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ABSTRACT 

The soil water retention (SWR) characteristics of the clays play an important role in 

controlling their engineering behaviour, particularly, in the unsaturated state. Although, 

researchers have attempted to understand the water retention characteristics of the clays in their 

reconstituted or remoulded state, such studies are rare for the clays in their intact state. In this 

context, it becomes important to understand the influence of initial state of compaction, which 

would create different pore- and fabric- structure (viz., microstructure), on the water retention 

characteristics of the clays. With this in view, SWR behaviour was determined experimentally 

for the swelling clays (dried from different compaction states, viz., intact, reconstituted and 

remoulded) by employing Dewpoint Potentiameter (WP4C


). The changes in the pore-size 

distribution of the clays at different stages of drying cycle were also studied by employing the 

Mercury Intrusion Porosimetry. The study reveals that the SWR curves for the intact and 

reconstituted specimens of the clays converge beyond a certain stage of drying. Also, a critical 

analysis of changes in the pore structure of the swelling clay specimens, during drying, indicates 

that the progressively deforming pore structure play an important role in controlling its water 

retention characteristics to a great extent.  

KEYWORDS: swelling clays, state of compaction, soil-water retention curve, Dew point 

Potentiameter, microstructural studies. 

Introduction 

The uniqueness of the soil water retention curve, SWRC, has been studied by earlier 

researchers and it has been reported that it gets influenced by various factors such as the soil type 

(Fredlund et al. 2002, Pham et al. 2005, Frydman and Baker 2009, Noh et al. 2011), water 
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content and compaction efforts (Tinjum et al. 1997, Vanapalli et al. 1998, 1999; Charles and 

Pang 2000a, 2000b; Miller et al. 2002, Sreedeep and Singh 2005, Thakur et al. 2005, 2006), 

initial void ratio (Kawai et al. 2000), stress history (Delage and Lefebvre 1984, Vanapalli et al. 

1998, 1999; Charles and Pang 2000a, 2000b; Marinho 2005), and the path viz., drying- or 

wetting- path, adopted to achieve it (Likos and Lu 2002, Yang et al. 2004, Pham et al. 2005, 

Agus and Schanz 2006, Konyai et al. 2006, Mohammed and Sharma 2007, Fredlund et al. 2011, 

Jayanth et al. 2012). Incidentally, earlier studies have also noted the effect of initial state of soil 

(intact, slurried or compacted) on its SWRC (Fredlund et al., 2002; Pham et al., 2008). These 

studies indicate that the water retention characteristics of compacted specimens are different as 

compared to intact and slurried specimens. Further, it was also suggested that the SWRC for 

intact and slurried specimens are comparable beyond suction of about 1 MPa (Pham et al., 2008). 

The differences in the water retention behaviour for intact, reconstituted (read slurried) and 

compacted (read remoulded) specimens of the same soil, can be attributed to difference in the 

soil microstructure and initial water content.  

In this context, some studies were also aimed at understanding the relationship between 

the microstructure of the soil and its water retention behaviour (Romero et al, 1999). It was 

observed, from this study on compacted boom clay, that for water content above 15%, the main 

drying and wetting path SWRCs depends on the void ratio and with increase in dry density of 

soil, the air-entry value also increases. However, it was reported that the SWRCs do not depend 

on the dry density of the soil, for water content ranging from 5-15 %, and further it was noted 

that for dry soils (viz., water content less than 5%), the drying- and wetting- path SWRCs 

converge. It was also concluded that the water retention behaviour of soil is directly controlled 
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by the microstructure, mainly by the water present in the inter-aggregate pores during the initial 

compaction.  

Some studies have attempted to understand the evolution in soil microstructure during 

compaction process, and have suggested that the compaction process results in reduction of inter-

aggregate pores (macro pores), whereas there is insignificant effect on the intra-aggregate pores 

(Shidharan et al., 1971; Delage, 2009). Diamond (1971) based on studies on Kaolin and Illite 

clay concluded that samples compacted at dry of optimum exhibited aggregation with micro-

pores and inter-aggregate macro-pores. However, for samples compacted at or on wetside of 

optimum moisture content, the microstructural features were nearly massive structure consisting 

of domains (aggregation of clay particles) mostly in mutual contact with each other. A study by 

Djeran-Maigre et al. (1998) reveals that remoulded clay samples have randomly oriented 

particles. However, with increasing compaction pressure, the fabric structure becomes more 

oriented and interparticle pores disappear mainly due to face to face contact of the clay particles.  

Further, the effect of water content on microstructure of compacted soils has been studied 

by some researchers (Ahmed et al., 1974; Prapaharan et al., 1991; Delage et al., 1996; Tarantino 

and De Col, 2008), where clays are noticed to exhibit ‘mono-modal pore size distribution’ when 

compacted wet of optimum or at optimum water content. These clays were noticed to exhibit ‘bi-

modal pore size distribution’ when compacted dry of optimum water content. Tanaka et al. 

