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This study investigated the effect of water on the physical and 

electrochemical properties of a choline chloride deep eutectic 

solvent (DES). Physical and electrochemical measurements were 

performed on the DES containing varying amounts of water. When 

the water content was increased from 1% to 15 wt%, the viscosity 

and density declined while the conductivity increased significantly. 

Similarly, the limiting current for Cu reduction at 15 wt% of water 

was also found to be three times greater than the limiting current at 

1 wt% of water. This latter effect could be mostly attributed to 

viscosity changes, but there was evidence of deviations from ideal 

Stokes-Einstein behaviour. These experimental results show that 

inclusion of water facilitates ion mobility, and generally results in 

improved electrochemical characteristics. 

 

Introduction 

 

Due to growing environmental regulations, alternatives to aqueous systems such as Ionic 

Liquids (ILs) are being examined for the electrodeposition of metals and alloys (1). In this 

work we have studied Cu deposition, a model electroplating system. Earlier studies have 

used chloroaluminates or hydrophobic anions to deposit this metal (2-8). Although these 

melts are useful for establishing reaction mechanisms or speciation of Cu, they are not 

suitable for industrial plating applications due to their moisture sensitivity (9). Deep 

Eutectic Solvents (DESs) are a promising category of ILs since they are tolerant to water, 

stable under ambient conditions, and reasonably inexpensive (10, 11). However, they are 

hygroscopic and take up water unless special precautions are taken (1). Thus, in a real 

process, it is likely that the electroplating will proceed from water-containing electrolytes. 

However, for DESs to become exploitable, metal deposition from hydrated electrolytes 

requires further investigation. This study endeavours to establish a quantitative correlation 

between the physical properties and the electrochemical behaviour of Cu in a water-

containing DES. 

 

Experimental 

 

Water Uptake by DESs 

 

‘Ethaline’ was prepared by mixing choline chloride (C5H14NOCl) and ethylene glycol 

(C2H6O2) in a 1:2 molar ratio at 60°C until a transparent melt was formed. Both the choline 

chloride and ethylene glycol were not dried, so there was an intrinsic concentration of water 

in the ethaline. This was measured using a Hybrid Karl Fischer Titrator (MKH-700, Kem 
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Kyoto Electronics). Similarly, after dissolving the cupric chloride salt (0.2 M CuCl2ή2H2O) 

in the electrolyte, the water content was measured by KF titration. Thereafter, in order to 

establish the absorption of water by the DES with time, the liquid was exposed to the air 

for over a month. From this electrolyte, samples were collected each week to be analysed. 

 

Physical Properties of Water-Containing Electrolytes 

 

In the next stage, the effect of water on physical properties such as density, viscosity 

and conductivity was performed. For these trials, samples were prepared containing 1, 3, 

6, 10 and 15 wt% water. The viscosity measurements of the water-containing samples were 

carried out using a DHR-2 Rheometer (TA Instruments) at 25 °C. Sample density was 

determined using a specific gravity bottle (Fischer Scientific). Finally, the conductivity of 

the deep eutectic solvents was measured at room temperature using a calibrated InLab730 

conductivity probe (Mettler Toledo). 

 

Electrochemical Behaviour Using Linear Polarization Scans 

 

Linear polarization scans were carried out to study the effect of water on the limiting 

current of Cu deposition. The voltammetric scans were carried out using a rotating disc 

electrode (RDE) controlled with PGSTAT101 potentiostat (Metrohm). The RDE was 

placed in a divided electrochemical cell separated by a sintered disk (Figure 1). 

Additionally, the cell had a jacket to maintain the temperature at 25 °C with a thermostatic 

bath. A standard three electrode configuration was used. The working electrode was a Pt 

disc, the counter electrode was a Pt wire and the reference electrode was an Ag wire 

inserted in a fritted glass tube containing ethaline. This reference electrode was inserted 

inside a movable Luggin capillary so that the distance between the working and the 

reference electrode was maintained at 3 mm. The potential was swept from the open circuit 

potential +0.60 V and terminated at   -0.85 V with a scan rate of 5 mV/s. The experiments 

were carried out at a rotation speed of 700 rpm. 

