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The effect of pulse parameters on the deposition of copper from a 

chloride-based deep eutectic solvent (DES) was investigated. While 

satisfactory deposits could be obtained for some pulse conditions, at 

small duty cycles or long off-times the current efficiencies obtained 

were very low. These findings were consistent with a corrosion 

process occurring during the off-time, most likely the 

comproportionation reaction: Cu + CuIICl4
2-  2CuICl2

-. Initial 

experimental results were consistent with the corrosion rate being 

controlled by the transport of the CuIICl4
2- species to the electrode 

surface. With this assumption, a simple corrosion model was 

developed to account for the observed loss in current efficiency as a 

function of the pulse conditions. While this model broadly predicts 

the observed results some discrepancy between the observed and 

measured were noted. 

 

Introduction 

 

In recent years there has been considerable interest in the deposition of metals, alloys and 

semiconductors from ionic liquids (1,2). These melts possess a number of advantages over 

traditional aqueous solutions, especially for the deposition of reactive metals and where the 

current efficiency of the process is inherently low. Deep eutectic solvents (DES) are a new 

class of ionic liquids which possess low toxicity, low cost, and relatively good 

electrochemical characteristics (3). They have been used to deposit a wide range of 

materials and, unlike traditional ionic liquids, it is often possible to obtain acceptable 

deposit characteristics in the presence of significant amounts of water contamination. This 

makes them particularly suitable for industrial-scale plating.  

 

Until now, most studies employing ionic liquids or DES have concentrated on DC 

plating and there have been relatively few reports of electrodeposition under pulse 

conditions (4,5).  Significantly, ionic liquids have differing characteristics to aqueous 

solutions, particularly in terms of their double layer structure, mass transport properties, 

kinetics and conductivity. This suggests that pulse parameters developed for aqueous 

systems are unlikely to be optimal for electrodeposition from ionic liquids.  

 

In this study the pulse plating of copper from a type-III deep eutectic solvent 

comprising choline chloride and ethylene glycol (‘ethaline’) is investigated. This is a useful 

‘model’ system as there are numerous studies (6-9) of copper deposition under DC 

conditions. Additionally, the results can be conveniently compared to the existing literature 

on DC and pulse plating of copper from aqueous systems.  

 

Experimental 
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The DES electrolyte comprised 0.20 M CuCl2.2H2O dissolved in a 1:2 molar ratio of 

choline chloride to ethylene glycol (6). All electrochemical experiments were performed 

in a single-compartment, jacketed glass cell maintained at a temperature of 25 oC with a 

thermostat bath. The working electrode (WE) was a steel or platinum rotating disk and 

experiments were typically performed at a rotation speeds of  = 300 - 1200 rpm. The 

counter electrode (CE) was a high purity copper rod, while a silver wire was used as a 

quasi-reference electrode (RE). The RE was mounted in a fritted glass tube containing pure 

ethaline, to prevent it from being etched by the CuCl2. 

 

Pulse plating experiments were performed using a computer-controlled galvanostat and 

both the applied current and potential (vs. Ag wire RE) were measured. These experiments 

were performed at a rotation rate of 700 rpm, and the electrodes were weighed before and 

after deposition to assess the current efficiency. Pulse parameters were selected based on 

consideration of double layer charging effects and mass transport constraints (10-13). For 

initial experiments, on-times of ton = 10, 50, 100 and 200 ms and duty cycles of  = 0.10, 

0.20, 0.30, 0.50 and 0.67 were used. Typically the peak current, ip, was set at 80% of the 

peak limiting current, ipLIM, and this also ensured that the average plating rate (iav = ip) did 

not exceed the steady-state limiting current, iLIM. 

