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Abstract: This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator,1

OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of2

Internet of Things (IoT), machine learning and smart home simulation to test and evaluate their3

models. Following a hybrid approach, a OpenSHS combines advantages from both interactive4

and model-based approaches. This approach reduces the time and efforts required to generate5

simulated smart home datasets. We have designed a replication algorithm for extending and6

expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without7

affecting the logical order of the events. The replication provides a solution for generating large8

representative smart home datasets. We have built an extensible library of smart devices that9

facilitates the simulation of current and future smart home environments. Our tool divides the10

dataset generation process into three distinct phases: first design, the researcher designs the initial11

virtual environment by building the home, importing smart devices and creating contexts; second12

simulation, the participant simulates his/her context-specific events; and third aggregation, the13

researcher applies the replication algorithm to generate the final dataset. We conducted a study14

to asses the ease of use of our tool on the System Usability Scale (SUS).15

Keywords: smart home; simulation; internet of things; machine learning; visualisation16

1. Introduction17

With the recent rise of the Internet of Things, analysing data captured from smart homes is18

gaining more research interest. Moreover, developing intelligent Machine Learning techniques that19

are able to provide services to the smart home inhabitants are becoming popular research areas.20

Intelligent services, such as classification and recognition of Activities of Daily Living (ADL)21

and anomaly detection in elderly daily behaviour, require the existence of good datasets that enable22

testing and validation of the results [1–4]. The medical field also recognised the importance of23

analysing ADLs and how these techniques are effective at detecting medical conditions for the24

patients [5]. These research projects require either real or synthetic datasets that are representative25

of the scenarios captured from a smart home. However, the cost to build real smart homes and26

the collection of datasets for such scenarios is expensive and sometimes infeasible to many projects27

[4,6–9]. Moreover, several issues face the researchers before actually building the smart home such28

as finding the optimal placement of the sensors [10], lack of flexibility [9,11], finding appropriate29

participants [4,7], and privacy and ethical issues [12].30
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Even though there exist real smart home datasets [13–15], sometimes they do not meet the needs31

of the conducted research project. Such as, the need to add more sensors or to control the type of the32

generated scenarios. Very few of such datasets record the readings of the sensors in real-time and33

provide a detailed time-stamped field like the ARAS dataset [14]. Moreover, preparing a real dataset34

could be a laborious task and if not done with care, it could lead to producing erroneous output.35

When building real smart home testbeds, there are several challenges facing the preparation36

of real datasets. One challenge is having a robust and continuous capturing mechanism for the37

sensors’ data. Another challenge is following an appropriate annotation method for the inhabitants’38

activities. A number of methodologies are followed to capture the interactions of the inhabitants and39

the smart home. Generally, these methods can be divided into two groups: inhabitants-reported40

methods and device-reported methods [6]. The inhabitants-reported methods could be done41

with logs or questionnaires. The usage of such methods could be problematic and could lead42

to erroneous recordings due to inhabitants’ mistakes [16]. Moreover, annotating streaming data43

in real-time is a process prone to mistakes because of the possibility that the participants might44

forget updating the annotation of current activity. Also, there could be inconsistencies when45

updating the annotations during the transition from one activity to another. If annotation is a46

post processing step and done after the fact, this can lead to inaccurate labelling. Therefore, recent47

research moved to device-reported methods because of the unobtrusive and transparent nature of48

these methods, especially in elderly care research. Examples of device-reported methods are smart49

wearable/stationary devices, and computer vision based solutions.50

(a) A real testbed. (b) A simulated testbed.

Figure 1. The workflow with real and simulated smart homes testbeds.

The existence of a dataset simulation tool overcomes the drawbacks/challenges of generating51

real datasets. When developing Machine Learning models, targeting specific functionalities,52

researchers rely on the existence of good representative datasets. A common practice in Machine53

Learning is to divide the dataset into two parts, training and testing. The model creation starts by54

initialising its parameters and training on a portion of the dataset. Then, the model will be tested on55

another portion of the same dataset and its results will be evaluated. The results of the evaluation56

could reveal the need to redesign the smart home by adding or removing smart devices, or changing57

the scenarios generated, etc. In the case of a real smart home, if the results revealed the need to58

change something, this is usually a costly and infeasible choice to make. Therefore, the researcher59

could only be able to tweak the model parameters as shown in figure 1a. On the other hand, with a60
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simulated smart home, this can be easily done and the researcher can go back and modify the smart61

home design as shown in figure 1b.62

The approaches for the smart home simulation tools can be divided to model-based and63

interactive approaches. The model-based approaches use statistical models to generate datasets while64

the interactive approaches relies on real-time capturing of fine grained activities using an avatar65

controlled by a human/simulated participant. Each approach has its advantages and disadvantages.66

From what we mentioned earlier, it is apparent that the virtual simulation tool should offer far67

greater flexibility and lower cost than conducting an actual and physical smart home simulation [6].68

The recent advances in computer graphics can provide an immersive and semi-realistic experiences69

that could come close to the real experience, such as Virtual Reality (VR) technologies. The simulation70

tool should also be open and easily available to both, the researchers and the test subjects.71

