
Gao, Fei and You, Jialing and Wang, Jun and Sun, Jinping and Yang, 

Erfu and Zhou, Huiyu (2017) A novel target detection method for SAR 

images based on shadow proposal and saliency analysis. 

Neurocomputing, 267. pp. 220-231. ISSN 0925-2312 , 

http://dx.doi.org/10.1016/j.neucom.2017.06.004

This version is available at https://strathprints.strath.ac.uk/61126/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

A novel target detection method for SAR images based

on shadow proposal and saliency analysis

Gao Feia, Jialing Youa, Wang Juna,∗, Jinping Suna, Erfu Yangb, Huiyu Zhouc

aElectronic Information Engineering, Beihang University, Beijing 100191, China
b Space Mechatronic Systems Technology Laboratory, Department of Design, Manufacture

and Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
cSchool of Electronics, Electrical Engineering and Computer Science, Queens University

Belfast BT7 1NN, Northern Ireland, UK

Abstract

Conventional synthetic aperture radar (SAR) based target detection methods

generally use high intensity pixels in the pre-screening stage while ignoring

shadow information. Furthermore, they cannot accurately extract the target

area and also have poor performance in cluttered environments. To solve this

problem, a novel SAR target detection method which combines shadow pro-

posal and saliency analysis is presented in this paper. The detection process is

divided into shadow proposal, saliency detection and One-Class Support Vector

Machine (OC-SVM) screening stages. In the shadow proposal stage, localizing

targets is performed first with the detected shadow regions to generate proposal

chips that may contain potential targets. Then saliency detection is conducted

to extract salient regions of the proposal chips using local spatial autocorrelation

and significance tests. Afterwards, in the last stage, the OC-SVM is employed

to identify the real targets from the salient regions. Experimental results show

that the proposed saliency detection method possesses higher detection accu-

racy than several state of the art methods on SAR images. Furthermore, the

proposed SAR target detection method is demonstrated to be robust under

different imaging environments.
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1. Introduction

Existing image processing methods cannot meet the demand of the rapid

growth of SAR imaging. Effectively addressing the current challenges and en-

hancing the performance of the state-of-the-art techniques in SAR image in-

terpretation is urgently needed. Target detection has important significance in5

both civil and military applications. Constant false alarm rate (CFAR) detec-

tion forms the basis of conventional SAR target detection methods [1]. Two-

parameter CFAR [2] proposed by Lincoln laboratory of MIT marks the progress

of SAR target detection. Subsequently, many CFAR detection algorithms from

different perspectives emerged, such as Ordered Statistic CFAR (OS-CFAR)10

[3] and Variability Index CFAR (VI-CFAR) [4] . Nevertheless, due to the de-

pendence of the statistical modeling on the distribution of clutters, CFAR al-

gorithms lack generalisation. In addition, because of ignoring the difference

between targets and distracters, CFAR algorithms may introduce a plenty of

false alarms in complex environments.15

Human visual system can detect and identify SAR targets relatively quickly

and accurately in a complicated scene according to their visual features. Inspired

by this observation, we aim to establish a novel SAR target detection scheme

simulating the human visual attention process. Generally, a visual attention

model is constructed adopting object proposals (OP) [5] and saliency detection.20

OP aims to cover as many objects of interest as possible with as few windows

as possible. Compared with traditional detection methods using exhaustive

sliding windows to search across images, the application of OP methods in the

preprocessing stage allows us to quickly locate the target objects, which greatly

improves the computational efficiency. The idea of OP is consistent with human25

cognitive behaviors where humans scan objects before discriminating them [6].

3
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Approaches to generate object proposals can be divided into two categories.

One is grouping proposal methods [7–11], in which an image is segmented into

superpixels firstly, and then specific strategies are used to aggregate superpixels

into objects. The other one contains window scoring proposal methods, in30

which candidate windows are directly generated according to the color, edge

or other information of the image, and then candidate windows are scored on

the basis of how likely it is to contain an object and low scoring windows are

filtered out [5, 12–15]. The aforementioned OP methods have achieved favorable

experimental results on optical images, while SAR images have some defects35

such as lack of color information, low resolution, and obscure edge features.

Therefore, OP methods are very difficult to obtain satisfactory results when

directly applied onto SAR images. Moreover, OP methods can only locate

objects roughly in images.

Unlike OP, saliency detection is designed to detect a specific area stimu-40

lating the human visual system. Saliency detection can also be divided into

two categories: bottom-up (BU) saliency based on scene-driven learning and

top-down (TD) saliency based on expectation-driven learning. BU saliency de-

tection plays a dominant role in the building of a visual attention model because

of advantages, e.g., fast, involuntary, stimulus-driven, and easily modeled. De-45

pending how it is calculated, BU saliency detection can be classified into three

categories: feature based, probability based, and transformation based respec-

tively. In 1998, Itti et al. [16], proposed the first computable bio-inspired

saliency detection model, which combines three feature maps including color,

intensity, and orientation at different scales. Harel et al. [17] proposed Graph-50

based visual saliency (GBVS), which uses the characteristics of Markov random

field to construct two-dimensional Markov chains to calculate the saliency map

on the basis of the ITTI model. Both the ITTI and GBVS models are based

on features. The approaches developed by Zhang et al. [18] and Neil Bruce

et al. [19], which are respectively based on Bayesian rules and Shannon’s self-55

information measures, use probability based models. The Spectral Residual

[20] and the Phase Spectrum of Quaternion Fourier Transform [21], both of

4
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which are the representatives of the transformation model, analyze and calcu-

late saliency maps using the amplitude or phase spectrum of an image. Besides,

a number of newly representative saliency models have emerged [22–25], such as60

sparse coding based [26, 27], manifold ranking based [28], background hypothe-

sis based [29], etc. Saliency detection has been applied in remote sensing fields

[30–32]. However, severe speckle noise and complex environments may lead to

poor system performance when we extract salient regions of SAR images.

