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a b s t r a c t

Small molecule organic semiconductors have well-defined structures and can be used in place of poly-

mers which often show batch-to-batch variation. Many different electron-rich donor and electron-

deficient acceptor units have been used to design materials with reduced HOMO-LUMO gaps and

improved mobilities. Here we introduce a novel acceptor unit, 1-dodecyl-6-dodecoxynaphthyridine-2-

one. This acceptor unit has been used in the synthesis of two novel compounds, with thiophene and

2,1,3-benzothiadiazole (BT) cores. The BT-containing compound shows a narrower HOMO-LUMO gap,

broad solid-state absorption and has been applied to organic field-effect transistors, showing a mobility

of 0.022 cm2 V�1 s�1 after optimisation of devices using self-assembled monolayers.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Organic semiconductors have been successfully applied to

organic light-emitting diode (OLED) [1,2], organic photovoltaic

(OPV) [3,4] and organic field-effect transistor (OFET) [5,6] tech-

nologies and can offer advantages over inorganic-based devices.

For example, these materials are flexible, lightweight and can be

processed using cheap roll-to-roll fabrication methods such as

inkjet printing [7]. Often polymers are used in organic semi-

conductor devices and, although they can show good performance,

polymers often show batch-to-batch variation in molecular weight,

polydispersity and physical properties, whilst also displaying end-

group variation. These problems can be overcome by using small

molecules, which have well-defined monodisperse structures.

Control of the gap between the highest occupied molecular

orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO) in small molecules and the band gap in polymers, is

important in optimising performance in organic semiconductor

devices. A common approach to reducing the HOMO-LUMO (or

band) gap is to introduce electron-deficient acceptor units into the

conjugated backbone of the organic semiconductor, leading to a

reduced LUMO energy (and potentially a lower HOMO energy,

but not by the same magnitude). Among the many different

acceptor units that have been applied to organic semiconductor

devices, nitrogen-containing heterocycles such as diketopyrrolo-

pyrrole (DPP) [8e10], naphthalenediimide (NDI) [11,12], 2,1,3-

benzothiadiazole (BT) [13,14] and pyridal[2,1,3]thiadiazole [15,16]

have shown high charge carrier mobilities in OFET devices.

The introduction of multiple acceptor units can lead to a much

more complex picture. Nguyen et al. [17] have shown that struc-

tures containing three DPP units can exhibit higher p-type mobility

and OPV power conversion efficiency than analogous compounds

containing fewer chromophores due to a low-lying HOMO and

improved film morphology. Another interesting example of such

compounds are the BODIPY-DPP triads reported by Cortizo-Lacalle

et al. [18] where inclusion of BODIPY units significantly alters the

absorption, with a broader absorption spectrum and red-shifted

DPP absorption band.

Here we report the synthesis of a material based on the 2,1,3-

benzothiadiazole acceptor unit containing novel peripheral 1-

dodecyl-6-dodecoxynaphthyridine-2-one moieties. Additionally,* Corresponding author.
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an analogous compound was synthesised with a thiophene central

unit in place of the electron-deficient BT. The physical properties of

the novel compounds are characterised by UV/Vis spectroscopy and

cyclic voltammetry (CV), while the effect of incorporating an

additional acceptor unit into the conjugated backbone is discussed.

Finally, bottom-gate, bottom-contact OFET devices using the BT-

containing compound are discussed, along with the effect of self-

assembled monolayers (SAMs) and the solvents used for deposi-

tion on the performance of the devices.

2. Results and discussion

2.1. Synthesis

The synthetic pathway for the synthesis of the target materials

is shown below in Schemes 1 and 2. The first step in the synthesis of

the target materials was the alkylation of naphthyridine-2,6-dione,

a compound which was synthesised according to previously re-

ported methods [19]. Three isomeric products are formed as a

result of this reaction (Fig. 1) but these compounds were separated

via column chromatography in yields of 41%, 12% and 28% for NDO,

NDD and ND respectively.

