
Preprint (accepted version)

To appear in IEEE Communications Magazine
http://www.comsoc.org/commag/

Until published, please cite as:

N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo,
D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tüxen, and F. Weinrank. “NEAT: A Platform-
and Protocol-Independent Internet Transport API”. IEEE Communications Magazine, accepted
for publication, March 2017.

c© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/84146962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 2

NEAT: A Platform- and Protocol-Independent
Internet Transport API

Naeem Khademi, David Ros, Michael Welzl, Zdravko Bozakov, Anna Brunstrom, Gorry Fairhurst, Karl-Johan
Grinnemo, David Hayes, Per Hurtig, Tom Jones, Simone Mangiante, Michael Tüxen, and Felix Weinrank

Abstract—The sockets Applications Programming Interface
(API) has become the standard way that applications access the
transport services offered by the Internet Protocol stack. This
paper presents NEAT, a user-space library that can provide an
alternate transport API. NEAT allows applications to request the
service they need using a new design that is agnostic to the specific
choice of transport protocol underneath. This not only allows
applications to take advantage of common protocol machinery,
but also eases introduction of new network mechanisms and
transport protocols. The paper describes the components of the
NEAT library and illustrates the important benefits that can be
gained from this new approach. NEAT is a software platform for
developing advanced network applications that was designed in
accordance with the standardization efforts on Transport Services
(TAPS) in the Internet Engineering Task Force (IETF), but its
features exceed the envisioned functionality of a TAPS system.

I. INTRODUCTION

For more than three decades, the Internet’s transport layer
has essentially supported just two protocols and the original
design of the sockets API offered only two Transport Services
to applications. One service provided stream-oriented in-order
reliable delivery, manifested in TCP, and the other a message-
based unordered unreliable delivery, manifested in UDP.

Today, more than three decades later, these are the only two
transport protocols commonly offered by operating systems
to applications. UDP-based applications are used for a wide
variety of datagram services from service discovery to inter-
active multimedia, while TCP became the dominant protocol
for Internet services from web browsing to file sharing and
video content delivery. While their success has often been
attributed to the robustness of these protocols, during the
last decades new service requirements have emerged that are
beyond what TCP can deliver or UDP can offer—examples
include: an interactive multimedia application may prefer to
prioritize low latency over strictly reliable delivery of data, but
could use partially-reliable delivery to improve quality while
ensuring timeliness, or an application may be designed to take

Naeem Khademi and Michael Welzl are with the Department of Informatics,
University of Oslo, Norway. E-mail: {naeemk, michawe}@ifi.uio.no.

David Ros and David Hayes are with Simula Research Laboratory, Norway.
E-mail: {dros, davidh}@simula.no.

Zdravko Bozakov and Simone Mangiante are with Dell EMC, Ireland. E-
mail: {Zdravko.Bozakov, Simone.Mangiante}@dell.com.

Anna Brunstrom, Karl-Johan Grinnemo and Per Hurtig are with Karl-
stad University, Sweden. E-mail: {anna.brunstrom, karl-johan.grinnemo,
per.hurtig}@kau.se.

Gorry Fairhurst and Tom Jones are with the University of Aberdeen,
Aberdeen, United Kingdom. E-mail: {tom, gorry}@erg.abdn.ac.uk.

Michael Tüxen and Felix Weinrank are with Münster University of Applied
Sciences, Germany. E-mail: {tuexen, weinrank}@fh-muenster.de.

advantage of multihoming when this is available. UDP has
also emerged as a substrate upon which user-space transport
protocols are being developed—many customized for specific
applications (e.g., the QUIC protocol), where much effort can
be expended re-implementing common transport functions.

A handful of protocols have been proposed to provide
Transport Services beyond those of TCP and UDP; most
notably, SCTP, DCCP and UDP-Lite. However none of these
have seen widespread use or universal deployment. The reason
behind this is often attributed to ossification of the Internet’s
transport layer, where further evolution has become close to
impossible. This has two major aspects:

• Inflexibility of the current socket API: Application
programmers need to specify transport protocol-specific
configurations to request a desired service. This binding
to protocols inevitably requires programmers to recode
their applications to take advantage of any new transport
protocol. It also introduces complexity when there is a
need to customize for different network scenarios, and
choose appropriate transport protocol-specific parameters.

