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ABSTRACT

With the rapid development of the computational technology, computational fluid dynamics (CFD)
tools have beenwidely used to evaluate the ship hydrodynamic performances in the hull forms opti-
mization. However, it is very time consuming since a great number of the CFD simulations need to
be performed for one single optimization. It is of great importance to find a high-effective method
to replace the calculation of the CFD tools. In this study, a CFD-based hull form optimization loop
has been developed by integrating an approximate method to optimize hull form for reducing the
total resistance in calm water. In order to improve the optimization accuracy of particle swarm opti-
mization (PSO) algorithm, an improved PSO (IPSO) algorithm is presented where the inertia weight
coefficient and searchmethod are designed based on random inertia weight and convergence eval-
uation, respectively. To improve theprediction accuracy of total resistance, a data predictionmethod
based on IPSO-Elman neural network (NN) is proposed. Herein, IPSO algorithm is used to train the
weight coefficients and self-feedback gain coefficient of ElmanNN. In order to build IPSO-ElmanNN
model, optimal Latin hypercube design (Opt LHD) is used to design the sampling hull forms, and
the total resistance (objective function) of these hull forms are calculated by Reynolds averaged
Navier–Stokes (RANS) method. For the purpose of this article, this optimization framework has been
employed to optimize two ships, namely, the DTMB5512 and WIGLEY III, and these hull forms are
changed by arbitrary shape deformation (ASD) technique. The results show that the optimization
framework developed in this study can be used to optimize hull forms with significantly reduced
computational effort.
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1. Introduction

In recent years, hull form optimization has gained great

interest for the purpose ofminimizing the total resistance

which results in minimizing the running cost. At the end

of the 1990s, the optimization theory was introduced into

the ield of hull form design by potential low theory.

Dawsonmethodwas used to calculate the sumof lat fric-

tion resistance and wave-making resistance which was

as the objective function to design the ship-type (Kim,

1995). Wave-making resistance was calculated by poten-

tial low method, and optimal design of hull form was

carried out with adjoint optimization method (Huan &

Huang, 1998). Rankine source was used to calculate the

wave resistance and viscous resistance of Series60, and

the hull form with the lowest resistance was obtained by

nonlinear programing method (Zhang & Zhang, 2015).

With the rapid development of computational luid

dynamics (CFD) technique and optimization technique,

hull forms design based on simulation-based design

CONTACT Shenglong Zhang suckersands88@163.com

(SBD) technique has become the main trend in the

twenty-irst century (Kim & Yang, 2010; Tahara, Peri,

Campana, & Stern, 2008). The CFD tools have become

the main method for calculating the hull resistance and

simulating the low ield, but its calculation time is rather

long. In order to promote the application of SBD tech-

nique to the practical engineering, and to reduce the

computational time of a typical CFD work, the appli-

cation of approximate technique has become the key

to the development in ship-type optimization. By pro-

cessing of approximate technique, the original complex

problem is turned into a relatively small approximate sub-

problem, and the optimal solution of the original prob-

lem is obtained by successive approximation. The issue of

predictions using the approximate model has been high-

lighted by some designers not only in the engineering

(Chang, Feng, Liu, Zhan,&Cheng, 2012; Kamiński, 2015;

Qian, Mao, Wang, & Yun, 2012) but also in the real-

life (Chau & Wu, 2010; Wang, Kwokwing, Xu, & Chen,
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2015; Wu, Chau, & Li, 2009). In recent years, one of the

approximate techniques widely used is the neural net-

work, which is a kind of information processing method

developed according to the enlightenment of biological

nervous system. On account of the computer simulation,

it can predict and analysis the data by learning, control

and identiication. Now, it has been applied into difer-

ent kinds of optimization problems (Hu & Balakrishnan,

2005; Liu & Luo, 2005; Liu, Tian, Liang, & Li, 2015;

Puig,Witczak,Nejjari, Quevedo,&Korbicz, 2007; Zhang,

2016). The ElmanNN is a typical multi-layer dynamic

recurrent neural network, and it has a stronger global sta-

bility and a characteristic of time-varying since adding

the contest nodes to the hidden nodes of feed-forward

network as time delay operator (Ding, Jia, Su, Xu, &

Zhang, 2008). Besides, ElmanNN has been compared

with BPNN which is derived from data prediction (Ding

et al., 2008; Zhang, Hao, Kong, & Li, 2013; Zhou, Yang, &

Yang, 2011), and they all found that the predicting preci-

sion and convergence rate of ElmanNN are much higher

than BPNN. Li and Liang (2007) carried out a compar-

ison of ElmanNN and RBFNN for lood freeway speed

limitation and assumed that the ElmanNN has stronger

adaptation and better generalization ability and can build

the approximate model more accurately. On the basis

of the local feedback network function, the ElmanNN

can process the data more precision for nonlinear prob-

lem (Liu et al., 2015), which is of great important for

the hull resistance prediction. Up to now, hull resistance

has been predicted by using radial basis function (RBF)

