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Abstract

The electrostatic potential around a slowly moving test charge is studied in a dusty plasma where

the ions and electrons follow a powerlaw Kappa distribution in velocity space. A test charge

moving with a speed much smaller than the dust thermal speed gives rise to a short-scale Debye–

Hückel potential as well as a long-range far-field potential decreasing as inverse cube of the

distance to the test charge along the propagation direction. The potentials are significantly

modified in the presence of high-energy tails, modeled by lower spectral indices in the ion and

electron Kappa distribution functions. Plasma parameters relevant to laboratory dusty plasmas

are discussed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Fluid and kinetic models are two common approaches to

study waves and instabilities in plasma [1, 2]. Test charge

techniques [3–6] are often utilized for studying shielding

phenomena such as electrostatic potential and energy loss

caused by a moving test charge in plasma. In this technique, a

test charge with a given charge and velocity is externally

inserted into the plasma and its charge is coupled with the

plasma charge density through the space charge effects,

leading to the shielding of the charge by a cloud of opposite

charges in the plasma. Problems involving shielded electro-

static potentials around charged particles and energy loss

of particles moving in plasma occur in many different areas of

physics, such as particle acceleration [7, 8], the formation of

new materials in low-temperature dusty plasma [9–11],

heating and ignition in inertial confinement fusion [12–16],

heavy ion energy deposition in dense plasma [17], and the

interaction of ion clusters with condensed matter [18–21].

Taking into account moving and stationary test charges, a

far-field (FF) potential distribution depending as the inverse

third power of the distance to the test charge was found

around a test charge in a Maxwellian plasma of dynamical

electrons with static ions [4]. Later, the effects of ionic

motions [22, 23], collisions [24–26] and turbulence [27, 28]

were taken into account. A kinetic description was used to

study the electrostatic potential around a test charge with low

and high velocities [29, 30], revealing the excitation of long-

range wakefields in a Maxwellian plasma. The effects of

magnetic field, collisions and plasma density gradients have

also been studied for slowly and rapidly moving test charges

[31–33]. The Debye shielding has been studied in a dusty

plasma with Boltzmann distributed electrons and ions in the

presence of static negatively charged dust grains [34], taking

into account both small and finite amplitude potential dis-

tributions. Collisions, Landau damping, and dust-charge

perturbation effects on the dipole-like FF potential have been

taken into account for a slow test charge in a Maxwellian

dusty plasma [35, 36]. Oscillatory wake-field, Debye–Hückel

(DH) and FF potentials caused by a test charge in a colloidal

Maxwellian plasma in the presence of streaming ions and dust

grains have also been studied theoretically [37] and
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numerically [38]. Recently, the shielding of two slow co-

moving teset charges in collisional plasma has also been

studied theoretically [39].

There is a growing interest in studying non-Maxwellian

power-law distributions involving superthermal particles,

accelerated by wave-particle interactions and turbulence. It

has opened up new research avenues for researchers to model

plasma collective interactions and instabilities in astro-

physical environments [40]. Suprathermal electrons often

occur in plasmas where modulational instabilities and Lang-

muir turbulence take place [41], such as beam-plasma inter-

actions [42], in the solar wind where type III solar radio

emissions occurs [43], intense microwave-plasma interactions

[44] and ionospheric heating experiments [45, 46]. Super-

thermal energetic tails in the velocity distribution function of

particle species s (s=e for electrons and i for ions) can be

modeled by a three-dimensional Kappa distribution function

[47] k q= +k k
k- +( ) ( ) ( )f a vv 1s s s Ts

2 2 1
s s

s with normalization

constant p k k q k= G + G -k
- ( ) [ ( )]a N 1 1 2s s s Ts s0
3 2 3

s
.