(2003) have observed that natural silty and clayey soils exhibit ‘mono-modal pore size 

distribution’. However, Gracia-Bengochea et al. (1979) have demonstrated that for the soils with 

higher silt content, even samples compacted on wet side of optimum may exhibit ‘bi-modal pore 

size distribution’, where the larger cluster of the pores represent inter-aggregate pores and 

smaller cluster of pores represent the intra-aggregate pores. The ‘Bi-modal pore size distribution’ 
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has also been reported in saturated clays corresponding to their over-consolidated state 

(Ninjgarav et al., 2007).  

Researchers have also focused on the microstructural changes during drying for the 

compacted soils. Cuisinier and Laloui (2004) have revealed that soils compacted at different 

water contents, when subjected to drying, exhibit reduction in their macro- and micro- pore 

volumes; however the dominant macro- and micro- pore sizes remained mostly unchanged. 

Some studies on the soils compacted on wet side of the optimum, reveal ‘mono-modal pore size 

distribution’, initially, which subsequently gets evolved into ‘bi-modal pore size distribution’, on 

drying (Gens et al., 1995; Simms and Yanful, 2001). However, opposite inferences have been 

reported by Cuisinier and Laloui (2004); wherein the shrinkage of larger pores and 

transformation of initial ‘bi-modal pore size distribution’ to ‘mono-modal pore size distribution’ 

has been observed during drying. 

Some researchers have studied the evolution of aggregate size with change in water 

content during wetting cycles. Romero et al. (2011) studied the microstructural evolution for 

clayey soil and have observed that the clay compacted on dry side of optimum initially exhibits 

bimodal pore size distribution, however on saturation during wetting cycle; the microstructure 

evolves to mono-modal pore size distribution. Interestingly, when the soil is subjected to 

subsequent drying cycle, the bi-model pore size characteristics are recovered. Moreover, the 

researchers’ observed that the inter-aggregate pore size and volume reduces during saturation of 

the compacted clay, however the aggregation created during soil compaction remains permanent 

feature of the soil microstructure. Seiphoori et al. (2014) have reported an irreversible alteration 

in the water retention behaviour of bentonite used in engineered barrier systems, as the water 

content approaches saturation during the first wetting cycle. The role of microstructure evolution 
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has been highlighted and it has been noted that the volume of macro-pores reduces and no 

remarkable change is observed in the volume of micro-pores. This microstructural evolution has 

been attributed by the researchers’ to expansion of the aggregates causing reduction in the 

macro-pore size and volume; and resulting in a more homogenous and compact structure.   

Some studies have attempted to understand the variation in soil microstructure for 

different initial states of compaction (viz., compacted, reconstituted, intact). Monroy et al. (2010) 

have reported based on studies on compacted and reconstituted clay, that on application of 

loading or hydration of soil samples (wetting cycles), both compacted and reconstituted clay 

samples exhibit mono-modal pore size distribution. However, reconstituted samples exhibited 

lower entrance dominant pore diameter as compared to compacted samples. Another study  by 

Hattab et al. (2013), based on the microstructural evolution of deep marine clay sediments along 

different stress paths, concluded that for the remoulded (read compacted) marine clays the inter-

aggregate pore volume decreases mainly due to the aggregate sliding mechanism, while intra-

aggregate pore volume remains unaffected. However, for the intact (read undisturbed) samples of 

clays from the marine deposits, the aggregate sliding mechanism is retarded due to bonding (read 

self-weight consolidation, refer Gumaste et al. 2014a, b) between the aggregates. Burton et al. 

(2015) studied the microstructural changes of high plasticity clay subjected to wetting and drying 

cycles from different initial compaction states, and observed that there is good agreement in the 

micro-pore range for the compacted, reconstituted and undisturbed samples of the clay. Further, 

the researchers’ observed that under oedometric conditions, the bi-modal pore size distribution of 

compacted clay sample gets altered during saturation and resembles the microstructure of 

reconstituted sample. Moreover, it has been reported that the initial bio-modal pore size 

distribution is not recovered when the compacted clay sample is dried from saturated state.  
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In spite of numerous studies, Tarantino (2011) observed that many concepts developed 

for unsaturated soils are based on the studies related to the compacted soils with ‘bimodal pore 

size distribution’. It was also noted that the compacted samples exhibit larger inter-aggregate 

pores as compared to intra-aggregate pores, due to presence of large aggregates. In contrast, in 

reconstituted samples, the inter-aggregate and intra-aggregate pores may be of comparable sizes, 

and the pore size distribution may appear as ‘mono-modal’. It was further suggested that as the 

compaction water content decreases, the size of aggregation reduces; however the size of inter-

aggregate pores increase. Thus compaction water content significantly influences the fabric 

structure of the compacted soils.  