(Huang,Wang, & Yang, 2015; Huang & Yang, 2016), arti-

icial neural networks (Couser, Mason, Mason, Smith, &

Konsky, 2004), Holtrop andMennen’s method (Ortigosa,

López, & García, 2009), genetic neural network (Chen

& Ye, 2009), and BP neural network (Hou, Liu, & Liang,

2016). However, there are few literatures have been pub-

lished for predicting hull resistance using ElmanNN.

In the light of these considerations, an ElmanNN has

been used into the hull form optimization in this

study to approximately calculate the total resistance

values.

Particle swarm optimization (PSO), a kind of intelli-

gent optimization algorithm, was developed by Kennedy

and Eberhart in 1995 (Kennedy & Eberhart, 1995). It has

obtained a lot of interest in diverse optimization prob-

lems because of the advantages of fast convergence, easy

implementation and simple calculation rules. Although

PSO algorithm has become a relative mature method, it

is easy to fall into the local optimal solution. Therefore,

many researchers have put forward a variety of improve-

ment measures to prove that the new methods are supe-

rior to traditional PSO algorithm. The hybridized tech-

nique namedPSO-GAalgorithmwas presented by taking

the advantages of both PSO and GA algorithm for solv-

ing the nonlinear design optimization problems (Garg,

2016; Nik, Nejad, & Zakeri, 2016). The weighted par-

ticle for incorporation into the particle swarm opti-

mization, and the enhanced particle swarm optimizer

incorporating a weighted particle (EPSOWP) was devel-

oped to improve the evolutionary performance for a

set of benchmark function (Li, Wang, Hsu, & Chen,

2014). Based on the random linear combination between

the local best position and the global best position,

the particle swarm without velocity equation (PSWV)

algorithm was studied by Tungadio, Jordaan, and Siti

(2016). A novel multi-sub-swarm particles warm opti-

mization (MSSPSO) was used to ind multi-solutions for

multilayer ensemble pruning model by Zhang and Chau

(2009). In this model, the MSSPSO algorithm was used

to generate a diferent pruning based on previous ora-

cle output for each layer. A more fast and accurate input

variable selection (IVS) algorithm has been developed by

Taormina andChau (2015) integrating binary-coded dis-

crete fully informed particle swarmoptimization (BFIPS)

and extreme learning machines (ELM). As we all know,

the evaluation of the convergence is one of the most

important factors for the PSO algorithm. If the conver-

gence is decreased, the convergence rate of this algorithm

will be afected heavily (Han, Li, & Wei, 2006). How-

ever, the article above did not mention how to evaluate

the premature convergence. In this paper, an improved

PSO (IPSO) algorithm has been developed by integrating

the randomly distributed inertia weight coeicient and

the evaluation of premature convergence. The perfor-

mance of this newmethod has been evaluated by employ-

ing them in the optimization of the four mathematical

functions.

Although ElmanNN has some advantages, there also

exist some problems in its application. When dealing

with high dimensional data, such as ship resistance val-

ues, useful information can be overwhelmed by large

quantities of redundant data and relevant redundant

information may take up much storage space and may

consume a lot of calculation time (Ding et al., 2008). It is

also easy to fall into local minimum because the gradient

descent method is used to train the network parame-

ters. By developing the improved ElmanNN (Shen et al.,

2015; Song & Zhao, 2016; Zhou, Ding, & He, 2013),

these problems can be overcome efectively. In this arti-

cle, to improve the accuracy of the resistance prediction

using ElmanNN, an efective IPSO algorithm developed

is used to optimize the inertia weight coeicients and

self-feedback gain coeicient of ElmanNN. Then the per-

formance of the IPSO-ElmanNN method is compared

in the prediction of the ship resistance with the original

ElmanNN.
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The aim of present work is to describe a practical ship

hull form optimization loop using the IPSO-ElmanNN

method. An arbitrary shape deformation (ASD) tech-

nique is used to alter the geometry of hull. Total resistance

in calm water is selected as the objective function, and

optimization is carried out at design speed. The IPSO-

Elman algorithm is proposed to approximately calcu-

late the total resistance, and the hull form is optimized

using an IPSO algorithm. Finally, two ships are presented

and discussed: namely, the David Taylor Model Basin

(DTMB) model5512 (a ship model of the US Navy Com-

batant) and the WIGLEY III (a mathematical ship form

widely used on the international) ships.