We here describe three cues that have been often used in SAR image analysis.65

First, the SAR shadow is a universal property when imaging. In SAR images,

shadow regions provide us a strong cue to help target localization even if the tar-

get is badly corrupted. Combining shadow detection with a pre-screening phase

may enhance the robustness and improve the system performance [33, 34]. Sec-

ond, it is a fact that the radar cross section (RCS) of a man-made target is70

higher than that of the background, and that the pixels inside the compact

object have stronger spatial autocorrelation than the pixels scattering in inner

and outer areas. Such properties can catch the attention of the human visual

system. Third, learning is one of the highly integrated skills of a biological cen-

tral nervous system [35–37]. Target detection is generally considered as a binary75

classification problem [38], and it needs comprehensive background samples to

train a classifier so that it is properly working. One-class SVM (OC-SVM) [39]

could be a promising choice to cope with this problem.

Motivated by the three cues presented above, we here introduce a novel

method for SAR target detection. Our method consists of a shadow proposal80

process, a brand new saliency detection process and a one-class classification

process. More details are followed: 1) The shadow proposal stage: potential tar-

get chips are proposed after we have determined the spatial relationship between

shadows and objects using a Mean Shift algorithm [40]. 2) The salient region

extraction stage: firstly we define the saliency of SAR images, and then extract85

salient regions of the proposal chips using G statistics [41, 42] and significance

tests (GSST). 3) The OC-SVM screening stage: the OC-SVM is introduced to

screen the real targets, where only target chips are used as training samples.

5
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During the training and testing stages, we use the visual features of the salient

regions of the training and testing samples.90

The remainder of this paper is structured as follows: section 2 presents the

saliency detection method GSST. The proposed SAR target detection method

is detailed in section 3. Section 4 reports the experimental results. Conclusion

is given in the last section.

2. Saliency Detection by G Statistics and Significance Tests95

Vehicle targets and other man-made objects have higher RCS than their

background. A SAR image is of high intensity pixels aggregated together whilst

compact objects are with higher brightness and sharper contours. There is a

strong correlation between pixels within an object, leading to clear saliency

that can be identified by the human visual system. Here, we define the saliency100

of SAR images as how dense high intensity pixels aggregate together. In this

section, we attempt to develop a method to detect saliency. Global Moran’s I

statistics [43] were proposed to measure spatial autocorrelations, where there

are three kinds of spatial distribution patterns: clustered, dispersed and random

patterns, as shown in Figure 1. Moran’s I is often used to analyze the distri-105

bution pattern of population, economy and resources in a specific geographical

region. It is an overall evaluation of the cluster degree of the elements in the

studied region, but it cannot determine the attributive characters of the clus-

tered elements, and cannot determine the specific location of the clusters. Thus

important local information is missing if we use Moran’s I.110

Getis et al. [42] proposed statistics G to measure the local spatial auto-

correlation, which determines the hot or cold spots, and a specific area can be

detected by significance tests. The idea of using statistics G to measure the

degree of local spatial autocorrelations coincides with the saliency detection de-

scribed above. Therefore, we here propose a new saliency detection method115

based on statistics G and significance tests (GSST). Statistics G is defined as

6
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Figure 1: Three types of spatial distribution patterns.

follows:

Gi(d) =

∑n
j=1 wij(d)xj
∑n

j=1 xj
, j 6= i (1)

Eq.(1)is used to calculate the correlation between the pixel i and the other pixels

in a circular neighborhood of d, where d is the radius, and wij(d) is the weight

between pixels i and j. The shorter the distance is, the larger the correlation is,120

and the reciprocal of the distance is used here to compute the weights, namely

wij =
1

‖dij‖2
.

There are n pixels in the studied region. We fix the value for the center

pixel i and take into account the set of (n − 1)! random permutations of the

remaining values in space. Under the null hypothesis of spatial independence,125

these permutations are equally likely. Assuming Xj to be the random variable

which describes the value assigned to pixel j, then we have P (Xj = xr) =

1
n−1

, r 6= i. Hence the theoretical expectation and variance of Gi(d) can be

calculated as:

E(Gi(d)) =
Wi

n− 1
(2)

V ar(Gi(d)) =
Wi(n− 1−Wi)

(n− 1)2(n− 2)
[
s(i)

x̄(i)
]2 (3)

where Wi =
∑n

i=1 wij(d), j 6= i, x̄(i) =
∑n

i=1
xj

n−1
, j 6= i and s2(i) =

∑n
j=1

x2
j

n−1
−130

[x̄(i)]2. xj represents the intensity of pixel j. When d is large enough, the

7
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permutation distribution of Gi under the null hypothesis approaches normality.