Although there are some research efforts available in the literature for smart home simulation72

tools, they suffer from a number of limitations. The majority of these tools are not available in73

the public domain as an open-source project, or limited to a specific platform. In addition, most74

of the publicly available simulation tools offer lack the flexibility to add and customise new sensors75

or devices.76

When generating datasets, the model-based approaches are capable of generating bigger datasets77

but the granularity of captured interactions are not as fine as the interactive approaches. However,78

the interactive approaches usually take longer time to produce the datasets as they capture the79

interactions in real-time.80

In this paper, we present the architecture and implementation of OpenSHS, a novel smart home81

simulation tool. OpenSHS is a new hybrid, open-source, cross-platform 3D smart home simulator for82

dataset generation. Its significant contribution is that OpenSHS offers an opportunity for researchers83

in the field of Internet of Things (IoT) and Machine Learning to produce and share their smart home84

datasets as well as testing, comparing and evaluating their models objectively. Following a hybrid85

approach, OpenSHS combines advantages from both interactive and model-based approaches. This86

approach reduces the time and efforts required to generate simulated smart home datasets. OpenSHS87

includes an extensible library of smart devices that facilitates the simulation of current and future88

smart home environments. We have designed a replication algorithm for extending and expanding89

a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the90

logical order of the events. The replication provides a solution for generating large representative91

smart home datasets. Moreover, OpenSHS offers a feature to shortening and extending the duration92

of the generated activities.93

The rest of this paper is structured as follows: the following section reviews existing smart94

simulation tools and datasets. Section 3 presents the architecture of OpenSHS and its implementation.95

Section 4 presents a usability study and section 5 presents the advantages of OpenSHS. Followed by96

section 6 which lists the limitations of OpenSHS and the planned future work for this project, the97

paper concludes.98

2. Related Work99

The literature is rich with efforts that focus on generating datasets for smart home applications.100

These efforts can be classified into two main categories, datasets generated either from real smart101

homes testbeds or using smart home simulation tools.102

2.1. Real Smart Home Testbeds103

One of the recent projects for building real smart homes for research purposes was the work104

carried out by the Centre for Advanced Studies in Adaptive Systems (CASAS) [17] where they created105

a toolkit called ‘smart home in a box’ which is easily installed in a home to make it able to provide106

smart services. The components of the toolkit are small and can fit in a single box. The toolkit has107
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been installed in 32 homes to capture the participants interactions. The datasets are publicly available108

online [18].109

The TigerPlace [19] project is an effort to tackle the growing ageing population. Using passive110

sensor networks implemented in 17 apartments within an eldercare establishment. The sensors111

include motion sensors, proximity sensors, pressure sensors and other types. The data collection112

took more than two years for some of the testbeds.113

SmartLab [20] is a smart laboratory devised to conduct experiments in smart living environments114

to assess in the development of independent living technologies. The laboratory has many types of115

sensors such as, pressure, passive infrared (PIR), and contact sensors. The participants interactions116

with SmartLab are captured in an XML-based schema called homeML [21].117

The Ubiquitous Home [22] is a smart home that was built to study context-aware services by118

providing cameras, microphones, pressure sensors, accelerometers, and other sensor technologies.119

The home consists of several rooms equipped with different sensors. To provide contextual120

services to each resident, the Ubiquitous home recognises the resident by providing Radio-Frequency121

Identification (RFID) tags and by utilising the installed cameras.122

PlaceLab [23] is a 1000 sq.ft. smart apartment that has several rooms. The apartment has many123

sensors distributed throughout each room, such as electrical current sensors, humidity sensors, light124

sensors, water flow sensors, etc. Volunteering participant can live in PlaceLab to generate a dataset125

of their interaction and behaviour. The project produced several datasets for different scenarios [24].126

HomeLab [25] is a smart home equipped with 34 cameras distributed around several rooms.127

The project has an observation room that allows the researcher to observe and monitor the conducted128

experiments. HomeLab aims to provide datasets to study human behaviour in smart environments129

and investigate technology acceptance and usability.130

The GatorTech smart home [26] is a programmable and customisable smart home that focuses131

on studying the ability of pervasive computing systems to evolve and adapt for future advances in132

sensors technology.133

2.2. Smart Home Simulation Tools134

Smart home simulation tools can be categorised into two main approaches, according to Synnott135

et al. [6], model-based and interactive approaches.136

2.2.1. Model-Based Approach137

This approach uses pre-defined models of activities to generate synthetic data. These models138

specify the order of events, the probability of their occurrence, and the duration of each activity.139

This approach facilitates the generation of large datasets in a short period of time. However, the140

downside of this approach is that it cannot capture intricate interactions or unexpected accidents that141

are common in real homes. An example of such approach is the work done by Mendez-Vazquez et al.142

[7].143

PerSim 3D [27] is a tool to simulate and model user activities in smart spaces. The aim of this tool144

is to generate realistic datasets for complex scenarios of the inhabitants activities. The tool provides a145

Graphical User Interface (GUI) for visualising the activities in 3D. The researcher can define contexts146

and set ranges of acceptable values for the sensors in the smart home. However, the tool is not147

available freely in the public domain.148

SIMACT [28] is a 3D smart home simulator designed for activity recognition. SIMACT has149

many pre-recorded scenarios that were captured from clinical experiments, which can be used to150

generate datasets for the recognition of ADLs. SIMACT is a 3D open-source and cross-platform151

project developed with Java and uses Java Monkey Engine (JME) [29] as its 3D engine.152