2. Optimizers

2.1. Particle swarm optimization (PSO) algorithm

On the D-dimensional space, the i-th particle velocity

and position can be written as Vi = (vi,1vi,2vi,3 . . . vi,d)

andXi = (xi,1 xi,2 xi,3 . . . xi,d) , respectively. pbest is used

to denote the local best solution and gbest is used to

denote the global optimal solution. In each of iteration,

the particle updates itself by tracking pbest and gbest.

After inding these two optimal values, the velocity and

position of each particle is updated using the following

formulas:

vi,j(t + 1) = ωvi,j(t) + c1r1[pi,j − xi,j(t)]

+ c2r2[pg,j − xi,j(t)] (1)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) j = 1, 2, . . . , d (2)

where ω is the inertia weight coeicient, c1 and c2 are the

acceleration coeicientswith positive values called cogni-

tive and social parameters, respectively. r1 and r2 are the

random variables between 0 and 1. Generally, the range

of the total number of particles N, c1 and c2are reported

as follows: 20 ≤ N ≤ 40; c1 + c2 ≤ 4 (Azimifar & Payan,

2016).

2.2. Improved particle swarm optimization (IPSO)

algorithm

The inertia weight coeicient ω is a parameter to inlu-

ence the trade-of between global and local searches

within the solution domain. In order to improve the

precision of the PSO algorithm, the adjustment of ω

will become very important. Large ω can avoid getting

into local optimal solution, and small one can efectively

accelerate convergence speed of iteration. It can be cal-

culated by constant method, linear decrement method,

self-adaptationmethod and so on. In this paper,ω is sub-

ject to a random distribution, so that it can overcome the

instability caused by the linear decline of the two aspects.

The formula of ω can be written as:

ω = ψ + σ ∗ N(0, 1) (3)

ψ = ψmin + (ψmax − ψmin) ∗ rand(0, 1) (4)

where ψ is the mean value of random weight, σ is the

variance of random weight. N(0,1) is the random vari-

able of standard normal distribution. ψmin is the min-

imum value of random weight. ψmax is the maximum

value of randomweight. rand (0,1) is the randomvariable

between 0 and 1.

The convergent degree of PSO algorithm can be

obtained from (Wang, Ma, Wang, & Wang, 2011):

� = |fg − f ′avg| (5)

where � is the evaluation index of convergent degree,

the smaller the � is, the better convergent it will be. fg is

the itness of the optimal particle, f ′avg is the itness aver-
age which is calculated by the particles with better itness

than favg (itness average of the whole particles) which

can be got from favg = 1/n
∑n

i=1 fi, fi is the i-th particle

itness, n is the size of the particle swarm.

The particle tends to premature convergence if � is

less than threshold �d and the optimal solution and the

expected optimal solution fd is not obtained. Consider

the minimization problem:

� < �d (6)

fg > fd (7)

At this time, partially inactive particles are modiied by

Gaussian mutation to early jump out of local optimum

and quickly ind the global optimal solution. The formal

can be written as:

fg − fi

fg − f ′avg
≤ θ (8)

where θ is the threshold, for i-th particle satisfying the

inequality (8), the mutation is carried out with random

one-dimensional location:

x
(k+1)
id = x

(k)
id + ηξ (9)

where η is the coeicient of variation, ξ is the random

variable in accordance with N(0,1) distribution.

The general low chart of IPSO algorithm is as

follows:

(1) Initialize the velocities and positions of a set of par-

ticles randomly.
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(2) Update the velocities and positions of particles

according to Equations (1) and (2).

(3) Update the inertia weight coeicient ω using Equa-

tions (3) and (4).

(4) Calculate the itness fi.

(5) Update the individual extremum pbest and the group

extremum gbest.

(6) Determine whether the premature convergence is

produced by Equations (6) and (7). If the answer is

yes, the population needs tomutate by Equations (8)

and (9). If not, repeat the steps 2–6 until the stopping

criterion is met.

(7) Output the global optimal result.

2.3. Veriication and validation for the IPSO

algorithm

To verify the applicability of the IPSO algorithm, four

functions are studied, as shown in Equations (10–13).

PSO and IPSO algorithm are used to ind the minimum

value of four functions respectively. The parameters of

two algorithms are shown in Table 1.

f1(x) =
D−1
∑

i=1

(100(xi+1 − xi
2)

2 + (xi − 1)2) (10)

f2(x) = 0.5 +
sin2

(

√

∑D
i=1 xi

2

)

− 0.5

[

1.0 + 0.001
(

∑D
i=1 xi

2
)]2

(11)

f3(x) =
D

∑

i=1

(x2i − 10 cos (2πxi) + 10) (12)

f4(x) =
1

4000

D
∑

i=1

x2i −
D


i=1

cos

(

xi√
i

)

+ 1 (13)

After the completion of optimization, the results are

tabulated in Table 2. The optimization results of the

IPSO algorithm can get the global optimal solution for

four functions, while PSO algorithm and IPSO algorithm

with self-adaptive weight and experimental design by Li

(2012) were trapped in a local optimum. It can be seen

that the IPSO algorithm developed in this paper has very

high-precision results in the optimization.