 

 

Figure 1. Schematic of the divided electrochemical glass cell used for linear polarisation 

and limiting current experiments. All the experiments were carried out at 25 °C with a  scan 

rate of 5 mV/s. RDE experiments were performed at a rotation speed of 700 rpm. 
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Results 

 

The intrinsic water content of the ethaline melt was 1.00 ± 0.09 wt%. However, when 

CuCl2ή2H2O was dissolved in ethaline, the water content increased to 1.80 ± 0.02 wt%. 

This shows that 0.62 wt% of H2O is introduced from the waters of hydration of the metal 

salt. The uptake of water continued beyond this period and equilibrated at 28 wt% at the 

end of four months. 

 

Table I summarizes the change in density, viscosity and conductivity of ethaline 

containing 0.20 M CuCl2ή2H2O with increasing water concentration. As shown in this table, 

the viscosity and density of the electrolyte decreased and the conductivity increased with 

increasing water content. Similar findings have been reported in earlier publications using 

a choline chloride/urea (reline) and choline chloride/chromium(III) chloride (12,13). 

 

Table I. Effect of water on the viscosity, conductivity, density, and limiting currents for 

Cu reduction in 0.2 M CuCl2ή2H2O dissolved in ethaline. 

Water 

content 

(wt%) 

Dynamic 

viscosity 

さ 

(Pa s) 

Kinematic 

viscosity 

ち 

(cm2 s-1) 

Density 
(g cm-3) 

Conductivity 

せ 

(mS cm-1) 

Limiting 

currents 

(mA cm-2) 

Diffusion 

coefficients 

(x 10-7cm2 s-1) 

Equation 3 

Equation 4 

(x 10-13) 

iLim1 iLim2 DCu2+ DCu+ DCu2+ さ DCu+ さ 

1 0.0473 0.419 1.127 7.95 3.0 2.8 1.29 1.16 6.10 5.49 

3 0.0436 0.387 1.126 9.53 4.3 2.9 2.16 1.20 9.42 5.23 

6 0.0345 0.307 1.123 10.2 4.4 4.1 2.11 1.90 7.28 6.56 

10 0.0223 0.199 1.119 11.6 6.4 6.1 3.33 3.10 7.43 6.91 

15 0.0151 0.137 1.098 15.3 9.0 9.1 5.07 5.09 7.66 7.69 

 

Fig. 2 shows the polarisation data for pure ethaline at a Pt electrode containing various 

amounts of water. These results show that the anodic decomposition potential of ethaline 

is hardly changed by the addition of water, but the cathodic process shows a more 

significant change. Increasing the water content from 1 – 15 wt% reduces the overall 

potential window by approximately 0.2 V. While many ionic liquids can have their 

electrochemical window reduced significantly by the presence of even small amounts of 

water, this data shows that ethaline DES is tolerant to relatively high water contents.  

 

Fig. 3 shows the polarization plot for Cu deposition at Pt electrode, at 25 °C and at a 

rotation speed of 700 rpm. The voltammograms showed two reduction waves: the first one 

corresponded to the reduction of Cu(II) to Cu(I) species (Equation 1), while the second 

wave resulted from the reduction of Cu(I) to Cu(0) (Equation 2). This type of behavior is 

common in a chloride-containing media (14) and it is due to the stabilisation of the Cu(I) 

oxidation state (15). 

 

                            CuCl4
2-   +   e-    s    CuCl2

-    +   2Cl-                                    [1] 

 

      CuCl2
-    +    e-          s      Cu       +     2Cl-                                           [2] 

 

The effect of water upon the electrochemical reduction of Cu was a significant increase 

of both limiting currents (iLim1 and iLim2) for the two reduction steps. These results show 

that water promotes the mass transport of Cu(II) and Cu(I) species to the electrode. Cyclic 
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voltammetric studies (16) of the CuCl2-ethaline system also show an enhancement of peak 

currents with water content which is also consistent with enhanced mass transport.  