DiaSim [30] is a simulator developed using Java for pervasive computing systems that can deal153

with heterogeneous smart home devices. It has a scenario editor that allows the researcher to build154

the virtual environment to simulate a certain scenario.155
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The Contex-Aware Simulation System (CASS) [31] is another tool that aims at generating context156

information and test context-awareness applications in a virtual smart home. CASS allows the157

researcher to set rules for different contexts. A rule can be, for example, turn the air conditioner if158

a room reaches a specific temperature. The tool is able to detect conflicts between the rules of the159

pre-defined contextual scenarios and determine the best positioning of the sensors. CASS provides a160

2D visualisation GUI for the virtual smart home.161

The Context-Awareness Simulation Toolkit (CAST) [32] is a simulation tool designed to test162

context-awareness applications and provides visualisations of different contexts. The tool generates163

context information from the users in a virtual smart home. CAST was developed with the164

proprietary technology Adobe Flash and is not available in the public domain.165

2.2.2. Interactive Approach166

Contrary to the previous approach, the interactive approach can capture more interesting167

interactions and fine details. This approach relies on having an avatar that can be controlled by a168

researcher, human participant or simulated participant. The avatar moves and interacts with the169

virtual environment which has virtual sensors and/or actuators. The interactions could be done170

passively or actively. One example of passive interactions is having a virtual pressure sensor installed171

on the floor and when the avatar walks on it, the sensor should detect this and emit a signal. Active172

interactions involve actions such as opening a door or turning the light on or off. The disadvantage173

of this approach, however, is that it is a time-consuming approach to generate sufficient datasets as174

all interactions must be captured in real-time.175

Park et al. [33] presented a virtual space simulator that is able to generate inhabitants data for176

classifications problems. In order to model inhabitant activities in 3D, The simulator was built using177

Unity3D [34].178

The intelligent environment simulation (IE Sim) [35] is a tool used to generate simulated datasets179

that captures normal and abnormal ADLs of inhabitants. It allows the researcher to design smart180

homes by providing a 2D graphical top-view of the floor plan. The researcher can add different types181

of sensors such as, a temperature sensors, pressure sensors, etc. Then, using an avatar, the simulation182

can be conducted to capture ADLs. The format of the generated dataset is homeML [21]. Up to the183

knowledge of the authors, IE Sim is not available in the public domain.184

Ariani et al. [36] developed a smart home simulation tool that uses ambient sensors to capture the185

interactions of the inhabitants. The tool has a map editor that allows the researcher to design a floor186

plan for a smart home by drawing shapes on a 2D canvas. Then, the researcher can add ambient187

sensors to the virtual home. The tool can simulate binary motion detectors and binary pressure188

sensors. To simulate the activities and interactions in the smart home, they used the A* pathfinding189

algorithm [37], to simulate the movement of the inhabitants. During the simulation, all interactions190

are sampled at 5 Hz and stored into an XML file.191

UbiREAL [38] is a Java based simulation tool that allows the development of ubiquitous192

applications in a 3D virtual smart space. It allows the researcher to simulate the operations and193

communications of the smart devices at the network level.194

V-PlaceSims [39] is a simulation tool that allows a smart home designer to design a smart home195

from a floor plan. Then, allows multiple users to interact with this environment through a web196

interface. The focus of this tool is the improvement of the designs and management of the smart197

home.198

In addition to the outlined above simulation tools, there are other commercial simulation tools199

targeting the industry such as [40–42].200

Generally, the model-based approach allows the researcher to generate large datasets in short201

simulation time but sacrifices the granularity of capturing realistic interactions. On the other202

hand, the interactive approach captures these realistic interactions but sacrifices the short and quick203
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simulation time and therefore, the generated datasets are usually smaller than the ones generated by204

model-based approach.205

2.3. Analysis206

Synnott et al. [6] identified several challenges that face the smart home simulation research.207

One of the key challenges is that many of the available simulation tools [9,11,31,38,39,43–45] focus208

on testing applications that provide context-awareness and visualisation rather than focusing on209

generating representative datasets. Few of the available tools do focus on generating datasets210

[1,12,46,47]. Another key challenge is to have the flexibility and scalability to add new/customised211

types of smart devices, change their generated output(s), change their positions within the smart212

home, etc. The multiple inhabitants support is also one of the limitations facing the currently available213

tools as this feature is known to be difficult to implement [6].214

The review of available smart home simulation tools reveals that the majority of the reported215

work lacks the openness and availability of the software implementation, which hinders their benefit216

to the wider research community. Moreover, less than half of the reviewed tools (10 out of 23) does217

not support multiple operating systems which can be an issue when working with research teams218

and/or test subjects. Table 1 shows our analysis of the available simulation tools. SIMACT [28]219

is the only open-source and cross-platform simulation tool available, however, the data generation220

approach used in that tool is based on a pre-defined script that the researcher plays back within the221

3D simulation view.222

Apart from the work by [48], this analysis shows that none of the reviewed simulation tools223

follows a hybrid approach i.e. a tool that combines the ability of model-based tools to generate large224

datasets in a reasonable time while keeping the fine-grained interactions that are exhibited by the225

interactive tools.226

Our review shows that fewer simulation tools focus on generating datasets while the majority of227

the reviewed tools focus on visualisation and context-awareness applications.228

Rec229
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Table 1. Analysis of smart home simulation tools.