Here Ns0 and q k k= -[ ( ) ( )]T m2 3 2Ts s s s s
1 2 is the equili-

brium density and effective thermal speed, respectively. The

Kappa distribution is valid for k > 3 2s . The temperature is

denoted by Ts and the mass by ms. The Kappa distribution

function tends to a Maxwellian distribution function,

p = -k ( ) ( ) [ ( )] [ ( )]f f m T m v Tv v 2 exp 2s M s s s s s s
3 2 2

s s
in the

limit k  ¥s . Vasyliunas [47] first pointed out the relevance

of the Kappa distribution function by fitting empirical data

from the solar wind to show its importance for low spectral

index κ∼2–4. After that, the investigation of several dis-

persive modes and instabilities have been carried out for

power-law Kappa-distributed plasmas [48–51]. Recently, the

potential around a slowly moving test charge in a Kappa-

distributed plasma was studied [52] using a Vlasov model,

containing supra-thermal hot and cold electrons with immo-

bile ions. It was shown that the short-range DH potential

decreases as an exponential decay of the distance and long-

range FF potential as the inverse cube of the distance from the

test charge.

In this paper, we present a theory for the potential dis-

tributions around a slowly moving test charge in an unmag-

netized dusty plasma having supra-thermal electrons and ions,

as well as negatively charged dynamical dust grains.

2. Vlasov–Poisson model

The electrostatic potential due to a moving test charge in a

collisionless dusty plasma is in the small-amplitude limit

governed by the linearized Vlasov–Poisson system

f  ¶
¶
+ = -⎜ ⎟

⎛

⎝

⎞

⎠
· · ( ) ( )

t
f

Z e

m
fv v , 1d

d

d
dv1

0
1 0

òf p

p d

 =- - -

- -

( )
( ) ( )

e N N Z f

Q t

v

r v

4 d

4 , 2

i e d d

T T

2
1 1 1 0 1

where QT is the charge of the test particle and δ is Dirac’s

delta function representing the test charge located at r. We

have used the equilibrium charge-neutrality condition

= +N N Z Ni e d d0 0 0 0, where Nj0 is the particle number density

of the jth species ( j=e for electrons, i for positive ions, and

d for the negatively charged dust grains), and Zd0 is the equi-

librium dust charge state. We assume that all dust grains are

spherical in shape with radius rd and mass md. The linearized

electron and ion density fluctuations fk ( )N N c e t Tr,e e e e1 0 1

and f- k ( )N N c e t Tr,i i i i1 0 1 are, respectively, obtained in

the limits f k - ( )e T3 2 1e e and f k - ( )e T3 2 1i i

for Kappa-distributed inertialess electrons and ions with

temperatures Te and Ti. Furthermore, the perturbation of the

dust distribution function is assumed to be much smaller

compared to the equilibrium Maxwellian distribution,

p= -( ) ( ) ( ) ( )f t f v v vr v v, , 1 2 exp 2d d Td Td1 0
2 3 2 2 2 , where

= ( )v T mTd d d
1 2 is the dust thermal speed and Td the dust

temperature. Note that the effects of suprathermal tails are

accounted for through the parameters k= -k ( )c 2 1e i e i, ,

k -( )2 3e i, , where kc 1e i, in the Maxwellian limits

k  ¥e i, . The shielded test charge QT gives rise to the

screened potential f1, which depends on its speed in compar-
ison with the thermal speeds.

3. Dielectric response to a test charge

Applying the space-time Fourier transform to equations (1)

and (2), we obtain

e w f w p d w= -( ) ˜ ( ) ( · ) ( )k Qk k k v, , 8 . 3T T
2

1
2

Here ω and k are the angular frequency and wave vector, f̃1 is
the Fourier transformed potential,

e w
l l l

= + + +k k
( )

( )
( )

c

k

c

k

W C

k
k, 1 4

e

e

i

i

d

d
2

D
2 2

D
2 2

D
2

is the plasma dielectric constant, òp= -
-¥

¥
( )W C xdxd

1 2

- -( ) ( )x x Cexp d
2 the plasma dispersion function [53], and

w= ( )C kv2d Td . Here l p= [ ( )]T N Q4j j j jD 0
2 1 2 stands for

the Debye length of jth species, where the charge = -Q ej

for the electrons, =Q ej for the ions, and = -Q Z ej d0 for the

dust grains. Setting e = 0 describes the dispersion relation of

plane dust acoustic waves.