Thus we standardize statistics G as statistics Z , written as follows:

Zi(d) =
Gi(d)− E(Gi(d))
√

V ar(Gi(d))

=

∑n
j=1 wij(d)xj −Wix̄(i)

s(i){[(n− 1)S1i −W 2
i ]/(n− 2)}

1
2

, j 6= i

(4)

where S1i =
∑n

j=1 w
2
ij , j 6= i.

Then we apply hypothesis tests to the spatial independence. Let Zi(d) rep-135

resent the test statistics. We assume the significance level to be α, and its

corresponding quantile of the standard normal distribution is denoted as zα/2.

The null hypothesis is refused when |Zi(d) ≥ zα/2|, that is, the spatial autocor-

relation of pixel i exists, especially when:

Zi(d) ≥ zα/2 (5)

It means a large number of the neighboring pixels (values larger than the mean140

xj) fall within d of pixel i. In other words, there is a cluster of pixels which

have relatively high intensity. Applying the above analysis to each pixel, we can

separate several salient regions of a SAR image. The main procedures of the

GSST saliency detection are shown in Figure 2.

3. Proposed Method145

A direct operation on an original SAR image using the GSST is time consum-

ing and may cause incorrect detection under the low signal-clutter-ratio (SCR)

8
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Figure 3: Flowchart of the proposed SAR target detection method.

conditions, and only relying on salient regions cannot guarantee to discriminate

the real targets from clutters. So a sophisticate analysis is required. In this

section, three stages for SAR target detection will be described in detail. Our150

algorithm is outlined as follows: the shadow proposal stage provides potential

chips related to possible targets; the GSST saliency detection stage supplies

salient regions of the potential chips; the OC-SVM screening stage presents real

targets extracted from the detected salient regions. The flowchart of our method

is shown in Figure 3.155

3.1. Shadow proposal stage

There is remarkable difference between the imaging mechanisms of SAR and

optical images, for example, shadow formation characteristics. SAR shadow can

provide location cues for it is always located downrange from an object. The

shadow proposal stage is to outline the approximate area of an image shadow,160

but not for precise detection. The proposal chips can be generated using the

spatial relationship of objects and shadow regions.

9
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3.1.1. Shadow detection

The shadow detection stage consists of three steps: thresholding, morpho-

logical filtering, and watershed segmentation & road removal.165

(i) Thresholding. A SAR image is composed of three parts: target, shadow,

and background, so a single threshold for shadow segmentation will end up with

poor outcomes. Thus we select the dual threshold Otsu method to segment the

shadow regions for better accuracy. A SAR image is divided into 0 ∼ m classes

according to the intensities of the pixels. Assuming T1 and T2 are two thresholds,170

the image is classified into three classes: Co = {0 ∼ T1}, C1 = {T1 + 1 ∼ T2},

C2 = {T2+1 ∼ m}. T1 and T2 that maximise Eq.(6) are selected as the desired

dual thresholds:

g(T1, T2) =Arg max
0<T1<T2<m

[ω0(µ− µ0)
2

+ ω1(µ− µ1)
2 + ω2(µ− µ2)

2]

(6)

where µ is the average intensity of the whole image. µ0, µ1, and µ2 are the

average intensities of C0, C1, and C2, respectively. ω0, ω1, and ω2 indicate the175

likelihoods of C0, C1, and C2.

(ii) Morphological filtering. After thresholding, we obtain the desired category

C0. The open and close operations of morphological filtering are implemented

in order to reduce noise and wrong shadows. Then the connected component

labeling is executed on the remaining regions, resulting in preliminary shadow180

regions.

(iii) Watershed segmentation & road removal. Because of the low RCS of roads

or rivers, they are contained in the preliminary shadow regions as well. More-

over, the shadow of the target may be closely connected to roads or other shadow

regions. Considering these circumstances, we use a watershed scheme to seg-185

ment the target shadow staying with other regions, and the Hough transform is

performed to remove roads and rivers by detecting straight edges of the prelimi-

nary shadow regions. The final shadow regions will be determined after we have

10
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Figure 4: (a) Target embedded in the road; (b) Preliminary shadow regions; (c) Shadow

regions after watershed segmentation; (d) Shadow regions after road removal.

removed the less possible regions according to spatial constraints. To illustrate

the above process, Figure 4 (a)∼(d) show the detection results step by step.190

3.1.2. Relationship of spatial location

Objects with shadows such as trees, buildings and vehicles generally have

high RCS, so the radar line of sight can be inferred according to the distribution

of the intensities of the surrounding areas around the shadow regions. In other

words, we can derive the spatial relationship of objects and shadow regions195

according to shadow characteristics. Therefore we need to study the intensity

distribution around each shadow region. To make sure the whole or the most

part of the object is included in the studied region, we outline a square area,

whose side length R equals three times the diagonal length of the minimum

rectangle enclosed in the shadow region.200

The square area is shown in Figure 5 (a), and the center is represented as

P0(x0, y0). Apart from the center pixel, we assume that there are L pixels inside

the square area, and they are denoted as Pi(xi, yi), i = 1, · · · , L, whose intensity

is Ii, i = 1, · · · , L. Then a vector is formed and noted as Z i = Ii×
−−−→
P0Pi

‖
−−−→
P0Pi‖

, where

‖ · ‖2 denotes 2-norm. We define vector M (P0) as:205

M (P0) =
1

L

∑L

i=1
Z i (7)

where M (P0) points to the location of an object. However, in practice, the

calculation in this way is not straightforward, so a Mean Shift algorithm is

undertaken. The idea of Mean Shift is to search for the location of the max-

11
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imum probability density in a specific area. However, the pixels in the image

are evenly distributed, thus the probability density function (PDF) cannot be210

defined according to the density. As expected, we understand that where the

higher-intensity pixels gather, the greater of the probability density is. Actu-

ally, the computation of the vector M (P0) is a process of finding the location

of the maximum probability density (mode) in the certain area. Two steps are

involved indeed.215

(i) Calculation of the mode. A circular area is extracted from Figure 5 (a) with

the same center and with the radius of r (r < R/2). The purpose of this step is

to estimate the PDF, and to find the mode in the circular area.