• Deployment vicious circle: New protocols and mech-
anisms cannot be expected to work in unmodified net-
works. Some equipment may need to be reconfigured,
updated or replaced to deploy a new protocol. Developers
seeking to use new protocols simply find they cannot
be relied upon to work across the Internet. Because
the current socket API requires application developers
to specifically choose a certain protocol, they therefore
tend to avoid using a protocol other than TCP or UDP,
knowing that any others are likely to be unsuccessful for
many network paths. This chicken-and-egg situation has
made it hard for unused transport protocols to become
deployed in the Internet—even if they would provide a
better service to some applications.

In this paper, we introduce the NEAT Library. This is
a software library built above the socket API to provide
networking applications with a new API offering platform-
and protocol-independent access to Transport Services. NEAT
is, to the best of our knowledge, the first prototype implemen-
tation of IETF standardization efforts on Transport Services
(TAPS), which we will discuss in Section V. NEAT and
its related standardization efforts in TAPS can re-enable the
evolution of the Internet’s transport layer because they break
the deployment vicious circle; NEAT’s flexible, customizable
API makes it easy to define and use novel services on top of
the socket API, seamlessly leveraging new transport protocols



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 3

Application

NEAT User API

NEAT User Module

Policy

Policy 
Manager

Policy 
Information 

Base

Characteristics 
Information 

Base

Selection Framework 

Transport Signaling & 
handover

...QUIC SCTP new transport

User-space transport API

TCPUDP SCTP new transport...

USER

KERNEL

IPv4 / IPv6

Kernel-level transport API

Po
lic

y 
in

te
rf

ac
e

D
ia

gn
os

tic
s 

&
 

st
at

is
tic

s 
in

te
rf

ac
e

Fig. 1. The architecture of the NEAT System.

as they become available. This, in turn, may create a shift
in the traffic pattern seen by vendors and administrators of
middleboxes that could at some point lead them to support
such traffic. Section IV presents several examples of benefits
that NEAT offers to applications.

II. BACKGROUND

TCP and UDP are a part of the kernel of almost all
operating systems and are also supported by nearly all mid-
dleboxes. During its lifetime, TCP has been substantially
improved. However, the evolution of TCP has had to deal with
constraints. Changes to packet format have to consider that
middleboxes might block or limit communication. Therefore,
a fallback mechanism to the old packet format has become a
part of such protocol extensions. New protocol mechanisms
(e.g., congestion control or loss recovery mechanisms) mostly
focus on single-sided changes to allow faster deployment—
but the speed of deployment is still limited by the software
development cycle of operating systems.

In addition, having a feature available on an operating sys-
tem does not imply that it is made available to an application
running with user privileges; new features are often disabled
by default and turning them on requires special privileges since
it has host-wide consequences.

Because UDP provides only minimal services (port numbers
and a checksum), it is possible to use it as substrate to im-
plement transport protocols on top of it to introduce features;
this approach has become increasingly common. This leads
to every UDP-based application to some extent needing to
implement the same core set of functions [1]. However, it

also leads to per-application protocol stacks, where transport
protocols cannot easily be moved between applications (and
making this possible is often not in the interest of the applica-
tion developer). Developing an efficient transport protocol is
a difficult task which requires a number of features to be re-
implemented again and again. UDP-based transport protocols
have also done nothing to fix the general architectural problem:
the socket API’s protocol binding remains, typically with a
choice between only TCP and UDP.

Specific applications can require services not provided by
TCP. One example is the transport of signaling messages in
telephony signaling networks. This is used to transfer mostly
small messages and requires a high level of fault tolerance.
When a protocol stack for this application was developed,
a new transport protocol, SCTP [2], was created to fulfill
these specific requirements. It was possible to deploy SCTP in
these networks because there were no middleboxes, and kernel
implementations for the operating systems used in telephony
signaling networks were developed.

Currently, the IETF and the World Wide Web Consor-
tium (W3C) are developing WebRTC, a technology for
real-time multimedia communication directly between web
browsers. Non-media communication using SCTP is also
supported; to facilitate deployment across arbitrary Internet
paths, SCTP runs over UDP. Google has developed QUIC,
a UDP-based transport protocol with features including fast
connection setup, cross-layer optimized security, and a modern
congestion control and loss recovery mechanism. If QUIC fails
to traverse a middlebox, the web browser can fall back to using
TCP.