Figure 1 shows a comparison of the iterative processes

of the optimization using the PSO and IPSO algorithms

Table 1. Parameters.

Method N c1 c2 ω ψmax ψmin �d θ η

PSO 40 2 2 0.5 – – – – –
IPSO 40 2 2 – 0.8 0.5 1e−4 0.2 0.1

Table 2. Optimization results of different algorithms.

D
Minimum
value PSO IPSO IPSO (Li, 2012)

f 1(x) (Rosenbrock) 10 0 5.3067 0 4.855
f 2(x) (Schaffer) 10 0 0.009716 0 0.0097
f 3(x) (Rastrigrin) 10 0 16.9250 0 3.669
f 4(x) (Griewank) 10 0 1.0277 0 0.0694

individually. As can be seen from the igure, in 1000 iter-

ations, the IPSO algorithm can give a better itness value

which is near to the global optimal solution at the initial

stage of optimization compared to the PSO algorithm.

Although the mutation operation is added in the IPSO

algorithm, the convergence speed of this algorithm is still

not afected. The improving of the convergence speed is

mainly because the weight coeicient is not a ixed value

but a randomdistribution value. At the early stage of opti-

mization, if the particle is near the global optimum, it can

automatically produce a relatively small value to accel-

erate the convergence speed. If the optimization has got

into local extremumat the early stage of optimization, the

constantly change of the weight coeicient and the con-

vergence evaluation algorithm can help to overstep the

local extremum.

3. Geometry reconstruction

Based on B-spline technique, arbitrary shape deforma-

tion (ASD) technique is a method to change the shape

of diferent models by Sculptor tool (Sun, Song, & An,

2010). It requires that the ASD volume is set up out-

side the body with many control points and connections.

When the control points are moved, the shape of the

relevant areas can be changed. The new surface can be

achieved by the movements of control points, in which

the continuity of 3-order can be maintained. This can

insure the smoothness of the new model even under

the conditions of large deformations. This direct defor-

mation method can make it easy for the change of the

complex geometric. Taking a cylinder as an example, the

deformation process can be written as follows:

(1) Build an ASD volume around the cylinder with

many control points and connections between them,

as shown in Figure 2. The deformation volume can

be iner or coarser, depending on the shape change

control desired.

(2) Deine the control parameters including the position

of point and the direction of movement. As can be

seen from Figure 2, point 1 and point 2 are taken as

control parameters in order to change the geometry

shape.



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 5

Figure 1. Convergence history of the different algorithms (a) f 1(x), (b) f 2(x), (c) f 3(x), (d) f 4(x).

Figure 2. Geometry deformation using two parameters.

(3) Freeze the ASD volume, and change control

parameters by the movements of the points accord-

ing to the requirements of the designers.

(4) Get new geometry in term of geometry generation

algorithm with modiied control points.

4. Calculation of total resistance based on CFD

4.1. Mesh generation and boundary conditions

Overset mesh is a method (CD-Adapco, 2014) in which

grids are divided for two parts (background grids and

overset grids) of themodel and then nested into the back-

ground grids. The background grids are static and the

overset grids can be moved. The low ield information

is exchanged at the interface according to the interpo-

lation between each other. Then, the whole low ield
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Figure 3. Grid division of computational domain and hull (a) Mesh of the computational domain, (b) Computational mesh on the ship
geometries.

can be calculated (Zhao, Gao, & Xia, 2011). In this arti-

cle, an overset mesh is used to divide the computational

domain with linear interpolation, as shown in Figure 3.

Figure 3(a) shows the mesh of the whole physical model,

and the reined mesh is adopted near the free surface.

Figure 3(b) shows the mesh of hull surface.

Figure 3(a) also shows the boundary conditions of the

computational domain. In the light of the requirement of

the overset mesh, the whole model needs two individual

blocks which are named as background block and over-

set block. Background block is only a cuboid, and overset

block is a model with Boolean subtraction between the

cuboid and the hull. For the background block, the length

in front, back, top, bottom and left of the hull are taken

as 1.5 Lpp (Lpp is the length between perpendiculars of

hull), 6 Lpp, 1 Lpp, 4 Lpp and 3 Lpp, respectively. For the

overset block, the length in front, back and left of the hull

are taken as 1 Lpp, 1.5 Lpp and 2 Lpp, respectively.