Taking the inverse Fourier transform of equation (3)

gives w = ·k vT , and the potential is obtained as [2, 54]
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The dielectric constant can in the limit ∣ ∣ vvT td be simpli-

fied as

e
l l
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+k k( · ) ( )k
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. 6T
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2

In equation (6), we have made an expansion of ( )W Cd
function in the limit ∣ ∣C 1d , with = · ( )C kvk v 2d T Td , to

account for a slowly moving test charge, ignoring the higher

order terms. Note that the plasma response function, and in

turn the test charge distribution, are modified by the dust

Landau damping term [4] proportional to Cd in right-hand

side of equation (6). For =v 0T , the dust Landau damping

2
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vanishes, and the shielded test charge gives rise to the stan-

dard DH potential [52, 55–57].

Taking the inverse of equation (6) in the limit ∣ ∣ vv ,T Td

we obtain

e
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with the angle m q= cos k between the vectors k and vT . The

effective Debye length, modified by the superthermal elec-

trons and ions, is given by

l
l l l
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+ +
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where m = N Ne e0 0 and h = N Nd0 0 are the normalized
electron and dust concentrations, respectively. The temper-

ature ratios are denoted by =a T Te i and =b T T ,e d while

we denoted l p= ( )T N e4eD 0
2 1 2 and = = +N N Ni e0 0 0

Z Nd d0 0. In the Maxwellian limit k  ¥e i, , equation (8)

exactly coincides with previous results [34] in the limit of

static dust grains. Figure 1 displays the impact of the dust

temperature and charge state on the normalized effective

Debye length given by equation (8). Since all plasma species

participate in the shielding process when the test charge is

moving slowly, the effective shielding length is also influ-

enced by the dust temperature and charge state. We note that

the effective shielding length is reduced in a dusty plasma

compared to an electron–ion plasma due to the cold dust

population shielding the test charge. Figure 2 exhibits how the

normalized effective Debye length varies as function of the

electron and ion spectral indices ke and ki for different values
of dust concentration h = ´- - -10 , 2 10 and 106 6 5, in

figures 2(a)–(c) having k = 100i and in figures 2(d)–(f) with

k = 100e . Other parameters are taken as a = 6.6, b = 66.6

and =Z 200d0 . Consistent with previous results [60], the

effective Debye length is smaller for smaller values of the

spectral indices.

4. Profiles of the DH and FF potentials

Choosing a coordinate system in which the test charge is

moving in the z-direction, = ( )vv 0, 0,T T , the vectors k

and r can be expressed into the spherical polar coordinates

as q j q j q= ( )k k kk sin cos , sin sin , cosk k k k k and =r
q j q j q( )r r rsin cos , sin sin , cosr r r r r , allowing us to write

the total electrostatic potential (5) as the sum of DH and FF

potentials as f f f= +( ) ( ) ( )t t tr r r, , ,1 DH FF with

f
l

= - k

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )t

Q

r

r
r, exp 9

T
DH

Def

and

f
p

xl
l

l
=

k k
( )

( )
( )t

Q

r

v

v r
r,

2
. 10

T T

Td d

FF
Def

D
2

Def
3

3

Equation (9) describes the short-range DH potential,

accounting for small distances between the test charge and

the observer, and equation (10) the long-range FF potential

derived in the limit lk r 1Def , which to leading order

decays as the inverse cube of the distance to the test charge.

Here r x= +( )r 2 2 1 2 is the distance from a test charge to

observer with radial position ρ and axial position

x = -z v tT . When the spectral indices k  ¥,e i, the

superthermailty parameters kc e i, approach unity, and the

modified effective shielding length tends to the effective

shielding length for a Maxwellian plasma, l lk
Def Def .

Consequently, equations (8) and (9) are consistent with the

results of [35, 36] (with g x=( ) rcos ), who also considered

the effects of collisions and dust charge fluctuations on the

FF potential.