Tool/author(s) Date Open-source 3D Cross-platform Approach Focus Multi-inhabitants

Park et al. [33] 2015 No Yes Yes Interactive Visualisation No

PerSim 3D [27] 2015 No Yes Yes Model-based Dataset generation No

IE sim extended [48] 2015 No No No Interactive Dataset generation No

IE sim [35] 2014 No No No Interactive Dataset generation No

Kormányos et al. [49] 2013 No No No Model-based Visualisation No

Ariani et al. [36] 2013 No No No Interactive Dataset generation Yes

Fu et al. [11] 2011 No No Yes Interactive Visualisation Yes

Jahromi et al. [50] 2011 No No No Model-based Visualisation No

Buchmayr et al. [1] 2011 No No No Interactive Dataset generation No

SimCon [46] 2010 No Yes Yes Interactive Dataset generation No

YAMAMOTO [43] 2010 No No Not reported Interactive Visualisation No

SIMACT [28] 2010 Yes Yes Yes Model-based Visualisation No

Poland et al. [12] 2009 No Yes Yes Interactive Dataset generation No

ISS [51] 2009 No No No Interactive Visualisation Yes

DiaSim [30] 2009 No No Yes Model-based Visualisation No

V-PlaceSims [39] 2008 No Yes No Interactive Visualisation Yes

Armac et al. [9] 2007 Not reported No Not reported Interactive Visualisation Yes

CASS [31] 2007 No No No Model-based Visualisation Yes

Krzyska et al. [47] 2006 No No Yes Interactive Dataset generation Yes

CAST [32] 2006 No No No Model-based Visualisation No

UbiREAL [38] 2006 No No Yes Interactive Visualisation Yes

TATUS [44] 2005 No Yes Not reported Interactive Visualisation Yes

UbiWise [45] 2002 No Yes Yes Interactive Visualisation Yes

3. OpenSHS Architecture and Implementation230

This paper proposes a new hybrid, open-source, and cross-platform 3D smart home simulation231

tool for dataset generation, OpenSHS [52], which is downloadable from http://www.openshs.org232

under the GPLv2 license [53]. OpenSHS tries to provide a solution to the issues and challenges233

identified by Synnott et al. [6]. OpenSHS follows a hybrid approach, to generate datasets,234

combining the advantages of both model-based and interactive approaches. This section presents the235

architecture of OpenSHS and the technical details of its implementation, which is based on Blender236

[54] and Python. In this section, we will refer to two entities, the researcher and the participant.237

The researcher is responsible for most of the work with OpenSHS. The participant is any person238

volunteering to simulate their own activities.239

Working with OpenSHS can be divided into three main phases: design phase, simulation phase,240

and aggregation phase. The following subsections will describe each phase.241

3.1. Design Phase242

In this phase, as shown in figure 2, the researcher builds the virtual environment, imports the243

smart devices, assign activities’ labels and design the contexts.244

3.1.1. Designing Floor Plan245

The researcher designs the 3D floor plan by using Blender which allows the researcher to easily246

model the house architecture and control different aspect such as the dimensions and the square247

footage. In this step, the number of rooms and the overall architecture of the home is defined248

according to the requirements of the experiment.249

http://www.openshs.org
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3.1.2. Importing Smart Devices250

After the design of the floor plan, the smart devices can be imported into the smart home from the251

smart devices library, offered by OpenSHS. The current version of OpenSHS includes the following252

list of active and passive devices/sensors:253

• Pressure sensors (e.g. activated carpet, bed, couch, etc.),254

• Door sensors,255

• Lock devices,256

• Appliance switches (TV, oven, fridge, etc.),257

• Light controllers.258

The Smart devices library is designed to be a repository of different types of smart devices and259

sensors. This list is extensible as it is programmed with Python. Moreover, the researcher can build a260

customised sensor/device.261

3.1.3. Assigning Activity Labels262

OpenSHS enables the researcher to define unlimited number of activity labels. The researcher263

decides how many labels are needed according to their experiment’s requirements. Figure 4 shows264

a prototype where the researcher identified five labels. Namely, ‘sleep’, ‘eat’, ‘personal’, ‘work’ and265

‘other’. This list of activity labels represents a sample of activities, which the researchers can tailor it266

to their needs.267

3.1.4. Designing Contexts268

After designing the smart home model, the researcher designs the contexts to be simulated. The269

contexts are specific time frames that the researcher is interested to simulate e.g. morning, afternoon,270

evening contexts. For instance, if the researcher aims to simulate the activities that a participant271

performs when he/she comes back from work during a weekday, then the researcher will design a272

context for that time period. Finally, the researcher specifies the initial states of the devices for each273

context.274

Figure 2. The design phase.