(1) Background block: front, top and bottom bound-

aries are selected as velocity inlet. Back boundary is

selected as pressure outlet and both sides of tank are

selected as symmetry plane.

(2) Overset block: the right side of the cuboid is set as

the symmetry plane and the rest of surface is set as

oversetmesh. Ano-slip boundary condition is set for

the hull geometry.

4.2. Calculationmethods

In this study, Star-CCM+ is used as a RANS solver. Based

on the user manual of the software (CD-Adapco, 2014),

the hull is set as the ixed model and loating on the

water under design draft. The total resistance in calm

water is calculated by using RANS equations (Ferziger &

Peric, 2002) based on the SIMPLE (Patankar & Spald-

ing, 1972) algorithm. The RNG k-ε model (Yakhot &

Orszag, 1986) is selected as turbulence model. A Volume

of Fluid (VOF) model (Hirt & Nichols, 1981) is selected

tomodel and position the free surface. Thewhole compu-

tational domain is discretized by inite volume method.

The second-order upwind diference scheme is adopted

for the convection term and the centric diference scheme

for the dissipation term. The ship speed is taken as the

initial velocity to start the iterative calculation.

5. The establishment of approximationmethod
for CFD data

5.1. Optimal Latin Hypercube Design (Opt LHD)

There are a variety of experimental designs, such as cen-

tral composite, orthogonal design, full factorial design

and so on. Among them, the random Latin hypercube

design algorithm is improved to obtain better uniform,

space-illing and equilibrium, which is known as optimal

Latin hypercube design (Opt LHD) algorithm (Morris &

Mitchell, 1995). Matrix generating step is as follows:

m test points, n factors constitute the n*mmatrix:

x = [x1, x2, x3, . . . . . . , xm] (14)

Analyze the i-th test point:

xTi = [xi1, xi2, xi3, . . . . . . , xin] (15)

The Latin hypercube design algorithm is used to gen-

erate an initial design matrix according to the formula

(15), and then update the design matrix through ele-

ment exchange. Finally, optimal space illing is obtained

by principle of max-min distance:

d(xi, xj) = dij =

[

n
∑

k=1

|xik − xjk|
t]

1
t

(16)

where t = 1 or 2, 1 ≤ i, j ≤ m, i�=j, the sampling point

d(xi,xj) is the minimum distance between xi and xj.

Now take 3 levels of 3 factors as example. The sam-

ples distributions are obtained by random Latin hyper-

cube design and optimal Latin hypercube design for nine

experiments, as shown in Figure 4. As can be seen from

the igure, the samples are more uniform and accurate to

express the characteristics of spatial distribution by the

optimal Latin hypercube design.
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Figure 4. Comparison of samples (a) Random latin hypercube
design, (b) Optimal latin hypercube design (above: Present study,
below: Wang & Lu, 2015).

Based on the Opt LHD algorithm, 200 schemes are

designed to calculate the total resistance, as shown in

Table 3. The space distributions of samples are shown in

Figure 5. The total resistance RT is calculated by RANS-

CFDmethod in Section 4. The total resistance coeicient

CT can be obtained using the following equation:

CT =
RT

0.5ρv2hullS
(17)

where ρ is the luid density, vhull is the speed of hull, S is

the wetted surface area.

In the Table 3: a11, a12, a21, and a22 are the design

variables of the DTMB5512 ship, which have been listed

in Section 6. CT1 is the total resistance coeicient of the

DTMB5512 ship. b11, b12, b21, and b22 are the design vari-

ables of the WIGLEY III ship, which have been listed

in Section 6. CT2 is the total resistance coeicient of

WIGLEY III ship.

5.2. Elman neural network

The ElmanNN was proposed by Elman in 1990 (Elman,

1990). Its main structure is feed forward connection,

which includes the input nodes, hidden nodes, context

nodes and output nodes, as shown in Figure 6. The input

nodes, hidden nodes and output nodes are similar to the

feed forward neural network. The input nodes unit only

plays the role of signal transmission, and output nodes

unit plays the role of the linear weighting. The context

nodes are used to memory the previous output value of

the hidden nodes and then return to the input.

Nonlinear state space equations of ElmanNN can be

written as:

y(k) = g(w3x(k)) (18)

x(k) = f (w1xc(k) + w2u(k − 1)) (19)

xc(k) = βxc(k − 1) + x(k − 1) (20)

wherew3 represents the connection weight from the hid-

den nodes to the output nodes, x(k) means the output of

the hidden nodes. w1 represents the connection weight

from the context nodes to the hidden nodes, w2 rep-

resents the connection weight from the input nodes to

the hidden nodes. xc(k) means the output of the context

nodes. β is the self-feedback gain coeicient. g(*) rep-

resents the transfer function of the output nodes, f (*)

represents the transfer function of the hidden nodes.