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 4

1. Request to open flow & pass application requirements

2. Query PM about feasible transport candidates based
on destination domain name

3. PM determines available transport candidates that fulfil
policy (PIB) and cached information (CIB)

4. Return ranked list of feasible transport candidates as
pre-filter for address resolution

5. Resolve addresses

6. Query PM about feasible transport candidates for
resolved destination address

7. PM builds candidates, assigning priorities based on
PIB/CIB matches 

8. Return ranked list of feasible transport candidates for
flow establishment

9. Do Happy Eyeballs with candidates, according to
specified priorities

10. Return handle to selected transport solution

11. Cache results from Happy Eyeballs in the CIB

Policy

Application

NEAT User API

Policy Manager

CIB

PIB

FrameworkSelection

1

1

2

3

3

4

5

6

7

8

9

11

11

10

10

7

Fig. 2. Simplified workflow showing how NEAT components interact when opening a flow.

By moving a transport protocol from the operating system
to the application (e.g., WebRTC and QUIC integrated in web
browsers), the release cycle can be substantially shortened,
the implementation becomes independent from the operating
system, and the protocol can be tailored to the specific
application. Using UDP encapsulation is the only option to
not using TCP and be able to traverse middleboxes.

This enables a larger variety of transport protocols to co-
exist and change over time, but does not help with the
issue of per-application protocol stacks mentioned before. An
application programmer has to add complexity to benefit from
advanced features in their application; this requires utilizing
different APIs, figuring out which protocols are supported by
the remote end-points, selecting protocol mechanisms, and
providing fallback mechanisms when these happen to not work
across the current network path. None of these are specific to
a particular transport protocol, but are related to the need for
the programmer to work with a variety of transport protocols.
This general problem could be addressed by defining a new
transport system, as outlined next.

III. RE-ENABLING EVOLUTION: INTRODUCING NEAT

As discussed above, using transport services beyond TCP
and UDP today puts a high burden on the application de-
veloper. The NEAT Library addresses this problem by pro-
viding application developers with one enhanced API that
is transport-protocol independent, with the library providing
support for selecting the best available transport option at
run-time and handling fallback between transport protocols
as needed. Running as a user-space library, NEAT can make
use of transports running both in user space and in the kernel,
all transparent to the applications. Protocols like SCTP are

already supported over many paths, but they cannot be easily
used by application programmers unless they are supported
over all paths. NEAT changes this by placing functions such
as selecting a transport and handling fallback below the API.
NEAT allows such functions to evolve with the network, rather
than be bound to specific applications.

Figure 1 provides a schematic view of the NEAT architec-
ture. Applications employ the NEAT User API to access trans-
port services. This API is located in the NEAT User Module,
which is the core of NEAT and comprises components that
together deliver services tailored to application requirements
at run-time. The components in the module are grouped in
five categories: Framework, Policy, Selection, Transport, and
Signaling & Handover.

Framework components provide basic functionality required
to use NEAT. They define the structure of the NEAT User API
and implement core library mechanisms. Applications provide
information about their requirements for a desired transport
service via this API.

Policy components comprise the Policy Information
Base (PIB), the Characteristics Information Base (CIB), and
the Policy Manager (PM). The function of the PM is to
generate a ranked list of connection candidates that fulfill
the application requirements while taking system and network
constraints into account and adhering to configured policies.
All policy components operate on so-called NEAT Properties,
which express requirements and characteristics throughout the
NEAT System. Each property is a key-value tuple with addi-
tional metadata indicating the priority (mandatory or optional)
and weight of the associated attribute.

Policies and profiles—stored in the PIB—extend and mod-
ify the property set associated with each connection candidate.



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 5

In addition, the CIB repository maintains information about
available interfaces, supported protocols towards previously-
accessed destination endpoints, network properties and cur-
rent/previous connections between endpoints. The content of
the CIB is continuously updated by local and external CIB
sources.

Selection components choose an appropriate transport solu-
tion. The additional information provided by the NEAT User
API enables the NEAT Library to move beyond the constraints
of the traditional socket API, making the stack aware of what is
actually desired or required by the application. On the basis of
both the information provided by the NEAT User API and the
PM, candidate transport solutions are identified. The candidate
solutions are then tested by the Selection components, and the
one deemed most appropriate is then used.