There are two kinds of information for each pixel: spatial ([xi, yi]) and in-

tensity ([Ii]), both of which constitute the feature space, and each pixel can be220

denoted with a 3-dimensional vector v i[xi, yi, Ii]. Suppose there are N pixels in

the area. The kernel function is introduced to estimate the PDF f̂(v):

f̂(v) =
ck,s
Nhs

∑N

i=1
k

(

∥

∥

∥

∥

v − vi

h

∥

∥

∥

∥

2
)

(8)

where k(·) is the profile of kernel function K(·). s is the dimension of the feature

space, h is the bandwidth parameter, and ck,s is a constant ensuring the integral

ofK(·) to be 1. We define g(v) = −k′N (v), and its corresponding kernel function225

is G(·). Thus the mode can be obtained by calculating the gradient of Eq.(8):

∇̂fh,K(v) =
2ck,s
Nhs+2

[

∑N

i=1
g

(

∥

∥

∥

∥

v− vi

h

∥

∥

∥

∥

2
)]

×

[

∑N
i=1 vig

(

‖ v−vi

h ‖2
)

∑N
i=1 g

(

‖ v−vi

h ‖2
)
− v

] (9)

where,

mh,G(v) =

∑N
i=1 vig

(

‖ v−vi

h ‖2
)

∑N
i=1 g

(

‖ v−vi

h ‖2
)
− v (10)

In Eq.(9),
2ck,s

Nhs+2

[

∑N
i=1 g

(

∥

∥

v−vi

h

∥

∥

2
)]

is a constant. The gradient always points

to the direction where the variation is the largest, so we learn that mh,G(v)

12
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Figure 5: (a) The shadow region and its surrounding area; (b)The black area is the shadow

region corresponding to (a), and the white × represents the center of shadow region, besides,

the red ∗ denotes the mode of (a).

points to the location of the mode. Therefore, the location of the mode in the230

circular area can be obtained:

xmode =

∑N
i=1 xig

(

‖ I−Ii
h ‖2

)

∑N
i=1 g

(

‖ I−Ii
h ‖2

)

ymode =

∑N
i=1 yig

(

‖ I−Ii
h ‖2

)

∑N
i=1 g

(

‖ I−Ii
h ‖2

)

(11)

(ii) Judgement. If ‖mh,G(v)‖ > ε (ε represents the convergence threshold), we

take the circle area with the center of (xmode, ymode) and the radius of r, and

repeat the last step. Otherwise, (xmode, ymode) is the mode of the square area.

The mode for Figure 5 (a) can be obtained using the above two steps, and235

the result is shown in Figure 5 (b). Also, we can obtain the corresponding mode

of each shadow region, whilst the spatial relationship between shadows and

objects can be inferred according to the statistical distribution of the location

of the modes. Furthermore, the square can be separated into four regions: up,

down, left and right, as shown in Figure 6. We calculate the number of the240

modes in which region they are located, and the orientation of the object can

be determined by voting. Based on this relationship, the proposal chips can be

extracted from the original SAR image using prior information.

13
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Figure 6: The spatial relationship of shadow areas and objects. The black spot in the center

represents the shadow region, and other scattered black spots denote the location of the

modes.

3.2. GSST saliency detection stage

Having obtained the proposal chips, we are to extract the areas that appear245

to be unique, where the GSST saliency detection method is employed. Let a

potential chip be denoted by P , which containsM×N pixels. Saliency detection

can be divided into the following three steps:

(i) Local spatial autocorrelation process. Eq.(1) is used to compute statistics G

for each pixel of P , and we can obtain a statistics G matrix with the same size250

as that of chip P :

GP =

















G11 G12 · · · G1N

G21 G22 · · · G2N

...
...

...
...

GM1 GM2 · · · GMN

















(12)

where Gij(1 ≤ i ≤ M, 1 ≤ j ≤ N) represents the statistics G of the pixel at

(i, j) in the image.

14
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(ii) Significance tests. Eq.(4) is utilized to compute the statistics Z matrix of

GP , and we can obtain:255

ZP =

















Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

...
...

...
...

ZM1 ZM2 · · · ZMN

















(13)

where Zij(1 ≤ i ≤ M, 1 ≤ j ≤ N) represents the statistics Z of the pixel at

(i, j) in the image.

Only the local neighborhood is considered when we calculate the spatial au-

tocorrelation, so each element of ZP is just a relevant value without considering

its global impact. However, saliency is based on the whole chip, so in practice,260

the statistics matrix ZP needs to be standardized globally:

Z ′
P =

ZP − ZP

s(ZP )
=

















Z ′
11 Z ′

12 · · · Z ′
1N

Z ′
21 Z ′

22 · · · Z ′
2N

...
...