It has been realized that the existing studies deal with, mainly, non-swelling type soils in 

their compacted (read remoulded) state and not much attention has been paid by the researchers 

to understand the micro-structure of the soils in their reconstituted (read slurried) and the intact 

(read undisturbed) states. Also, the mechanisms responsible for the difference in the soil water 

retention curves, SWRCs, of the soil during drying from different initial states of compaction, 

and the difference in the microstructural evolution, needs to be established. With this in view, 

drying path SWRCs of the clays that exhibit swelling were developed by varying the initial state 

of compaction (viz., intact, reconstituted and compacted). This was followed by the 

investigations related to the microstructural changes occurring at different stages of drying-path, 

as described in this paper. 
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Experimental Investigations 

Properties of the Swelling Clay 

Naturally occurring swelling clay, designated as SC1, collected from the western region 

of India was considered in the present study. The clay was characterized to establish its physical 

and mineralogical properties. The grain size distribution (ASTM D 422-94), consistency limits 

(ASTM D 4318-05 and ASTM D 427-98), specific gravity Gs (ASTM D 5550-06) and free swell 

Index, FSI, (IS: 2720, Part XL) of the clay were determined and the results are presented in 

Table 1. The clay can be characterized as CH as per the Unified Soil Classification System 

(ASTM D 2487-06e1). The specific surface area, SSA, of the clay was determined by conducting 

Ethylene Glycol Monoethyl Ether Absorption (EGME) test, based on the recommendations 

available in the literature (Arnepalli et al. 2008). The mineralogical composition of the clay SC1 

was determined with the help of X-ray Diffraction (XRD) Spectrometer (Manufacturer: 

PANalytical X’Pert PRO), which employs a graphite monochromator and Cu-Kα radiation. The 

clayey sample was scanned from 2θ ranging from 5° to 80°. The major minerals present in the 

clayey sample are also listed in Table 1.  

 

Establishment of the SWRC 

 In order to establish the drying-path SWRC of the clay SC1, in its undisturbed state, 

referred as intact state and designated as I, specimens were extracted from the Shelby tubes by 

using cylindrical stainless steel cutting-edge rings of inner diameter 35.5 mm and height 7 mm. 

These specimens were placed in the PVC cups (with a lid) provided by the manufacturer of 

dewpoint potentiameter (WP4C
®

), which was used for measuring the total suction and 

subsequently developing the drying-path of the SWRC (Iyer et al. 2013), designated as SWRC-I. 
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To achieve this, weight of the specimen was recorded at each stage of drying to obtain the 

gravimetric water content of the specimen corresponding to certain suction. After completion of 

the tests on the undisturbed specimens, they were air dried, pulverized carefully with the help of 

mortar and pestle to break the clay aggregation and were utilized for establishing the SWRC of 

the reconstituted specimens (designated as R) as explained in the following. 

The reconstituted specimens were prepared by maintaining the initial moisture content 

close to the liquid limit, wl, of the clayey soil and correspond to the slurried state of the clay. In 

this context, Jayanth et al. (2012) have demonstrated that such specimens are quite handy for 

suction measurements and establishment of the SWRC (designated as SWRC-R). Subsequently, 

the slurry was poured into the PVC cups and a specimen of about 5 mm thickness (WP4C 

Operator Manual, 2010) was obtained. The process of establishing drying path SWRC for the 

reconstituted specimens is similar to that of undisturbed specimens as explained earlier.  

For drying tests on the compacted specimens (designated a C) of the clay , the air dried 

and pulverized samples were compacted at 21% (dry density, γd ~ 1.65 g/cc) and 25% water 

content (γd ~ 1.56 g/cc), by employing a miniature compactor (Kolay and Singh, 2000), which 

resembles static compaction method with kneading action. These samples are designated as 

C21and C25, respectively. Incidentally, these moisture contents are close to the plastic limit, wp, 

of the clayey soil. Subsequently, specimens were extracted from the compaction mold (Thakur et 

al. 2006), and drying-path SWRC (designated as SWRC-C) was established. 

Each of these SWRCs were replicated twice (designated as trials T1 and T2) so as to 

eliminate the effect of material heterogeneity and human errors. 
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Results 

 In order to demonstrate the influence of the initial state of the clayey specimen on its 

SWRC, the SWRC-I, SWRC-R and SWRC-C were superimposed as depicted in Fig. 1. In this 

context, the specimens (refer Fig. 2) are designated as I1 to I4, R1 to R4, C21 and C25, 

corresponding to the intact, reconstituted and compacted states, respectively. The suffixes P1 and 

P2, associated with C21 and C25, correspond to the specimens just after compaction (i.e., before 

air-drying) and at maximum possible air-drying stage, respectively. The P2 stage was arrived at 

by weighing the specimens and making sure that three consecutive values of the weight 

(measured at 24 hour time interval) remain unchanged. The suction values and corresponding 

water content of the intact, reconstituted and compacted specimens are presented in Table 5. 