 

Results and Discussion 

 

The results of the initial pulse plating experiments are summarised in Figure 1. These 

show the appearance of the copper deposits and the measured current efficiency, , as a 

function of the pulse parameters. Figure 1 indicates that, in many cases, only partial plating 

was observed and often a copper annulus was visible at the edges of the disc with the steel 

substrate exposed at the centre. For duty cycles of  = 0.10 (data not shown) it proved 

difficult to deposit any copper under any conditions, and only at relatively high duty cycles 

(i.e.   > 0.50) was it possible to obtain a copper film over the entire disc surface. The 

current efficiency data also reflected the same trend. In many cases very low (or even 

‘negative’) current efficiencies were observed at small duty cycles. In contrast, the highest 

current efficiencies were obtained at long duty cycles and short on-times and were 

comparable to those obtained under DC conditions (i.e.  = 60%).  

 

The most plausible explanation for the results shown in Figure 1 is that a corrosion 

reaction is dissolving copper during the off-time. This explains why partial plating and low 

 values are observed under conditions where the duty cycle is low and/or the off-time is 

long. The ‘annulus’ effect arises because the material distribution at the RDE is inherently 

not uniform. Even if copper corrodes uniformly in the off-time, the thinner deposit at the 

disc center will be removed first. Similarly, negative current efficiency values result from 

etching of the underlying steel substrate. 

 

The occurrence of a corrosion reaction was verified by measuring the weight loss of 

both the copper plated and un-plated steel substrates in the electrolyte solution at a rotation 

speed of 700 rpm. These results indicated that the electrolyte corroded the steel substrate 

and copper at an appreciable rate, but in pure ethaline that rate of corrosion was negligible. 

This is in agreement with a previous study (14) which showed that the corrosion rate of 
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steel in pure ethaline (containing dissolved O2 but not CuCl2) was extremely low. The 

necessity of CuCl2 to the corrosion processes suggests a comproportionation reaction of 

the following type is occurring in the off-time: 

 

 

Cu + CuIICl4
2-  2CuICl2

-         [1] 

 

 

This reaction is thermodynamically favourable in chloride-containing DES and similar 

reactions have also been observed in other ionic liquids (15,16). It is also likely to occur 

for other chloride-containing ionic liquids containing metals salts (e.g. AuCl3 and FeCl3) 

which are susceptible to comproportionation. Comparable corrosion processes are also 

observed in aqueous systems.  For example, the etching of copper in CuCl2 solutions is 

routinely used to manufacture PCBs (17). Similarly, during the pulse plating of copper 

from concentrated HCl solutions, corrosion of the deposit in the off-time was reported (18). 

This initially led to the formation of an insoluble salt film of CuCl, but at long off-times 

the film dissolved to form soluble chloro-complexes. Finally, during the pulse plating of 

binary alloys, corrosion in the off-time by a displacement reaction has also been observed 

(19,20).  

 
 

Figure 1.  The appearance of the electrodeposited copper and the apparent current 

efficiency, %, as a function of pulse parameters.  

 

Further evidence for the corrosion process is evident from the time dependence of the 

electrode potential, E, during the pulse cycle (Figure 2). In the off-time, the electrode 
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potential initially adopts a value of E = -0.20 V. However, at longer off-times the potential 

slowly transitions to a value of E = -0.10 V. These two values correspond closely to the 

measured corrosion potential, Ecorr, of the copper and steel substrate, and indicate that at 

long off-times the Cu deposit can be completely removed. 

 
  

Figure 2. Time dependence of the electrode potential, E, during the pulse cycle for ton = 

200 ms and at various duty cycles:   = 0.67 (solid line);  = 0.50 (long dashed line) and  

= 0.20 (short dashed line).  