As a numerical illustration, we have normalized equations
(8)–(10) using f f l=¯ ( )QTDH DH D , f f l=¯ ( )QTFF FF D ,

r r l=¯ D, x x l=¯
D with =v̄ v vT T Td and chosen

typical values from laboratory [58, 59], as = ´N 9.9e0
-10 cm8 3, = -N 10 cmd0

4 3, =Z 200d0 , = ´ -m 1.04 10 g,d
4

Figure 1. The normalized effective Debye length (l lk
Def D) given by

equation (8) against the dust concentration h = N Nd0 0 for (a) the

dust temperatures =T 0.01 eVd (black dotted curve), 0.02 eV (blue

dashed curve) and 0.03 eV (red solid curve), with fixed values of
=Z 200d0 and k = 1.6e i, , (b) the dust charge states =Z 300d0

(black dotted curve), 600 (blue dashed curve) and 1000 (red solid
curve), with =T 0.03 eVd and k = 1.6.e i,

3
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=T 2 eVe , =T 0.3 eV,i and =T 0.03 eVd . This gives the

electron Debye length l = 334eD μm, the ion Debye length

l m= 128iD m, and the dust Debye length l m= 40.7dD m.

Consequently, the effective Debye length l m=k 38 mDef for

k = 100i e, . Significant effects due to superthermal tails in the

electron and ion distribution functions appear only at low

values of ki e, , leading to a reduction of the effective Debye
length l m»k 28 mDef for k = 1.6i and k = 100e , and

l m»k 36 mDef for k = 100i and k = 1.6e . In figure 3,

the profiles of the short-range DH potential due to a

slowly moving test charge QT are shown as a function of
the axial distance x̄ . Since the test charge moves with

a very slow speed ∣ ∣ vvT Td, it is shielded by all the

plasma species, contributing to an effective shielding length

l l l l= + +k
k k

- - - -( )c c .e e i i dDef D
2

D
2

D
2 1 2 In figure 3(a), small ion

spectral indices, k = 1.6i and 2, lead to a visible reduction of

the DH potentials in comparison to the Maxwellian case

k = 100i . On the other hand, the electron spectral index

k = 1.6e , 2, and 100 with a fixed k = 100i give a relatively

small impact on the DH potentials (see figure 3(b)). This is

expected, since the shielding is primarily due to the colder

species (ions and dust), while the hot electrons do not sig-

nificantly participate in the DH shielding.

Figure 4 exhibits how supra-thermal tails of the ions and

electrons, as well as the dust concentration and temperature,
affect the FF potential f̄FF for a test charge speed =v̄ 0.005T .

Figure 2. The normalized effective Debye length l lk
Def D as a function of the electron and ion spectral indices ke and ki for the normalized

dust concentrations h = -10 6, 2×10−6, and -10 5, respectively, in panels (a)–(c) with k = 100i and panels (d)–(f) with k = 100e . Other

parameters are fixed as =a 6.6, b = 66.6 and =Z 200d0 .

4
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The shielding FF potential is more localized for smaller ion

spectral indices k = 1.6i and 2 compared to the near-Max-

wellian case k = 100i (see figure 4(a)), and the shielding is

also more efficient for lower values of the dust temperatures

(figure 4(d)). The values of the electron spectral index and the

dust concentration have only minor effects on the FF

shielding potential in figures 4(b) and (c).

5. Summary

To summarize, we have presented slow response of a moving

test charge in a non-Maxwellian dusty plasma, whose con-

stituents are supra-thermal and inertialess electrons and ions

in the presence of Maxwell-distributed inertial dust grains.

For this purpose, linearized Vlasov equation for the dust,

Figure 3. The normalized DH potential f̄DH as a function of normalized axial distance x̄ for changing (a) the ion spectral index, k = 1.6i

(black dotted curve), 2 (blue dashed curve), and 100 (red solid curve) with k = 100,e (b) the electron spectral index k = 1.6e (black dotted

curve), 2 (blue dashed curve), and 100 (red solid curve) with k = 100.i Other parameters are fixed as h r= =- ¯10 , 0,5 =a 6.6, b = 66.6

and =Z 200d0 .