The error function can be written as:

E =
1

2
(yd(k) − y(k))T(yd(k) − y(k)) (21)

The dynamic learning algorithm can be summarized as

follows:

�w3
ij = ϑ3δ

0
i xj(k), i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(22)

�w2
jq = ϑ2δ

h
j uq(k−1), j = 1, 2, . . . , n; q = 1, 2, . . . , r

(23)

�w1
jl = ϑ1

m
∑

i=1

(

δ0i w
3
ij

)∂xj(k)

∂w1
jl

,

j = 1, 2, . . . , n; l = 1, 2, . . . , n (24)

Table 3. Experiment samples.

DTMB5512 WIGLEY III

No. a11 a12 a21 a22 CT 1*10
−3 b11 b12 b21 b22 CT 2*10

−3

1 −0.0201 −0.02442 0.0623 −0.0479 4.341 −0.0369 −0.5494 −0.061 −0.00275 5.536
2 −0.2533 −0.03809 0.0573 −0.0468 4.373 −0.3791 −0.5237 −0.6747 0.04178 5.206
3 −0.1065 −0.09362 −0.1148 0.0884 4.343 −0.0932 −0.7357 −0.0161 0.00361 5.577
4 −0.201 −0.02528 −0.0143 −0.0214 4.342 −0.3068 −0.2731 −0.2924 0.03976 5.369
5 −0.3075 −0.08337 −0.0721 −0.1115 4.472 −0.249 −0.0867 −0.7229 0.04294 5.297
6 −0.2432 −0.01503 −0.145 −0.019 4.341 −0.008 −0.3373 −0.1221 0.036 5.426
7 −0.3176 −0.0808 −0.0759 −0.0329 4.387 −0.3936 −0.3502 −0.1896 0.02993 5.311
8 −0.0422 −0.00392 −0.1136 0.0769 4.352 −0.1044 −0.5783 −0.1542 0.01287 5.502
9 −0.0683 −0.10131 −0.0683 −0.0075 4.497 −0.2506 −0.1382 −0.4305 −0.00969 5.402
10 −0.203 −0.13975 0.0824 0.0561 4.383 −0.3438 −0.045 −0.3181 0.04612 5.536
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

197 −0.2915 −0.12779 −0.057 −0.0098 4.493 −0.355 −0.4016 −0.7454 0.02212 5.211
198 −0.3437 −0.06286 0.0673 0.0792 4.361 −0.3213 −0.0257 −0.2024 0.01402 5.291
199 −0.3276 −0.07739 0.0523 0.0098 4.362 −0.1141 −0.3181 −0.6008 0.05913 5.358
200 −0.2854 −0.10387 −0.0043 0.033 4.451 −0.0273 −0.498 −0.3566 0.00448 5.502
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Figure 5. Space distributions of samples (a) DTMB5512, (b) WIGLEYIII.

Figure 6. The framework of ElmanNN (above: Present study,
below: Wang et al., 2011).

where ϑ3, ϑ2 and ϑ1 are the learning step.

δ0i = (yd,i(k) − y(k))gi
′(·) (25)

δhj =
m

∑

i=1

(δ0i w
3
ij)fj

′(·) (26)

∂xj(k)

∂w1
jl

= fj
′(·)xl(k − 1) + β

∂xj(k − 1)

∂w1
jl

(27)

5.3. IPSO-Elman neural network

The IPSO-ElmanNN can be expressed as follows:

(1) First, the samples are trained according to the

input and output. Secondly, the note numbers of

the input nodes, hidden nodes and output nodes

are designed. Finally, the topology structure of

ElmanNN is deined.

(2) Deine the parameters of IPSO algorithm, which

includes the population size, number of iterations,

inertia factor and acceleration coeicients.

(3) Deine the evaluation function of particles. The

mean square error function G is used as the itness

evaluation function of the particles. The position of

the particle with the lowest itness is the optimal

solution of the model when the iteration is stopped.

The itness function can be deined by the following

equation:

G =
1

N

N
∑

i=1

(yi(Elman) − yi(CFD))
2 (28)

where yi(Elman) is the i-th predicted value by

ElmanNN, yi(CFD) is the i-th expected output by

CFD method.
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Figure 7. Prediction results of CT 1 for DTMB5512ship (a) The prediction of the CT 1using ElmanNN, (b) The prediction of the CT 1using
IPSO-ElmanNN.

(4) The velocities and positions of a set of particles are

initialized randomly.

(5) Update the velocities and positions of particles and

inertia weight coeicient ω.

(6) Calculate the itness using the formula (28).

