consistent with

the numerical simulations in this work. The local capillary number in (5.58) can be found

from the appropriate initial values, in order work out the growth rate for a specific global

capillary number.

In Figure 5.7 it can be seen that the numerical growth rate at the initial state shows very

good agreement with that given by the analytical rate in (5.58). As the perturbation

value is lowered to ε0 = 0.01 the numerical and analytical values become closer, as the
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numerical growth rate becomes more linear and closer to the approximation given by

the LSA.

The initial state growth rates can be used to give insight into the front evolution when

the capillary number is low. For the Cag = 500 cases, the growth rate is negative

when the plates are converging in Figure 5.7, meaning the interface will be stable to

perturbations of wave number n. This is clearly demonstrated in Figure 5.5(a) and

5.5(d), where the interfaces are almost completely stable. The reverse is also true of the

uniform cell, in which the growth rate is positive, and clearly defined fingers form. In

the simulation set-up, the ratio of length scale of interface perturbation to the variation

of the cell separation is |αr0/nb0| = 0.013. This is the same order of magnitude as the

initial perturbation, ε0 = 0.05, making the linear stability analysis valid in the early

stages of the simulations presented here.

In Figure 5.7, the initial state growth rates of the converging cases are always below that

of the uniform cases, i.e. they are always more stable in the range 250 ≤ Cag ≤ 1000,

with the reverse true for the diverging cases. However, in the non-linear simulations with

Cag = 1000 at t = 24 in Figure 5.5(e), the front is further displaced in the converging

case compared to the uniform case, so must have a higher growth rate. The initial

state linear stability therefore cannot accurately predict the transition at high capillary

numbers. Although the converging and uniform curves in Figure 5.7 will eventually

cross and transition, (i.e the converging case has a larger growth rate and becomes more

unstable than the uniform), this does not occur until Cag > 1300, much higher than the

transition in the numerical simulations.

To better predict the capillary number at which the converging case stops being more

stable than the uniform case and transitions to have a relatively more unstable front,

the non-linear numerical growth rate at the initial state can be used. The non-linear

growth rate is plotted at the initial state for various values of α in Figure 5.8. There

exists a clearly defined transition region at Cag ≈ 640, where the growth rate of the

converging cases increases over the uniform case, and the growth of the diverging cases

decreases below the uniform cases. In this plot, at Cag = 1000, the converging cases

have larger growth rates than the uniform cases, exhibiting the same behaviour that can

be seen from the numerical simulation in Figure 5.5(e). The non-linear growth rate at

the initial state therefore provides a better prediction of the late stage displacement of
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Figure 5.8: Non-linear numerical growth rate at the initial state. β = 10. The transition
occurs at Cag ≈ 640.

the finger front at higher capillary numbers than the linear growth rate, demonstrating

the clear transition point at Cag ≈ 640.

At Cag ≈ 640 in Figure 5.8, the different α all have the same growth rate, i.e the

combination of stabilising and destabilising aperture effects result in the same finger

front displacement regardless of α. This appears counter-intuitive, as varying α changes

the magnitude of the three aperture effects. However, at the transition point for any α,

due to the competing effects, the combined result is to create an equal growth rate. In

converging cases for example, the larger magnitude α will cause more stabilisation from

the transverse curvature (aperture effect 1) and a greater reduction in mobility (effect 2),

but the pressure gradient is also significantly increased (aperture effect 3). Whereas for

the smaller magnitude α, there is less transverse curvature stabilisation and reduction

in mobility, but also less increase in pressure gradient, resulting in the same growth rate.

The aperture effects of the converging/diverging Hele-Shaw cells are further highlighted

by the different components of the solution in Figure 5.9. The difference between the
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Figure 5.9: (a) and (b) - Solution component plots at t = 24. Ticks in the legend indicate
which interfacial displacements in (a) and (b) include the curvature term 2/b(x) and
the perturbed pressure p̃(x). The dotted lines represent the uniform cell case. β = 10,
Cag = 2500.

solid lines and the dashed lines shows the effect of the stabilising 2/b(x) term. The solid

lines have the transverse curvature term included in the capillary pressure jump, and as

such the interface is smoothed from the dashed lines in the converging case 5.9(b). In

diverging geometry, the transverse curvature destabilises the interface, leading to more

ramified structures in figure 5.9(a). The capillary pressure is smaller at the finger fronts

in the diverging case, and as such viscous forces overwhelm capillary forces, and the

interface is more unstable to small perturbations.

The effect of the change in pressure gradient can also be seen in Figure 5.9 by

considering the solution with and without the perturbed pressure component. Without

the perturbed pressure component, the change in pressure gradient due to the

converging/diverging geometry (aperture effect 3) is not included. This means the

interface velocity consists of the uniform cell pressure gradient with a variable mobility

and transverse curvature (solely aperture effects 1 and 2). Figure 5.9(b) shows that

the black interfaces have all been displaced beyond the grey interfaces which do not
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Figure 5.10: Graph showing the perturbed pressure along y = 0 at various times for
β = 10, Cag = 2500, α = −0.001

include the perturbed pressure. The converging geometry creates a decreasing perturbed

pressure, whose gradient accelerates the interface. Without the perturbed pressure, the

grey interfaces are not displaced even as far as the uniform cases, showing the dramatic

effect that the increased pressure gradient has on the interfacial evolution at this high

capillary number. The inclusion of the perturbed pressure has only significantly affected

the finger fronts, with the base position remaining relatively unchanged, being affected

more significantly by the transverse curvature. The accelerating flow from the perturbed

pressure in the converging case has made the finger bifurcate earlier. In the diverging

case, the perturbed pressure gradient slows the interface, helping to stabilise it and

hinder bifurcation; clearly visible in Figure 5.9(a).

A 1D slice of the pertubed pressure solution taken at various times along y = 0 with

x ≥ 0 is shown in Figure 5.10. As the effective diffusivity in equation (5.14) is much

higher in the inner zone due to the higher mobility of the fluid, the perturbed pressure

is almost constant as it is rapidly diffused and convected to fill the inner zone. The

pressure then quickly drops as the diffusivity and velocity reduce by a factor of β at the

interface and act to bottleneck the perturbed pressure; see Figure 5.10. The perturbed

pressure decreases to zero at the outer boundary to satisfy the constraint that the total

pressure tends towards the pressure arising from the injection flux.

Using the effective diffusivity and velocity from equation (5.14), with the initial

unperturbed interface radius r0 as the global lengthscale, the Peclet number varies from

0 to 0.5 in the domain, indicating that both diffusivity and convection are important in

the perturbed pressure solution.
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The increased flattening and bifurcation present in the converging cases here is in

contrast to the findings of [128] in a rectilinear converging cell, whereby the finger shape

was found to sharpen. This contrast is due to the rectilinear geometry, where one long

prominent finger is produced with a uniform width throughout its length, roughly equal

to half the cell width. In [128], the plate separation varies solely along the length of the

cell. When the long finger is formed in a converging cell, the front is sharpened, since

the tip is accelerated more strongly in comparison to the rest of the finger. However,

in the case of a constant radial variation in the plate separation, the sides of the fingers

are accelerated in a similar manner to the finger tips, and the front becomes flatter

promoting bifurcation. The contrast in results is due to the variation in the plate

separation with respect to the flow path of the fingers. In radial displacement, the finger

tips and sides displace into pathways of similar convergence, whereas in rectilinear flow,

the tip evolves in a much more converging pathway than the sides, sharpening the finger.

These differences are discussed in more detail in section 5.5.2.

The results presented in this section link the linear stability analysis works of [127, 130]

and the experimental results of [128], detailing the explicit mechanisms that cause the

transition in aperture effects when the capillary number is increased. The aperture effects

here would also be present in more ‘random’ geometries in real subsurface aquifers. The

aperture effects could be experienced by an advancing CO2 plume at the scale of the

representative element volume (REV) as is consistent with the Darcy approximation

here, meaning that similar transitions could occur in the aquifer. The plume would

initially be at a very high capillary number, indicating that it would be subject to

aperture effect 2 and 3 most significantly, but after time as the velocity drops, aperture

effect 1 would become prominent and the plume could be stabilised in areas of decreasing

permeability.

5.5.1.1 Sharply converging/diverging geometry

To analyse low capillary number aperture effects on the fingering regime once defined

fingers have formed, a uniform cell with a sharply varying section occurring far

downstream of the initial interface position is used. A constant gradient variance from

the same homogeneous separation as before, b = 0.01 is utilised; however, the magnitude

of the gradient is larger at |α| = 0.0025. The constant gradient section begins at r = 4
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and finishes at r = 5, allowing the late stage exploration of secondary tip-splitting

instabilities.

Figure 5.11 shows the late stage interfacial evolution of the converging case for Cag =

500. Here, the rapid stabilisation of the interface causes it to form a very flat front,

with the finger sides almost merging into one continual interface. The finger bases have

remained entirely unaffected, as they exist in regions of uniform geometry and have

almost stagnated.
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Figure 5.11: Time evolution plots for the converging cell case, α = −0.0025, Cag = 500.
— Converging cell, ---- Uniform cell. β = 10
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Figure 5.12: Time evolution plots for the diverging cell case, α = 0.0025, Ca = 500.
— Diverging cell, ---- Uniform cell. β = 10

Although the front is relatively flat and has been accelerated by the converging geometry

in Figure 5.11, the stabilisation given by the large capillary pressure at the finger

front keeps the interface from bifurcating into many smaller fingers. The fingers

proceed to spread and expand under the stabilising aperture effect 1 of the converging

geometry, with small lubrication layers forming between the fingers. Due to the complete

immiscibility of the fluids in these simulations, there will always exist a small layer of

the outer fluid separating the advancing fingers, meaning that droplets of the external

fluid inside the moving plume never completely form. The lubrication layer formed

in Figure 5.11 is fully resolvable with both the BEM and RBF-FC methods, in which

several overlapping local systems exist within the layer itself.
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In the diverging geometry case in Figure 5.12, the front is rapidly destabilised as it

enters a region of very large plate separation. This causes a sudden decrease in capillary

pressure, meaning it is much easier for the interface to displace in this region. The

interface quickly forms a throat of very small radius at the entrance to the diverging

section at r = 4, which becomes thinner and thinner with time. After t = 45, the throat

continues to shrink until it reaches a stage where it is so thin that it collapses and the

finger downstream of the throat detaches to form a separate bubble.

The simulation ends before the breaking effect, as the throat size is too small to fit

sufficient nodal points inside to form suitable local systems in the RBF-FC method. Also,

the model cannot accurately predict the bubble detachment and surface tension snapping

effect. However, the model can predict up until a time very close to the ‘breaking’, where

it can be fairly accurately predicted that the throat will collapse and the finger will

detach. After this, the same process will likely occur again, as the remaining interface

that forms the main plume will enter the expanding region, where the same destabilising

effects would be felt. In this way, it can be inferred that the expansion acts as a barrier

breaking the plume into a succession of droplets that will be convected by the displaced

fluid.

Physically, a sudden change in cell geometry is analogous to a sharp change in porous

medium permeability. For the diverging case, the interface effectively travels from a

region of low permeability (such as sandstone), to a region of very large permeability

(such as fractured shale). The periodic shedding of the interface would be highly

desirable in CO2 sequestration, as the interface surface area would be effectively

increased, meaning the rate of dissolution and total amount of dissolution trapping

would increase significantly. For the converging case, the interface hits a permeability

barrier, where the permeability decreases rapidly. This could represent an area of porous

medium under greater compression than at the origin of the injection, where the interface

would stabilise and the amount of trapping would decrease.

5.5.2 Highly anisotropic Hele-Shaw cells

In this final results section, immiscible displacement is analysed in Hele-Shaw cells with

highly anisotropic geometry in order to demonstrate the robustness of the numerical
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scheme, and provide insight into the fingering complexity present in periodic and

channelled cells. Before proceeding, it is worth discussing the validity of the lubrication

approximation in Hele-Shaw cells when the plate separation varies sharply. This is done

in order to provide some justification for the use of the model in the work presented

here, whereby the spatial derivatives of plate separation can be quite large.

In the works of [140],[141] and [142], the validity of the lubrication approximation for

fractures is discussed when the fractures are small and surface roughness may affect the

flow regime. Under certain conditions, [142] finds that the difference in fluxes predicted

between the lubrication and Stokes models can vary by a factor of two. [140] and

[141] provide quantitative limits for the validity of the lubrication theory, based on the

profile of the fractures. [140] find that the wavelength γh of the aperture variation must

exceed fifty times the standard deviation of the aperture height distribution σh for the

lubrication model to be valid. This ensures that the velocity gradients along the length

of the fracture are much smaller than perpendicular to the fracture. [141] later refine

this limit to only 5σh.

Applying the ratio rl = γh/σh to the cases here, the validity of the lubrication model can

be assessed. The largest variation in plate separation with respect to flow path in this

work is the channel case shown in Figure 5.18. Here, the sharpest variation occurs in the

lateral direction with respect to the channel length. The ratio of the wavelength of the

variation of the plate separation to the standard deviation of the plate separation profile

here is rl = 442. This is much greater than the lower limit of 5 given by [141], validating

the use of the lubrication model in this work. In the case of the sharp, uniformly

converging profiles in the previous section, the ratio is even larger at rl = 1384. The

very large values here are due to the fact that although the spatial derivatives in the

plate separation are quite large, the absolute change in the cell profile is small, meaning

the velocity gradients in the plane of the cell will still be much smaller than those in the

perpendicular direction.

For the rest of this section the results for three anisotropic Hele-Shaw cell cases are

discussed. For brevity the analytical functions used to define the plate separations are

not presented, instead contour plots are shown of the associated variations.
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5.5.2.1 Radially periodic cells

Firstly, a radially periodic cell is considered with a cosine geometrical perturbation

(variation shown in the contour plot in Figure 5.14). In Figure 5.13, interfacial plots at

t = 60 are presented for the radially periodic and uniform geometries. The periodic cases

show oscillations that occur along the sides of the fingers, with much more pronounced

oscillation occurring in the Cag = 500 case. As the fingers progress through the peaks

and troughs of the cell, the interface is repeatedly spread and stabilised by the converging

sections, and destabilised by the diverging sections. The oscillations have a frequency

equal to that of the cosine function applied to the plate separation.

It is apparent that increasing the capillary number reduces the magnitude of the

oscillations that appear along the finger sides in Figure 5.13(b). The transverse curvature

has less effect, and the periodic oscillations appear as noise around the interface. The

bifurcation mode has not been altered by the introduction of the periodically varying

geometry, and the overall shape remains remarkably similar to the uniform case.

These oscillations can be viewed with regards to aquifer permeability as a small spatial

variability due to inconsistencies in the rock structure and flow path [17]. These

imperfections and inconsistencies in the material structure do not alter the homogeneous

permeability and macro-scale interfacial evolution, but do create small micro-scale

perturbations around the interface when the capillary number is high.
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Figure 5.13: Interface plots at t = 60 for the radially periodic and uniform cells at
different capillary numbers. β = 10. — Radially periodic cell, ---- Uniform cell
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Figure 5.14: Interface plots at ∆t = 5 increments from t = 0 to t = 60 for the Cag = 500
and Cag = 2500 radially periodic cases. The interfaces overlay a contour plot of the
plate separation variation, b̃(x).