Transport components are responsible for providing func-
tions to instantiate a transport service for a particular traffic
flow. They provide a set of transport protocols and other
necessary components to realize a transport service. While
the choice of transport protocols is handled by the Selection
components, the Transport components are responsible for
configuring and managing the selected transport protocols.

Signaling & Handover components can provide advisory
signaling to complement the functions of the Transport com-
ponents. This could include communication with middleboxes,
support for handover, failover and other mechanisms.

Figure 2 illustrates a simplified workflow, showing how the
NEAT components interact when an application initiates a new
flow. As follows from the above description, NEAT has an
evolvable architecture that opens up for the introduction of
new transport services and can enable interaction with network
devices to improve such services. NEAT also enables the
incremental introduction of new transport protocols, both in
the kernel and in user space, as the API is independent from
the underlying transport protocol.

IV. BENEFITS OF NEAT

Next, we present four examples of key benefits of using the
NEAT Library. First, NEAT provides an API that is simple to
use. This allows existing applications to be easily ported to
the NEAT Library, simplifying network communication and
reducing code complexity.

NEAT also provides automatic fallback using a Happy
Eyeballs (HE) mechanism. HE is a generic term for algorithms
that test for end-to-end support of a protocol X simply by
trying to use X, then falling back to a default choice Y
known to work if X is found to not work (e.g., after a
suitable timeout). This added functionality is lightweight and
has negligible cost compared to other communication tasks.
It allows applications to take advantage of the best available
transport solution and in turn enables transport innovation
(e.g., applications do not need to be recoded to use a new
transport feature or protocol that becomes available).

NEAT not only facilitates evolution of the transport pro-
tocols and introduction of new transport mechanisms, it can
also help enable innovation at the network layer. The higher-
level of abstraction offered by the NEAT User API eases

the path to utilizing Quality of Service (QoS) support for
UDP-based applications, and could be used to access other
network services should they become available (e.g., selec-
tion of the most cost-effective or secure path utilizing IPv6
provisioning-domain information). Applications and networks
can also leverage the flexible control provided by the Policy
components, for example to provide a generic interface for
exchanging information between external SDN controllers and
NEAT-enabled applications.

A. Porting applications to NEAT

The NEAT User API offers a uniform way to access
networking functionality, independent from the underlying
network protocol or operating system. Many common network
programming tasks like address resolution, buffer manage-
ment, encryption, connection establishment and handling are
built into the NEAT Library and can be used by any application
that uses NEAT.

Developers write applications using the asynchronous
and non-blocking NEAT User API, implemented using the
libuv [3] library which provides asynchronous I/O across
multiple-platforms.

As shown in Listing 1, users can request the services
that they expect from the network (e.g. low latency, reliable
delivery, a specific TCP congestion control algorithm) by
providing an optional set of properties to control the behavior
of the library.

static neat_error_code
on_connected(struct neat_flow_operations *ops)
{
// set callbacks to write and read data
ops->on_writable = on_writable;
ops->on_all_written = on_all_written;
ops->on_readable = on_readable;
neat_set_operations(ops->ctx, ops->flow, ops);
return NEAT_OK;
}

int
main(int argc, char *argv[])
{
// initialization of basic NEAT structures
struct neat_ctx *ctx;
struct neat_flow *flow;
struct neat_flow_operations ops;
ctx = neat_init_ctx();
flow = neat_new_flow(ctx);
memset(&ops, 0, sizeof(ops));

// callback when connection is established
ops.on_connected = on_connected;
neat_set_operations(ctx, flow, &ops);

// optional user requirements in JSON format
static char *properties = "{\"transport\":[\"SCTP\", \"TCP\"]}";
neat_set_property(ctx, flow, properties);

// connect
if (neat_open(ctx, flow, "127.0.0.1", 5000, NULL, 0)) {
fprintf(stderr, "neat_open failed\n");
return EXIT_FAILURE;
}

// start libuv loop
neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

neat_free_ctx(ctx);

return EXIT_SUCCESS;
}

Listing 1. Code example from a simple client using the NEAT API.