...
...

Z ′
M1 Z ′

M2 · · · Z ′
MN

















(14)

where Z and s(ZP ) represent the mean and standard deviation of ZP respec-

tively. Z ′
ij , 1 ≤ i ≤ M, 1 ≤ j ≤ N denotes the globally standardized statistics

Z located at (i, j) in the image. We have made the null hypothesis of spatial

independence above, so Eq.(5) is used to perform the significance tests for the265

globally standardized statistics matrix Z ′
P :

Z ′
ij ≥ zα/2 (15)

(iii)Salient regions extraction. zα/2 is set as the threshold, and the regions

Z ′
ij ≥ zα/2 are treated as the preliminary salient regions. Then some regions

are discarded according to the thresholding. A sample of the salient region

extraction process for a target and a background chip is illustrated in Figure 7.270

15
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Figure 7: (a) and (b) are the target chip and its salient region; (c) and (d) represent the

background chip and its salient regions.

3.3. One-Class SVM screening stage

It is observed in Figure 7 that the salient regions of the target chips are well

matched with the areas of the real targets. Instead, the appearance of salient

regions of the background chips are irregular. Conventional binary classification

methods need both positive and negative training samples, but it is extremely275

difficult to guarantee that most of the negative states are included in the train-

ing. OC-SVM differs from traditional classifiers in that only one class training

samples are required. Sarah et al. [44] handled high-dimensional and large-scale

anomaly detection using a linear OC-SVM with deep learning. Yan et al. [45]

applied OC-SVM to fault detection and obtained high accuracy rates. Victor et280

al. [46] concluded that OC-SVM is the most appropriate technique for anomaly

detection in smart city wireless sensor networks. As we can see, OC-SVM have

demonstrated good performance for anomaly and fault detection, and salient

regions of background in this paper can be recognized as unexpected anomalies

or faults as well [47].285

Aiming at overcoming the uncertainty of background and improving the

generalization ability of the proposed method, we treat the target detection

as a one-class classification problem, where we use OC-SVM to detect target

class and reject the others. Two steps are involved in the classification: feature

extraction and OC-SVM classification.290

(i)Feature extraction. Complex feature extractors composed of different com-

ponents are generally applied in SAR target detection or recognition [48, 49].
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However, GSST can extract accurate target areas, so visual features are suf-

ficient to discriminate a target from clutters. In this paper, target chips are

introduced as training samples while the background samples are neglected. Vi-295

sual features such as area, perimeter, and aspect ratio of the salient regions

of the training and testing samples are then extracted respectively, and the

features of each region are concatenated and form a vector.

(ii)OC-SVM classification. The main idea of OC-SVM algorithm is to map the

input samples to a high dimensional feature space with a kernel function, and300

search for a hyperplane to separate the mapping points from the origin (in this

feature space). Given a training set D = {pi}, pi ∈ RK , 1 ≤ i ≤ n, where

pi represents the ith training sample, K is the number of visual features, and

n denotes the total number of samples. It is assumed that there is a kernel

function φ that maps from the original space RK to the infinite dimensional305

space χ, which satisfies φ(pi) ∈ χ. Thus the hyperplane is used to perform the

classification:

min
1

2
‖w‖2 +

1

vn

n
∑

i=1

ξi − ρ

s.t. w · φ(pi) ≥ ρ− ξi, ξi ≥ 0

(16)

where w is the normal vector of the hyperplane, ρ represents the intervals be-

tween the hyperplane and the original point, ξi is the slack variable correspond-

ing to the ith sample to punish the points which deviate from the hyperplane,310

and v ∈ [0, 1] indicates the compromise between a maximum interval and the

penalty term. A Lagrange function is used to derive the hyperplane, and the

decision equation is obtained:

f(p) = sgn((w · φ(p))− ρ) (17)

If f(p) ≥ 0, then we assign p to the targets, otherwise to false alarms.
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4. Experimental Analysis315

The SAR image data used in this paper is Moving and Stationary Target

Acquisition and Recognition (MSTAR) database which was collected using the

Sandia National Laboratories Twin Otter SAR sensor payload operating at

the X band with a high resolution of 0.3m, spotlight mode, and HH single

polarization [50].320

4.1. Key parameter analysis

In the implementation of the proposed method, there are two free parameters

needed to be set carefully. One is d in Eq.(1), and the other is zα/2 in Eq.(5).

Both parameters have a direct impact on the salient regions extracted by GSST.

To show how their values affect the performance of GSST, we perform the325

experiment on a list of vehicle chips and evaluate the Fβ −measure based on

manually labeled ground-truth by:

Fβ =
(β2 + 1)× P ×R

β2 × P +R

P =
TP

TP + FP

R =
TP

TP + FN

(18)

where P , R and Fβ denote Precision, Recall and Fβ − measure respectively.

TP , FP , and FN represent the number of the true positive pixels, false positive

pixels, and false negative pixels of the detected area respectively. Fβ−measure330

is the weighted harmonic mean of precision and recall. Here we believe that the

Precision is more important than Recall, so we take β = 0.5.