From the Fig. 1 it can be noticed that the SWRCs for the intact and reconstituted specimens, 

defined as I and R, respectively, converge at a suction, ψc, close to 2 MPa. Such a response of 

the clay might be hypothesized to either (a) loss of ‘clay-microstructure effect’, beyond ψc, 

which otherwise would have governed the capillary component of the suction. In such a case, the 

capillary component of suction, which depends on the clay microstructure, no more influences 

the SWRC and the adsorptive surface forces (viz., van der Waals surface forces) control the 

water retention behaviour of soils (Tuller and Or, 2005). This phenomenon may be expressed as 

loss of ‘clay-microstructure effect’. As such, the water retention characteristics of the clay 

becomes independent of the initial state of the clay (viz., undisturbed natural formation or 

reconstituted state) and/or (b) deformability (i.e., the shrinkage) of the pores during drying 

process which might result into similar pore-size distribution for  the intact and reconstituted 

states, close to ψc. With context to hypothesis (a), it is worth mentioning here that earlier studies 

have noted that the capillary component of suction becomes insignificant beyond/close to 10 

Page 10 of 55

URL: http://mc.manuscriptcentral.com/tgeo

Geomechanics and Geoengineering: An International Journal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly

 

 

MPa (Tuller and Or, 2005). However, as this observation has been reported based on the studies 

related to non-swelling soils, its applicability for swelling clay(s) needs to be ascertained. It 

should also be noted that the initial portion of SWRC for intact and reconstituted specimens 

(refer Fig. 1) is comparable to the initial compression line (viz., relationship between void ratio 

and soil effective stress) usually obtained from consolidation test of saturated soil mass under 

external loading (Ridley and Romero, 1998). In both these processes, the reduction in volume of 

soil is a result of expulsion of water without replacement by air (consolidation) as a result of an 

increase in the effective stress. The change in slope of SWRC for both intact and reconstituted 

specimens at around 2 MPa (incidentally at this suction, the SWRC of these two specimens 

converge), indicates the point of desaturation. This suggests that specimens I1, I2, R1 and R2 are 

saturated, and the beginning of desaturation for intact specimens happens at drying stage 

between I2 and I3, whereas for reconstituted specimens desaturation begins at drying stage 

between R2 and R3.  Further, as depicted in Fig. 1, the SWRC-C falls under the SWRC-I and 

SWRC-R, which might be attributed to the fact that the compaction of the clays controls the 

microstructure of the specimen (Li and Zhang, 2009).  

In order to validate the above mentioned hypotheses, the microstructure of the specimens 

corresponding to different stages of drying, after measuring their suction, was established by 

resorting to the Mercury Intrusion Porosimetry, MIP tests.  

The variation of cumulative void ratio, eMIP (computed from cumulative volume of 

mercury intruded in the specimen, VHgc, by employing Eqn. 1), and incremental void ratio,           

-∆eMIP /∆(logd) with respect to the pore-diameter, d, was plotted as depicted in Figs. 3 to 8. The 

cumulative void ratio, eMIP, is given by 

���� =
���	

��� �

	         (1) 
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where, eMIP is the cumulative void ratio of the specimen, VHgc is the cumulative volume of 

mercury intruded in the specimen (cm
3
), Ms is the dry mass of clay specimen (g), and ρs is the 

density of the solids (g/cm
3
). 

It should be noted that cumulative void ratio curve has been fitted by employing the 

modified van Genuchten equation (Dieudonne et al., 2014; Lopes et al., 2014), represented by 

Eqn. 2.  

 

         

 

            (2) 

where e is the cumulative void ratio (estimated) from modified van Genuchten model; d is the 

pore diameter; p, α and n are the model fitting parameters; m and M refer to intra-aggregate and 

inter-aggregate porosity, respectively for dual porosity structure. In case of mono-modal pore 

size distribution, only one set of parameters would be required to define the pore size 

distribution. The parameter ‘p’ is related to the total cumulative volume and the frequency of the 

dominant pore diameter; the parameter ‘n’ is related to the slope of the cumulative intrusion 

curve at the inflection point, and hence also controls the frequency of the dominant pore 

diameter; whereas, parameter ‘α’ is approximately related to inverse of the dominant pore 

diameter and controls inflection point of the intrusion curve (Lopes et al., 2014).  

The derivative of Eqn. 2 yields the incremental void ratio, -∆e /∆(logd),  as recommended 

by Lopes et al. 2014, and is expressed by Eqn. 3.  

 

 

(3) 
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Studies by Lopes et al. (2014) suggested that Eqn. 2 can be used for fitting the cumulative 

pore size distribution of soils. This has been confirmed in the present study, wherein Eqn. 2 has 

been found to provide good fitting of the cumulative pore size distribution for swelling clay 

specimens (refer Fig. 9 which depicts fitting of cumulative void ratio for specimens I3 and R3). 

The parameters p, α and n are varied during an iterative process to obtain the best fit curve for 

the cumulative pore size distribution data (Cumulative void ratio vs pore diameter). The plot of   

-�e/�log(d) obtained from Eqn. 3 and the corresponding pore diameter (d), gives the incremental 

pore size distribution curve, as shown in Figs. 4, 6 and 8.  