The NEAT Library then uses a set of internal components
to establish a connection over the network. To make an



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 6

appropriate selection, the Policy Manager maps user properties
to policies and computes a set of candidate transports that can
satisfy the request. NEAT also can utilize policy information
directly set by the user, system administrator or developer.

Connections to a peer endpoint are made by creating a
new flow, which is a bidirectional link between two endpoints
similar to a socket in the traditional Berkeley Socket API but
not strictly tied to an underlying transport protocol.

The NEAT API executes callbacks in the application when
an event from the underlying transport happens, creating a
more natural and less error-prone way of network program-
ming than with the traditional socket API. The three most
important callbacks in the NEAT API are on_connected,
called once the flow has connected to a remote endpoint;
on_readable and on_writable, called once data may
be written to or read from the flow.

Our experience with NEAT shows a reduction of the code
size by ≈ 20% for each application, as the library streamlines
a number of connection establishment steps. For example, the
single function call neat_open requests name resolution and
all other functions required before communication can start,
hiding complex boilerplate code. Ported applications remain
fully interoperable with regular TCP/IP-based implementa-
tions, while being able to take advantage of NEAT functions.
Besides, they can benefit from support for alternative trans-
ports, when available, relieving programmers from dealing
with fallbacks between protocols. Finally, a traditional socket-
based shim layer has been implemented on top of NEAT to
allow legacy applications to make use of NEAT functionalities
through policies without requiring direct porting to the NEAT
API.

B. Happy Eyeballs: A Lightweight Transport Selection Mech-
anism

Selection components employ a HE mechanism to enable
a source host to determine whether a transport protocol is
supported along the current network path. This allows appli-
cations to benefit from advances in transports that may be
only partially deployed in the Internet. The HE mechanism
used by NEAT is similar to that introduced to facilitate IPv6
adoption [4], but works at the transport layer to select one
of a set of connection-oriented transport solutions. The Selec-
tion components receive a ranked list of potential candidates
generated by the PM, where a higher ranking indicates a
better match with application and policy requirements. The
HE mechanism then concurrently tries each transport solution
from the list, delaying initiation of lower-priority transport
solutions.

Figure 3 shows the HE mechanism in a scenario where the
best transport to the destination is unknown and current policy
dictates that the HE process is used to select between TCP
and SCTP, but preferring SCTP. The initiation of the TCP
connection is delayed for a time interval governed by policy,
specifying a difference in priority between candidate protocols.
If the SCTP connection does not complete within the time
interval, a TCP connection is also started. The first transport
to complete a connection is selected and becomes the transport

App. NEAT Server

Open

PM builds
candidate list
(see 2-8 Fig. 2)

HE_T STCP
Open SCTP

SCTP INIT

TCP
Open TCP

SCTP INIT+ACK

TCP SYN

TCP SYN+ACK
SCTP success SCTP COOKIE-ECHO

Transport handle

TCP success

TCP ACK
Cache
Results

close TCP

TCP FIN

Fig. 3. Message Sequence Chart (MSC) illustrating the NEAT Happy Eyeballs
(HE) transport selection process when selecting between TCP and SCTP,
SCTP preferred.

of choice. Once connectivity is established, other methods are
abandoned, and their connections closed.

To avoid wasting network resources by routinely attempting
concurrent connections, HE instructs the Policy components to
cache the outcome of each selection result in the CIB for a
configurable amount of time. After expiry of the time, the
selection is removed from the cache, re-enabling HE.

Consider the scenario in Figure 3. Attempting selection
when there is no existing cache entry requires extra resources,
potentially resulting in opening connections for each candidate
transport protocol. In this example, SCTP completes first and
the TCP connection is closed having sent no data. With typical
web traffic and worst-case packet sizes, byte overhead is as
small as ≈ 1%. For a cache hit rate of 80%, this reduces further
to ≈ 0.2%. A detailed evaluation of the impact of HE in terms
of memory and CPU utilization can be found in [5], where it
is shown that CPU costs are relatively small (especially when
considering the cost of TLS encryption), and that HE has only
a minor impact on memory consumption.

C. Deployable QoS with NEAT
Network QoS is often used for traffic engineering, but few

applications have managed to exploit this technology beyond
a controlled network environment. One major obstacle is the
lack of a consistent high-level API.