Figure 8 shows the Fβ − measure curve over zα/2 and d. As can be seen

Fβ − measure is close to maximum at zα/2 = 2.5 when d = 25, 30, 35. In

consideration of the computational complexity, we select d = 25 and zα/2 = 2.5335

in our following experiments.

Another parameter needs attention is υ in Eq.(16), which is empirically set

to be 0.1 through our prior knowledge, and it is proven to work well empiri-
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Figure 8: Influence of key parameters on the performance of the GSST.

cally. Additionally the sigmoid kernel function is chosen for the OC-SVM in our

experiment.340

4.2. Saliency comparison experiment

In this experiment, we aim to compare GSST on the SAR images with other

four advanced methods, i.e. MC [25], GMR [28], RBD [29], and GBVS [17].

MC is the saliency detection method which uses Markov chain, GMR realizes

saliency detection via the graph-based manifold ranking, and RBD is derived345

from a robust background detection. All of these three methods show great

performance reported in [24]. GBVS is a classical visual saliency detection

method based on the graph theory.

There are seven types of vehicle targets: bmp2(sn 9563), bmp2 (sn 9566),

bmp2 (sn c21), btr70 (sn c71), t72 (sn 132), t72 (sn 812) and t72 (sn s7). In350

the experiment, 10 chips of each type are randomly selected, and typical target

chip for each type of vehicle is shown in Figure 9 (a). According to the saliency
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Table 1: Fβ −measure of five methods.

Methods Fβ −measure

GSST 90.71%

MC 86.61%

GMR 88.59%

RBD 85.88%

GBVS 83.71%

theory, it is the target region that mainly raises visual attention in a chip, thus

we manually intercept the target area as the ground-truth of the salient region,

for example, Figure 9 (b) corresponding to Figure 9 (a). Precision, Recall and355

Fβ −measure defined above are used to measure the performance of saliency

detection.

Firstly, Eqs.(1)∼(5), (12)∼(14) are used to compute the saliency map of

each target chip. Then the significance tests are carried out on the saliency

map by changing α in Eq.(15), where we get zα/2 = 0, 0.05, 0.1, · · · , 4.45, and360

thus 90 salient regions are extracted from each chip. Finally, Precision, Recall

and Fβ − measure are calculated using Eq.(18) for each pair of the detected

salient region and its corresponding ground-truth. For all the 70 chips, we

take the mean value of the data, and thus one group of Precision, Recall and

Fβ −measure data is obtained.365

Also, MC, GMR, RBD and GBVS are handled in the same way as shown

above to compute the saliency map, and a range of thresholds are used to extract

salient regions from each chip, after which one group of Precision, Recall and

Fβ − measure data can be obtained for each method. Table 1 shows Fβ −

measure of the five methods when the salient region is accurately extracted.370

The Precision-Recall (PR) curves of five methods are plotted in Figure 10.

Some detection samples of the five methods are shown in Figure 9 (c)∼(g).

Typically, Precision and Recall are inversely related. To achieve a balance

between them and compare the performance, the PR curves come in handy.
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Figure 9: (a) Samples of seven types of vehicles. (b) Ground-truth of the salient area

intercepted manually; (c) Detection results of GBVS; (d) Detection results of MC; (d)

Detection results of GMR;(f) Detection results of RBD;(g) Detection results of GSST.
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Figure 10: The PR curves of five kinds of methods on vehicle target chips.

Therefore the PR curve is capable of giving the informative plot of an algorithm’s375

performance. In practice, a detection method is believed to be effective when the

PR curve moves to the upper-right-hand corner [51] and Fβ−measure possesses

a large value. Thus it proves quantitatively that GSST has a better performance

than the other four methods from Figure 10 and Table 1. Qualitatively, in Figure

9 (c)∼(e), we can see that the result of GSST is the best in agreement with the380

ground-truth, while MC, GMR, and RBD have some more burrs and GBVS

misses some details. The reason for this outcome may be that MC, GMR, and

RBD focus on the object interior while GBVS is able to pick up the boundary of

the salient object. It is worth noting that the GMR has a close Fβ−measure to

the GSST, while it suffers from poor contours and the incomplete target region.385

Furthermore, the GMR and RBD depend on the background hypothesis that

objects lie away from boundary of the image, which may cause certain failures

if the targets are located nearby the boundary.

Computational complexity of GSST is related to the patches generated in
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Table 2: Average computational time per image of five saliency detection methods.

Methods GSST MC GBVS GMR RBD

Time(s) 0.087 0.713 1.227 0.780 3.08

code Matlab Matlab and C++ Matlab Matlab Matlab

the shadow proposal stage. Specifically, there are 20d2NPP addition and mul-390

tiplication operations approximately, where d is the parameter in Eq.(1), P is

the number of patches, and NP is the total number of pixels in each patch. The

average computational time per image of GSST, MC, GBVS, GMR and RBD

are summarized in Table 2. The size of tested images is 128× 128, and all the

methods are experimented on Intel core 2 Duo CPU of 3.0 GHz with 8GB RAM.395

It can be seen that the GSST is the fastest among the five contrast methods.