    

 It can be noted from the Figs. 4 and 8  that the intact and compacted specimens depict 

bimodal pore size distribution (viz., group of inter-aggregate pores and intra-aggregate pores) 

with two distinct groups of pore sizes ; whereas reconstituted specimens depict mono-modal pore 

size distribution (refer Fig. 6). Table 2 presents the percentage inter-aggregate and intra-

aggregate pores and the dominant pore diameter (Souli et al., 2008) for intact and compacted 

specimens, obtained by employing the modified van Genuchten bimodal equation, refer Eqn. 3 

(Dieudonne et al., 2014; Lopes et al., 2014). Except when a sharp peak is observed in 

incremental pore size distribution curve, viz., specimen R1 (refer Fig. 6), the dominant pore 

diameter is represented as a range (refer Table 2) with lower and upper limit values indicating 

the pore diameter on either side of peak value, and the average value of dominant pore diameter 

is also presented in Table 2. The first part of Eqn. 3 yields the intra-aggregate pore fraction, 

whereas the second part yields the inter-aggregate pore fraction.  

It can be seen from Table 2 that for the intact clay specimens, the average dominant pore 

size of the intra-aggregate pores, dd1, as well as the average inter-aggregate pore size, dd2, 

reduces during the drying process. The proportion of intra-aggregate pores increases with 
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corresponding reduction in the proportion of inter-aggregate pores. Interestingly, the pore size 

distribution, which was bi-modal initially, remains bi-modal during the drying process. Further, 

the intra-aggregate voids ratio reduces during the drying process (Table 2), which indicates the 

shrinkage of aggregates and narrowing of the intra-aggregate pores. Incidently, the inter-

aggregate voids ratio also reduces during the drying cycle, indicating shrinkage of these pores. 

The shrinkage of inter-aggregate pores suggests their initial saturated state, as explained later in 

Fig. 13. Further, from Table 2 it can also be observed that for compacted specimens, the average 

intra-aggregate pore size reduces during drying. Although the volume of intra- and inter- 

aggregate pores reduces during drying, the proportion of intra- aggregate pores reduces and the 

proportion of the inter-aggregate pores increased. The reduction in intra-aggregate voids ratio for 

the compacted specimens indicates aggregate shrinkage mechanism during drying similar to that 

for intact specimens.  

 For reconstituted specimens (refer Table 3), average dominant pore size reduces from 

4.10 	m for specimen R1 to 0.092 	m for specimen R2. The air dried specimen, R4 exhibits 

average dominant pore size of 0.007 	m. Such significant reduction in the pore sizes indicates 

shrinkage and closure of pores from initial slurried condition. As aggregation effect is expected 

to be absent in initial slurried specimens, the pore size distribution of initial slurried specimen 

cannot be classified as intra-aggregate or inter-aggregate pores. During the drying process, 

shrinkage of specimen and formation of the small aggregations may result in both intra- and 

inter- aggregate pores. However, researchers have noted that the mono-modal pore size 

distribution observed in reconstituted specimens with comparable intra- and inter- aggregate pore 

sizes, makes it extremely difficult to distinguish between the two families of pores (Tarantino, 

2011). It should be noted that some larger size pores observed for specimens R2 and R3 in Fig. 6 
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can be concluded as artifacts; since this range of pore sizes are missing in initial slurried state 

represented by R1. These artifacts might be a result of micro-cracking during the freeze drying 

process or during the drying process of the specimen itself, and hence have been ignored. 

Further, to understand the process of de-saturation and shrinkage of the pores during 

drying, the water ratio, ew (viz., ratio of volume of water in the pores to volume of solids) at each 

stage of drying has been computed by employing the volume-mass relationship (ew=w.G, where 

G = specific gravity of soil specimen) and compared with the total void ratio, e (Tarantino, 2011; 

Romero et al., 2011). A fully saturated clay would indicate that ew=e, which suggests that all the 

pores are saturated. Table 4 presents the computed values of ew and estimated values of e (viz., 

caliper measurement). For estimation of ‘e’, the dry density, γd, was computed from the known 

weight of specimen and volume of specimen (average of five measurements) obtained by caliper 

measurement. The void ratio was estimated from the volume-mass relationship (γd = G.γw / 

(1+e), where γw is the density of water. From Table 4, it can be observed that for intact 

specimens, ew≥e for specimens I1 and I2, which indicates that the specimens are saturated at this 

stage. The values of ew exceeding e may be attributed to experimental error associated with 

estimation of e. Fig. 4 suggests progressive shrinkage of both the size and volume of intra- and 

inter- aggregate pores during drying from specimen I1 to I2. However, the figure also depicts the 

presence of inter-aggregate pores with dominant size of about 30 	m (which can resist a 

capillary suction of just about 100 kPa) for specimen I2 (with total suction of 1.25 MPa), which 

would suggest desaturation of this specimen. However, the water retention characteristics as well 

as interpretation of MIP results confirm saturated state of specimen I2 and indicates the 

beginning of desaturation at a drying stage between specimens I2 and I3). This could be partially 

attributed to the dynamic process of simultaneous desaturation and shrinkage of pores, which 
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would cause time lag in the desaturation process and also delay complete desaturation of the 

pore. The shrinkage of pores results in equivalent reduction in volume of pores corresponding to 