3.2. Simulation Phase275

Figure 3 shows the overall architecture of the simulation phase. The researcher starts the tool276

from the OpenSHS interface module which allows the researcher to specify which context to simulate.277

Each context has a default starting date and time and the researcher can adjust the date and time if278

he/she wants. Every context has a default state for the sensors and for the 3D position of the avatar.279

Then, the participant starts simulating his/her ADLs in that context. During the simulation time, the280

sensors’ outputs and the state of different devices are captured and stored in a temporary dataset.281
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OpenSHS adapts a sampling rate of one second by default, which the researcher can re-configure as282

required. Once the participant finishes a simulation, the application control is sent back to the main283

module to start the simulation of another context.284

The simulation phase aims to capture the granularity of the participants’ realistic interactions.285

However, capturing these fine-grained activities in extended periods of time adds a burden on the286

participant(s) and sometimes becomes infeasible. OpenSHS offers a solution that mitigates this issue287

by adapting a fast-forwarding mechanism.288

Figure 3. The simulation phase.

3.2.1. Fast-Forwarding289

OpenSHS allows the participant to control the time span of a certain activity, fast-forwarding. For290

example, if the participant wants to watch the TV for a period of time and does not want to perform291

the whole activity in real-time (since there are no changes in the readings of the home’s sensors), the292

participant can initiate that activity and spawn a dialog to specify how long this activity lasts. This293

feature allows the simulation process to be quick and streamlined. The tool will simply copy and294

repeat the existing state of all sensors and devices during the specified time period. Figure 4 shows295

the activity fast-forwarding dialog during a simulation.296

Figure 4. The activity selection and fast-forwarding dialog.

3.2.2. Activities Labelling297

The researcher is responsible for familiarising the participant with the available activity labels298

to choose from. During a simulation and before transitioning from one activity to another, the299

participant will spawn the activity dialog shown in figure 4 to choose the new activity from the300

available list. To ensure a clean transition from one activity to another, OpenSHS will not commit the301

new label at the exact moment of choosing the new label. Instead, the new label will be committed302

when a sensor changes its state. For example, in figure 6 the transition from the first activity (sleep)303

to the second (personal) is committed to the dataset when the sensor bedroomLight changes its state304

even though the participant did change the label a couple of seconds earlier.305



Version April 13, 2017 submitted to Sensors 10 of 20

3.3. Aggregation Phase306

After performing the simulation by the participants, the researcher can aggregate the307

participants’ generated sample activities i.e. events, in order to produce the final dataset. The results308

of the simulation phase form a pool of sample activities for each context. The aggregation phase aims309

to provide a solution for the generation of large datasets in short simulation time. Hence, this work310

develops an algorithm that replicates the output of the simulation phase by drawing appropriate311

samples for each designated context.312

This feature encapsulates model-based approach advantage with the interactive approach313

adapted by the simulation phase, which allows OpenSHS to combine the advantages of both314

approaches, a hybrid approach.315

Figure 5. The aggregation phase.

3.3.1. Events Replication316

It was clear from the beginning of the development of this project that it is not feasible for a317

participant to sit down and simulate his/her ADLs for a whole day. Moreover, we wanted to capture318

the interactions between the inhabitant and the smart home in real-time. At the same time, we wanted319

the process to be less tedious and streamlined as much as possible. These requirements brought up320

the concept of real-time context simulations. Instead of having the user simulating his/her ADLs for321

long periods, the user simulates only a specific context in real-time. For example, let us assume we322

are interested in an ‘early morning’ context and we want to capture the activities that the inhabitant323

is doing in this time frame, such as, what is usually done in the weekdays compared to the weekends324

in the same context (The ‘early morning’ context). The user will only perform sample simulations of325

different events in real-time. The number of samples simulated, the richer the generated dataset will326

be.327

To gain more insight of how OpenSHS works, we have built a virtual smart home environment328

consisting of a bed room, a living room, a bath room, a kitchen, and an office. Each room is equipped329

with several sensors totalling twenty-nine sensors of different types. The sensors are binary and they330

are either on or off at any given time step.331

The result of performing a context simulation can be illustrated by figure 6. The sample consists332

of three activity labels, namely ‘sleep’, ‘personal’, and ‘other’. Each activity label corresponds to a set333

of sensors’ readings. The sensors’ readings in the previous figure are readings of binary sensors and334

the small circles correspond to an ‘ON-state’ of that sensor.335
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Figure 6. Twenty nine binary sensors’ output and the corresponding activity labels.

Table 2. A set of recorded samples for a certain context.

SAMPLE 1 sleep personal work eat other

SAMPLE 2 sleep personal other

SAMPLE 3 sleep personal other

SAMPLE 4 sleep eat personal other

SAMPLE 5 sleep eat personal other

It is not realistic to aggregate the final dataset by trivially duplicating the contexts samples. There336

is a need for an algorithm that can replicate the recorded samples to generate a larger dataset. We have337

designed a replication algorithm for extending and expanding the recorded samples. A small number338

of simulated events can be extended without affecting their logical order.339

To explain the replication algorithm, it is best illustrated by an example. Table 2 shows a set of340

five samples with their activity labels for a certain context. The first sample has five activities and the341

second sample has three activities and so on. When the researcher aggregates the final dataset, the342

samples of every context are grouped by the number of activities in each sample. So for the previous343

example, sample 1 will be in one group, sample 2 and 3 will be in a second group, and sample 4 and344

5 will be in a third group. Then, a random group will be chosen and from that group, a sample will345

be drawn for each activity. For example, let us take the second group which contains sample 2 and 3.346