The long term evolution of the radially periodic cases are plotted over the change in

plate separation b̃(x) in Figure 5.14. In the Cag = 500 case, the transverse curvature

is able to significantly stabilise or destabilise the interface based on whether the cell is

locally converging or diverging respectively. The interface starts in a converging section

in Figure 5.14, and is initially stabilised, almost forming a circle. The small residual

perturbation around the interface is then destabilised by the diverging section, forming

a sharper front. This process repeats, with the interface continually stabilising, forming

flatter fingers, followed by destabilisation creating sharper fingers.

When t > 25 in Figure 5.14(a), the fingers’ base evolution virtually stops, and they

remain stationary in converging cell sections. The bases are stabilised significantly by the

converging section, with the normal velocity dropping to near zero, forming stagnation

points. This is in contrast to the bases in Figure 5.14(b), which continually displace

with time. In this case the capillary pressure is much smaller and does not stabilise the

base enough to cause complete stagnation in the converging sections.

The finger fronts after t = 25 in Figure 5.14(a) undergo a series of elongations and

stabilisations, which act like a form of bifurcation. The fingers are split into three

distinct parts: the finger tip which is displaced radially, and the two sides of the finger

front which displace in an azimuthal direction. The fingers periodically ‘extrude’ the
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sides of the finger fronts producing defined protrusions in the azimuthal direction. These

protrusions remain fixed in position in converging sections of the cell. As the front is

continually deformed and stabilised, the chance of a classical tip splitting bifurcation

occurring is reduced significantly in the lower capillary number regime. The front cannot

become flat enough in a converging section to conventionally split before it is accelerated

and sharpened in a diverging section, reducing the length scale of bifurcation. It can

therefore reasonably be predicted that the periodic pattern presented in Figure 5.14(a)

will continue indefinitely as long as the cell plate separation varies periodically. The

finger front will never bifurcate in a classical manner, instead evolving in a self-similar

pattern akin to dendrite growth with side branching fingers.

5.5.2.2 Cartesian periodic cells

In this example, results from a Hele-Shaw cell with a plate separation that varies

periodically in both Cartesian coordinates are presented. The same eight finger starting

interface is used as in previous simulations, however, the plate separation now exhibits

quarter-fold symmetry (requiring a quarter domain RBF-FC solution with corresponding

symmetry conditions). The separation variation contour is shown in the background of

Figure 5.16.

In Figure 5.15, the interface plots for the periodic cell and a corresponding uniform cell

can be seen at t = 40. The finger evolving in the periodic cell at 45◦ to the horizontal

has a completely different bifurcation mode to the fingers travelling parallel to the x-

and y-axis. The fingers travelling parallel to the axes have been sharpened significantly

due to continued acceleration of the finger tips, whereas the 45◦ finger evolves in a very

similar manner to the uniform case.

The evolution of the fingers and the direction of displacement with regards to the

variation in plate separation are shown in Figure 5.16. The capillary number is large in

the case presented here (Cag = 2500), meaning the transverse curvature (aperture effect

1) has very little effect on the overall finger evolution. The fingers parallel to the axes

generally have their tips in regions of higher mobility compared to the sides of finger

fronts as the interface displaces, with aperture effect 2 causing the finger sharpening. As
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Figure 5.15: Interface plots at t = 40 for the Cartesian periodic cell and uniform cell.
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Figure 5.16: Interface plots at ∆t = 5 increments from t = 0 to t = 40 for the Cartesian
periodic case. The interfaces overlay a contour plot of the plate separation variation,
b̃(x).

the overall change in plates separation is small, the change in pressure gradient (aperture

effect 3) is relatively small.

The sharpening behaviour is similar in nature that in the rectilinear case presented by

[128]. In [128], a gradually converging rectilinear cell was found to sharpen the fingers,

as the tip would be accelerated more significantly than the sides of the finger fronts.
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The pressure gradient at the finger tip would be increased locally, with aperture effect

3 causing the increased tip velocity (the mobility variation is small around the finger

front). However, in the present case, a locally high mobility (aperture effect 2) causes

the increased velocity. The result in both cases is that the finger tip experiences a higher

velocity than the sides of the finger front, and the finger is sharpened. This result is in

contrast to what has been seen in previous sections using radially symmetric cases, in

which the finger tip and the sides of the finger front exist in areas of similar mobility

and spatial variation in mobility.

For the finger that is displacing at 45◦ to the x-axis a morphology very similar to the

uniform case is seen. The bifurcation is only slightly different to the uniform case

as the finger travels through both a peak and a trough in the cell separation before

bifurcating. This means the finger tip and sides of the finger front both experience

regions of acceleration and deceleration in relation to each other, somewhat reducing

the overall effects.

The 45◦ degree finger evolves in a cell whose plate spacing can be considered

homogeneous in the direction of finger displacement, with a small perturbation term

slightly altering the finger shape. The fingers parallel to the axes evolve in a highly

inhomogeneous environment, where the tip travels through a region of high permeability

(like a fracture or channel) compared to the sides, resulting in the highly sharpened

finger.

5.5.2.3 Channelled cells

In this final example, results from Hele-Shaw cells with channelled geometry are

presented. The plate separation is increased in a direction parallel to the finger fronts,

creating highly preferential flow paths, similar to that see in fractured porous media.

Two examples are provided, one where there exists a channelled section parallel to each

finger in the domain (see the contour in Figure 5.18(b)) and another where there is a

channelled section on every other finger (see the contour in Figure 5.18(a)).

The interface plots at t = 35 for the two channelled case can be seen in Figure 5.17.

The fingers have been strongly accelerated through the channel pathways, exhibiting

highly sharpened profiles in comparison to the uniform case. In the 4 channel case, the
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Figure 5.17: Interface plots at t = 35 for the two channelled cells and uniform cell.
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Figure 5.18: Interface plots at ∆t = 5 increments from t = 0 to t = 35 for the two
channelled cells. The interfaces overlay a contour plot of the plate separation variation,
b̃(x).

fingers that displace into uniform regions have a reduced volume due to the fluid being

displaced preferentially through the channelled regions.

The channelled cases here show very similar displacements to the rectilinear cases

presented by [128]. As the channels here create a large fluid mobility directly at the

finger fronts they experience much more acceleration from the converging geometry
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than the finger sides, creating the sharp profile. The fingers in the channelled sections

exhibit no signs of bifurcation, even at this very high capillary number. Aperture effect 2

becomes the dominating effect, as the fluid mobility is increased very locally around the

finger tip. The fingers travelling parallel to the channels displace in effectively rectilinear

regimes.

The temporal evolution of the channel cases can be seen in Figure 5.18. It is interesting

to observe that whilst ∆t ≤ 10, the fingers are confined to the geometry of the channel,

i.e. the finger sides to not displace significantly outside of the channelled section. The

front pulls the finger through the channel, hindering the displacement of the remaining

finger outside of the channel. When ∆t > 10, the fronts enter a region where the

channel profile starts to tail off towards the homogeneous plate separation, reducing the

acceleration effects. After this point, the fingers start to displace in a more uniform cell

whereby the finger fronts can spread in a conventional radial fingering regime.

These final result sections demonstrate the effect of local variations in cell plate

separation (and intrinsic cell permeability). This can also be viewed in the sense

of aquifer permeability, with large permeability changes such as cracks and fractures

resulting in highly directional flow paths. In the results presented here, small changes in

permeability result in largely the same interfacial displacement if the capillary number

is high enough. The perturbations in the cell permeability create small local oscillations

around the interface, but do not change the overall displacement (see the 45◦ finger in

Figure 5.16). This infers that in the CO2 injection cases, small variations in aquifer

permeability across the whole plume are unlikely to alter the resulting displacement

regime in the early stages of injection when the capillary number is high.

However, when the capillary number is very small or local variations in the cell

permeability are large, the finger displacement can change significantly. When the local

capillary number is low and the cell permeability is decreasing the capillary pressure

becomes larger. This makes it very difficult for the fluid to displace and it can become

trapped (see the bases in Figure 5.14(a)). In an aquifer context, this locally high

capillary pressure can lead to capillary trapping, where globules of the plume can become

disjointed and remain trapped in the aquifer pores. This is highly desirable, as capillary

trapping represents a very secure form of trapping in which the CO2 can remain for

many years.
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5.6 Conclusion

In this chapter, a coupled BE-RBF numerical method has been developed to track the

interfacial displacement between two immiscible fluids with inhomogeneous mobility in

a Hele-Shaw cell. The focus in this chapter was on cases where the Hele-Shaw cell had

a spatially varying plate separation, creating an inhomogeneous mobility in the fluids.

The onset of fingering and late stage tip splitting instabilities were examined for different

cell geometries under various capillary number regimes. Numerical experiments with

uniformly converging/diverging Hele-Shaw cells revealed a large dependence on the

capillary number for the stability of the system. Three aperture effects were identified

that control the interfacial stability, for converging cells these were:

1. Stabilisation through an increased transverse curvature.

2. Deceleration due to a reduced fluid mobility.

3. Acceleration due to an increased pressure gradient.

In diverging cases, the effects were reversed. At low capillary numbers, effect 1 and

2 dominate, stabilising the interface in converging cases and destabilising in diverging

cases. At higher capillary numbers, the result of the combined effects reverse, and

converging cells destabilise the interface in comparison to uniform cells, with diverging

cases being more stable. This transition point using the non-linear numerical growth

rate was found at Cag ≈ 640.

The enhanced spreading and bifurcation at higher capillary numbers in gradually

converging cells was in contrast to the converging rectilinear cell cases in [128]. In

rectilinear converging cells, the tip evolves in a much more converging pathway than

the sides, sharpening the finger. However, in radially converging cells, the finger tips

and sides displace into pathways of similar convergence, enhancing the spreading and

bifurcation mechanisms.

For late stage interfacial growth the effect of sharply varying geometries occurring far

downstream of the injection source was explored. When the fingers were fully formed

and entered a sharply expanding region, the finger fronts created a bottleneck and could

detach into separate bubbles, increasing the surface area of the injected plume. For
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sharply converging sections, the fronts were spread azimuthally and remained separated

only by very fine lubrication layers, stabilising the fingering regime.

Finally, anisotropic Hele-Shaw cells were explored to demonstrate the fingering

complexity that can occur when the fluid mobility is highly inhomogeneous. In radially

periodic geometry at low capillary numbers, classical tip-splitting could be avoided as

the finger was continually stabilised and then accelerated, producing secondary side

branching fingers that formed periodically. Under Cartesian periodic geometry, different

fingers would form around the initially symmetric interface. The fingers were sharpened

when they were aligned with the periodic grid, in much the same way as the rectilinear

converging case in [128]. Fingers travelling at 45◦ to the axes evolved in a very similar

manner to the uniform case due to the homogeneity of the plate separation in the flow

path.

The analysis of the governing mechanisms and aperture effects in this chapter

provides a good link between previous works focusing on either low or high capillary

number regimes, furthering understanding of the underlying fingering mechanism in

inhomogeneous mobility flows at both the early stages of finger growth and the late

stages of tip splitting.



6. Immiscible thermo-viscous fingering

Summary

In this chapter, immiscible radial displacement in a Hele-Shaw cell with a temperature

dependent viscosity is investigated using the coupled boundary element - radial basis

function methods. Thermal gradients created in the domain through the injection

of a low viscosity fluid at a different temperature to the resident high viscosity fluid

can lead to the formation of unstable thermo-viscous fingers, which are explored in

the context of immiscible flows. The transient, multi-zone heat transfer is evaluated

using the newly developed auxiliary multi-zone RBF-FC method, which locally captures

variation in flux and field variable over the moving interface, without the need for

ghost node extrapolation. The viscosity couples the transient heat transfer to the

Darcy pressure/velocity field, which is solved using the BE-RBF-FC method as in the

previous chapter, providing an accurate and robust interface tracking scheme for the full

thermo-viscous problem.

The thermo-viscous problem space is explored using systematic numerical experiments,

revealing that the early stage finger growth is controlled by the pressure gradient induced

by the varying temperature and mobility field. In hot injection regimes, negative

temperature gradients normal to the interface act to accelerate the interface, promoting

finger bifurcation and enhancing the viscous fingering instability. Correspondingly,

cold injection regimes stabilise the flow compared to isothermal cases, hindering finger

formation. The interfacial mobility distribution controls the late stage bifurcation mode,

with non-uniformities induced by the thermal diffusivity creating alternate bifurcation

modes. Further numerical experiments reveal the neutral stability of the thermal

180
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effects on the fingering evolution, with classical viscous fingering dynamics eventually

dominating the evolution.

6.1 Introduction

The injection of supercritical CO2 in sequestration processes will typically occur at

a temperature different to that of the resident brine, creating temperature gradients

in the domain that will alter mechanical fluid quantities such as diffusivity, viscosity,

density and surface tension. The CO2 can be injected at a colder temperature than

the resident brine, due to heat loss en-route to the downhole injection site [12], or

through very deep subsurface injection where the resident brine temperature is very

high (typically at depths > 3km), e.g. the In Salah formation in Algeria [13]. CO2 can

also be used for combined storage and extraction in geothermal reservoirs, in which very

high temperature brine (T > 150◦C) can be extracted for energy use [14]. The CO2 may

also be injected at a higher temperature than the resident brine, for pre-conditioning

purposes [15] or for plume evolution monitoring [16]. Another immiscible displacement

regime where thermal effects are prominent is that of thermal enhanced oil recovery, in

which high temperature water (or steam) is used to mobilise trapped oil and increase

well production [143].

Understanding how temperature gradients affect the fluid properties and resulting

interfacial displacement is key to understanding the key physical mechanisms in the

immiscible displacement regimes above and in the fundamental study of moving

multi-zone problems in classical fluid dynamics. In this chapter, the changes in the

immiscible viscous fingering regime due to a thermally dependent viscosity are analysed,

often termed thermo-viscous fingering. In order to examine the effects coming purely

from the variable viscosity, constant surface tension and diffusivity are used for each

fluid, with density driven buoyancy effects negligible in the lateral fluid flow. This

simplification allows the thermo-viscous fingering process to be quantified for immiscible

regimes without the complication of additional Marangoni and variable diffusivity effects.

To analyse the fully coupled thermal problem involves the solution of a different set of

non-linear equations requiring inclusion of viscous shear stresses around the interface

and a non-linear diffusion term in the heat transfer. The solution of these coupled
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equations would require more complex numerical techniques that are beyond the scope

of this work. The reader is directed towards the following works that focus on the other

thermal processes mentioned above: [144, 145] for Marangoni type effects and [146] for

the solution of non-linear diffusivity problems.