Figure 4. The normalized FF potential f̄FF against the normalized axial distance x̄ for different values of (a) k = 1.6i (black dotted curve), 2 (blue

dashed curve), and 100 (red solid curve)withk = 100e and h = -10 5, (b)k = 1.6e (black dotted curve), 2 (blue dashed curve), and 100 (red solid

curve) at k = 100i and h = -10 ,5 (c) dust concentration h = -10 5 (black dotted curve), ´ -1.5 10 5 (blue dashed curve), and 2×10−5
(red solid

curve), fork = 1.6e i, , and (d) dust temperature =T 0.01 eVd (black dotted curve), 0.02 eV (blue dashed curve), and 0.03 eV (red solid curve), for

k = 3e i, and h = -10 5. Other fixed parameters are r =¯ 0, a = 6.6, b = 66.6, =v̄ 0.005T , and =Z 200.d0

5
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coupled with the electron and ion density responses and

Poisson’s equation for the potential are solved with a Fourier

transform technique to obtain the modified electrostatic

potential modified by the supra-thermal tails of the ions and

electrons. When the test charge moves with a constant speed,

slowly in comparison with the dust thermal speed, it gives rise

to a shielded potential that can be decomposed into a short-

range DH and long-range FF potential. The variation of FF

potential is to leading order proportional to the inverse cube

of the distance to the test charge. Both the DH and FF

shielding potentials are more localized (i.e. more efficient

shielding) for smaller spectral indices. For large spectral

indices, the DH and FF potentials approach the Maxwel-

lian case.

Acknowledgments

It is our pleasure to dedicate this article to Professor Hans L

Pécseli on the occasion of his 70th birthday. S Ali

acknowledges the support from the Abdus Salam Interna-

tional Centre for Theoretical Physics (AS-ICTP) for his visit

under the Regular Associateship Scheme. BE acknowledges

the support from the EPSRC (UK), grant no. EP/
M009386/1.

References

[1] Pécseli H L 2013 Waves and Oscillations in Plasmas (New
York: CRC Press)

[2] Chen F F 2016 Introduction to Plasma Physics and Controlled
Fusion 3rd edn (New York: Springer)

[3] Neufeld J and Ritchie R H 1955 Phys. Rev. 98 1632
[4] Montgomery D, Joyce G and Sugihara R 1967 Plasma Phys.

10 681
[5] Cooper G 1969 Phys. Fluids 12 2707
[6] Yu M Y, Stenflo L and Shukla P K 1972 Radio Sci. 17 1151–2
[7] Jones M E and Keinigs R 1987 IEEE Trans. Plasma Sci.

15 203
[8] Kim H-S, Yi S, Amin A and Lonngren K E 1994 Phys. Rev. E

50 3962
[9] Mohideen U, Rehman H U, Smith M A, Rosenberg M and

Mendis D A 1998 Phys. Rev. Lett. 81 349
[10] Takahashi K, Oishi T, Shimomai K, Hayashi Y and Nishino S

1998 Phys. Rev. E 58 7805
[11] Melzer A, Schweigert V A and Piel A 1999 Phys. Rev. Lett.

83 3194
[12] Skupsky S 1977 Phys. Rev. A 16 727
[13] Lindl J D, McCrory R L and Campbell E M 1992 Phys. Today

45 32
[14] Li C K and Petrasso R D 1993 Phys. Rev. Lett. 70 3036
[15] Li C K and Petrasso R D 1993 Phys. Rev. Lett. 70 3059
[16] Lindl J D 1998 Inertial Confinement Fusion (New York:

Springer)

[17] Zwicknagal G and Deutsch C 1997 Phys. Rev. E 56 970
[18] Brandt W, Ratkowaski A and Ritchei R H 1974 Phys. Rev.