(7) Update the individual extremum pbest and the group

extremum gbest according to the itness of the

particles.

(8) Update the solution, and adjust the weights w1, w2,

w3, and self-feedback gain coeicient β .

(9) Evaluate whether the premature convergence is pro-

duced. If the answer is yes, mutate the popula-

tion. If not, repeat the steps 5–9 until the inal end

is met.

(10) The optimal result is used to train the weights and

self-feedback gain coeicient, and then output pre-

diction results of hull resistance.

5.4. Veriication and validation for IPSO-ElmanNN

In order to test the efect of the IPSO-ElmanNN,

ElmanNN and IPSO-ElmanNN prediction models are

implemented in MATLAB (R2016a) with the samples

fromTable 3. Two algorithms are then used to predict the

total resistance subsequently. The cell numbers of input

nodes, hidden nodes and output nodes are 4, 12 and 1,

respectively. Figures 7 and 8 show the predictions results

of the total resistance coeicients for two ships in ques-

tion. α is the deviation between the ElmanNN//IPSO-

ElmanNN and the CFD methods. Table 4 shows the

average error results of these predictions.

When comparing the IPSO-ElmanNN with the

ElmanNN for predicting the total resistance coeicients,

the former has improved the prediction accuracy, not

only for the DTMB5512 (with the average error about

3.2*10−5%), but also for the WIGLEY III (with the aver-

age error about 4.7*10−5%). The reason of this improved

performance is that the IPSO algorithm has found a set

of more suitable coeicients to train the ElmanNN in

order to avoid the diiculty in choosing the coeicients

through experience. Although the forecasting precision

of the IPSO-Elman algorithm is preferable to the Elman

algorithm, there are some errors between the CFD data

and prediction data. The main reason for such errors is
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Figure 8. Prediction results of CT 2 for WIGLEYIIIship (a) The prediction of the CT 2using ElmanNN, (b) The prediction of the CT 2using
IPSO-ElmanNN.

Table 4. Result of the total resistance coefficient prediction
based on the different algorithms.

Average Error (%) for 200 sampling hull forms

Training algorithms DTMB5512 WIGLEY III

ElmanNN 8.89*10−5 1.41*10−4

IPSO-ElmanNN 3.2*10−5 4.7*10−5

that the number of samples is not adequate. The network

training results can be improved efectively by increasing

the number of training samples.

6. Hull form optimization problems

6.1. Optimize processes

In this paper, optimization process is shown in Figure 9,

including the following ive steps:

(1) Change design variables using the IPSO algorithm.

(2) On the basis of a set of design variables, change hull

form shape using the ASD technique.

(3) Calculate the displacement of each new hull and

compare with the constraint. If the condition is met,

Figure 9. Flow chart of the optimization loop.
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Figure 10. Modified region of hull forms.

continue to calculate, otherwise return to step 1 to

recalculate the new hull.

(4) Calculate the total resistance in calm water using

IPSO-ElmanNN, and then save the result.

(5) Repeat steps 1–4 until the stopping criterion is met.

Then the new hull can be output. The whole work

is completed on the ISIGHT platform (Wang, Mo, &

Zhang, 2011).

6.2. Geometry

In this paper, the DTMB5512 and WIGLEY III ships are

selected as optimization models. The modiied area have

been shown in Figure 10. The major characteristics are

shown in Table 5.

6.3. Optimization strategy

The objective function is the total resistance coeicients

CT1 (DTMB5512) and CT2 (WIGLEY III) in calm water

at design speed. The displacement constraint has been

Table 5. Major characteristics of two ships.

Hull forms DTMB5512 WIGLEY III

Design speed Fr 0.28 0.3
Length between perpendiculars Lpp(m) 3.048 3

Draft d (m) 0.132 0.1875
Breath B (m) 0.409 0.3
Displacement� (kg) 86.4 78
Block Coefficient CB 0.507 0.4622

deined in formula (29) (only for DTMB5512). The

design variables, a11, a12, a21 and a22 (DTMB5512) and

b11, b12, b21 and b22(WIGLEY III) have been shown in

Table 6.
∣

∣

∣

∣

�new − �org

�org

∣

∣

∣

∣

≤ 0.01 (29)

where new represents the variable of new hull, and org

represents the variable of parent hull.

In the Table 6:No.1 toNo.6 are the positions of design

variables, as shown in Figure 11.

6.4. Results and discussion

Since the calculation of the total resistance costs less

than two minute under the help of the IPSO-ElmanNN,

the optimization eiciency has been greatly improved

compared with CFD runs optimization loop. After the

completion of the optimization, the excellent hull forms

Table 6. Control parameters of two ships.

Hull forms
Design
variables No.