the spillage of water during drying and increases the capillary suction required to remove water 

from the pore of reduced size, and this phenomena would result in pores remaining saturated. In 

addition to this, it is opined that the possible presence of saturated hidden larger pores trailing the 

smaller pores during drying process, might also contribute in preventing the desaturation of 

specimen I2. However, these larger pores would have been made accessible to intrusion of 

mercury during MIP tests, due to micro-cracking of soil specimen either during freeze drying 

process or during the air drying process itself. Further, for specimens I3 and I4, ew<e, which 

indicates that some pores are unsaturated. For reconstituted specimens, R1, R2 and R3 it can be 

observed that ew≥e, indicating saturated pores for these specimens, whereas for specimen R4, 

ew<e, which indicates that some pores are unsaturated. For compacted specimens prior to air 

drying viz., C21P1 and C25P1, ew~e, which indicates that the pores are mostly saturated. 

However, for air dry specimens C21P2 and C25P2, ew<e, suggests that the pores are partially 

saturated. In order to further distinguish the saturated pores from unsaturated pores, the 

computed ew have been marked on the cumulative pore size distribution, as depicted in Figs. 3, 5 

and 7. 

 Tarantino (2011) suggested that the intersection of ew on the cumulative voids ratio 

curve indicates the demarcation of saturated and un-saturated pores. The pores smaller than this 

separation pore size (at point of intersection between ew and cumulative voids ratio curve) can be 

assumed to be saturated and the pores larger than the separation pore size can be considered as 

un-saturated (the difference between e and ew corresponds to the dry state of pores, and it is 

usually assumed that larger pores would de-saturate first). However, for soils with complex pore-
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size distribution such as for swelling clay in this study, it would be difficult to conclude if only 

larger pores control the desaturation process.  

 For compacted specimens, as depicted in Fig. 7, the specimens C21P1 and C25P1 

(initial state of compacted specimens) have mostly saturated pores (ew~e). For specimen C21P1, 

during drying, both the inter-aggregate (some part) and intra-aggregate pores shrink. Some part 

of the inter-aggregate pores would have de-saturated and could not shrink further, represented by 

the final inter-aggregate pore volume for specimen C21P2. For specimen C25P1, it appears from 

Fig. 8 that the inter-aggregate pores de-saturate during drying, whereas the intra-aggregate pores 

shrink and try to remain saturated. At the end of air drying, intra-aggregate pores smaller than 

0.036 	m and 0.055 	m (refer Fig. 8) appears to be still saturated for specimens C21P2 and 

C25P2, respectively, whereas the larger pores are de-saturated. It has been observed that the 

shrinkage during drying is higher for C25P1 as compared to C21P1, which may be attributed to 

higher initial water content for specimen C25P1 as compared to C21P1. 

Further, for specimens C21P1 and C25P1, it can be seen (refer Table 2 and Fig. 8) that 

most of the shrinkage can be attributed to reduction in intra-aggregate pores. Li and Zhang 

(2009) have obtained similar inferences for compacted soil, where they observed that the 

mechanical compaction process results in reduction of inter-aggregate pores, whereas the 

hydraulic process of evaporation during drying results in reduction of mostly intra-aggregate 

pores. This indicates the role of mechanical and hydraulic processes in altering the pore structure 

of the compacted samples during compaction process and drying, respectively.  
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Discussion 

The conventional capillary model for explaining the drying process, suggests that pores 

would de-saturate if the suction exceeds the capillary pressure represented by Young-Laplace 

equation (refer Eqn. 4).  

ψ =
�.�.���(�)

�                                       (4) 

where ψ is the suction due to capillary forces in MPa, T is the interfacial tension at air-water-

solid interface = 0.072 N/m, �  is the contact angle, d is the pore diameter in 	m. 

Usually the contact angle, α, is assumed to be zero during drying process (Marshall et al. 

1996), which would yield maximum capillary pressure that can be sustained by the pores, before 

de-saturating (represented by Eqn. 5).    

                                            ψ =	4.�d                                                  (5) 

Interestingly, the microstructural evolution of the swelling clay SC1 in this study, which 

exhibits shrinkage of the pores during the drying process, suggests the deformable nature of the 

pores. Hence, at each stage of drying, when the suction equalizes the capillary pressure which 

can be sustained by the pores of certain size, these pores spill some water and in the process 

shrink. Hence, these pores of reduced size can now sustain higher capillary pressure, and are still 

saturated. When suction increases during the drying process and equalizes this new capillary 

pressure sustained by the pores, more water spills from the pores and the pores shrink further and 

manage to resist higher capillary pressure preventing remaining water from spilling from the 

pores. This process may continue till the pores can shrink further. During the process of drying, 

some pores would de-saturate and would not undergo further shrinkage (larger group of pores for 

specimen R4; inter-aggregate pores for specimens I3, I4, C21P2 and C25P2 and part of intra-
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aggregate pores for specimens C21P2 and C25P2), whereas other pores would undergo 

shrinkage and would be still saturated (most of the pores for specimens I2, R2, R3; most of the 

intra-aggregate pores for specimens I3, and part of intra-aggregate pores for specimens C21P2 

and C25P2). For such clays, which exhibit substantial shrinkage, the suction-pore size 

relationship may appropriately be represented by Eqn. 5 only if the diameter d is assumed to 

evolve during the drying process.  It is opined that a model which incorporates the deformable 

capillary tube effect, to represent the shrinkage of pores during drying, might be able to explain 

the evolution of pore structure and the de-saturation process, during drying, for such swelling 

clays (viz., soil SC1).  