In order to model the immiscible displacement regimes the analogy between Hele-Shaw

and porous media flows is again used. As the thermal diffusivities of the two fluids can be

very low, the thermal Peclet number describing the ratio of convective to diffusive heat

transfer can be large (>1000). Therefore, the full convection-diffusion heat equation has

to be solved in order to track the heat transfer in the domain.

During thermo-viscous fingering, generally, two fronts are established in the domain:

‘solutal’ and thermal. The solutal front is defined here as the point at which the

fluid composition transitions from the injected fluid to the resident fluid. In immiscible

displacement this is a sharp front controlled by capillary forces, where the mechanical

fluid properties exhibit discontinues profiles, whereas in miscible displacement the front

is smoothed as dispersion and molecular diffusion mix the fluid properties of the injected

and resident fluid [5]. In miscible flows the viscosity of the fluid is determined by both the

solute concentration and the temperature. However, in immiscible flows, the viscosity

depends only on the fluid being considered and the temperature that the fluid exists at.

The solutal and thermal fronts do not necessarily propagate with the same velocity due

to a difference in mass and thermal diffusivities and the fact that heat may diffuse away

from the fluid into surrounding solid media. This is the case in porous media flow,

where the thermal front is diffused into the solid matrix and ‘lags’ behind the solutal

front, creating a double advective displacement [147]. This lag is a pre-multiplier of the

temperature transport velocity and is determined by the solid matrix porosity, density

and the specific heat capacity of solid and fluid phases. In the case of a thermally

insulated Hele-Shaw cell, there is no thermal lag, as the cell remains an open channel

with an effective porosity of one. The solutal and thermal fronts advance with the same

velocity, creating a single or iso-advective regime, that is governed purely by the fluid

velocity [147].

The miscibility of the fluids controls the mass diffusivity, and when considered with the

thermal diffusivity determines whether the flow is iso- or double-diffusive. In miscible
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flows, the concentration and temperature scalars necessarily diffuse at different rates,

governed by the fluid properties, creating a double diffusive displacement [148]. However,

in the case of immiscible flows, the solutal front is determined purely by the advective

motion of the fluids and capillary forces at the sharp interface; there are no diffusive or

dispersive mechanisms acting on the concentration field. To this extent, the immiscible

thermo-viscous fingering problem is one of iso-diffusion (i.e. there is only thermal

diffusion, no mass diffusion). When considered in a thermally insulated Hele-Shaw cell,

the problem becomes one of iso-advection and iso-diffusion for each specific fluid. The

immiscible limit has introduced a true multi-zone representation of the problem, taking

away the double diffusive effects that are apparent in miscible flows [148].

There exists a very limited number of studies on immiscible thermo-viscous fingering,

with most previous research focusing on miscible cases. One notable work in

the immiscible regime by Sheorey and Muralidhar finds that non-isothermal, high

temperature injection of water into resident oil promotes the formation of viscous fingers

and increases the sweep efficiency of the water [149]. The fluid front can temporarily

displace beyond the thermal front into a region of low temperature (and high viscosity),

where the front velocity drops. The sides of the front can then bypass this region,

forming fingers around the sides of the domain. The finger evolution here is a result

of the interplay between the thermal and fluid fronts, which despite the exclusion of a

thermal lag parameter, have different diffusive regimes and hence affect the advancing

front on different time scales. It is also worth noting, that due to the constitutive

relationship for the capillary pressure based on the water saturation alone (without

temperature variation), and the Darcy flow approximation that is used, thermocapillary

and Marangoni effects are not included in their model [149].

For miscible flows, there are several previous works concerning the linear stability of the

problem [5, 147, 148, 150, 151]. These analyses focus on the interaction and time-scale

effects of the different scalar diffusive fronts. In the analysis of radial double-diffusive

fronts, Pritchard finds that even for strongly stabilising temperature fields (i.e. they

form a decreasing viscosity profile across the interface), a destabilising viscosity profile

can be maintained over the front due to a strongly advective solute regime [5], unless

the thermal lag is near unity and the thermal viscosity contrast is many times higher

than the viscosity contrast across the solutal front.
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Mishra et al. [148] and Pritchard [147] show that localised unstable zones across the

interface may develop with time if the solutal front is destabilising, and the thermal

front is sufficiently diffusive. The aggregate viscosity profile is not sufficient to predict

the overall stability at late stages, as diffusive effects become more prominent, and early

stage stabilisation of the flow may diminish. It is not enough to state that if one of the

scalar components promotes fingering, then fingering will eventually occur in the late

stage regime [147].

Numerical studies of various miscible displacements regimes agree qualitatively with

the stability analyses above [3, 152–155]. In general, at the late stages of interfacial

growth, they find that at sufficiently low values of thermal lag, or if the thermal regime

is highly diffusive, the evolution depends entirely on the solutal viscosity ratio. The

(de)stabilising effects of the thermal front are reduced with an increase in diffusivity or

thermal lag [152, 154]. It should also be noted, that the fingering processes generated

through an equivalent thermal front or solutal front (i.e. the same absolute viscosity

profile) are identical, due to their additive nature on the viscosity and the equivalence

of the PDEs being solved.

Experimentally, thermo-viscous fingering is typically hard to quantify under laboratory

conditions. Nagatsu et al. [156] and Holloway and de Bruyn [8] track the injection of

hot glycerine (glycerine-water solutions in [156]) into colder more viscous glycerine in a

Hele-Shaw cell. Nagatsu et al. [156] find that in a small range of mobility ratios, around

β = 10, injection at a higher temperature than the resident fluid promotes the onset

of fingering, with bifurcation occurring at a smaller interface radius. The results have

good agreement with Holloway and de Bruyn [8]. However, more specific thermal effects

are hard to gauge due to the insulation of the Hele-Shaw cell and resulting heat loss

through the glass plates [156].

In this current work, the immiscible thermo-viscous fingering process is analysed in

a Hele-Shaw cell due to the radial injection of a low viscosity fluid with injection

temperature different to that of the high viscosity resident fluid. The work analyses the

case of Hele-Shaw flow to study the effects of thermo-viscous fingering in an immiscible

regime with a true multi-zone representation of the fluid flow and heat transfer. To

the authors knowledge, this work represents the first comprehensive numerical study of
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immiscible thermo-viscous fingering in a Hele-Shaw cell, and hopes to shed light on the

effects of multi-zone heat transfer on the purely advective immiscible fluid flow regime.

The boundary element and radial basis function methods from the previous chapters can

be used here to track the fluids’ pressure, velocity and temperature through the solution

of Darcy flow and the multi-zone convection-diffusion of heat through the domain. This

chapter is organised as follows; firstly, the mathematical model is presented followed

by a summary of the numerical methods. After this, mass conservation verification

is performed for the coupled thermo-viscous problem. Results are then presented for

immiscible thermo-viscous fingering under different capillary number, temperature and

diffusivity regimes, concluding with a discussion and summary of the results.

6.2 Mathematical model

In the thermo-viscous problem, a radial Hele-Shaw cell of infinite radius is again

considered, in which high viscosity fluid is displaced by the radial injection of a low

viscosity fluid. The low viscosity invading fluid with temperature T0 occupies the inner

region Ω1, whilst a high viscosity fluid with temperature T∞ occupies the external region

Ω2, shown in Figure 6.1.

The interface separating the internal and external region has an initial 8 finger

perturbation given by r = 1 + εcos(8θ). The initial temperature Tin(x) at a point

x is given by a smoothed step function, i.e.

Tin(x) = T∞ + 0.5(T0 − T∞)

(
1 + tanh

(
r̂

δ

))
(6.1)

Where, r̂ is the radial distance from a point x to the corresponding interface point. δ is

the sharpness of the smoothed step function, see Figure 6.1. For the flow in a Hele-Shaw

cell, the depth averaged pressure Pl and 2D Darcy velocity uli in each fluid region l can be

expressed through Darcy’s law: uli(x) = −Ml(x)∂Pl
∂xi

. The mobility Ml is related to the

spatially dependent fluid viscosity µl(x) and plate spacing b by: Ml(x) = b2/12µl(x).

The conservation of mass, interface matching conditions and asymptotic conditions for
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Figure 6.1: Initial setup of the immiscible thermo-viscous fingering problem in a
Hele-Shaw cell. The black fluid-fluid interface marks the transition from the inner zone
Ω1 to the outer zone Ω2 and overlays a contour plot of the initial temperature field. The
radial distance used in the smoothed step function r̂ is highlighted.

the depth averaged pressure Pl in a Hele-Shaw cell are repeated here for clarity:

∂

∂xi

(
Ml(x)

∂Pl
∂xi

)
= 0 x ∈ Ωl, l = 1, 2 (6.2)

−M1(ξ)
∂P1(ξ)

∂n
= −M2(ξ)

∂P2(ξ)

∂n
ξ ∈ S (6.3)

P1(ξ)− P2(ξ) = γ

(
2

b
+
π

4
k(ξ)

)
ξ ∈ S (6.4)

∂P1(x)

∂r
x→0

→ − Q

2πM1(x)r
(6.5)

P2(x)
x→∞

→ − Q

2πM2(x)
ln

(
r

r0

)
(6.6)

In equation (6.2), the plate separation b has been dropped from the equation since it is

taken as a constant in the thermo-viscous problem studied here. In order to characterise

effects coming from the non-isothermal regime, the variables that relate to the viscosity

are decomposed into homogeneous and perturbed components. Firstly, the viscosity of

each fluid l can be represented through an exponential dependence on the temperature
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[5][151].

µl(x) = µl exp

[
∓al

(
1± T (x)− T∞

|T0 − T∞|

)]
x ∈ Ωl, l = 1, 2 (6.7)

Here, the homogeneous viscosity µl is that of fluid l at the injection temperature T0.

T∞ is the resident fluid temperature, al is the rate of change of viscosity for fluid l with

temperature. The minus/plus sign in ∓al is used for when the injecting fluid is hotter

(+) or colder (−) than the resident fluid. This gives the mobility of the fluid in zone l

as:

Ml(x) =
b2

12µl(x)
= M l + M̃l(x) (6.8)

M l =
b2

12µl
, M̃l(x) =

b2

12µl(x)
−M l (6.9)

Non-dimensional variables are now introduced utilising the characteristic length, time,

velocity, pressure, temperature and mobility of the problem, given by:

(x, r, b) = r0

(
x′, r′, b′

)
, t =

r2
0

Q
t′, (6.10)

Ml = M2M
′
l , ul =

Q

r0
u′l, Pl =

Q

M2

P ′l , (6.11)

Tl = |T0 − T∞|T ′l + T∞, Dl = QD′l l = 1, 2 (6.12)

In equalities (6.10) - (6.12), apostrophes identify non-dimensional variables with t as

time and M2 as the homogeneous mobility of the displaced fluid (corresponding to the

homogeneous viscosity µ2). Dl is the thermal diffusivity of fluid l. From this point

onwards in the chapter, the apostrophe of all non-dimensional variables will be dropped,

and all variables will be assumed to be in their non-dimensional form unless otherwise

stated. The pressure can again be represented as a sum of homogeneous and perturbed

components:

Pl(x) = pl(x) + p̃l(x) (6.13)

Using the above form of the pressure, equation (6.2) can be expanded, noting that

∂M l/∂xi = 0, to obtain the following equation:

Ml(x)
∂2pl
∂x2

i

+Ml(x)
∂2p̃l(x)

∂x2
i

+
∂M̃l(x)

∂xi

∂p̃l(x)

∂xi
= −∂M̃l(x)

∂xi

∂pl(x)

∂xi
(6.14)
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The homogeneous pressure is constrained to satisfy Laplace’s equation, in order to

characterise the case of isothermal displacement, i.e.:

∂2pl(x)

∂x2
i

= 0; (6.15)

The homogeneous pressure is then subject to the following matching and asymptotic

conditions:

p1(ξ)− p2(ξ) =
1

Cag

(
2

b
+
π

4
k(ξ)

)
for ξ ∈ S (6.16)

M1(ξ)
∂p1(ξ)

∂n
= M2(ξ)

∂p2(ξ)

∂n
for ξ ∈ S (6.17)

∂p1(x)

∂r
x→0

→ − 1

2πr
(6.18)

p2(x)
x→∞

→ − 1

2π
ln(r) (6.19)

The perturbed pressure equation (6.14) is subject to the following matching conditions

at the interface, S, and asymptotic conditions near the origin and in the far field:

p̃1(ξ)− p̃2(ξ) = 0 ξ ∈ S (6.20)

M1(ξ)
∂p̃1(ξ)

∂n
= M2(ξ)

∂p̃2(ξ)

∂n
+
(
βM̃2(ξ)− M̃1(ξ)

) ∂p1(ξξξ)

∂n
ξ ∈ S (6.21)

∂p̃1(x)

∂r
x→0

→ 0 (6.22)

p̃2(x)
x→∞

→ 0 (6.23)

Where β is the mobility ratio between the fluids, β = M1/M2 = µ2/µ1. The jump in

flux in equation (6.21) is given by:

(
βM̃2(ξ)− M̃1(ξ)

) ∂p1(ξ)

∂n
=

b2

12µ1

(
e±a2(1± T ) − e±a1(1± T )

) ∂p1(ξ)

∂n
(6.24)

Therefore, if a1 = a2 the flux in equation (6.21) is continuous, however, in all cases the

interfacial flux (6.3) is always satisfied, i.e. continuous. This can be observed by adding

equations (6.17) and (6.21) and using the definitions (6.8) and (6.13) with β = M1/M2,

which is valid for any value of a1 and a2. The obtained values of pl and p̃l can be used
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to reconstruct the normal velocity at an interface point ξ in order to track the fluid:

Un(ξ) = un(ξ) + ũn(ξ) = −M1(ξ)
∂p1(ξ)

∂n
−M1(ξ)

∂p̃1(ξ)

∂n
(6.25)

To evaluate the flow and pressure in the domain and calculate the interfacial velocity

with equation (6.25) the temperature is required in order to calculate the viscosity and

its spatial derivatives. To track the temperature (and viscosity) evolution through the

domain in order to calculate the resulting pressure/flow field, the multi-zone convection

diffusion heat equation may be solved:

∂Tl(x, t)

∂t
= Dl

∂2Tl(x, t)

∂x2
i

− uli(x, t)
∂Tl(x, t)

∂xi
x ∈ Ωl, l = 1, 2 (6.26)

Equation (6.26) is valid in each fluid region l, subject to the following matching,

boundary and initial conditions:

T1(ξ, t) = T2(ξ, t) for ξ ∈ S (6.27)

D1
∂T1(ξ, t)

∂n
= D2

∂T2(ξ, t)

∂n
for ξ ∈ S (6.28)

T1(x, t)
x→0

→ T0 T2(x, t)
x→∞

→ T∞ (6.29)

Tl(x, 0) = Tin(x) x ∈ Ωl, l = 1, 2 (6.30)

In equations (6.27) and (6.28), continuity of temperature and flux are enforced

respectively, noting that the fluid velocity uli is continuous across the interface. The

initial temperature in each fluid zone (6.30) follows a prescribed, smoothed step initial

condition Tin given by equation (6.1).