 

The characteristics of the corrosion reaction are best examined by referring to the 

polarisation plot for the electrolyte solution (Figure 3). Note that this data was recorded at 

a platinum electrode to enable the anodic processes to be clearly shown. The 

electrochemical reactions corresponding to each anodic and cathodic process are shown 

and the position of the arrows indicates the approximate current/potentials adopted during 

the on and off-times. In the off-time, the electrode can adopt a mixed potential (Ecorr) 

corresponding to the reactions: 

 

 

Cu + 2Cl-  CuICl2
- + e-     [2] 

 

 

       CuIICl4
2- + e-  CuICl2

- + 2Cl-     [3] 

 

 

The overall corrosion reaction corresponding to these half reactions is that shown in 

equation [1]. Figure 3 also indicates that the corrosion rate is controlled by the mass 

transport of the Cu(II) species to the electrode surface. Independent measurements (not 
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shown here) indicate that icorr increases and Ecorr shifts to more positive values with 

increasing rotation rate which are consistent with this mechanism.   

 

 
 

Figure 3. Steady-state polarisation curve for a platinum electrode in 0.20 M CuCl2 in 

ethaline ( = 700 rpm). The mixed potential developed in the off-time occurs at E = Ecorr. 

 

Using this information we can develop a simple corrosion model which relates the 

apparent current efficiency, , with the pulse parameters. The major assumptions of the 

model are that the corrosion rate is constant in the off-time and that it has a rate governed 

by the limiting current for reaction [3]. This can be justified on the grounds that during the 

on-time the CuIICl4
2- is always being reduced under limiting current conditions. In the off-

time the reaction continues to occur at the same rate as it is now coupled to the anodic 

dissolution reaction [2]. The concentration profile for the Cu(II) species is therefore held 

close to the value it adopted in the on-time. Using these assumptions we can derive the 

simple expression: 

 

 

 = ’ – 2icorr(1 - ) / ip    [4] 

 

 

where ’ is the current efficiency during the on-time. Therefore, a plot of  versus (1 - ) / 

ip should result in a straight line with a slope of icorr and an intercept corresponding to ’. 
The results of this analysis are shown in Figure 4 and Table I.  

 

While these results qualitatively support the proposed model, there are two main issues. 

Firstly, icorr is lower than the experimentally determined value of iLIM = 3.2 mA cm-2 for 
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reaction [3]. Secondly, there is an unexpected dependence of icorr on the pulse parameters. 

Interestingly, there is some evidence that for long pulse periods the value of icorr may 

approach iLIM.  However, the overall conclusion must be the proposed model does not 

quantitatively account for the observed results and further development is required. 

 
 

Figure 4.  The variation in the apparent current efficiency, , as a function of pulse 

parameters (equation [4]). The dotted line corresponds to icorr = iLIM = 3.2 mA cm-2. 

 

The occurrence of corrosion reactions during pulse plating is generally not desirable, 

but a number of strategies are available to minimise the effect. Firstly, corrosion could be 

reduced by operating at fairly long duty cycles (i.e.  > 0.50). However, this limits the 

parameter space were the process can be optimised, and effectively DC conditions are 

being approached. Another strategy is to use non-chloride deep eutectic solvents which 

would also prevent the comproportionation reaction from occurring. Unfortunately, many 

of these systems (e.g. citrate or acetate) have relatively poor conductivity and transport 

properties compared to chloride systems (21). Finally, it may be feasible to maintain the 

current (or potential) in the off-time to a value that prevents dissolution, but also allow for 

minimal deposition. 

 

 
TABLE I.  Values of iCORR and ’ extracted from the linear plots in Figure 4. 
 

ton / ms icorr /mA cm-2 ’ 
10  0.71  0.70 

50 1.21 0.75 

100 1.49 0.76 
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200 1.71 0.70 

Conclusions 

 

Pulse plating of copper from a chloride-containing deep eutectic solvent has been 

demonstrated. While acceptable deposits could be obtained for some pulse conditions, at 

small duty cycles low current efficiencies and partial plating was observed. This was 

attributed to the occurrence of a corrosion (comproportionation) reaction during the off-

time. A simple corrosion model was proposed and, while this qualitatively explained the 

results, a number of discrepancies with the experimental data were noted, suggesting that 

further refinements of the model are needed. Finally, a number of strategies for minimising 

corrosion effects during pulse plating have been proposed. 
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