The number of activities in this group is three. So, for the first activity we will either pick the ‘sleep’347

activity from sample 2 or the ‘sleep’ activity from sample 3. The same procedure will be done for the348

second and third activities. The output will resemble what is shown in table 3.349
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Table 3. Ten replicated copies based on the samples from table 2.

i Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

1. sample 1 sleep sample 1 personal sample 1 work sample 1 eat sample 1 other

2. sample 4 sleep sample 5 eat sample 5 personal sample 4 other

3. sample 3 sleep sample 3 personal sample 2 other

4. sample 3 sleep sample 3 personal sample 2 other

5. sample 5 sleep sample 4 eat sample 5 personal sample 5 other

6. sample 1 sleep sample 1 personal sample 1 work sample 1 eat sample 1 other

7. sample 2 sleep sample 2 personal sample 2 other

8. sample 5 sleep sample 5 eat sample 5 personal sample 5 other

9. sample 4 sleep sample 4 eat sample 4 personal sample 5 other

10. sample 2 sleep sample 2 personal sample 2 other

The context samples shown in table 2 will produce 25 unique replicated copies. In general, the350

number of unique replicated copies for a single context can be calculated by the equation 1. Let G351

denotes the number of the groups of unique length of activities, and let Sg denotes the number of352

samples for the group g, and let A denotes the number of activities within a sample Sg. The total353

number of unique replicated copiesR is:354

R =
G
∑
g=1
SAg (1)

OpenSHS can modify the original duration of a performed activity by shortening and/or355

expanding it. To preserve the structure of a certain activity, we look for the longest steady and356

unchanged sequence of readings. Then, our algorithm randomly chooses a new duration for this357

sequence. The new modified sequence length can vary between 5% of the original sequence length,358

up to its full length. The researcher can use this feature by passing the variable-activities option359

to the aggregation parameters as will be shown next.360

The researcher can configure a number of parameters to control the generated output such as:361

• days: the number of days to be generated,362

• start-date: specifies the starting date for the dataset,363

• time-margin: the variability of the starting time for the replicated events. For example,364

assuming we have a sample that was recorded at 7:30am and we specified the time margin365

to be 10 minutes. The replicated sample could start any time from 7:25am up to 7:35am,366

• variable-activities: make the duration for each activity variable.367

3.3.2. Dataset Generation368

After running the aggregation algorithm, the researcher can combine all the scenarios, generated369

by different participants, into one final comma separated values (CSV) dataset output. Table 4 shows370

a sample generated dataset.371
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Table 4. A sample of the final dataset output.

timestamp bedTableLamp bed bathroomLight bathroomDoor . . . Activity

2016-04-01 08:00:00 0 1 0 0 . . . sleep

2016-04-01 08:00:01 0 1 0 0 . . . sleep

2016-04-01 08:00:02 0 1 0 0 . . . sleep

2016-04-01 08:00:03 0 1 0 0 . . . sleep

2016-04-01 08:00:04 1 1 0 0 . . . sleep

2016-04-01 08:00:05 1 0 0 0 . . . sleep

2016-04-01 08:00:06 1 0 0 1 . . . personal

2016-04-01 08:00:07 1 0 0 1 . . . personal

2016-04-01 08:00:08 1 0 1 1 . . . personal

2016-04-01 08:00:09 1 0 1 1 . . . personal

2016-04-01 08:00:10 1 0 1 1 . . . personal
...

...
...

...
...

...

The time-margin parameter does add a level of sophistication to the timing of the recorded372

activities. This useful for applications that relies heavily on the time dimension of activities, for373

example, in anomaly detection research.374

3.4. Implementation375

OpenSHS implementation relies on Blender and its game engine. Blender’s game engine is376

programmable by Python.377

3.4.1. Blender378

Blender was chosen to build the majority of the simulation tool and to act as an infrastructure379

for OpenSHS. The reasons for this choice can be summarised as:380

• Open-source: Blender is an open-source 3D modelling and animation software and an actively381

developed project by the open-source community. It allows the user to create 3D models and382

visual effects. The Game Engine component of Blender allows the user to build complex 3D383

interactive games and script them with Python which is an important feature for OpenSHS.384

• Cross-platform: Blender is available for the three major operating systems. Namely,385

GNU/Linux, Microsoft Windows, and Apple macOS. Blender uses OpenGL [55] for its Game386

Engine which is also, a cross-platform 3D technology available for the major operating systems.387

• The Blender Game Engine: Blender’s Game Engine allowed us to add the interactivity to the388

simulations. The physics engine facilitates the simulation of different types of real sensors and389

devices. For example, blender has a ‘Near’ sensor which will only be activated when the 3D390

avatar controlled by the user is physically near other objects in the scene. Therefore, such sensor391

could be used to simulate a proximity sensor easily.392

3.4.2. Python393

The interaction with the simulation tool is done by controlling a 3D avatar that navigates the394

smart home space through a first-person perspective similar to most first-person games. Figure395

7 shows the 3D avatar navigating the living room. Since Blender’s Game Engine uses Python as396

a programming language, we developed all the logic and interactions between the avatar and the397

virtual environment with it. Moreover, all of OpenSHS modules are programmed by Python.398
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Figure 7. Navigating the smart home space through first-person perspective.