4.3. Vehicle target detection experiment

To verify the adaptability of the proposed vehicle targets detection method

in different environments, two scenes are selected for the evaluation. Again,

Precision, Recall and Fβ−measure are used to measure the performance. What400

differs from section 4.1 is that we take regions as the basic unit rather than

pixels. 10 vehicle targets for each type of BTR70 (sn c71) and T72 (sn 132) are

seen in two 1478× 1784 full clutter MSTAR images, where both vehicle targets

and the background are collected at 150 depression degree. The two scenes are

depicted in Figure 11 (a) and (b).405

4.3.1. Scene 1

In this paper, the experiment can be divided into three stages. In the first

stage, the structuring element of the morphological open and close operations

are set to 5×5 and 3×3 respectively. The normal kernel function is selected for

Eq. (8). The spatial relationship between shadows and objects is obtained from410

Eq. (11). In Figure 11 (a), objects locate on the left of the shadow regions, based

on which 146 proposal chips are generated by setting the size of the interception

box to 128× 128.
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Figure 11: (a) Scene 1. 20 real targets are labeled by white rectangles. (b) Scene 2. A

simpler background than scene 1. 20 real targets are labeled by white rectangles.

In the second stage, Eqs.(1)∼(5), (12)∼(15) are used to extract salient re-

gions of the proposal chips. We here use Euclidean distance. When performing415

the significance tests, zα/2 is set to 2.5. Finally, 138 salient regions are obtained

after some less possible regions are removed.

The OC-SVM is introduced in the third stage. BTR70 (sn c71) and T72

(sn 132), both of which include 232 chips, are used as the training samples,

whereas the background samples are not used. All the training samples are420

collected at 170 depression degree. The saliency detection process is applied to

the training samples using Eqs.(1)∼(5), (12)∼(15), and 464 salient regions are

extracted. Then, we compute visual features of salient regions of the training

and testing samples. In this paper, the following five features are selected: area

periphery ration, fractal dimension, weighted-rank fill ratio, maximum distance,425

and centrifugal rate of the ellipse which has the same second-order moments as

the salient region. These five features have the form of a vector whose size is

1 × 5. Afterwards, the OC-SVM model is trained using the feature vectors of

the training samples. Finally, the feature vectors of the testing samples are cast

into the trained model to detect vehicle targets. The final detection result is430

shown in Figure 12 (d), and we find that our method detects 18 targets and

generates only 1 false alarm.

Three methods are used for comparison. The first one is MC+OC-SVM,
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which substitutes the GSST stage using the MC algorithm, and other stages

remain unchanged. The notation ’+’ means the composition relationship. The435

second one is CFAR+OC-SVM, in which the CFAR algorithm is used to roughly

extract suspicious regions, and then the OC-SVM screening stage is applied. An-

other one is currently popular Faster R-CNN [52], which consists of a Region

Proposal Network stage and a Fast R-CNN stage. The VGG-16 model [53] is

used as a base network to share features between two stages. As suggested440

in [52], a pragmatic 4-step training algorithm is adopted to learn the shared

features via the alternating optimization. In the first step, we train the RPN

which is initialized with an ImageNet-pre-trained model and finely tuned us-

ing the MSTAR training set for the region proposal task. In the second step,

the proposals generated by the step-1 RPN are used to train the Fast R-CNN445

network, which is initialized by the ImageNet-pre-trained model as well. Then

the trained detection network is applied to initializing the RPN, where we keep

the shared convolutional layers fixed and fine-tune the part unique to the RPN.

In the last stage, we still fix the shared convolutional layers and fine-tune the

unique layers belonging to the Fast R-CNN. We use the learning rate 0.001, the450

momentum 0.9, and the weight decay 0.0005 in all the four steps. Considering

the network structure of the Faster R-CNN, we randomly embed vehicle targets

into 600×600 scenes as training set, in which data augmentation strategies such

as shift and rotation are adopted to extend training samples. The ground-truth

of training chips is manually labelled. It is worth noting that the correspond-455

ing shadow regions and some extra background areas are included, which is

extremely important. Since the Faster R-CNN only boxes the detected targets

in the original image, we binarize the results with the standard Otsu method

for convenience of comparison.

The final results of the four methods are shown in Figure 12 (a)∼(d). The460

real targets that have been detected are labeled by red regions, and the false

alarms are marked by white regions, while the white circle-labeled regions repre-

sent the missing targets. We witness that MC+OC-SVM detects 18 targets and

introduces 3 false alarms, and CFAR+OC-SVM detects 16 targets but gener-
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Figure 12: The detection results in scene 1. (a), (b), (c), and (d) show the detection results

of MC+OC-SVM, CFAR+OC-SVM, Faster R-CNN, and the proposed method, respectively.

The real targets that have been detected are labeled by red regions, and the false alarms are

marked by white regions, while the white circle-labeled regions represent the missed.

Figure 13: The detection results in scene 2. (a), (b), (c), and (d) show the detection results

of MC+OC-SVM, CFAR+OC-SVM, Faster R-CNN, and the proposed method, respectively.

The real targets that have been detected are labeled by red regions, and the false alarms are

marked by white regions, while the white circle-labeled regions represent the missed.

ates 6 false alarms. The Faster R-CNN only generates 2 false alarms but misses465

three targets. The reason why the Faster R-CNN misses three targets is because

the neighborhood information presented in the surrounding of target regions of

training samples cannot cover all the real scenes. However, as mentioned above,

our method is able to detect 18 targets with 1 false alarm only. Precision, Re-

call and Fβ −measure are introduced to analyze the performance of the four470

methods where β is set to 1. The quantitative comparison is shown in Table 3.