Lett. 33 1325
[19] Basbas G and Ritchei R H 1982 Phys. Rev. A 25 1943
[20] Deutsch C 1990 Laser Part. Beams 8 541
[21] Deutsch C and Tahir N A 1992 Phys. Fluids B 4 3735
[22] Sanmartin J R and Lam S H 1971 Phys. Fluids 14 62
[23] Chen L, Langdon A B and Lieberman M A 1973 J. Plasma

Phys. 9 311
[24] Yu M Y, Tegeback R and Stenflo L 1973 Z. Phys. 264 341
[25] Stenflo L, Yu M Y and Shukla P K 1973 Phys. Fluids 16

450–2
[26] Stenflo L and Yu M Y 1973 Phys. Scr. 8 301–2
[27] Shukla P K and Spatschek K H 1973 Phys. Lett. A 44 398–400
[28] Tegeback R and Stenflo L 1975 Plasma Phys. 17 991–3
[29] Peter T 1990 J. Plasma Phys. 44 269
[30] Tskhakaya D, Shukla P K and Eliasson B 2004 Phys. Lett. A

331 404–8
[31] Shukla P K and Singh R N 1971 Phys. Scr. 4 282–9
[32] Shukla P K, Spatschek K H and Yu M Y 1974 Can. J. Phys. 52

281–3
[33] Shivamoggi B K and Mulser P 1998 J. Plasma Phys. 60 819
[34] Lakshmi S V, Bharuthram R and Shukla P K 1993 Astrophys.

Space Sci. 209 213
[35] Shukla P K 1994 Phys. Plasmas 1 1362
[36] Shukla P K and Stenflo L 2001 Plasma Phys. Rep. 27 904–6
[37] Shukla P K and Rao N N 1996 Phys. Plasmas 3 1770
[38] Miloch W J, Trulsen J and Pécseli H L 2008 Phys. Rev. E 77

056408
[39] Chen T, Yu M Y and Wang Y 2015 Phys. Scr. 90 088010
[40] Pierrad V and Lazar M 2010 Solar Phys. 267 153
[41] Freund H P, Smith R A, Papadopoulos K and Palmadesso P

1981 Phys. Fluids 24 442
[42] Freese K B, Walsh J E and Lohr J 1979 Phys. Fluids 22 2367
[43] Smith R A, Goldstein M L and Papadopoulos K 1979

Astrophys. J. 234 348
[44] Van Compernolle B, Gekelman W and Pribyl P 2006 Phys.

Plasmas 13 092112
[45] Mishin E and Pedersen T 2011 Geophys. Res. Lett. 38 L01105
[46] Eliasson B, Shao X, Milikh G, Mishin E V and

Papadopoulos K 2012 J. Geophys. Res. 117 A10321
[47] Vasyliunas V M 1968 J. Geophys. Res. 73 2839–84
[48] Summers D and Thorne R M 1991 Phys. Fluids B 8 1835
[49] Mace R L and Hellberg M A 1995 Phys. Plasmas 2 2098
[50] Baluku T K and Hellberg M A 2008 Phys. Plasmas 15 123705
[51] Hellberg M A, Mace R L, Baluku T K, Kourakis I and

Saini N S 2009 Phys. Plasmas 16 094701
[52] Ali S and Eliasson B 2015 Phys. Plasmas 22 084508
[53] Fried D B and Conte S D 1961 The Plasma Dispersion

Function (New York: Academic)
[54] Nasim M H 1999 Energy loss of charged projectiles in a dusty

plasma PhD Thesis Quaid-i-Azam University, Islamabad,
Pakistan

[55] Debye P and Hückel E 1923 Phys. Z. 24 185–206
[56] Rubab N and Murtaza G 2006 Phys. Scr. 73 178
[57] Rubab N and Murtaza G 2006 Phys. Scr. 74 145
[58] Barkan A, Merlino R L and D’Angelo N 1995 Phys. Plasmas