4. OpenSHS Usability399

Measuring the usability of a software tool is a difficult and tricky task since it involves subjective400

qualities and depends on the context used. John Brooke [56] defines it as “The general quality of the401

appropriateness to a purpose of any particular artifact”. He developed the widely used System Usability402

Scale (SUS) which is a questionnaire consisting of ten questions that measures various aspects of the403

usability of a system. The score of SUS ranges from 0 to 100.404

To assess OpenSHS usability, we conducted a usability study using SUS. Our sample consists405

of graduate students and researchers interested in smart home research. We carried out multiple406

sessions and in each session we started by introducing OpenSHS and then by presenting its407

functionalities. After that, we answered any questions the participants had in mind. Afterwards,408

we allowed the participants to use OpenSHS and explore its features. Finally, the participants were409

asked to answer few questions, such as how frequently do they use their computer on daily basis and410

whether they play first-person 3D video games or not. Then, the participants were asked to fill the411

SUS questionnaire.412

We carried out two usability studies. One form the perspective of the researchers and the413

other from the perspective of the participants using OpenSHS. The researchers group were asked414

to evaluate OpenSHS usability throughout the three phases (design, simulation, aggregation). The415

participants group were only asked to evaluate the simulation phase.416

For the researchers group, we collected data from 14 researchers, 85.7% were male and 14.3%417

female. The average age of the researchers was 36 (minage = 31, maxage = 43). All of the researchers418

reported that they do use their computers on a daily basis and 93% of them did play 3D first-person419

games. The aspects that the SUS questionnaire investigates can be summarised as:420

1. Frequent use (FU): I think that I would like to use this system frequently.421

2. System complexity (SC): I found the system unnecessarily complex.422

3. Ease of use (EU): I thought the system was easy to use.423

4. Need for support (NS): I think that I would need the support of a technical person to be able to424

use this system.425

5. System’s functions integration (FI): I found the various functions in this system were well426

integrated.427

6. System inconsistencies (SI): I thought there was too much inconsistency in this system.428

7. Learning curve (LC): I would imagine that most people would learn to use this system very429

quickly.430

8. How cumbersome the system is (CU): I found the system very cumbersome to use.431

9. Confidence in the system (CO): I felt very confident using the system.432

10. Need for training before use (NT): I needed to learn a lot of things before I could get going433

with this system.434
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Figure 8 shows the results of our SUS questionnaire for the researchers group. The435

odd-numbered statements contributes positively for the overall score if the participant agrees with436

them (figure 8a). On the other hand, the even-numbered statements contributes negatively if the437

researcher agrees with them (figure 8b). Calculating the score of our sample revealed that the average438

SUS score of OpenSHS is 71.25 out of 100 (scoremin = 40, scoremax = 85).439
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(b) The negative components.

Figure 8. The result of System Usability Scale (SUS) questionnaire for the researchers group.

For the participants group, 31 participants were asked to answer the SUS questionnaire. 77.5%440

were male and 22.5% female and average age of the participants was 27 (minage = 21, maxage = 36).441

97% did play first-person games and all of the participants reported that they use their computers on442

daily basis. Figure 9 shows the participants group results. The SUS score for this group is 72.66 out of443

100 (scoremin = 50, scoremax = 87).444

The usability results for both groups are promising but, at the same time, they indicate that445

there is a room for improvements. Both groups agree that the learning curve (LC) component of446

the questionnaire needs improvement. The results also show the need for support from a technical447

person to use the system.448
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Figure 9. The result of System Usability Scale (SUS) questionnaire for the participants group.
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5. OpenSHS Advantages449

When comparing OpenSHS against the available simulation tools reviewed in Table 1, unlike450

the majority of such tools, our tool is based on Blender and Python which are open-source and451

cross-platform solutions, this offers the following benefits:452

• Improving the quality of the state of the art datasets by allowing the scientific community to453

openly converge on standard datasets for different domains,454

• Easier collaborations between research teams from around the globe,455

• Faster developments and lower entry barriers,456

• Facilitates the objective evaluations and assessments.457

Our tool allows the simulations to be conducted in 3D from a first-person perspective. The only458

open-source tool we could identify in the literature was SIMACT [28]. However, SIMACT does not459

allow the participant to create specialised simulations. Instead, it relies on pre-recorded data captured460

from clinical trials.461

Table 5 shows our analysis and comparison of OpenSHS with the existing simulation tools that462

are focusing on dataset generation. IE sim [35] was extended to use a probabilistic model (Poisson463

distribution) to augment the interactively recorded data by IE sim. Therefore, the extended version464

of IE sim uses a hybrid approach. However, IE sim is a 2D simulator which takes part of the realism465

out of the simulation. This might be a problem when 3D motion data is important to the researcher,466

for example in anomaly detection algorithms, as identified by [48].467

The fast-forwarding feature makes the simulation less cumbersome especially when the468

simulation has long periods of inactivity as in eldercare research. This feature is relevant to interactive469

and hybrid approaches.470

Table 5. Comparing OpenSHS with other smart home simulation tools for dataset generation.