The heat transfer completes the mathematical formulation of the problem. In order

to evaluate the pressure field in equation (6.14), and the temperature field in equation

(6.26), the domain, interface and boundaries must be discretised with suitable numerical

methods, discussed in the following sections.
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6.3 Numerical methods

Here, the solution procedures to evaluate the transient temperature field and quasi-static

pressure are described in order to reconstruct the interface velocity with equation (6.25).

The steady-state pressure is solved in an almost identical fashion to that in chapter 5,

using an indirect boundary element method for the homogeneous pressure, and the

embedded multi-zone RBF-FC method for the perturbed pressure. The formulations

will be presented below including the small changes needed in the interface matching

conditions to account for the variable viscosity.
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Figure 6.2: Thermo-viscous solution domain showing different RBF-FC operator types
and boundary conditions. The curved solid black line indicates the fluid-fluid interface
over which the boundary elements are formed. Note, only 1/8th of the interface is shown
here for the RBF-FC method, but the BEM evaluates the full interface.

The heat transfer equation (6.26) is solved using the newly developed auxiliary

multi-zone RBF-FC method presented in chapter 4, in which the temperature/flux

matching conditions appear locally in the RBF systems. The heat transfer and pressure

solutions are coupled through the thermally dependent viscosity, which links the two

equations. The coupled solution procedure advances in a quasi-static fashion, described

in more detail in section 6.3.3.



Chapter 6. Immiscible thermo-viscous fingering 191

The boundary conditions, RBF-FC operator types and quadtree dataset structure are

shown in Figure 6.2. The quadtree generation follows the same routine as that in chapter

5, splitting around the interface using a distance based algorithm, with nodal points

displaced explicitly to the interface in order for matching conditions to be enforced.

6.3.1 Transient heat transfer solution

The heat transfer equation (6.26) can be described as a transient multi-zone boundary

value problem of the form:

L
n+1
l,x [Tn+1

l (x)] = Ŝnl (x) x ∈ Ωl (6.31)

Bn+1
l,x [Tn+1

l (x)] = gl(x) x ∈ ∂Ωl (6.32)

Cn+1
1,x [Tn+1

1 (x)]− Cn+1
2,x [Tn+1

2 (x)] = h(x) x ∈ ∂Ωint (6.33)

Qn+1
1,x [Tn+1

1 (x)]−Qn+1
2,x [Tn+1

2 (x)] = f(x) x ∈ ∂Ωint (6.34)

Where:

L
n+1
l,x = I − θ∆t

(
Dn+1
l

∂2

∂x2
i

− un+1
l (x)

∂

∂xi

)
x ∈ Ωl

(6.35)

Ŝnl (x) = Tnl (x)I + (1− θ) ∆t

(
Dn
l

∂2Tnl (x)

∂x2
i

− unl,x(x)
∂Tnl (x)

∂xi

)
x ∈ Ωl

(6.36)

BDU,n+1
l,x = BDK,n+1

l,x = 1, BN,n+1
l,x = ni

∂

∂xi
x ∈ ∂Ωl

(6.37)

gDU,n+1
l,x (x) = Tn+1

l (x), gDK,n+1
1,x (x) = T0, g

DK,n+1
2,x (x) = T∞, g

N
l,x(x) = 0 x ∈ ∂Ωl

(6.38)

Cn+1
l,x = 1, Qn+1

l,x = Dn+1
l ni

∂

∂xi
, h(x) = 0, f(x) = 0 x ∈ ∂Ωint

(6.39)

In equations (6.31) to (6.39), subscript l refers to the zone and superscript n/n+1 refers

to the time step in question. Ll, Bl and Cl/Ql are linear partial differential operators

on the domain Ωl, the boundary ∂Ωl and the fluid-fluid interface ∂Ωint respectively. I
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is the identity matrix (dimension 1 here). Superscript DU,DK and N refer to Dirichlet

unknown, Dirichlet known and Neumann boundary operators respectively.

It is important to observe that according to the quasi-static approximation of the

Hele-Shaw flow (Darcy flow), the convective velocity un+1
l (x) in equation (6.35) is equal

to unl (x), since under such approximation the velocity at a given time step, i.e. between

t and (t+ ∆t), is defined by the position of the fluid interface at time t. This makes it

appear that the finite difference approximation (6.31) with the terms at (t+ ∆t) given

by equation (6.35) is semi-implicit, which is due to the quasi-static approximation of the

Hele-Shaw flow formulation.

The auxiliary multi-zone RBF-FC method described previously is used to discretise the

system of equations (6.31) to (6.34). After the solution of the resulting sparse global

system for time step n+1, the newly computed temperature field can be used to compute

the viscosity variation at time step n + 1 using equation (6.7). After the pressure and

velocity field have been calculated with equation (6.14) and the interface moved to its

new position, the values of Ŝnl (x) can be calculated in the new domain using the updated

velocity/diffusivity and the old local systems.

The issue of ghost nodes discussed in chapter 4 is alleviated in the the auxiliary method

presented here by simply translating nodes out of the ghost zone, into the inner zone.

This can be done since this method is truly meshless, and as long as a fairly regular nodal

arrangement is maintained, the solution accuracy and convergence are not significantly

affected. The required translation is typically very small (maximum ∆tUn), since the

interface displaces a very small amount at each time step.

After translation, all nodes apart from the interface nodes will exist in a region where

they also existed at time step n, meaning all the data needed for the PDEs is known. As

interface nodes only require reconstruction of the solution or flux, which do not depend

on previous time step data, no extrapolation is needed for these even though they switch

between zones at each time step. If PDE centres were placed on the interface as in the

embedded method, extrapolation would be needed at each time step as interface nodes

would also require Ŝn1 (x) and Ŝn2 (x). By omitting them in the auxiliary method, no

transport data is required at time step n along the new interface position at time step

n+ 1.



Chapter 6. Immiscible thermo-viscous fingering 193

6.3.2 Steady-state pressure solution

For the steady-state pressure solution, the same numerical methods can be used as in

the inhomogeneous mobility cases presented in chapter 5, replacing the definition for the

mobility with that presented in this chapter. The homogeneous pressure can be found

through the solution of the 2nd kind Fredholm equation:

−1

2
ψ(ξ) + λ

∫
s
K(ξ,y)ψ(y)dSy = fs(ξ) (6.40)

where:

fs(ξ) =
1

Cag(1 + β)

(
2

b
+
π

4
k(ξ)

)
+

(
λ

2πβ

)
ln(r) (6.41)

The double layer potential W (defined in the previous chapter) can then be used to

reconstruct the homogeneous normal interface velocity through:

un(ξ) = −M1(ξ)ni
∂p1(ξ)

∂xi
= −M1(ξ)ni

(
∂W (ξ, ψ)

∂xi
− xi

2πβr2

)
(6.42)

The solution procedure for the homogeneous pressure and normal velocity are identical

to that in the previous chapter, utilising a cubic B-spline boundary element method with

hypersingular integral evaluation. The only difference is that the homogeneous mobility

M l here is changed to represent the viscosity formulation, and b is used in equation

(6.41) instead of b(x) since the plate separation is constant.

The perturbed pressure solution procedure is also very similar to that in chapter 5.

Figure 6.2 shows the boundary conditions and an example nodal discretisation for the

solution of the perturbed pressure in equation (6.14). As the present Darcy formulation

is quasi-static, the perturbed pressure equation (6.14) can be described as a steady-state

multi-zone transport boundary value problem of the form:

Ll,x[p̃l(x)] = −Sl(x) x ∈ Ωl (6.43)

Bl,x[p̃l(x)] = gl(x) x ∈ ∂Ωl (6.44)

C1,x[p̃1(x)]− C2,x[p̃2(x)] = h(x) x ∈ ∂Ωint (6.45)

Q1,x[p̃1(x)]−Q2,x[p̃2(x)] = f(x) x ∈ ∂Ωint (6.46)
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Where:

Ll,x = Ml(x)
∂2

∂x2
i

+
∂M̃l(x)

∂xi

∂

∂xi
, Sl(x) =

∂M̃l(x)

∂xi

∂pl(x)

∂xi
x ∈ Ωl

(6.47)

BDU
l,x = BDK

l,x = 1, BN
l,x = ni

∂

∂xi
gDUl (x) = p̃l(x), gDKl (x) = gNl (x) = 0 x ∈ ∂Ωl

(6.48)

Cl,x = 1, Ql,x = Ml(x)ni
∂

∂xi
, h(x) = 0, f(x) =

(
βM̃2(ξ)− M̃1(ξ)

) ∂p1(ξ)

∂n
x ∈ ∂Ωint

(6.49)

In equations (6.43) to (6.49), subscript l refers to the zone. Ll, Bl and Cl/Ql are linear

partial differential operators on the domain Ωl, the boundary ∂Ωl and the fluid-fluid

interface ∂Ωint respectively. Sl(x) is the source term coming from the homogeneous

pressure p(x) in domain Ωl. Superscript DU,DK and N refer to Dirichlet unknown,

Dirichlet known and Neumann boundary operators respectively. The system of equations

in (6.43) to (6.49) are very similar to those in (5.39) to (5.47), with changes in the

modified mobility m, which is replaced with the mobility M , and f(x) which is now

non-zero due to the difference between a1 and a2 in the viscosity formulation.

The embedded multi-zone RBF-FC method described previously is utilised to discretise

the system of equations (6.43) to (6.46). After the solution of the resulting sparse global

system, the normal perturbation velocity ũn(ξ), at a location ξ on the interface can be

reconstructed using the nearest overlapping system, i.e.,

ũn(ξ) = −M1(ξ)ni
∂p̃1(ξ)

∂xi
(6.50)

With ũn(ξ), the total velocity can be reconstructed using (6.42) and the interface

displaced via a forward Euler time stepping scheme, using a time step size of ∆t.

As well as the normal interface velocity to displace the interface in time, the velocity

is also needed in the domain to solve the transient heat transfer problem in (6.31) to

(6.39). The perturbed component of the velocity can be reconstructed using nearby

overlapping systems (in a partition of unity sense using the radial distance from the

centrepoint of the systems as the weighting factor), whilst the homogeneous component
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can be reconstructed using the derivatives of the double layer potential in the boundary

element formulation, i.e:

U1
i (x) = −M1(x)

(
∂W (x, ψ)

∂xi
− xi

2πβr2
+
∂p̃1(x)

∂xi

)
(6.51)

U2
i (x) = −M2(x)

(
β
∂W (x, ψ)

∂xi
− xi

2πr2
+
∂p̃2(x)

∂xi

)

As in chapter 5, any domain points (typically PDE points from cells that coincide with

interface) that are very close to, but no coinciding with the interface are removed, to

avoid near hypersingular integration. In the heat transfer formulation this is rare, since

PDE points very close to the interface are generally displaced to avoid the ghost region,

meaning that they are not close enough to the interface to generate near-hypersingular

integrands. Point removal is more common in the evaluation of the source term for the

perturbed pressure solution, in which PDE points can lie very close to the interface,

since no ghost region exists in the steady-state pressure formulation.

A summary of the full numerical method for the solution of the immiscible

thermo-viscous fingering problem is outlined in the next section.

6.3.3 Coupled solution algorithm

The coupled thermo-viscous problem uses the algorithm below:

1. Set-up the initial interface and boundary element mesh using the 8 finger

symmetric perturbation r = 1 + ε0 cos(8θ) at t = 0, time step n = 0. Set-up the

initial temperature field using a smoothed step function over the interface using

equation (6.1) with δ = 1. Generate the embedded RBF-FC nodal arrangement

for the steady-state pressure solution.

2. Use the initial temperature field to calculate the viscosity using (6.7). Solve the

initial pressure/velocity field using the initial interface position, through equations

(6.42) and (6.50), to calculate the the total interface velocity with (6.25).

3. Displace the interface using a forward Euler time step, i.e ∆xi = niUn∆t. Advance

t = t+ ∆t, n = n+ 1.

4. Generate a new boundary element mesh at n+ 1.
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5. Generate and update the auxiliary RBF-FC nodes and the embedded RBF-FC

nodes using the new interface position at n+ 1. In both datasets, displace nearby

nodes directly onto the interface to enforce the matching conditions. Displace any

nodes that lie in the ghost region in the auxiliary dataset in an orthogonal manner

so that they exist in the same zones at time step n and n+ 1.

6. Generate the heat transfer PDE data Ŝnl (x) at the new auxiliary RBF-FC nodal

positions, using the data from time step n. If n = 1 this is a simple interpolation

of the initial temperature field, using the velocity field calculated in step 2. If

n > 1 the local systems and calculated solution from time step n can be used to

reconstruct Ŝnl (x) at the new nodal positions. The velocity field is reconstructed

using the boundary element and embedded RBF-FC solutions at time step n with

(6.51).

7. Generate the new local systems for the auxiliary RBF-FC method using the

positions and diffusivity data from time step n + 1 and the velocity data from

time step n, to generate L
n+1
l,x .

8. Reconstruct the temperature at the centrepoint of each local stencil using the

auxiliary multi-zone Hermitian formulation, creating a sparse global matrix

system. Solve the global matrix system using a sparse LU solver, generating the

temperature everywhere in the domain Tn+1
l (x).

9. Use the temperature field Tn+1
l (x) to calculate the viscosity everywhere using

(6.7).

10. Generate the new local systems for the embedded RBF-FC method, based on the

new nodal positions at n+1, with corresponding mobility data from the viscosity in

step 9. Solve the pressure/velocity field for the interface position at n+ 1 through

equations (6.42) and (6.50). Calculate the total interface velocity with (6.25).

11. Repeat steps 3 - 10 until the end simulation time is reached.
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T (◦C)
CO2 viscosity
µ1 (Pa.s)

Brine viscosity
µ2 (Pa.s)

β

35 8.411 x 10−5 7.542 x 10−4 8.967

40 7.858 x 10−5 6.865 x 10−4 8.736

45 7.376 x 10−5 6.283 x 10−4 8.519

50 6.893 x 10−5 5.779 x 10−4 8.384

55 6.456 x 10−5 5.338 x 10−4 8.268

60 6.019 x 10−5 4.952 x 10−4 8.227

65 5.664 x 10−5 4.610 x 10−4 8.139

70 5.309 x 10−5 4.306 x 10−4 8.112

Table 6.1: CO2 and Brine fluid properties with temperature.