In order to confirm this hypothesis for the swelling clay, the theoretical maximum pore-

diameter, d, for a saturated pore has been computed corresponding to different values of matric 

suction, ψm for the intact, reconstituted and compacted specimens, using Eqn. 5. The theoretical 

maximum pore-diameter, d, has been compared with the actual experimental values of dominant 

pore diameter, dd (the diameter corresponding to peak of frequency pore size distribution curve, 

refer Figs. 4,6 and 8), and also the entrance pore diameter, de (largest pore diameter which would 

probably permit the entry of air into the specimen at the onset of desaturation, which can be 

obtained from the frequency pore size distribution curve, as the largest pore diameter at which 

mercury intrusion into intra-aggregate pores begins) for the intact, reconstituted and compacted 

specimens at different stages of drying. It should be noted that the concept of entrance pore 

diameter, de, is introduced in this study to quantify the capillary suction corresponding to 

beginning of desaturation of pores. Fig. 10 depicts the methodology for obtaining the value of de 

from a typical cumulative pore size distribution curve. The point at which the slope of the 

cumulative pore size distribution curve changes, defines de. 
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It should be noted that Laplace equation relates matric suction, ψm with the pore 

diameter, d, whereas total suction, ψ, is obtained from the experimental studies. Hence, in order 

to compare the experimental results with the Laplace equation, an attempt has been made to 

estimate the osmotic suction, ψo, in order to convert the experimentally obtained ψ  to ψm (matric 

suction). The model proposed by Peroni and Tarantino (2004) is considered for estimation of ψo, 

as represented by Eqn. 6.  

�� =  
(!"#)                         (6) 

where A and B are fitting parameters 

In the model, the parameter B which is equal to the hygroscopic water content, wadsorbed is 

considered as 0.07 and the parameter A has been fitted for the osmotic suction, ψo, associated 

with the specimen at w = 5 (osmotic suction, ψo is inferred  from electrical conductivity, EC, 

measurement on pore solution as per Eqn. 7, suggested by USDA 1950 (Peroni and Tarantino, 

2004). The parameter A is obtained as 112.3 corresponding to ψo = 22.78 kPa (EC= 732 	S/cm). 

�� = 0.0191	'().*+�               (7) 

 The relationship between osmotic suction, ψo vs water content, w, computed based on 

Peroni and Tarantino (2004) model is depicted in Fig. 11. The estimation of experimental values 

of matric suction, ψm, for intact, reconstituted and compacted specimens, as per Eqn. 8, is 

summarized in Table 5.  

�, = 	� −	��     (8) 

 

The theoretical relationship of matric suction, ψm vs pore diameter, d based on Laplace 

equation (Eqn. 5) has been plotted as depicted in Figs. 12 and 14 (depicted as TLaplace). Further, 

the figures also depict the experimental relationship of ψm vs dd and ψm vs de (refer Fig. 12 for 
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intact and reconstituted specimens and Fig. 14 for compacted specimens). In the Figs. 12 and 14, 

suffixes ‘Actual-d’ and ‘Actual-e’ corresponds to experimental values of ψm, with respect to 

dominant pore diameter, dd, and entrance pore-diameter, de, respectively. 

For the reconstituted specimens, the superimposition of experimental values of 

ψm−entrance pore diameter vs de relationship in Fig. 12 (‘Actual-e’ in figure), suggests that the 

ψm vs de data lies on the Laplace curve for the specimens R1 and R2, which indicates that these 

specimens are saturated due to progressive shrinkage of the specimens during drying. The 

capillary forces with which water is held in the pores are higher enough to resist the developed 

suction and hence prevents the desaturation of the pores. Moreover, it appears that the larger 

pores adjust their size to prevent desaturation (as the data points for R1 and R2 move along the 

Laplace curve). Further, it can be observed from the figure that the ψm vs de data detaches from 

the Laplace curve for specimens R3 and R4, which indicates that these specimens are partially 

saturated (suction is higher than the capillary suction represented by Laplace equation, and the 

specimens starts desaturating due to the fact that the largest pores cannot sustain the developed 

suction). Further, the superimposition of ψm−dominant pore diameter, dd (‘Actual-d’ in figure) 

relationship in Fig. 12 suggests most of the intra-aggregate (micro) pores of the specimen R3 are 

also saturated, as ψm−dd relationship lies below the Laplace curve. Further for specimen R4 it can 

be also noted that the ψm−dd relationship lies above the Laplace curve, which indicates 

desaturation of micro-pores for R4.  This is consistent with Fig.5, which shows that micro-pores 

in specimens R1, R2 and R3 are saturated, whereas micro-pores in R4 are partially saturated.  