2 3563
[59] Thompson C, Barkan A, D’Angelo N and Merlino R L 1997

Phys. Plasmas 4 2331
[60] Bryant D A 1996 J. Plasma Phys. 56 87–93

6

Phys. Scr. 92 (2017) 084003 S Ali and B Eliasson

https://doi.org/10.1103/PhysRev.98.1632
https://doi.org/10.1088/0032-1028/10/7/304
https://doi.org/10.1063/1.1692416
https://doi.org/10.1029/RS007i012p01151
https://doi.org/10.1029/RS007i012p01151
https://doi.org/10.1029/RS007i012p01151
https://doi.org/10.1109/TPS.1987.4316686
https://doi.org/10.1103/PhysRevE.50.3962
https://doi.org/10.1103/PhysRevLett.81.349
https://doi.org/10.1103/PhysRevE.58.7805
https://doi.org/10.1103/PhysRevLett.83.3194
https://doi.org/10.1103/PhysRevA.16.727
https://doi.org/10.1063/1.881318
https://doi.org/10.1103/PhysRevLett.70.3059
https://doi.org/10.1103/PhysRevE.56.970
https://doi.org/10.1103/PhysRevLett.33.1325
https://doi.org/10.1103/PhysRevA.25.1943
https://doi.org/10.1017/S0263034600008971
https://doi.org/10.1063/1.860329
https://doi.org/10.1063/1.1693289
https://doi.org/10.1017/S0022377800007522
https://doi.org/10.1007/BF01398860
https://doi.org/10.1063/1.1694361
https://doi.org/10.1063/1.1694361
https://doi.org/10.1063/1.1694361
https://doi.org/10.1063/1.1694361
https://doi.org/10.1088/0031-8949/8/6/013
https://doi.org/10.1088/0031-8949/8/6/013
https://doi.org/10.1088/0031-8949/8/6/013
https://doi.org/10.1016/0375-9601(73)90840-2
https://doi.org/10.1016/0375-9601(73)90840-2
https://doi.org/10.1016/0375-9601(73)90840-2
https://doi.org/10.1088/0032-1028/17/11/014
https://doi.org/10.1088/0032-1028/17/11/014
https://doi.org/10.1088/0032-1028/17/11/014
https://doi.org/10.1017/S0022377800015178
https://doi.org/10.1016/j.physleta.2004.09.021
https://doi.org/10.1016/j.physleta.2004.09.021
https://doi.org/10.1016/j.physleta.2004.09.021
https://doi.org/10.1088/0031-8949/4/6/008
https://doi.org/10.1088/0031-8949/4/6/008
https://doi.org/10.1088/0031-8949/4/6/008
https://doi.org/10.1017/S0022377898007168
https://doi.org/10.1007/BF00627441
https://doi.org/10.1063/1.870736
https://doi.org/10.1134/1.1409725
https://doi.org/10.1134/1.1409725
https://doi.org/10.1134/1.1409725
https://doi.org/10.1063/1.871695
https://doi.org/10.1103/PhysRevE.77.056408
https://doi.org/10.1103/PhysRevE.77.056408
https://doi.org/10.1088/0031-8949/90/8/088010
https://doi.org/10.1007/s11207-010-9640-2
https://doi.org/10.1063/1.863390
https://doi.org/10.1063/1.862549
https://doi.org/10.1086/157502
https://doi.org/10.1063/1.2261850
https://doi.org/10.1029/2011GL049613
https://doi.org/10.1029/JA073i009p02839
https://doi.org/10.1029/JA073i009p02839
https://doi.org/10.1029/JA073i009p02839
https://doi.org/10.1063/1.859653
https://doi.org/10.1063/1.871296
https://doi.org/10.1063/1.3042215
https://doi.org/10.1063/1.3213388
https://doi.org/10.1063/1.4928901
https://doi.org/10.1088/0031-8949/73/2/009
https://doi.org/10.1088/0031-8949/74/2/001
https://doi.org/10.1063/1.871121
https://doi.org/10.1063/1.872238
https://doi.org/10.1017/S0022377800019115
https://doi.org/10.1017/S0022377800019115
https://doi.org/10.1017/S0022377800019115

	1. Introduction
	2. Vlasov�Poisson model
	3. Dielectric response to a test charge
	4. Profiles of the DH and FF potentials
	5. Summary
	Acknowledgments
	References