Case T0(◦C) T∞(◦C) M1(m3.s/kg) M2(m3.s/kg) β a1 a2

1 35 70 2.133 x 10−7 2.379 x 10−8 8.967 0.4583 0.5390

2 35 50 2.133 x 10−7 2.379 x 10−8 8.967 0.1986 0.2627

3 35 35 2.133 x 10−7 2.379 x 10−8 8.967 0.0000 0.0000

4 50 35 2.603 x 10−7 3.105 x 10−7 8.384 0.1986 0.2627

5 70 35 3.380 x 10−7 4.167 x 10−7 8.112 0.4583 0.5390

Table 6.2: Summary of injection regimes and fluid properties

6.4 Fluid properties

Before proceeding to the main body of the thermo-viscous fingering verification and

results, the fluid properties and temperature regimes that will be used in these sections

are summarised in tables 6.1 and 6.2. CO2 viscosity data is interpolated at the

specified temperatures with an injection pressure of 20MPa from [157]. The brine

viscosity is calculated from sodium chloride solution data at the specified temperatures

at 0.5Mol/Kg and 10MPa resident pressure using [61]. A suitable brine - CO2

surface tension of 0.03 kg/s2 is used at the resident temperature and pressure values

[62]. Due to the lack of data concerning thermal diffusivity values for brine, a

corresponding diffusivity value for water at the resident temperature and pressure is

taken as 0.0015cm2/s. For supercritical CO2, the diffusivity is 0.0005cm2/s [158].

The injection regimes in table 6.2 summarise the mobility values for each specific

injection temperatures and the associated rate of change of viscosity with temperature

for the specific regime. The values of al change, since the non-dimensional scalings

change with the resident temperature, meaning that al must be varied to keep the

same dimensional dependence on temperature. The plate separation b = 0.00146731cm,

meaning the intrinsic permeable of the cell is 1.8x10−11cm2 (equivalent to oil reservoir



Chapter 6. Immiscible thermo-viscous fingering 198

rock). This value of b is chosen so that it corresponds to suitable aquifer permeability and

that the lowest global capillary number regime tested with the given physical viscosities

comes to a round value of Cag = 2000.

6.5 Mass conservation verification

In this section, the fully coupled numerical scheme is verified on the case of the

displacement of an initially circular interface, with zero perturbation. Perturbations

will only grow after a long period of time due to numerical error, meaning that the

interface should propagate as a growing circle with an increasing volume equal to that

injected at the origin. By comparing the numerical volume of the growing plume and the

volume of fluid injected at the origin, the mass conservativeness of the coupled scheme

can be verified. The total volume of fluid is given in non-dimensional form as:

Va = V0 + bt (6.52)

Where, V0 is the initial volume of fluid in the cell. To ensure that mass has been

conserved in the numerical method, the volume of fluid can be calculated through

numerical integration of the evolving interface (using the average interface position r)

and compared to the value given by equation (6.52). Mass conservation has already been

verified for the coupled BE-RBF-FC method when solving purely the pressure/velocity

field in inhomogeneous mobility flows in the previous chapter. The scheme was also

compared to linear stability analyses, showing very similar growth rates at the early

stages of the displacement. In this section, the tests presented will verify that the

RBF-FC method is contributing a correct velocity from the perturbed pressure to

displace the interface and that the corresponding temperature field transports accurately.

The RBF method still solves the full multi-zone steady-state pressure and the transient

heat transfer problem, but with the interface given by a simple circle instead of the

convoluted interface usually found in viscous fingering problems.

Extra complexity is introduced in the scheme in comparison to the previous chapter,

since the heat transfer in the domain must also be accurately resolved in order to evaluate

the viscosity and inhomogeneous mobility. The inhomogeneous mobility now comes from

a numerical approximation of the transient temperature field, rather than from a known
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analytical function as in the previous chapter. Also the perturbed pressure flux at the

interface is discontinuous due to the viscosity formulation, introducing extra complexity

to the steady-state pressure solution.

Given the symmetry of the problem, a triangular solution domain is again used for the

RBF-FC methods, similar to that shown in Figure 6.2. Two different nodal distributions

are used for the perturbed pressure solution and the transient heat transfer solution. This

ensures numerical accuracy and stability for both solutions, which do not necessarily

need the same nodal distribution. As the temperature profile is sharper than the

perturbed pressure, the outer boundary can be brought closer to the injection source

and the number of nodal points increased in the domain. Also, as the resulting global

matrix for transient problems is very sparsely populated, increasing the number of nodes

does not significantly increase the solution cost.

For the heat transfer the outer boundary is taken at x = 8, with a maximum quadtree

level of 8, and minimum 4. For the perturbed pressure the outer boundary is at x = 32,

to ensure that the perturbed pressure has dropped to near zero in the far field where

the boundary condition is applied. The temperature (needed for the viscosity) at any

point x > 8 is taken at the outer boundary value T∞. The maximum quadtree level for

the perturbed pressure is set at 10, with a minimum of 3. This ensures that both RBF

nodal distributions cluster points around the interface with a minimum nodal separation

of ∆x = 0.03125. The transient heat transfer problem uses a much denser distribution

of nodal points, with the Bt value varying uniformly from 11 at the highest cell level

to 6 at the lowest cell level. Nodes around the injection source are forced to be at the

highest cell level (i.e. they are continuously split until they reach the maximum), to

ensure numerical stability. This constant high level, fine clustering of nodes extends to

a point r = 3 in the temperature domain. With the perturbed pressure nodes, Bt is

varied uniformly from 3 at the highest level, to 6 at the lowest cell level, creating a much

coarser dataset that can still accurately capture the perturbed pressure.

A constant non-dimensional shape parameter value of c∗ = 90 is maintained for all

simulations. In the boundary element method the full interface is solved, around which

a target element size is maintained throughout the simulations at ∆x ≈ 0.06, ensuring

a mesh-independent boundary element solution. Both RBF nodal distributions are

therefore twice as refined around the interface as the BEM. These nodal distributions
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have been thoroughly tested, and the cell levels increased by two levels beyond those

quoted here, creating an 8 fold increase in the nodal density compared to the BEM. At

these higher levels, no further gain in accuracy is achieved, without significantly reducing

the time step size to impractically small values.

In table 6.3, the relative errors between the analytical and numerical volume of fluid

testing is shown for different temperature regimes and time step sizes. All cases exhibit

very low relative errors, with the largest error coming from the 35◦C − 70◦C case which

has the largest local capillary number. The lower temperature regimes exhibit 1st order

convergence in the time stepping scheme as expected, however, in the high temperature

cases the error plateaus. This is due to the solution accuracy reaching the limit imposed

by the spatial discretisation, so no further reduction in time step increases the accuracy

(at least when Q is high).

Injection
Regime

Relative Error, Q = 0.5 cm2/s Relative Error, Q = 0.75 cm2/s
∆t = 0.02 ∆t = 0.04 ∆t = 0.02 ∆t = 0.04

35◦C − 50◦C 7.27 x 10−4 1.47 x 10−3 7.70 x 10−4 1.44 x 10−3

50◦C − 35◦C 7.02 x 10−4 1.39 x 10−3 6.00 x 10−4 1.55 x 10−3

35◦C − 70◦C 2.34 x 10−3 2.32 x 10−3 2.57 x 10−3 3.16 x 10−3

70◦C − 35◦C 1.86 x 10−4 7.01 x 10−4 6.38 x 10−4 7.30 x 10−4

Table 6.3: Relative errors between analytical and numerical volume of fluid for different
injection regimes at t = 10.

Figure 6.3 shows the interfacial displacement and temperature field for the 50◦C−35◦C

case with Q = 0.5 cm2/s at t = 10. This highlights the high Peclet number (> 1000),

as the temperate field shows very little diffusion and the interface lies at a temperature

close to the initial temperature condition, i.e. the initial condition has been almost

purely advected. The contour lines bunch in the inner region with the low diffusivity

and high convection, showing the sharp drop in temperature at the interface that is then

smoothly diffused in the outer region. The numerical solution still exhibits a circular

interface, indicating that numerical error has not yet caused any perturbations to grow,

being amplified by the viscosity contrast and transient temperature field.

These results validate the mass conservation of the scheme, and showcase the accuracy of

the proposed numerical methods when solving the full thermo-viscous fingering problem.

For the problem cases presented in the next sections, a time step size of ∆t = 0.02 is

used to provide a balance between accuracy and practical solution times.
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Figure 6.3: Temperature contour and interface plot at t = 10 for the 50◦C − 35◦C,
Q = 0.5 cm2/s case with ∆t = 0.02. The bold black interface overlays a temperature
contour plot with thin contour lines of the temperature field.

To maintain numerical stability with the numerical methods, a combination of smoothing

algorithms are used that damp severe numerical oscillations. Brief summaries of these

techniques are given below.

6.5.1 Artificial diffusion and smoothing

To ensure stability with the 2nd order Crank-Nicholson scheme for the the auxiliary

RBF-FC heat transfer solution, artificial diffusion and selective smoothing are employed.

In situations when the heat transfer is highly convective (i.e. when the thermal Peclet

number is very high), the solution can sometimes briefly oscillate above/below the base

values of the injection and resident temperatures, bringing numerical error into the

solution. This occurs due to the relative instability of the RBF solution when high shape

parameters are used, and the 2nd order time stepping scheme which is not unconditionally

stable.

When the solution goes above/below a threshold of the base values (typically 0.1%), an

artificially high diffusion is applied to the point for a single time step that is 100 times

higher than the base diffusivity. This damps any severe numerical oscillations, whilst

ensuring that there is negligible effect on the solution profile. Selective smoothing is

also employed, whereby if a solution point differs from the average of its neighbours by

a certain tolerance (this is set to a high value usually ≈ 7.5%), then it is smoothed to
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the average value of its neighbours. Artificial diffusion and selective smoothing occur

very infrequently in the simulations due to the highly refined datasets, generally being

applied to around 1-5 points every hundred time steps. This is enough to maintain

numerical stability and allow the simulations to run for very long periods of time without

affecting the solution accuracy. For example in the 70◦C − 35◦C case in this section

with ∆t = 0.02, the percentage of total points (over the whole simulation time) where

artificial diffusion and selective smoothing are applied is 8.2 x 10−4 % and 8.9 x 10−3 %

respectively, indicating the sparse application of numerical smoothing.

6.5.2 Shape parameter relaxation

For the embedded RBF-FC pressure/velocity solution, shape parameter relaxation is

employed to ensure smooth variation in the pressure/velocity field between time steps.

The shape parameter is set to an initially high value of c∗ = 90 at each time step, and

the residual change in interfacial velocity is compared to the previous time step. If the

change between time steps is over 5% the shape parameter is dropped by 10% successively

relaxing the solution (up to 30%) until the residual change is less than 5%. Since the

nodal discretisation changes with each time step, some datasets show a more regular

distribution around the interface (depending on its shape) and hence perform better.

For poorer quality datasets, relaxing the shape parameter helps to ensure stability whilst

maintaining solution accuracy and a smoothly varying velocity field. This process also

occurs very infrequently, occurring on the order of 10 times in the whole simulation (of

over 1500 time steps).

6.6 Thermo-viscous fingering results

The cases of non-isothermal displacement given in table 6.2 are now considered with

an initial interface perturbation. All cases are run with the mesh/time step parameters

discussed in the previous section. An isothermal case at 35◦C is used as the base case

to compare non-isothermal results with, since this represents the common temperature

when raising the injection temperature for hot injection cases and raising the resident

temperature for cold injection cases. The results sections are broken up into subsections
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detailing the different characteristics of the flow, starting with the general system

behaviour below.

6.6.1 General system behaviour

Here, the general system behaviour is described using interfacial plots and timeseries

data of the key parameters. In Figure 6.4, the interfacial displacements at t = 30 can

be seen for the different temperature regimes at two different injection fluxes, Q = 0.5

cm2/s and Q = 0.75 cm2/s. These two injection fluxes will be used throughout to vary

the effective capillary number.

The lower injection flux regimes, plotted in Figures 6.4(a) and (b) illustrate the effect of

a non-isothermal temperature distribution in the domain. In the cold injection cases in

Figure 6.4(a), the interfaces have been stabilised in comparison to the isothermal; the

finger bases are more perturbed, whilst the fronts remain closer to the injection source,

creating a less ramified structure. Increasing the resident temperature from 35◦C to

70◦C has more significantly stabilised the interface, delaying the onset of bifurcation.

In corresponding hot injection cases in Figure 6.4(b), the interfaces have been

destabilised, with the fronts accelerated beyond the isothermal case. The larger

temperature difference case of 70◦C−35◦ has produced a more significant destabilisation,

resulting in an earlier bifurcation and more perturbed finger front at t = 30 in 6.4(b).

Interestingly, the bases remain largely in the same position, indicating that the base

position is controlled mainly by the outer fluid temperature.

Increasing the injection flux to Q = 0.75 cm2/s in Figure 6.4(c) and (d) results

in more significant (de)stabilisation effects from the non-isothermal regimes due to

the increased capillary number. In the cold non-isothermal cases, the interfaces are

somewhat stabilised in Figure 6.4(c), with the bases all displaced further than the

isothermal case. However the finger fronts now show different bifurcation regimes to the

isothermal, due to the raised capillary number and increased thermal effects. Generally,

raising the resident temperature has stabilised the front, with the 35◦C − 70◦C case

clearly showing a less advanced finger front than the isothermal case.
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Figure 6.4: Interface plots at t = 30 for several non-isothermal injection regimes; (a)
and (c) show cold injection cases, (b) and (d) show hot injection cases.

For the hot injection cases at the higher flux of Q = 0.75 cm2/s in Figures 6.4(d), the

interfaces have been accelerated and show elongated two finger split regimes. The two

finger regime usually represents a more stable bifurcation than the three finger split, as

viscous forces are lower in comparison to surface tension forces. However, in this case,

the two finger split is caused by a different mechanism than in classical viscous fingering

bifurcations, discussed in more detail in section 6.6.2.

The displacement regimes can be analysed quantitatively using time series data of the

finger growth rate, pressure gradient and mobility, shown in Figure 6.5. The dimensional
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Figure 6.5: Plots of the growth rate, pressure gradient and mobility with time at the
finger fronts (a, c, e) and finger bases (b, d, f) for different temperature regimes with
Q = 0.75 cm2/s. Legend for each plot shown in (b).

pressure gradient and mobility are shown here (plotted against non-dimensional time),

as the non-dimensional scalings change with each different injection temperature, which

can be misleading with regards to the physical mechanisms that control the flow regime.

The growth rate shown in Figure 6.5(a) highlights the initial acceleration of the finger



Chapter 6. Immiscible thermo-viscous fingering 206

fronts due to the high temperature injection and the initial deceleration of the front

due to the low temperature injection. The growth rate is controlled by the evolution

of the mobility and pressure gradient at the interface, shown in Figure 6.5(c) - (f).

The initial difference in growth rate between the cases is due to the change in pressure

gradient, as the hot and cold injection cases have the same mobilities for the same initial

temperatures (i.e. the 35◦C − 70◦C case has the same initial temperature and mobility

at the interface as the 70◦C − 35◦C case).

In cold injection cases, the pressure gradient is significantly reduced from the isothermal

(see Figure 6.5(c)), as the perturbed pressure gradient component in equation (6.25) is

positive, which reduces the velocity and hence growth rate. The magnitude of the total

pressure gradient is initially reduced by 23.7% for the 35◦C − 70◦C case compared to

the isothermal, whereas the mobility is raised by only 20.9%, which results in the lower

growth rate of the 35◦C−70◦C case. The reverse is true of the hot injection case, where

a negative perturbed pressure gradient causes a reduction in magnitude of the total

pressure gradient by only 19.0% for the 70◦C − 35◦C case, with the mobility increasing

by 20.9%, resulting in a higher growth rate.