Bromination of NDO (1) was performed using bromine, exclu-

sively yielding the mono-brominated product compound 2, which

was subsequently coupled to 2-tributylstannylthiophene via Stille

coupling to form compound 3, followed by bromination using N-

bromosuccinimide (NBS). Compound 4 was used in a Suzuki cross-

coupling reaction with 2,1,3-benzothiadiazole-4,7-bis(boronic acid

pinacol ester) in order to form (NDO-T)2-BT and a Stille coupling

reaction with 2,5-bis(trimethylstannyl)thiophene to form (NDO)2-

3T. The selective bromination of compounds 1 and 3 highlights that

NDO has the potential to be easily used as a peripheral acceptor

unit in combination with a multitude of electron-rich or electron-

deficient cores.

Scheme 1. Synthesis of compounds 1e4.

Scheme 2. Synthesis of target molecules (NDO)2-3T and (NDO-T)2-BT.

Fig. 1. Isomeric products from alkylation of naphthyridine-2,6-dione.
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2.2. Optical and electrochemical properties

In order to make a comparison between the two compounds

and understand the effect of the incorporation of the BT unit, UV/

Vis absorption and fluorescence spectroscopy experiments were

carried out in addition to cyclic voltammetry. A summary of these

results is listed in Table 1. The absorption spectrum of (NDO)2-3T,

shown in Fig. 2, reveals a single broad peak with a lmax of 477 nm.

However, the absorption spectrum of (NDO-T)2-BT is more com-

plex, indicating a small peak at 423 nm with an associated high

energy shoulder, and the main peak at a lmax of 516 nm. This in-

dicates a bathochromic shift, with respect to (NDO)2-3T, of 93 nm

due to the incorporation of the additional BT unit.

For both molecules the solid-state absorption spectra are broad,

with (NDO-T)2-BT in particular absorbing across the visible light

region. In general, both absorption profiles are red-shifted in the

solid-state compared to solution-state, with themost intense peaks

of the absorption spectra of (NDO)2-3T and (NDO-T)2-BT being red-

shifted by 85 and 133 nm, respectively. There is a significant in-

crease in the red-shift of themost intense absorption peak of (NDO-

T)2-BT with respect to (NDO)2-3T, due to the reduction in the

HOMO-LUMO gap. The solution-state spectrum of (NDO)2-3T

changes from being broad and featureless to an absorption spec-

trum showing another peak in addition to a high energy shoulder in

the solid-state. This shows evidence of vibronic splitting of (NDO)2-

3T due to rigidification of the molecules in the film.

There are also considerable differences in the fluorescence

spectra of both compounds. The lem max for (NDO)2-3Twas 536 nm,

giving a Stokes shift of 59 nm, while the lem max of (NDO-T)2-BTwas

609 nm, corresponding to a Stokes shift of 97 nm; this is a signif-

icant increasewith respect to (NDO)2-3T showing that the inclusion

of the electron-accepting BT unit in the conjugated backbone

greatly affects the optical properties of the molecules.

Cyclic voltammetry was also carried out on the novel com-

pounds in order to examine the electrochemical properties and the

voltammograms for the oxidation and reduction of (NDO)2-3T and

(NDO-T)2-BT are shown below in Fig. 3. The oxidation of (NDO)2-3T

shows one irreversible peak, whilst the BT-containing compound

shows a quasi-reversible wave followed by a reversible wave. The

first oxidation for each compound occurs at similar potentials,

indicating that the common NDO unit is responsible for the first

loss of an electron. Considering that this first oxidation peak of

(NDO)2-3T is irreversible, it seems that the presence of the BT unit

may help to stabilise the radical-cation as the first oxidation of

(NDO-T)2-BT is quasi-reversible. It can then be assumed that the

second oxidation of (NDO-T)2-BT takes place at the BT core,

although this occurs at a lower potential than the related 4,7-

di(thiophen-2-yl)benzo[c] [1,2,5]thiadiazole (BTB) molecule

(Fig. SI1) [20], suggesting that the increased conjugation of (NDO-

T)2-BT stabilises the dication.

There are also differences in the reduction of the two com-

pounds. The reduction of (NDO)2-3T shows quasi-reversible and

reversible waves, respectively, whilst the voltammogram for (NDO-

T)2-BT shows an irreversible peak followed by quasi-reversible and

reversible waves. The first reduction of (NDO-T)2-BT occurs at a

similar potential to BTB [20], suggesting that the reduction takes

place at the central BT unit. The reduction of BTB is reversible,

however [20], so the presence of the NDO units on (NDO-T)2-BT

appears to destabilise the radical anion.