 

 
 

Figure 2. Voltammetry of pure ethaline with 1 - 15 wt% water. All the experiments were 

carried out on Pt electrode at 25 °C, a scan rate of 5 mV/s and with  = 700 rpm. 

 

 
 

Figure 3. Polarisation data of 0.20 M CuCl2ή2H2O in ethaline at a Pt electrode at 25 °C. 

The scan rate was 5 mV s-1 and  = 700 rpm. The amber arrow shows the direction of scan 

which commenced at an open circuit potential of +0.6 V. 
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Discussion 

      

The limiting current density, iLim, of an electrochemical reaction at a RDE is given by 

the Levich equation:  

 

iLim = 0.62nFAD2/3ち-1/6Cの1/2    [3] 

 

where n is the number of transferred electrons, F is the Faraday constant (95485 C mol-1), 

A is the area of electrode (cm2), D is the diffusion coefficient (cm2 s-1), ち is the kinematic 

viscosity (cm2 s-1), C is the concentration of bulk electrolyte (mol cm-3), and の represents 

the rotation speed (rad s-1). The values for diffusivity of the cuprous and cupric species 

calculated from the experimental data are presented in Table I.  

 

The simplest explanation for the observed increase in diffusivity relates to the 

corresponding reduction in viscosity at higher water content. Applying the Stokes-Einstein 

relationship to the data in Table I, it can be seen that approximately 80% of the observed 

enhancement in diffusivity could be attributed to viscosity changes. The remaining effect 

may arise from other phenomena but there is also a possibility that the Stokes-Einstein 

equation is not valid for these particular ionic liquids (17). Normally, at constant 

temperature and constant ionic radii: 

 

D さ     =    constant     [4] 

 

where D is the diffusion coefficient of the Cu(II) and Cu(I) species and さ is dynamic 

viscosity. The data in Table I indicates that the product of D and さ is not constant over the 

range of water contents studies, indicating some significant deviations. Such deviations 

might arise if the ionic radius of the diffusing species was also varying, but  previous 

studies (16) of the speciation of copper species remains unchanged until water content is 

40 wt%.  

 

The effect of water content on DES properties has been studied previously (18-20). 

Reports of improved conductivity and reduced viscosity with water content have been 

rationalised in terms of conventional hole theory (18). With increasing water content, the 

hole size was found to increase resulting in higher ionic mobility and this is reflected in 

changes in both the viscosity and conductivity. An alternative explanation (19,20) is that 

increasing water content causes ion pairs in the ionic liquid to dissociate further. This 

enhanced dissociation arises because water can form strong hydrogen bonds with anions 

in the melt. The overall effect of increased dissociation of ion pairs is an increase in 

conductivity and a reduction in viscosity. However, the current results do not allow any 

discrimination between the two models.    

 

 

Conclusions 

The effect of water on the density, viscosity and conductivity of the deep eutectic solvent 

along with the electrochemical behaviour of copper deposition was studied. It was found 

that increasing water content from 1% to 15 wt% caused a significant reduction in density 

and viscosity, but the electrical conductivity was considerably enhanced. The improved 
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viscosity and conductivity may be attributable to an increased hole size or enhanced 

dissociation with increasing water content. Electrochemical polarization measurements 

showed that the electrochemical window on platinum electrodes was relatively insensitive 

to water content. Diffusion coefficients of Cu(II) and Cu(I) species, as determined from 

limiting current measurements also increased with water content. This enhanced diffusivity 

can be mostly attributed to viscosity changes in the deep eutectic solvent but there was also 

evidence for deviations from ideal Stokes-Einstein behaviour. 
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