At the finger bases, the growth rate behaviour is reversed, i.e. the cold cases have higher

base growth rates than the hot cases (see Figure 6.5(b)). However, the mechanism for

the increase/decrease in growth rate is the same as at the fronts. The cold injection cases

have a higher growth rate at the finger bases, due to the increased pressure gradient (note

the perturbed pressure gradient in equation (6.25) is negative at the base, increasing the

velocity). With time, the base growth rates all tend to the same value, when the mobility

and pressure gradient profiles have both reached near constant values. At this stage, the

temperature fields are diffuse and the increase/decrease in pressure gradient due to the

cold/hot injection is equalled by the decrease/increase of the temperature and mobility

at the base, resulting in the same growth rate.

The negative growth rates that occur in Figure 6.5(a) and (b) are caused by bifurcations.

At bifurcated points of the interface where the curvature is negative (for instance at

the finger bases), the normal velocity is reduced significantly in comparison to an

unperturbed interface, meaning the growth rate given by equation (5.57) becomes

negative.
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The pressure gradient represents the primary control for the initial growth of the

interface, when the temperature field evolves in a highly convective regime. If the

temperature field grew in a purely convective manner, this regime would hold for all

time, with hot injection cases being relatively more unstable than isothermal and cold

injection cases. However, with diffusion in the physical system, the temperature field

evolves with different profiles around the interface for the hot and cold injection cases

that alter the bifurcation mode. It is worth noting that in the lower injection flux regime

at Q = 0.5 cm2/s, the same effects occur as detailed above but with reduced magnitude,

resulting in the early timeframe acceleration/deceleration of the interface, but without

alteration in the bifurcation mode.

The promotion of finger bifurcation in the hot injection cases here is similar to that

reported experimentally by [156], albeit in the immiscible regime and at slightly lower

injection fluxes than those stated in [156]. In a small range of mobility ratios β ≈ 10,

they find that bifurcation occurs earlier in the evolution for the hot non-isothermal

regime. These results appear at least qualitatively very similar to those here, whereby

the finger fronts are accelerated in hot injection regimes.

For the simulations presented here, at the late stage of displacement shown in Figure

6.4, the number of boundary elements is generally of the order Nb ≈ 1500. The number

of RBF-FC solution centers in the domain for the steady-state perturbed pressure is of

the order NB ≈ 5000, and the number of solution centers in the domain for the transient

heat transfer is of the order NB ≈ 10, 000. The number of PDE centers (NI) in both

RBF-FC schemes is generally slightly more (1000-2000) than the number of solution

centers. These simulations all complete in under 1 week, using two cores of an Intel

Core i3-4130 CPU with 8GB RAM.

6.6.2 Thermal evolution & bifurcation modes

After the initial growth at t = 5 in the Q = 0.75 cm2/s regime, the growth rate of the two

hot injection regimes in Figure 6.5(a) starts to vary significantly from the cold injection

and isothermal cases as the bifurcation changes to a two finger mode. The difference

in growth rate and bifurcation mode can be explained by considering the temperature

and mobility evolution. In Figure 6.5(e) the front mobility (and temperature) drops
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significantly when 0 < t < 5 in the hot injection cases, as the temperature is rapidly

convected towards the finger tip and diffused into the surrounding media.

As the tip mobility drops, the base mobility rises in the hot cases in Figure 6.5(f). As

the base develops a large negative curvature as time progresses, heat is diffused from

the base and sides of the finger into the spacing between the fingers, creating a high

temperature region. This raises the temperature of the base until it reaches a near

constant value where the base convection matches the diffusion into the outer region.

This difference in temperature evolution between the finger fronts and base results in

the difference between the bifurcation regimes for the hot and cold injection cases at the

high injection flux.
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Figure 6.6: Temperature scatter plots around the interface for the hot and cold injection
cases at t = 5, Q = 0.75 cm2/s. The arrows show normal velocity vectors Un, with red
arrows highlighting the maximum velocity.

The temperature profile around the interface for the hot and cold injection regimes at

t = 5 in Figure 6.6 highlights the cause of the different bifurcation modes between the

hot and cold cases with Q = 0.75 cm2/s. In the cold injection case in Figure 6.6(a),

the temperature increases monotonically from the finger base to the tip, meaning the

highest mobility (and hence velocity) is found at the finger tip. The interface proceeds

to sharpen in time, and form the three finger bifurcation.

However, in the hot injection case, the temperature decreases monotonically from the

finger base to the tip, meaning the finger sides have a higher mobility than directly at
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the tip. This causes the velocity to be higher at the finger sides (highlighted by the

red velocity vector in 6.6(b)) and the spreading mechanism is enhanced. This creates a

‘flatter’ finger front and leads to the two finger bifurcation later in time.

At the stage shown Figure 6.6, diffusion effects are becoming more significant and have

altered the temperature profile around the interface enough to cause the change in

bifurcation regime. From this, it can be inferred that the macroscopic temperature

profile around the interface controls the late stage splitting mode of the interface, whilst

the early time scale pressure gradient in the convective regime describes the general

acceleration/deceleration effects of the hot/cold injection regimes.

Similar macroscopic temperature profiles can also be seen later on in the finger growth

at t = 30 in Figure 6.7(a) and (b). Here, after the first bifurcation, the finger tips in the

hot injection case have lower temperatures than the sides and base, indicating that the

spreading mechanism is again being enhanced. Likewise, the cold injection cases have

the highest temperature at the finger tips, showing that the fingers will be sharpened and

will likely split into more fingers on bifurcation. The temperature contour plots at t = 30

in Figure 6.7(c) and (d) show the convective nature of the flow, with the temperature

profile closely following that of the interface. Here, the thermal Peclet number is very

large at Pe = Q/D1 = 1500.

In the results presented here, only two and three finger bifurcations are seen due to the

capillary number and temperature regimes that are considered. For a four or five finger

bifurcation, the interface has to become much more unstable, requiring a larger injection

flux and capillary number (i.e., the isothermal case needs to have Q > 1.75cm2/s,

Cag > 7000 to produce a different bifurcation mode). However, the general mechanisms

that are presented here involving the bifurcation regime and acceleration/deceleration

effects will still hold in these more unstable regimes, albeit with different variations in

the bifurcation mode.

The temperature profiles across the finger front and base at t = 30 can be seen in

Figure 6.8. Here, the multi-zone nature of the temperature field is observable, where

the gradient of the temperature profile decreases by a factor of three at the interface

(highlighted by the crosses) due to the three fold increase in the diffusivity in the outer

region (D1 = 0.0005cm2/s, D2 = 0.0015cm2/s). The temperature profile is very sharp in
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(a) 35◦C − 70◦C (b) 70◦C − 35◦C

(c) 35◦C − 70◦C (d) 70◦C − 35◦C

Figure 6.7: (a) and (b) Temperature scatter plots around the interface for the hot and
cold injection cases at t = 30. (c) and (d) Temperature contour plots at t = 30. The
bold black interfaces overlay temperature contour plots with thin contour lines of the
temperature field. Q = 0.75 cm2/s.

the inner region in the hot injection case as the front has bifurcated and formed a near

stagnation point, and the heat transfer is dominated by diffusion. The front and base

profile therefore exhibit similar profiles at different locations in the domain, with the

base being slightly more diffuse since it was formed earlier in time. In the cold injection

case, the same change in temperature gradient is exhibited at the interface, but the

inner zone temperature field is much more diffuse as the front has yet to bifurcate and

stagnate.

The viscosity profiles in Figure 6.8(c) and (d) show the relative increase/decrease in local
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(c) Finger base viscosity
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(d) Finger front viscosity

Figure 6.8: Temperature and viscosity profiles taken parallel to the finger front (along
y = 0) and base (along y = x · tan(π/8) at t = 30, Q = 0.75 cm2/s. Legend for all plots
shown in (a).

mobility ratio at the interface for the cold/hot injection regimes. As the temperature

increases towards the interface for the cold injection case, the mobility ratio is increased

due to the relative change in viscosity for the CO2 and brine. In contrast, the local

mobility ratio is decreased for the hot injection case as the temperature drops at the

interface.

In classical radial viscous fingering, as the mobility ratio is increased for a fixed global

capillary number, the base should show more stagnation and perturb less into the

domain. However, here the opposite effect is seen, where a more displaced finger

base is observed in the cold injection case in comparison to the hot injection, with

an associated increase in the local mobility ratio. Also, the hot injection cases all show

near identical base movement to each other, even though the local mobility ratio (and

capillary number) is changing. This indicates that the base movement in non-isothermal
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regimes cannot be sufficiently described by only considering the local mobility ratio and

capillary number, as is the case in isothermal displacements.

The increased base movement of the cold injection case in comparison to the hot

injection case is due to the difference in homogeneous perturbed pressures. At the

finger bases, the perturbed pressure gradient contributes only a small amount, with

the primary movement being controlled by the homogeneous pressure gradient. At

lower injection temperatures, the finger base homogeneous pressure gradient is larger

(see Figure 6.5(d)), increasing the growth rate and displacement in comparison to hot

injection cases.

In cases with equal injection temperatures (Figure 6.4(a) and (c)), the homogeneous

pressure gradients are also equal. This means an increased base mobility in the 35◦C −

50◦C and 35◦C − 70◦C cases raises the growth rate and displaces the base further into

the domain.

If the injection temperature is increased (Figure 6.4(b) and (d)), the homogeneous

pressure gradient decreases. When this is coupled with a corresponding increase in

mobility due to the higher temperature, very similar growth rates and base displacements

are exhibited. The base movement in non-isothermal cases is therefore controlled mainly

by the resident temperature; for equal resident temperatures the base movement is very

similar and when the resident temperature is increased there is a corresponding increase

in the growth rate and base displacement.

6.6.3 Thermo-viscous fingering with a continuous viscosity profile

To further explore the effect of hot/cold injection on the thermo-viscous fingering regime,

immiscible displacement results are presented using injection and resident fluids with

the same base viscosities, µ1 = µ2 and the same dependence on the temperature field

a1 = a2. This means that the viscosity profile is continuous across the immiscible

interface, with variations coming purely from the continuous temperature field. There

still exists surface tension between the fluids, but the effects of the thermal viscosity

profile can be analysed independently from a discontinuous viscosity profile generated

by the fluids.
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Figure 6.9: Interface plots at increments of ∆t = 5 from 0 ≤ t ≤ 20 for non-isothermal
injection regimes using fluids with the same base viscosities and dependence on
temperature. Q = 0.75 cm2/s.

In Figure 6.9, the interfacial displacement for the continuous viscosity profile regime

can be seen for the different temperature cases. Here, the base viscosity and al values

of brine are used at the corresponding injection temperatures for both fluids. The

interfacial evolutions shows that the cold injection case quickly stabilises the initial

perturbation and displaces as a circle. Without a discontinuous viscosity driving the

growth of perturbations, the interface is stabilised by the surface tension and forms a

circle. However, in the hot injection case the perturbation is not damped as significantly

and appears to remain with a constant amplitude after t = 15. The perturbation

amplitude changes initially on the first plots when t ≤ 10 but then seems to stabilise to

a constant value afterwards.

The growth rate and velocity plots in Figure 6.10 show the short and long term behaviour

of the different temperature regimes. Initially, the front of the cold injection case in

Figure 6.10(a) experiences a smaller growth rate than the isothermal case, with the base

experiencing a larger growth rate. This causes the interface to quickly stabilise whilst

displacing to form a circle. However, the hot injection case exhibits a higher growth

rate at the front and a lower growth rate at the base compared to the isothermal case,

indicating that it maintains some of its initial perturbation and works against the surface

tension to maintain the perturbed shape. With time, the growth rate of the fronts and

bases for all cases drops to zero, and they evolve with equal velocity at the front and
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Figure 6.10: Plots showing (a) Finger base and front growth rate with time. (b) Finger
base and front normal velocity with time. Legend for both plots shown in (a).

base, shown in Figure 6.10(b). This means that the interfaces are simply convected with

the shape they formed in the initial growth when 0 ≤ t ≤ 10.

When the growth rate drops to zero in the hot injection case, there is still a contribution

to the growth rate from the perturbed velocity; enough to maintain the perturbation

amplitude. The source term velocity is larger at the finger base compared to the finger

tip (since it is closer to the injection source), meaning the perturbed velocity component

must be smaller at the base so that the total velocity is equal along the interface. If the

perturbed velocity component was equal along the interface, or its sign reversed (as in

the cold injection case), the interface would simply form a circle.
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The non-isothermal temperature regimes when considered independently without a

discontinuous viscosity profile are neutrally stable. The hot injection case is able to

reduce the stabilisation effects from the surface tension around the interface, with some of

the initial perturbation being maintained. However, the perturbation does not grow with

time even at this high injection temperature, and the growth rate of the perturbation

eventually falls to zero.

Thermal effects that vary the viscosity profile in a smooth manner act to promote or

hinder the existing viscous fingering regime, but alone do not promote the onset of

viscous fingering. This is exemplified in the previous section, where thermal effects

enhanced the viscous fingering bifurcation in the hot cases and hindered the fingering

in the cold cases. The stabilisation from the cold cases was never enough to completely

hinder the finger growth, and once the temperature field had sufficiently diffused, the

growth rate of features with similar curvatures tended to towards the same value.

6.6.4 Thermal diffusivity effects

In this final section, the effect of thermal diffusivity on the thermo-viscous fingering

problem is explored. Up until this point, the physical diffusivities of CO2 and brine

have been used for all simulations. The diffusivity controls the sharpness of the mobility

profile (affecting the acceleration/deceleration from the perturbed pressure) and the

distribution of mobility around the interface controlling the bifurcation mode, meaning

it is key to the entire thermo-viscous fingering process. Here, four diffusivity cases are

presented using the 50◦C − 35◦C and 35◦C − 50◦C injection regime with Q = 0.75,

summarised in table 6.4. βd = D1/D2 is the ratio of the diffusivities, and Pe = Q/D1

is the thermal Peclet number.

The fluid properties are equal between each diffusivity case for a given temperature

regime, with only the diffusivity parameters varying. Diffusivity case 1 represents the

base case with the physical CO2 and brine diffusivities. The diffusivities in each zone

are swapped in diffusivity case 2, and in case 3 they are made equal representing a

single-zone heat transfer problem. In case 4, the diffusivity is increased in each zone by

a factor of 10 compared to case 1, to showcase a highly diffuse temperature field regime

and its impact on the fingering morphology.
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Diffusivity
case (DC)

D1 (cm2/s) D1 (cm2/s) βd Pe

1 0.0005 0.0015 0.333̇ 1500

2 0.0015 0.0005 3.000 500

3 0.0015 0.0015 1.000 500

4 0.0050 0.0150 0.333̇ 150

Table 6.4: Thermal diffusivity cases with associated fluid properties.

The interfacial plots at t = 30 for different diffusivity cases can be seen in Figure 6.11.