Tool/author(s) Date Open-source 3D Cross-platform Approach Multi-inhabitants Fast-forwarding

OpenSHS 2017 Yes Yes Yes Hybrid Partially Yes

PerSim 3D [27] 2015 No Yes Yes Model-based No Not applicable

IE sim extended [48] 2015 No No No Hybrid No Yes

IE sim [35] 2014 No No No Interactive No No

Ariani et al. [36] 2013 No No No Interactive Yes No

Buchmayr et al. [1] 2011 No No No Interactive No No

SimCon [46] 2010 No Yes Yes Interactive No No

Poland et al. [12] 2009 No Yes Yes Interactive No No

Krzyska et al. [47] 2006 No No Yes Interactive Yes No

The approach that OpenSHS uses to generate datasets can be thought of as a middle ground471

between the model-based and interactive approaches. The replication mechanism that OpenSHS472

adapts, allows for a quick dataset generation, similar to the model-based approaches. Moreover, the473

replications have richer details as the activities are captured in real-time, similar to the interactive474

approaches. OpenSHS’s fast-forwarding mechanism streamlines the performance of the simulation475

and allows the participant to skip in time while conducting a simulation. Overall, the advantages of476

OpenSHS can be summarised as follows:477

1. Accessibility: The underlying technologies used to develop OpenSHS allowed it to work on478

multiple platforms, thus ensuring a better accessibility for the researchers and the participants479

alike.480

2. Flexibility: OpenSHS gives the researchers the flexibility to simulate different scenarios481

according to their needs, by adding and/or removing sensors and smart devices. OpenSHS482

can be easily modified and customised in terms of positioning and changing the behaviour of483

the smart devices in the virtual smart home to meet the needs of a research project.484
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3. Interactivity: Capturing the interactions between the participant and the smart home in485

OpenSHS was done in a real-time fashion which facilitates the generation of richer datasets.486

4. Scalability: Our simulation tool is scalable and easily extensible to add new types of smart487

devices and sensors. OpenSHS has a library of smart devices that we will keep developing and488

updating as new types of smart devices become available.489

5. Reproducibility: By being an open-source project, OpenSHS does have the advantage of490

facilitating reproducibility and allowing research teams to produce datasets to validate other491

research activities.492

6. Future Work493

Although, OpenSHS currently supports the simulation of one smart home inhabitant, however494

multiple inhabitants simulations is partially supported. The current implementation of this feature495

does not allow real-time simulation of multiple inhabitants. Instead, The first inhabitant records496

his/her activities and then the second inhabitant can start another simulation. The second inhabitant497

will be able to see the first inhabitant’s actions played back in the virtual environment. For future498

work, we plan to include full multiple inhabitants support in real-time. Moreover, the smart devices499

library, has few specialised sensors that will be updated in the future to include new types of sensors500

and devices. Another feature that could improve the design phase of the smart home, is the addition501

of a floor plan editor. Taking into consideration that OpenSHS is an open-source project, released502

under a free and permissive license, the project could envisage quick and rapid development that503

would facilitate the support of the aforementioned features.504

The more realistic the simulation is, the less the need for building actual smart homes to carry505

out research. Following the growing advancements in computer graphics, Virtual Reality (VR)506

is becoming more accessible and affordable. BlenderVR [57] is an open-source framework that507

extends Blender and allows it to produce immersive and realistic simulations. Since OpenSHS is508

based on Blender, one of our future goals is to investigate the incorporation of BlenderVR into509

our tool to provide more true to life experiences for the smart home simulation and visualisation.510

In terms of accessibility, we aim to make OpenSHS as accessible as possible. Nowadays, the511

web technologies and web browsers can be a good platform to facilitate the wider distribution of512

OpenSHS. Technologies such as WebGL [58] can be used to run OpenSHS in different web browsers513

and Blender can export to these technologies.514

7. Conclusion515

Many smart home research projects require the existence of representative datasets for their516

respective applications and research interests and to evaluate and validate their results. Many517

simulation tools available in the literature focus on context-awareness and few tools have set dataset518

generation as their aim. Moreover, there is a lack of open-source simulation tools in the public519

domain. We developed OpenSHS, an open-source, 3D and cross-platform simulation tool for smart520

home dataset generation. OpenSHS has many features that allow the researchers to easily design521

different scenarios and produce highly intricate and representative datasets. Our tool offers a library522

of smart sensors and devices that can be expanded to include future emerging technologies.523

OpenSHS allows the researchers to rapidly generate seeds of events. We have presented a524

replication algorithm that can extend the simulated events to generate multiple unique large datasets.525

Moreover, conducting a simulation with a participant can be done in a reasonable time and we526

provided tools that streamlines the process such as fast-forwarding.527

Our tool divides the dataset generation process into three distinct phases, design, simulation and528

aggregation. In the design phase, the researcher creates the initial virtual environment by building529

the home, importing smart devices and creating contexts. In the simulation phase, the participant530

uses the virtual home to generate context-specific events. In the final stage, the researcher applies the531

replication algorithm to generate the aggregated dataset.532
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We conducted a usability study using the System Usability Scale (SUS) to assess how usable533

OpenSHS is. The results of this study were promising, yet they left room for more improvements.534

One of the identified issues in smart home simulations tools, is having the support for multiple535

inhabitants. This is a challenging task both for the simulation tool and for the participants. Currently,536

OpenSHS offers partial support for multiple inhabitants. To increase the realism of the simulations,537

we plan to integrate VR technologies into OpenSHS in the future. The accessibility for both the538

researchers and the participants is an important feature, hence, we plan to port the implementation539

of OpenSHS to run in a web browser.540
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