Moving
directions Constraints

DTMB5512 a11 1 X −0.4 ≤ a11 ≤ 0
a12 1 Z −0.15 ≤ a12 ≤ 0.02
a21 2 Y −0.15 ≤ a21 ≤ 0.1
a22 3 Y −0.13 ≤ a22 ≤ 0.1

WIGLEY III b11 4 X −0.4 ≤ b11 ≤ 0
b12 5 Y −0.8 ≤ b12 ≤ 0
b21 6 Y −0.8 ≤ b21 ≤ 0
b22 4 Z −0.012 ≤ b22 ≤ 0.06

Figure 11. Control positions of two ships.
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Table 7. Resistance results of the optimized hulls.

Method Parent hulls Optimized hulls Fr CTorg/CTopt

IPSO-ElmanNN+ IPSO DTMB5512 Optimized hull-A 0.28 1.0591
WIGLEY III Optimized hull-B 0.3 1.05468

with lower total resistance are obtained. The work is car-

ried out on the Intel Corei5-5200U CPU @2.2GHz, and

the CFD runs in this paper are using the ARCHIE-WeSt

Height Performance Computer (http://www.archie-west.

ac.uk). Table 7 shows the comparison of the obtained

optimization results. The results clearly state that the total

resistance of the optimized hull-A is decreased by 5.58%,

and the optimized hull-B is decreased by 5.19%. Follow-

ing this, further calculations are carried out for other

speeds and comparison ismade against the parent hull by

RANS-CFD results and the EFDdata obtained from Iowa

Institute of Hydraulic Research (Gui, Longo, & Stern,

2001a,2001b; Longo & Stern, 2005) and Delft University

of Technology (1992), as shown in Figure 12. For the

optimized hull-A, CT1 decreases at all speeds especially

in design speed and high speed, and for the optimized

hull-B,CT2 decreases at all speeds especially in the design

speed.

Figure 13 shows the comparison of the hull lines for

parent hull and optimized hulls. Figure 14 shows the

comparison of longitudinal wave cut for parent hull and

optimized hulls along the y/Lpp = 0.082 plan (z repre-

sents the height of free surface). It can be found that

the amplitude of waves has been reduced which indi-

cates the reduction in total resistance for the optimized

hulls.

Figure 15 presents thewave patterns for the parent hull

and the optimized hulls. As the change of the bow shape

for both of the ships, the wave patterns in the forward

shoulder have been reduced signiicant, while the change

of the shoulder waves and the stern waves are not very

Figure 12. The total resistance coefficients for a range of Fr numbers (a) DTMB5512, (b) WIGLEYIII.

Figure 13. Comparison of hull lines (a) DTMB5512, (b) WIGLEYIII.

Figure 14. Comparison of wave profile at y/Lpp = 0.082 (a) DTMB5512, (b) WIGLEYIII.

http://www.archie-west.ac.uk
http://www.archie-west.ac.uk
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Figure 15. Comparison of the wave patterns around the vessels (a) DTMB5512, (b) WIGLEYIII.

Figure 16. Comparison of the static pressure on the ship surfaces (a) DTMB5512, (b) WIGLEYIII.

signiicant. Figure 16 is the comparison of the static pres-

sure onhull surface. The newhull forms have changed the

pressure distribution near the bow, and wave-resistance

has been decreased which ends the decrease of the total

resistance.

7. Conclusion

(1) In order to overcome the shortcomings of the PSO

algorithm, an IPSO algorithm has been proposed

with random weighting method and the evaluation

of convergence. Through the test of four mathe-

matical functions, it can be concluded that IPSO

algorithm developed in this paper can efectively

improve the optimization accuracy.

(2) ElmanNNparameters are trained by IPSOalgorithm,

and IPSO-ElmanNN prediction model is proposed.

ThenElmanNNand IPSO-ElmanNNare carried out

on the prediction of the hull resistance. The results

indicate that the IPSO-ElmanNNhas the advantages

of precision and stability.

(3) Aiming to deal with the challenge of larger surface

variation, the ASD technique is used to change the

shape of geometry. The new model can be quickly

obtained while ensuring the smoothness of surfaces.

Because of less design variables, it also can improve

the eiciency of ship-type optimization.

(4) In terms of hull form optimization problem, IPSO-

ElmanNN-based approximate optimization

approach is developed and then two ships have been

applied in this loop. It is concluded that the approx-

imate optimization system is feasible and rational

for optimization of hull forms which can provide

relevant technical support in ship-type design.
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(5) Since the optimization loop in this paper is devel-

oped for single objective function (minimum total

resistance in calm water), and the seakeeping per-

formances are not taken into account. To obtain a

hull formwith a better performance, futureworkwill

force on the multi-objective optimization including

rapidity, seakeeping and manipulation.
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