There have been attempts to add methods that directly
associate QoS with IP traffic (e.g., [6], [7]), but they have seen
little to no adoption. A key challenge is how to express the
service requirements, while still enabling policy to influence
choice and providing flexibility when the network is unable to
directly satisfy the requirements.



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 7

neat-streamer

GST

Video in

Video out

Decode

Encode
RTP

Application code

Application 
state NEAT flow

NEAT User Module

Se
le

ct
io

n
Po

lic
y

Tr
an

sp
or

t

Fr
am

ew
or

k

N
EA

T 
U

se
r A

PI

neat-streamer peer
DSCP = 0 (BE)

DSCP = 46 (EF)

Fig. 4. Example of neat-streamer using QoS fallback with NEAT. The application sets up the media pipeline and uses NEAT to transfer data across the
network, according to the requested service. The NEAT Library could try to send UDP datagrams with a DSCP set to High Priority Expedited Forwarding
(EF). A timer triggers the NEAT Library to query the application status, which then reveals the application failed to use this DSCP, so NEAT can now try
the next DSCP value, Default (BE). When the timer again triggers, the application reports success and this code point continues to be used.

The NEAT API can allow applications to specify QoS
requirements. This can, for example, utilize policy information
to drive an appropriate Differentiated Service Code Point
(DSCP). The finally chosen DSCP can be based on both static
policy and dynamic information collected from connections
using NEAT.

The NEAT fallback mechanism can be used with any data-
gram services to enable the NEAT Library to select between a
list of candidate datagram transports, network encapsulations
and interfaces. This can assist an application to robustly find
desirable connection parameters for any path by transparently
falling back to alternative services when required (resembling,
but different to the NEAT HE function for connection-oriented
transports).

Neat-streamer [8] is a demo application that utilizes the
NEAT Library for live streaming video over connectionless
transports using the GStreamer (GST) media libraries. GST
is a pipeline-based media system that supports a wide range
of audio and video formats and other functions via a plugin
system.

Figure 4 shows the interactions between NEAT and neat-
streamer running on a network that drops traffic with certain
DSCP values set.

Because neat-streamer uses NEAT, it can indicate the QoS
treatment that it requires for each media flow, and the endpoint
to which it wishes to stream. NEAT provides the required QoS
marking and may determine which transport service to use
(e.g., choosing between UDP-Lite, UDP, or use of Traversal
Using Relays around NAT, TURN), and whether security
functions are required.

NEAT also provides the protocol machinery to update
the selected flow parameters should network connectivity
problems be reported by the application. A timer triggers a
callback function within the application to determine whether
the application believes the network is delivering the service
it requires (in many cases, only the application is aware of the
performance reported by a remote datagram receiver). When
an application reports failure it can allow NEAT to use the
list of candidates, and potentially other information (e.g., held

within the CIB) to search for alternate parameters.

D. SDN Integration

The ability of enabling external sources to query and
augment the state of the Policy Manager is a key design
choice of the NEAT architecture. As a consequence, NEAT-
enabled end-hosts can be seamlessly integrated in centrally
controlled environments, such as Software-Defined Networks
(SDNs). In such environments, logically centralized controllers
aim to maintain a global view of the network and optimize its
utilization. To achieve this, controllers ideally require detailed
and up-to-date knowledge of available resources, in addition to
the requirements and characteristics of deployed applications.
Today, controllers rely on time-consuming and error-prone
heuristics to infer the association between applications, their
requirements, and observed flows.

In this context, the benefit of the NEAT approach is three-
fold. Firstly, NEAT applications may inform controllers di-
rectly about their particular requirements towards the network.
In NEAT, such requirements are defined either explicitly by
application developers, or through suitable system policies.
This strategy can reduce the need for network controllers to
guess how to treat individual flows. Secondly, through the
Policy Manager CIB, NEAT enables controllers to supply
applications with detailed information about the state of paths
available to the host. In the absence of this feedback, metrics
such as available bandwidth or latency may need to be in-
ferred individually by each application through measurements.
Finally, the controller gains the ability to deploy policies at the
host level which influence the transport protocols, interfaces
and associated parameters used in NEAT applications.