4.3.2. Scene 2

Figure 11 (b) shows the second scene. There are less man-made objects

and distracters in scene 2, which is significantly different from scene 1. We

still adopt the above four methods to perform the experiment. The proposed475

method detects 19 of the 20 targets, and only one false alarm is generated. In
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Table 3: The contrast results of four methods in scene 1.

Methods Precision Recall Fβ −measure

Ours 94.74% 90% 92.31%

MC+OC-SVM 85.71% 90% 87.80%

CFAR+OC-SVM 72.73% 80% 76.19%

Faster R-CNN 89.47% 85% 87.18%

Table 4: The contrast results of four methods in scene 2

Methods Precision Recall Fβ −measure

Ours 95% 95% 95 %

MC+OC-SVM 93.33% 70% 80%

CFAR+OC-SVM 84.21% 80% 82.05%

FasterR-CNN 95% 100% 97.44%

contrast, MC+OC-SVM detects only 14 targets and introduces one false alarm,

and CFAR+OC-SVM has 4 targets undetected and generates 3 false alarms.

The Faster R-CNN detects all the targets and generates only one false alarm.

The detection results of the four methods are shown in Figure 13 (a)∼(d), and480

the quantitative comparison is given in Table 4.

As it can be seen from Table 3, the Recall and Fβ −measure of our method

are the highest among the four methods in scene 1. Comparably, MC+OC-

SVM, CFAR+OC-SVM, and Faster R-CNN fall behind our method by 4.51%,

16.12%, and 5.13% using Fβ − measure metrics. In scene 2, our method has485

a little improvement in each index than those in scene 1, and is only 2.44%

lower than the Faster R-CNN in Fβ − measure. The CFAR+OC-SVM has

obvious improvement in the three indexes, but still is much less successful than

our proposed method. The Fβ − measure of the MC+OC-SVM drops 7.8%

in the simpler environment. It is worth noting that the Faster R-CNN might490

be effective when there are enough training scenes and training chips, but our

method is more adaptive in various scenes. Additionally, we analyse that why
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Table 5: Average computational time per image of four vehicle target detection methods.

Methods Ours MC+OC-SVM CFAR+OC-SVM Faster R-CNN

Time(s) 28.723 105.715 154.828 9.912

code Matlab Matlab and C++ Matlab Python

MC+OC-SVM and CFAR-SVM fall behind ours is that the detected target

regions by the GSST agree with the ground-truth, which can be concluded from

Figure 12 (a), (c), (d) and Figure 13 (a), (c), (d).495

Also, we report average running time of these four methods in Table 5. We

find that our method is much less time-consuming than CFAR+OC-SVM and

MC+OC-SVM, and it is only behind the Faster R-CNN. The size of tested

images is 1784× 1478. Faster R-CNN is tested on a 4-core Inter XEON E5506

CPU of 2.133MHz with 42GB RAM while other methods are experimented on500

Intel core 2 Duo CPU of 3.0 GHz with 8GB RAM.

4.3.3. Analysis of robustness

To further analyze the robustness of the above four methods, we perform

the experiments under different SCR conditions, which is calculated as follows:

SCR = 20 lg
Ītar
Ībcg

(19)

where Ītar and Ībcg denote the mean intensities of the target and its surrounding505

background.

We still adopt the Fβ −measure to execute the comprehensive evaluation.

After a number of experiments, we obtain a curve of Fβ−measure (β = 1) over

SCR, as is shown in Figure 14. We find that the Faster R-CNN has the most

robust detection results. Although our method is not good as the Faster R-CNN510

under the very low SCR conditions, it performs better when SCR>4dB, which

attributes to the robust proposals of shadow detection and accurate salient

region extraction of the GSST. On the contrary, the Fβ−measure of MC+OC-

SVM drops rapidly when SCR<8dB for MC cannot extract accurate salient
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Figure 14: The Fβ −measure of four methods under different SCR.

regions in complex environments. The CFAR+OC-SVM performs a little bit515

better than the MC+OC-SVM, but it is still less robust than ours. In summary,

our method possesses relatively robust performance under the different SCR

conditions, especially when SCR>4dB.

5. Conclusion

By exploring the unique features of SAR image, we have presented a novel520

target detection scheme which consists of shadow proposal, saliency analysis

and OC-SVM screening phases. The main novelty lies in the following three

aspects. First, we used shadow detection to generate proposal chips, which

makes the subsequent processing easier and enhances the robustness of our

method. Second, we proposed a novel saliency analysis method, exploiting525

the local spatial autocorrelation statistics and significance tests. It allows the

extraction of salient regions in SAR images. Last but not least, OC-SVM was
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employed to identify the real targets from salient regions, where only the visual

features of salient regions of positive samples are needed to train the model.

The results of the comparison experiments quantitatively and qualitatively530

demonstrate that GSST extracts more accurate salient regions than the MC,

GBVS, GMR and RBD models when applied to SAR images. Moreover, the re-

sults from the SAR vehicle target detection experiments show that our proposed

method is adapted to both scenes, while maintaining the Fβ−measure over 90%.

On robustness and computational complexity, our method only lags behind535

Faster R-CNN. On the contrary, the results of MC+OC-SVM and CFAR+OC-

SVM either lacks robustness or has low accuracy. Therefore, it suggests that

the proposed method is effective and robust for SAR target detection.
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