The HOMO and LUMO levels for the two NDO-based compounds

are shown in Table 1. The HOMO energy values are similar which is

consistent with the oxidation taking place at the NDO unit in both

molecules. However, the LUMO energies vary significantly with the

LUMO energy of (NDO-T)2-BT calculated to be 0.12 eV lower than

Table 1

Summary of optical and electrochemical properties of (NDO)2-3T and (NDO-T)2-BT.

Compound labs max (nm)a lem max (nm) Eg
opt (eV)a,b Eg

EChem (eV)c HOMO (eV)d LUMO (eV)d Eox (V)
e Ered (V)e

(NDO)2-3T 477 (562) 536 2.30 (2.02) 2.03 �5.35 �3.33 0.51, ir �1.50/-1.28, qr

�2.09/-1.78

(NDO-T)2-BT 516 (649) 609 2.09 (1.76) 1.86 �5.31 �3.45 0.51/0.35, qr

0.93/0.77

�1.36, ir

�1.65/-1.56, qr

�1.94/-1.84

a Solution-state absorption from 10�5 M CH2Cl2 solutions, solid-state absorption properties shown in parentheses.
b Optical HOMO-LUMO gap (Eg) is calculated from the onset of absorption.
c Electrochemical HOMO-LUMO gap calculated from the difference between calculated HOMO and LUMO levels.
d HOMO (LUMO) level was calculated using the peak of the forward scan of oxidation (reduction) from the following equation: EHOMO(LUMO)

¼ �4.8 eV e Epeak
ox(red).

e The cathodic and anodic peaks are reported for reversible and quasi-reversible (qr) waves. The peak value on the forward scan is shown for irreversible (ir) waves. The

peak values are referenced externally to Fc/Fcþ (Fig. SI2).
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Fig. 2. UV/Vis absorption and emission spectra of 10�5 M CH2Cl2 solutions of (NDO)2-3T and (NDO-T)2-BT (left) and solid-state absorption spectra of (NDO)2-3T and (NDO-T)2-BT

(right).
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that of (NDO)2-3T. This suggests that benzothiadiazole is a more

dominant acceptor unit than NDO. Substituting the benzothiadia-

zole unit in place of the central thiophene of (NDO)2-3T has little

effect on the HOMO level but is an effective means of reducing the

LUMO level.

2.3. Organic field-effect transistor (OFET) devices

Bottom-contact bottom-gate OFET devices were fabricated from

(NDO-T)2-BT and, in order to optimise the charge carrier mobility, a

number of parameters were investigated with respect to the device

Fig. 3. Oxidation (left) and reduction (right) of (NDO)2-3T and (NDO-T)2-BT.

Table 2

OFET results for devices containing films of (NDO-T)2-BT formed from spin-coating CHCl3 solution. Results were calculated from an average of 6 OFET devices.

Self-assembled monolayer Annealing temperature (�C) mh (cm2 V�1 s�1) average ON/OFF ratio VT (V)

PFBT 25 3.6 � 10�3 104 �22

PFBT/OTS 25 2.3 � 10�3 104 �21

OTS 25 0.014 104 �28

HMDS 25 5.5 � 10�3 103 �34

PFBT 120 4.6 � 10�3 105 �20

PFBT/OTS 120 4.7 � 10�3 104 �12

OTS 120 0.022 104 �16

HMDS 120 3.9 � 10�3 104 �28

Fig. 4. Output (left) and transfer (VDS ¼ �50 V) (right) graphs of an OFET device containing (NDO-T)2-BT. SAM ¼ OTS; solvent ¼ CHCl3; unannealed. Channel length ¼ 20 mm;

channel width ¼ 1 cm.

Fig. 5. Output (left) and transfer (VDS ¼ �50 V) (right) graphs of an OFET device containing (NDO-T)2-BT. SAM ¼ OTS; solvent ¼ CHCl3; annealed at 120 �C. Channel length ¼ 5 mm;

channel width ¼ 1 cm.
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characteristics. These parameters included the variation of the

solvent, self-assembled monolayers (SAMs) and thermal annealing.