All mechanisms necessary for exchanging information be-
tween the controller and NEAT-enabled applications are imple-
mented in Policy components. Specifically, the Policy Interface
is exposed through a REST API, enabling external entities
to push information to the PIB and CIB and query their
contents. As a result, for each flow request created by a NEAT
application, the Policy Manager will utilize the latest policies



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 8

Data center network infrastructure

NEAT-aware 
network 

controller
network information

application requirements

bulk-transfer flows

NEAT-
enabled

applications

NEAT-
enabled

applications

application requirements

network information

NEAT User 
Module

Policy 
interface

NEAT User 
Module

Policy 
interface

low-latency flow

Fig. 5. SDN architecture in which a controller uses the NEAT Library to supply end-hosts with information about the available network resources, and to
collect information about the application requirements.

and network attributes supplied by a controller to select the
most suitable connection option. Similarly, the API allows
the controller to query the CIB to identify the requirements
associated with specific application flows or relevant policies
configured in the PIB.

To demonstrate the feasibility of the aforementioned con-
troller integration we have implemented a scenario comprised
of NEAT-enabled hosts deployed in an OpenFlow SDN net-
work. The aim of the scenario, depicted in Figure 5, is to
enable a controller to steer the handling of bulk traffic flows.
Each host runs a NEAT-enabled data replication application
which provides the estimated flow size as part of the NEAT
API call. We used the OpenDaylight framework to imple-
ment a controller which monitors the network utilization and
calculates a data volume threshold above which flows are
considered as bulk flows. We implemented a northbound API
and periodically publish a policy to the NEAT end hosts. The
policy is triggered when the flow size exceeds the threshold
and forces the flows to be tagged with a predefined DSCP
marking. As a result, flows affected by the policy are routed
through a pre-provisioned network path.

V. STANDARDIZATION

Recognizing the need for the transport layer (socket) in-
terface to become protocol-independent, the IETF chartered a
working group called “Transport Services” (TAPS) in Septem-
ber 2014. A common approach in prior work was to start
analysis based on the needs of applications. Instead, TAPS
used a methodology that started from a survey of the services
offered by available IETF transport protocols [9]. It is currently
documenting the primitives and parameters used to access
features of a subset of these protocols [10] to form a basis for
the design of a protocol-independent API. NEAT developers
have been actively contributing to this initiative based on

experience of using the NEAT API, which shares many of
the goals behind development of TAPS.

The working group is now shortening the list of transport
features. Examples of features include “Specify ECN field”
or “Choice between unordered (potentially faster) or ordered
delivery of messages”. A recent contribution by NEAT devel-
opers [11] recommends against exposing a transport feature
in the API when either choosing or configuring it requires
knowledge specific to the network path or the operating
system, but not the application. A final step will eliminate
features specific to a particular protocol that cannot reasonably
be implemented using a different protocol—such features con-
tradict the main purpose of TAPS, to be protocol-independent.
At the end of this process, this will result in a subset of
transport features that end systems supporting TAPS need to
provide. NEAT implements all services specified in the current
TAPS documents and may therefore be regarded as a prototype
implementation of TAPS.

TAPS is also chartered to define experimental support
mechanisms, for example to select and engage an appropriate
protocol and discover the set of protocols available for a
selected service between a given pair of endpoints, to allow
the operating system to choose between protocols (e.g., HE
and application-level feedback mechanisms). This approach
of breaking the binding between applications and transport
protocols is an important final step for TAPS.

VI. CONCLUSION

The service needs of today’s Internet applications range
well beyond the basic ones provided by TCP and UDP.
Yet, the Internet’s transport layer, as it presents itself to a
developer via the socket API, has remained unchanged. This
has led to per-application (and per-company) developments
in user space, over UDP, such as QUIC for Google Chrome.
While these new UDP-based transport protocols have recently



IEEE COMMUNICATIONS MAGAZINE, VOL. X, NO. X, JUNE 2017 9

pushed the transport layer into the spotlight, they are also
only silo solutions which do nothing to solve the architectural
ossification problem: the socket API binds applications to
protocols at design time—therefore, transport protocols cannot
be replaced without changing applications.