In both temperature regimes, raising the inner diffusivity in cases 2, 3 and 4 has lead

to a change in the bifurcation mode compared to case 1. During cold injection, the

bifurcation mode transitions to a two finger split, whereas in the hot injection case it

transitions to a three finger split. As the resident temperature remains equal throughout

all cases, the base positions have remained entirely unaffected by changing the diffusivity

regime.
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Figure 6.11: Interface plots at t = 30 for hot and cold injection regimes with different
diffusivity parameters.

When the thermal diffusivity is raised in both zones by a factor of 10 (compared to

the base case) in DC4, the growth rates tend to that of the isothermal case, shown in

Figure 6.12(a) and (b). In the early time frame, diffusivity cases 1, 2 and 3 (in which

the diffusivities are in the same order of magnitude) show almost identical growth rates.

Diffusivity case 4 shows a very similar initial growth (and long term growth in the hot

injection case) to the isothermal case, as the temperature (and hence mobility) field
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Figure 6.12: Timeseries plots of the growth rate and mobility at the finger fronts for the
hot and cold injection regimes with different diffusivity parameters. Q = 0.75.

is highly diffuse causing only minor acceleration/deceleration effects with the induced

perturbed pressure gradient. This is as expected, since the non-isothermal should tend

towards the isothermal with highly diffuse temperature fields.

Although the growth rate is initially similar to the isothermal in the cold injection case

DC4, after time the growth rate of the cold case drops, as the distribution of temperature

in the domain causes the sides of the front to be accelerated more strongly than the tip.

The temperature contours at the late stage show very little resemblance to the interfacial

pattern, spreading radially from the injection source (see Figure 6.13(c)). Since the

interface and the associated convective velocity field has little effect on the transport of

the temperature field, the interface displaces with a radially diffusing temperature field,

meaning the finger sides evolve in regions of higher mobility regions than the tip. This

enhances the spreading mechanism and causing a two finger bifurcation. The reverse

can be seen in Figure 6.13(d), where the finger sides in the hot injection cases evolve
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into low mobility regions, promoting the growth of the finger tip and the three finger

bifurcation.

(a) DC 2, 35◦C − 50◦C (b) DC 2, 50◦C − 35◦C

(c) DC 4, 35◦C − 50◦C (d) DC 4, 50◦C − 35◦C

Figure 6.13: Temperature contour plots for diffusivity case 2 (top) and 4 (bottom) at
t = 30. The thick black lines show the interface, with thin black lines representing
contour lines. Q = 0.75.

The same mechanism also controls the bifurcation mode in diffusivity case 2 and 3, in

which the increased diffusivity in the inner zone promotes heat transfer. Figure 6.13(a)

and (b) show the diffuse inner regions for diffusivity case 2 at the two temperature

regimes (note that very similar plots are obtained for diffusivity case 3, with a greater

spacing between contour lines in zone 2). In the hot injection case, the temperature

contours of the diffuse inner region follow the interface less closely in comparison to

case 1, meaning that regions of the interface closer to the injection source displace with
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a higher temperature and mobility. This causes the tip to be be accelerated and the

interface bifurcates into three fingers.

In contrast, the cold injection case with reversed diffusivites has a colder region near the

injection source that propagates radially outwards (when the diffusivity is raised). This

means the finger tips are closer to the low temperature source when the finger initially

spreads and are decelerated in comparison to the finger sides, forming the two finger

bifurcation. The bifurcation mode switches in the high inner diffusivity cases here as

the temperature field less closely resembles the interface, instead propagating radially

outwards from the source temperature, following a more circular evolution that produces

non-uniformity around the interface.

Two effects are caused by the changing diffusivity, firstly, by raising the inner diffusivity

(and lowering the Peclet number) the bifurcation mode is altered by forcing the

temperature field to evolve in a more circular, radial fashion less closely resembling the

interfacial pattern. This creates non-uniformities in the mobility field that don’t match

the interfacial advection, causing the bifurcation mode to switch from that given by the

high Peclet number cases. Secondly, by changing the diffusivity ratio, the interfacial

temperature can be raised/lowered without changing the bifurcation mode, instead

changing the growth rate. In hot injection cases, by decreasing βd, heat transfer is

promoted in the outer zone and the temperature at the interface is lowered, delaying the

three finger interfacial growth. In cold cases, decreasing βd also enhances heat transfer

in the outer region, but when coupled with the reversed temperature gradient, this

increases the front temperature and hinders the two finger growth.

By lowering the thermal Peclet number, effects similar to those presented in [152]

and [154] for miscible regimes are seen. By lowering the thermal Peclet number, the

destabilising effects of a hot injection regime are reduced and the stabilising effects

of the cold injection regime are reduced. [152] and [154] also generate similar results

with the inclusion of thermal lag, which acts to slow the convective velocity in the

heat transfer compared to that in the solutal regime. As well as changing the location

of the thermal front, this also effectively reduces the thermal Peclet number, with very

similar qualitative results to those presented here. These miscible results are discussed to

provide some comparison to previous works in the area of thermo-viscous fingering, but
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it must be noted that although qualitatively similar, the mechanism for their formation

are entirely different.

6.7 Conclusion

In this final results chapter, the thermo-viscous fingering problem was investigated

during the displacement of immiscible fluids using a high resolution BE-RBF-FC method.

The numerical method utilised mesh reduction techniques to solve the coupled heat

transfer and Darcy flow problem in an accurate and efficient manner. These new

methods allowed the solution to moving multi-zone problems without extrapolation,

utilising the truly meshless nature of the RBF-FC method to its full extent. The

physical mechanisms that control the immiscible thermo-viscous fingering regime were

investigated in a systemic manner, leading to the follow system behaviour:

• In high Peclet number flows, the early stage growth rate is governed by the

pressure gradient at the interface. For hot injection cases, the magnitude of the

pressure gradient is increased, due to an additive perturbed pressure gradient from

the decreasing mobility field. When combined with an increased mobility, this

enhances the growth rate. In cold injection cases, the growth rate is hindered due

to a subtractive perturbed pressure gradient resulting from an increasing mobility

field.

• The late stage bifurcation regime is controlled primarily by the mobility

distribution around the interface. When the mobility decreases towards the finger

tip, a two finger bifurcation is promoted, whereas when the mobility increases

towards the tip a three finger bifurcation can be achieved if the injection flux is

high enough.

• The diffusivity and diffusivity ratio control the mobility distribution around the

interface. When the inner diffusivity is increased, the temperature field more

closely resembles radial diffusion from a point source, which promotes two finger

bifurcation in cold injection regimes and three finger bifurcations in hot regimes.

By increasing the diffusivity ratio, the temperature and mobility are increased at

the interface for hot injections, and decreased for cold injections.
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• Finger base displacement is controlled by the resident fluid temperature. When

the resident temperature is increased for a given flow rate, the finger base growth

increases. For a fixed resident temperature with varying injection temperature,

the base growth rates are equal.

• Thermal effects in the fingering evolution are neutrally stable. They act to enhance

or inhibit existing perturbations that grow due to the fluids’ homogeneous viscosity

contrast. However, thermal effects are not enough alone to grow perturbations or

cause a fingering instability without an existing viscosity contrast. Thermal effects

diminish with time as the temperature field diffuses, with classical viscous fingering

dynamics eventually overcoming any stabilisation from a smoothly decreasing

mobility field.

The early stage mechanisms in thermo-viscous fingering are very similar to those in the

uniformly converging/diverging cell cases presented in chapter 5. However, in the present

chapter, the mobility field diffuses with time, meaning that aperture effect 3 diminishes.

This is not the case in the uniformly converging/diverging cell, in which the mobility

variation remains the same throughout the simulation. The early stage spreading

mechanism found in the thermo-viscous cases here would be similarly enhanced/inhibited

in rectilinear flows, since the inhomogeneous mobility here comes from the temperature

field which follows the fingering evolution, not the profile of the cell itself.

With the findings presented in this chapter, careful variation of the fluid parameters

and initial conditions could control the thermo-viscous fingering instability in a

predictable manner, creating alternative bifurcation modes that cannot be predicted

using classical viscous fingering theory at corresponding isothermal temperatures. This

study represents the first of its kind in identifying the key mechanisms behind immiscible

thermo-viscous fingering and hopes to provide a baseline for future research.



7. Conclusions & future work

7.1 Conclusions

In this work, the viscous fingering instability of immiscible displacement in Hele-Shaw

cells has been explored numerically using several newly developed numerical methods.

The methods were used to analyse the fingering regimes that could occur under

conditions typical of CO2 injection and storage processes, i.e. with low mobility ratios,

high capillary numbers, inhomogeneous mobilities and transient temperature fields.

The main novelty in this thesis lies in the development of the numerical methods that

have allowed the late-stage exploration of the viscous fingering regime and associated

non-linear finger interactions. Through systematic numerical experimentation, several

key features of the immiscible fingering regime were revealed under the conditions

mentioned above, which had not been reported before. This detailed analysis will

increase the overall understanding of the late stage fingering mechanisms, and the

processes governing the immiscible displacement of subsurface CO2 and brine.

To investigate the homogeneous, low mobility ratio regime, a boundary element method

was implemented for the solution of the Laplace equation in a Hele-Shaw cell (possible

with a constant plate separation b and a constant viscosity in each region µ). By

non-dimensionalising the governing system of equations, the homogeneous problem was

found to rely purely on the capillary number and mobility ratio of the fluids. Using

a cubic B-spline boundary element scheme, the resulting integral equation involved the

evaluation of a hypersingular integral which was performed semi-analytically in the sense

of Hadamard finite parts. This, along with a 4th order Lagrangian approximation for

the curvature allowed the accurate solution to the quasi-static pressure field and the

normal interface velocity. A convergent series approach was used to solve the system of

222
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equations with a solution time that scaled quadratically with the number of boundary

elements instead of the cubic dependence found with traditional LU matrix solvers. This

lifted the restriction of previous models on short time scale solutions.

Results in low mobility ratio regimes revealed significant differences with those predicted

with previous high or infinite mobility ratio models. Finger base movement is much more

prominent in low mobility ratio flows, resulting in generally more stable interfaces. Due

to the non-negligible inner viscosity, secondary and side branching fingers can displace

significantly into the domain, and aren’t shielded by primary fingers as in high mobility

ratio flows. This leads to the formation of more fingers in the domain, and much greater

interaction. Raising the global capillary number was found to generally increase the

number of fingers produced on bifurcation, but also lead to an increase in the number

of side branching fingers.

Long time interface evolutions were run to showcase the BEM for predicting the large

time scale dynamics of viscous fingering with homogeneous mobility. Using asymmetric

initial interfaces, the increased finger interaction due to the low mobility ratio regime

could lead to base thinning and eventual finger breaking. In very high mobility ratio

flows, this did not occur, since the primary fingers shield the growth of secondary

fingers meaning the interaction is insignificant. Due to the accuracy of the numerical

method and explicit interface tracking scheme, the immiscible lubrication layer between

competing fingers could be resolved to much greater detail than in previous models.

This allowed finger breaking to be explored more explicitly than before, showing that in

a sharp interface model, finger break-off should always occur in preference to coalescence

since no fluid-fluid miscibility exists.

Using a Picard iteration scheme with relaxation factor, dynamic wetting could be

incorporated into the boundary element method. The trailing wetting layer in the cell

introduced a local capillary number term in the capillary pressure jump at the interface

between the fluids, which was handled numerically using a Picard iteration scheme.

At high capillary numbers the wetting layer is thickest, and could suppress the onset

of viscous fingering and dramatically alter the bifurcation mode. The classical viscous

fingering regime could never be fully suppressed since the wetting layer thickness reduced

with time along with the interfacial velocity, however at high initial capillary numbers

the bifurcation regime late in time could still be altered. In high mobility ratio flows,
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finger shielding was also somewhat suppressed, since the primary growing fingers were

stabilised and their velocity reduced. This allowed secondary and side branching fingers

to be fed with more fluid and displace further into the domain, increasing the number

of fingers present.

In order to explore the viscous fingering regimes that could occur with an inhomogeneous

mobility, i.e. due to a varying cell permeability or viscosity present in CO2 injection

problems, a meshless radial basis function-finite collocation method was developed

for the general solution of moving multi-zone transport problems. The method was

developed for use with an adaptive quadtree datatset that clustered nodal points

around the interface. Local RBF-FC stencil configuration testing was performed on a

steady-state boundary layer problem to identify the most robust stencil configuration and

optimal PDE centre location. Further testing on the infinite Peclet number advection of

a Gaussian packet identified the base 1-1 local stencil configuration as the most optimal

to accurately reconstruct the PDE source term L̂[φn] at the end of each time step.

The new method showed significant reductions in nodal points (17x less in some cases)

compared to uniform dataset counterparts, achieving similar levels of global accuracy.

The adaptive RBF-FC scheme was then tested on several multi-zone problems using

two new multi-zone formulations. The embedded method, in which the interface

matching conditions appear at the global level was found to be more robust and

accurate when solving steady-state and static interface problems, due to the more

accurate representation of the governing PDE at the interface. The auxiliary method,

in which the matching conditions appear locally in the RBF systems was found to

perform significantly better for moving interface problems than the embedded method.

The auxiliary method was verified against a moving multi-zone convection diffusion

problem with a uniform fluid and interface velocity. Here, it demonstrated highly

accurate solution profiles compared to a high resolution finite difference scheme solving

the transformed static problem. Using a fraction of the nodal points it could accurately

capture the discontinuous solution profile and high Peclet number flow as the interface

moved through the domain.

The developed RBF-FC method was coupled with the BEM for the solution of

inhomogeneous mobility flows arising from a spatially varying plate separation (and

therefore intrinsic permeability) in chapter 5. The onset and late stage fingering
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instabilities were examined under various cell geometries, revealing the key mechanisms

behind the stability of the interface in variable permeability cases. Three aperture

effects were identified that control the interfacial stability, for converging cells (decreasing

permeability) these were:

1. Stabilisation through an increased transverse curvature.

2. Deceleration due to a reduced fluid mobility.

3. Acceleration due to an increased pressure gradient.

In diverging cases, the effects were reversed. At low capillary numbers, effect 1 and

2 dominate, stabilising the interface in converging cases and destabilising in diverging

cases. At higher capillary numbers, the result of the combined effects reverse, and

converging cells destabilise the interface in comparison to uniform cells, with diverging

cases being more stable. The transition point at which the combined aperture effect

result reverses was identified with the initial state numerical growth rate as Cag ≈ 640

for uniformly converging and diverging cells.

This analysis provided a useful bridge between the linear stability analyses (generally

low capillary number) results in several works and the high capillary number results

found experimentally in earlier works. The systematic numerical exploration of the

problem allowed the transition to be identified and the mechanism behind the stability

described. The mechanisms also explain the difference between uniformly varying radial

and rectilinear cells, in which finger spreading or sharpening can be found depending on

the aperture gradient.