Chloroform and o-dichlorobenzene were studied as the solvents

used for spin-coating and pentafluorobenzenethiol (PFBT), octa-

decyltrichlorosilane (OTS) and hexamethyldisilazane (HMDS) were

studied as SAMs. Full experimental details for the fabrication of

OFET devices are described in the supplementary information

section. (NDO)2-3T was not studied due to concerns over the irre-

versible oxidation of this compound and how this would impact its

function as a p-type material in OFETs.

Results for devices fabricated using o-dichlorobenzene are

summarised in Table SI1 with output and transfer graphs for

annealed films shown in Figs. SI3 and SI4. The mobility for unan-

nealed devices with a PFBT SAM is 4.4� 10�4 cm2 V�1 s�1, although

this is improved to 3.3 � 10�3 cm2 V�1 s�1, by annealing at 120 �C

and using both PFBT and OTS SAMs. However, the performance is

limited by the poor morphology of films cast in o-dichlorobenzene

solutions, as shown by AFM in Fig. SI8. Devices fabricated from

(NDO-T)2-BT chloroform solutions show overall higher hole mo-

bilities than those spin-coated from o-dichlorobenzene solutions

and are summarised in Table 2.

If the optimum conditions for OFETs fabricated using o-dichlo-

robenzene are repeated using chloroform as the solvent then there

is an improvement in the hole mobility. Using PFBT (Fig. SI5), PFBT/

OTS (Fig. SI7) and HMDS (Fig. SI6) SAMs in the fabrication of OFETs

with chloroform as solvent for solution-processing, resulted in hole

mobilities of similar magnitude. However, use of OTS as the sole

SAM provided a significant increase in hole mobility. The output

and transfer graphs for OFETs fabricated with OTS SAM and chlo-

roform (NDO-T)2-BT solutions, without annealing and annealed at

120 �C are shown in Figs. 4 and 5, respectively. Without annealing,

the average holemobility is calculated to be mh¼ 0.014 cm2 V�1 s�1;

annealing the device at 120 �C gave a further increase to

mh ¼ 0.022 cm2 V�1 s�1.

Analysis of images obtained by AFM shows that, despite there

being an order of magnitude difference in the hole mobilities of

OFETs fabricated from chloroformwith PFBT/OTS and OTS as SAMs,

there is little difference in morphology (Fig. SI9 and Fig. 6,

respectively). A more homogeneous film due to improved inter-

molecular stacking interactions may contribute to the increased

mobility for the OFET containing only an OTS SAM.

Finally, AFM was used in order to explain the improvement of

performance upon annealing. Although there is only a small in-

crease in mobility when the OFET containing the OTS SAM is

annealed, there are slight differences in the films to explain this.

The surface of the unannealed sample (Fig. 7, Fig. SI10) shows small

aggregates that appear to increase in size after annealing (Fig. 6,

Fig. SI10). Given that the roughness of these films is similar, the

increased area of these aggregates could lead to improved charge

transport through the film.

3. Conclusions

Herein, we have presented the synthesis and characterisation of

two novel compounds based on the novel, asymmetric heterocyclic

acceptor unit 1-dodecyl-5-dodecoxynaphthyridin-2-one. UV/Vis

absorption and fluorescence spectroscopy were used to determine

the optical properties of the target materials with cyclic voltam-

metry used to characterise the electrochemical properties. Incor-

poration of the BT unit into the conjugated backbone ((NDO-T)2-

BT) showed a broader absorption, particularly in the solid-state,

and a larger Stokes-shift with respect to (NDO)2-3T. Furthermore,

the inclusion of the BT unit significantly lowered the LUMO level,

whilst the HOMO energy was similar in both compounds. By

varying the central unit it could be possible to easily synthesise

NDO-based materials with diverse properties suitable for various

different organic electronic applications.

OFET devices were fabricated using (NDO-T)2-BT and, through

optimisation of the use of SAMs, solvent and thermal annealing, it

was possible to improve the p-type mobility by almost two orders

of magnitude whilst maintaining a high ON/OFF ratio and low

threshold voltage.
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