In this paper we presented the NEAT Library, which lets
application developers access features of transport protocols
in a simple and uniform way. NEAT helps freeing developers
from platform or protocol dependencies; they do not have to
worry about the specifics of each protocol or operating system;
they also do not need to worry about whether a protocol
works on a given path. Underneath the NEAT User API, new
protocols can seamlessly be inserted, automatically yielding
benefits to the application on top. With NEAT’s clear layer
separation, the Internet’s transport layer can finally evolve
again.

At the time of writing, prototype code for all component
types has been developed for several Unix-like OSs. Besides
neat-streamer, the NEAT development team has ported ex-
ample applications to NEAT for early testing, including the
Nghttp2 [12] web server and client, several smaller appli-
cations like HTTP/HTTPS clients and performance measure-
ment tools; also, a NEAT-supported Firefox implementation
is currently under development by Mozilla. NEAT is an
open-source project that welcomes contributions. Source code,
documentation and implementation status can be found on
GitHub [13].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their useful remarks.

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the author(s).

REFERENCES

[1] L. Eggert and G. Fairhurst, “Unicast UDP Usage Guidelines for
Application Designers,” RFC 5405 (Best Current Practice), Internet
Engineering Task Force, Nov. 2008, accessed on February 23, 2017.
[Online]. Available: http://www.ietf.org/rfc/rfc5405.txt

[2] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), Internet Engineering Task Force, Sep. 2007,
accessed on February 23, 2017. [Online]. Available: http://www.ietf.
org/rfc/rfc4960.txt

[3] libuv — Cross-platform Asynchronous I/O. Accessed on February 23,
2017. [Online]. Available: https://libuv.org/

[4] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-
Stack Hosts,” RFC 6555 (Proposed Standard), Internet Engineering
Task Force, Apr. 2012, accessed on February 23, 2017. [Online].
Available: http://www.ietf.org/rfc/rfc6555.txt

[5] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen,
N. Khademi, and P. Hurtig, “On the Cost of Using Happy Eyeballs
for Transport Protocol Selection,” in Proceedings of the 2016 Applied
Networking Research Workshop (ANRW). Berlin: ACM, Jul. 2016, pp.
45–51.

[6] H. Abbasi, C. Poellabauer, K. Schwan, G. Losik, and R. West,
“A Quality-of-service Enhanced Socket API in GNU/Linux,” in 4th
Real-Time Linux Workshop, 2002, accessed on February 23, 2017.
[Online]. Available: https://www.osadl.org/fileadmin/events/rtlws-2002/
proc/g08_abbasi.pdf

[7] P. Gomes Soares, Y. Yemini, and D. Florissi, “QoSockets: A New Exten-
sion to the Sockets API for End-to-end Application QoS Management,”
Computer Networks, vol. 35, no. 1, pp. 57–76, 2001.

[8] Neat-streamer Video Workload Tool. Accessed on February 23, 2017.
[Online]. Available: https://github.com/uoaerg/neat-streamer

[9] G. Fairhurst, B. Trammell, and M. Kühlewind, “Services provided by
IETF transport protocols and congestion control mechanisms,” Internet
Engineering Task Force, Internet-Draft draft-ietf-taps-transports-11,
Sep. 2016, work in Progress. Accessed on February 23, 2017. [Online].
Available: https://tools.ietf.org/html/draft-ietf-taps-transports-11

[10] M. Welzl, M. Tüxen, and N. Khademi, “On the Usage of Transport
Service Features Provided by IETF Transport Protocols,” Internet En-
gineering Task Force, Internet-Draft draft-ietf-taps-transports-usage-01,
Jul. 2016, work in Progress. Accessed on February 23, 2017. [Online].
Available: https://tools.ietf.org/html/draft-ietf-taps-transports-usage-01

[11] S. Gjessing and M. Welzl, “A Minimal Set of Transport Services
for TAPS Systems,” Internet Engineering Task Force, Internet-Draft
draft-gjessing-taps-minset-03, Oct. 2016, work in Progress. Accessed
on February 23, 2017. [Online]. Available: https://tools.ietf.org/html/
draft-gjessing-taps-minset-03

[12] T. Tsujikawa. Nghttp2: HTTP/2 C Library. https://nghttp2.org/. Accessed
on February 23, 2017.

[13] NEAT GitHub public repository. Accessed on February 23, 2017.
[Online]. Available: https://github.com/NEAT-project/neat