Although the aperture effects were identified in uniformly converging/diverging cell

simulations, the effects were also be found locally in more ‘random’ geometries controlling

the overall interfacial evolution. In anisotropic cases at high capillary numbers, aperture

effect 2 was found to become prominent as the finger evolution was dominated by

local variations in the fluid mobility. The highly anisotropic cases demonstrated the

robustness of the numerical scheme and the fingering complexity and richness that can

be achieved with relatively small changes in the cell plate separation and permeability.

In the final results chapter 6, the fluid viscosity was allowed to vary spatially with

a transient temperature field, inducing thermo-viscous fingering effects during the
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displacement of the immiscible fluids. To this end, the transient moving multi-zone

heat transfer problem was solved with the auxiliary multi-zone method to accurately

reconstruct the viscosity field. The viscosity field could then be used to calculate the

inhomogeneous mobility and the pressure/velocity could be solved as before using the

BEM with the embedded RBF-FC method. The heat transfer and pressure/velocity

solutions were coupled through the viscosity field, with the transient heat transfer

evolving in a semi-implicit manner due to the quasi-static nature of the pressure field.

Systematic numerical exploration of the thermo-viscous fingering problem space

identified several key parameters in predicting the fingering process from early to late

stage evolution. During the early stages of finger growth, when the thermal Peclet

number is high and defined fingers have yet to form, the process is controlled by the

pressure gradient normal to the interface. This is in essence the same mechanism as

aperture effect 3 identified in the permeability study. In hot injection regimes (high

temperature fluid injected into a colder fluid), the magnitude of the pressure gradient

was increased in comparison to isothermal cases at the same interfacial temperature.

The increased pressure gradient causes acceleration of the interface, and promotes the

onset of viscous fingering. Cold injection regimes caused a corresponding deceleration

of the interface and an increase in the interfacial stability.

During the late stage of finger growth, the bifurcation mode was affected primarily by

the interfacial distribution of mobility, which could be controlled by the thermal Peclet

number of the inner fluid and the diffusivity ratio. Careful variation of these parameters

could promote non-uniformity in the mobility distribution and lead to alternative

bifurcation modes that cannot be predicted using classical viscous fingering theory

at corresponding isothermal temperatures. The study of immiscible thermo-viscous

fingering in chapter 6 represents a first step in identifying the key mechanisms behind

immiscible thermo-viscous fingering that have yet to be explored in the literature.

In conclusion, this thesis provides a detailed analysis of several key mechanisms

that control the immiscible viscous fingering process under flow regimes that have

been previously unexplored. These flow regimes are encountered in several industrial

processes, such as CO2 sequestration, and through increased understanding of the

inherent fingering mechanisms these processes can be made more efficient and more

reliably predicted. Efficient numerical methods were developed to allow exploration
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into the late stage fingering processes that have been previously unattainable, providing

insight into the governing mechanisms behind the viscous fingering instability.

As well as increased understanding of the complex nature of the viscous fingering

instability, the numerical methods presented in this thesis also demonstrate significant

advances in mesh-reduction and meshless techniques. These techniques have been

developed generally, and can be applied to many other moving multi-zone transport

problems found in natural and industrial flows, e.g. Stefan type problems or dendritic

solidification. The adaptive RBF-FC method with auxiliary multi-zone representation

has showcased highly desirable properties for the cases presented in this work, which

when extended to parallel computing could make it a very useful tool for large scale

transport problems.

7.2 Future work

During the course of this work, it became apparent that there were several related

areas of research and extensions to the current methods that were worthy of study.

However, due to time constraints, not all of these areas could be investigated. This

section highlights extensions and possible new research directions for the current work,

based on developments of the numerical methods and the original mathematical models.

7.2.1 Parallelisation

One of the most useful extensions to the current work would be the development of the

numerical methods for parallel computing architectures. This would allow much larger

datasets to be considered, and the non-linear stages of thermo-viscous finger growth to be

investigated at later time stages with asymmetric initial conditions. Currently, the BEM

and RBF-FC method have been tested on multi-cored workstations and shared-memory

high performance computing architectures working on up to 16 computational cores.

The base of the work in this thesis was performed on one/two cores with corresponding

datasets that allowed analysis within a short time frame (< 1 week). The OpenMP

interface was tested for larger implementations that allowed up to 16 shared memory
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cores to be used, however there was significant time spent passing data between cores

which limited the scalability of the problem.

An alternative to the OpenMP interface, is the message passing interface (MPI). This is

a standard message passing system and can work on distributed memory architectures,.

i.e. on high performance computing architecture with 100s of computational cores.

Implementation of MPI directives requires significant alteration to the current code,

with many features having to be re-designed to run efficiently. However, the RBF-FC

method has the potential to be highly scalable; since a significant proportion of the

computational time is spent on forming and factorising the small local systems, these

could be distributed over many cores, with the calculation occurring in parallel.

Similarly, the sparse global matrix system (formed from the reconstruction of the

centrepoint solution of each local system) could be solved using a standard direct sparse

solver that has been explicitly developed for parallel computation, i.e. MUMPS [159].

The solution of the sparse global system only requires double precision, unlike the local

systems (see [115]), and hence could make use of these standardised solvers that have

been developed specifically for parallel computation.

The boundary element formulation makes use of a convergent series approach to reduce

the computation down from a cubic scaling (i.e. solution time ∝ N3) as in standard

LU solvers to a quadratic scaling. The boundary element method when used solely (as

in chapters 2 and 3) can therefore solve large datasets and run for significant periods

of time. However, for very large implementations, the forming of the system (which

takes N2 operations) can bottleneck the solution time. Also, when evaluating domain

field variables (for example the velocity field in the heat transfer formulation), a large

number of domain points Ni can significantly slow down the solution time, requiring

NiN operations.

An alternative fast multipole method (FMM) could be used, to reduce the computational

time to O(N) [160]. Here multipole expansions of the original integral equation are

employed, which effectively decouple the x, y collocation and field points [160]. Quadtree

data cells are employed to cluster over the boundary elements, with the centroids

being used to calculate the integrals on the locally expanded points. With appropriate

translations, the original integral for a collocation point can then be calculated using



Chapter 7. Conclusions & future work 229

the integrals from the cells. Since the cell moments and integrals are only computed

once, significant computation time is saved since each collocation point can use the same

moments and integrals with simple translations. The FMM requires an iterative matrix

solver (such as GMRES), which can be implemented in parallel on a computing cluster.

Also, since the quadtree data structure already exists in the current formulation, it could

be used for both the RBF-FC method and the FMM here.

With the O(N) scaling of the FMM, the solution time of the boundary element method

could be significantly reduced and scaled to many cores (see for example [161]). The

domain evaluation of the field variables from the BEM also use a significant amount

of CPU time, and can sometimes bottleneck the solution (as in chapters 5 and 6 when

evaluating the homogeneous pressure gradient). The FMM could significantly speed up

the evaluation of domain field variables, which when implemented over several cores

could dramatically reduce the overall time spent evaluating domain field variables.

Parallel implementation of both the BEM and RBF-FC method as described above could

significantly increase the problem sizes that could be analysed. This would, for example,

allow asymmetric problems to be considered in chapters 5 and 6, which could illustrate

the effects of an inhomogeneous mobility on multiple finger modes simultaneously.

7.2.2 Interface capturing

The current boundary element method explicitly tracks the interface with a cubic

B-spline representation. The interface has to be updated at each time step and re-meshed

to maintain a consistent nodal arrangement, which can be difficult when the mesh is

highly deformed or breaking/coalescence occurs. The boundary element method is very

effective for the potential problems here, where there is a known fundamental solution.

However, for more complex problems this is not always the case, meaning interface

tracking is not always possible.

The RBF-FC method could be adapted for use in an interface capture scheme with

level set or volume of fluid method implementations. Here, an indicator function is

used to represent the interface in a continuous fashion, with a single value (usually 0.5

for VOF, or 0 for level set methods) representing the explicit interface. The indicator

function is updated at each time step through the solution of an advection equation
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(similar to that solved in the Gaussian advection problem in chapter 4). Since the

function is continuous, it is easier to represent interfaces without complex re-meshing,

and breaking/coalescence events are much easier to model. Also, the underlying PDE

governing the advection velocity can be arbitrarily complex since there is no dependence

on the existence of a fundamental solution (as in the BEM).

The RBF-FC method has proved very effective at solving pure advection (infinite Peclet

number) problems in chapter 4, and with the contour extraction method could be used

effectively to capture the interface in a level set or volume of fluid approach. Although

global RBF implementations for interface capturing have been shown to be effective

[84], local implementations could alleviate dataset size and ill-conditioning limitations.

The RBF-FC method could then be used as a single tool for moving interface problems,

solving both species transport and the interface advection, enabling the solution to more

general moving interface problems with a variety of underlying PDEs, such as the Stefan

problem or dendritic solidification.

7.2.3 Marangoni & other temperature effects

A natural extension to the problems addressed in chapter 6 are the inclusion of

Marangoni effects and thermocapillarity. In [162] thermocapillarity was included in

the potential flow model, using the temperature field to vary the surface tension around

the interface in a point-wise manner. This significantly altered the interfacial evolution,

with changes in the surface tension causing similar effects to point-wise changes in the

plate separation b(x). This used a simple single-zone model for the heat transfer which

could be improved using the multi-zone formulation in this thesis. However, to include

the full surface tension variation effects, the tangential derivative of the surface tension

should induce movement, as in the Marangoni instability [144, 145]. The surface tension

therefore requires a shear stress matching condition on the interface, i.e.:

σ1
ij(ξ)sinj − σ2

ij(ξ)sinj = −∂γ(ξ)

∂s
(7.1)

Where, σl(ξ) represents the stress tensor from region l at the interface, and γ(ξ) is the

surface tension. s is the tangential vector along the interface and ∂/∂s represents the

tangential derivative along the interface. The normal stress balance must also be met
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at the interface:

σ1
ij(ξ)ninj − σ2

ij(ξ)ninj = γ(ξ)k(ξ) (7.2)

Here, k is the interface curvature (both in and out of plane). The stress tensor has

Cartesian components given by:

σij(x) = −P (x)δij + µ

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)
(7.3)

In equation (7.3) P is the pressure, ui the fluid velocity and δij the Kronecker delta

function. As well as dynamic matching conditions, kinematic conditions are also

required, enforcing continuity of normal and tangential velocity:

u1
ini = u2

ini (7.4)

u1
i si = u2

i si (7.5)

In order to incorporate the stress balance and kinematic matching conditions into the

mathematical formulation, a Stokes based model must now be employed rather than the

potential flow model from before. The stokes model takes the form:

µl
∂2uli(x)

∂xj∂xj
=
∂P l(x)

∂xi
x ∈ Ωl, l = 1, 2 (7.6)

∂ui(x)

∂xi
= 0 (7.7)

The 3D stokes model with corresponding stress matching conditions (equation 7.1 and

7.2) at the interface, and suitable inlet and far field boundary conditions represents

a closed second-kind boundary value problem that can be solved with a variety of

numerical methods. With the calculated velocity, a quasi-static approach can be used

to calculate the movement of the interface, equating the normal displacement of the

interface in time to the normal interface fluid velocity.

To solve the above problem, a boundary integral approach could be used in a similar

fashion to that developed for the potential flow problem. The Stokes velocity has the

following Green’s integral representation at a point x in a closed domain [29]:

c(x)ui(x)−
∫
s
Kij(x,y)dSy +

∫
s
uji (x,y)fj = 0 (7.8)
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The constant c varies depending on the position of the source point (c = 1/2 when on

the interface). The surface tractions fi are given by fi = σijnj . The kernels in the above

equation are given by the fundamental solutions to the Stokes equations; the stokeslett

and stresslet:

uji (x,y) = − 1

8π

[(
δij
r

)
+

(xi − yi)(xj − yj)
R3

]
(7.9)

Kij(x,y) = − 3

4π

(xi − yi)(xj − yj)(xk − yk)nk(y)

R5
(7.10)

R is the distance between a collocation point x and field point y. The Green’s

representation for the Stokes velocity can be projected in the normal and tangential

direction at the interface, in a similar manner as in [163], in which they use the

formulation to apply a slip boundary condition. Applying the normal and tangential

stress matching conditions at the interface as well as the kinematic condition (in a similar

way to chapter 2), two integral equations could be formed for the solution of the Stokes

problem. The numerical solution of the coupled system of equations would allow the

velocity to be calculated everywhere in the 3D domain.

An alternative approach to resolve the shear and normal stress at the interface is through

the use of a depth-averaged Brinkman model [164, 165]. In this approach, the same

averaging across the cell separation is done as in chapter 2, but 2nd order terms (δ2) are

kept in the formulation. This results in the 2D Brinkman system of equations for the

average velocity ui:

µl
∂2uli(x)

∂xj∂xj
+

12µl

b2
uli(x) =

∂P l(x)

∂xi
x ∈ Ωl, l = 1, 2 (7.11)

∂ui(x)

∂xi
= 0 (7.12)

Here, the system behaves as the Stokes system when the permeability (proportional to

b2) is high, and the Darcy system when the permeability is low. A boundary integral

formulation can be used in a similar fashion to the Stokes system above, with changes in

the fundamental solution to reproduce the specific behaviour of the Brinkman solution

[166]. The stress and kinematic conditions at the interface would be identical to those in

the Stokes problem. It is worth noting that the singularities in the Stokes and Brinkman

boundary integral equations would be of no greater order than those present in the
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potential flow integral equation in this thesis (hypersingular), meaning similar evaluation

techniques could be readily employed.

Brinkman flow has been applied to several Hele-Shaw problems, showing considerable

agreement with the 3D Stokes solution when considering Marangoni type flows [165].

Using a Brinkman approach to the problems considered in this thesis would allow

Marangoni instabilities to also be explored alongside viscous instabilities. These two

interfacial instabilities can occur in parallel in many physical situations, especially

CO2-brine displacements where the temperature at the interface between the two fluids

could vary quite significantly. The temperature field could be evaluated with the heat

transfer model in chapter 6, in which the RBF-FC method could be used to calculate

the point-wise and tangential derivatives of the temperature/surface tension. The

full numerical simulation could provide insight into the long term interaction between

Marangoni and viscous instabilities, and further understanding in the governing fingering

mechanisms.

The Brinkman and Stokes flow models could also be used to evaluate the contribution of

the tangential stress when considering uniform surface tension flows without temperature

effects. The potential flow model used in this work does not evaluate the contribution

of viscous stresses, but at larger values of δ (approaching the high wavenumber limit)

and Ca, viscous stresses can become the same order of magnitude as the pressure and

the potential flow approximation may break down [167]. Recently, work from [167]

has shown that a linear stability analysis using a Brinkman model for the flow in radial

viscous fingering can provide a better agreement with experimental results for predicting

the maximum wave number criteria at high capillary numbers. Although the limit for

small capillary numbers agrees well with both potential and viscous potential models,

investigating the non-linear stages of finger interaction using the Brinkman model would

be a fundamentally important study. [167] state that a numerical simulation may provide

a useful tool for analysing the full non-linear problem, which could be tackled in the

way presented above.
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