For the intact specimens, the superimposition of experimental values of ψm−entrance pore 

diameter, de (‘Actual-e’ in figure) relationship in Fig. 12, suggests that the ψm vs de data lies 

below the Laplace curve for the specimens I1 and I2, which indicates that these specimens are 
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saturated. Further, it can be observed from the figure that the ψm vs de data lies above the 

Laplace curve for specimens I3 and I4, which indicates that these specimens are partially 

saturated (suction is higher than the capillary suction represented by Laplace equation). This is 

consistent with Fig. 3, which shows that specimens I1 and I2 are saturated, whereas I3 and I4 are 

partially saturated. Further, the superimposition of ψm−dominant pore diameter, dd (‘Actual-d’ in 

figure) relationship in Fig. 12 suggests most of the intra-aggregate (micro) pores of the 

specimens I3 are also saturated, whereas the ψm−dd relationship for specimen I4 is above the 

Laplace curve indicating significant desaturation of micro-pores for specimen I4 during further 

drying as compared to I3.  

It should be noted that for intact specimens, the larger inter-aggregate pores (viz., 

macropores) form significant fraction of the total porosity of the specimen (about 25% for 

specimen I1 and 20% for specimen I2). These pores are quite large and would desaturate at low 

suction values, which is in contrast with the experimental data which indicate these specimens to 

be saturated. This contrast may be explained by the mechanism depicted in Fig. 13.  

As depicted in Fig. 13, d1a, d1b and d1c are diameter of larger pore at different stages of 

drying; T1a, T1b and T1c are air-water interface tension (capillary suction) in larger pore at 

different stages of drying; d2a, d2b and d2c are diameter of smaller pore at different stages during 

desaturation; T2a is capillary suction in smaller pore at desaturation of larger pore. At initial stage 

of drying from saturated state, as depicted in Fig. 13 (a), the air-water-interface tension is T1a in 

larger pore of diameter d1a. The diameter of smaller pore is d2a. During drying, the air-water 

interface tension in larger pore increases to T1b and the larger pore shrinks by equivalent volume 

and reduces to new diameter, d1b and the smaller pore undergoes no change (refer Fig. 13b). 

With further drying, the air-water interface recedes into the larger pore due to the evaporation of 
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water from the surface, and the interface tension reaches its maximum value, T1c. During the 

transient process, however, the larger pore will eventually empty experiencing shrinkage to 

residual diameter, d1c. The smaller pore acts as water channel and loses water to upper pore and 

shrinks to new diameter, d2b (refer Fig. 13c). At this stage, the larger pore has desaturated and 

reduced to residual diameter, d1c. The air-water interface recedes into the smaller pore with 

interface tension, T2a > T1c. By this time the smaller pore has shrunk to new diameter d2c. The 

desaturation process of smaller pore continues as explained in Steps above (refer Fig. 13d). 

Similar mechanism as explained in Fig. 13 may also occur with larger pore trailing the smaller 

pore at the surface, and the desaturation of the larger pore may occur only after the desaturation 

process of the upper (leading) smaller pore is completed. 

The above mechanism can be understood for specimen I2, which has inter-aggregate 

porosity (viz., macro-pores) of about 20%, and would have degree of saturation, S about 80%. 

However, these macro-pores are likely to be the pores surrounded by smaller pores and hence 

hidden by these saturated smaller pores during the drying process. These hidden larger macro-

pores are probably accessed by the mercury during MIP tests (refer Fig. 3), due to possible 

micro-cracks formed during freeze drying or the air drying process. The shrinkage of macro-

pores for specimen I3 as compared to specimen I2 (refer Fig. 4) is associated with the 

mechanism depicted in Fig. 13. 

For the compacted specimens C21P1 and C25P1, Fig. 14 depicts that ψm vs de (‘Actual-

e’) relationship lies above the Laplace curve, indicating that the entrance micro-pores are 

desaturated. However, the superimposition of ψm vs dd (‘Actual-d’) relationship in Fig. 14 

suggests that most of the micro-pores of specimens C21P1 and C25P1 are saturated, as ψm vs dd 

relationship is below the Laplace curve. However, for air dry specimens C21P2 and C25P2, both 
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the ψm vs de and ψm vs dd relationships are above the Laplace curve, which indicates that most of 

the micro-pores of the compacted specimens in air dry state are desaturated. These observations 

are consistent with the interpretation from Fig. 7 that the micro-pores for specimens C21P1 and 

C25P1 are saturated and subsequently get desaturated at higher suction during drying. It may be 

noted that the inter-aggregate (macro) pores of specimens C21P1 and C25P1 are expected to 

desaturate at lower suction during beginning of the drying process. This can be confirmed from 

the fact the macro-pores exhibit negligible shrinkage during drying (refer Fig. 7). Hence, it can 

be seen that the water retention behaviour of swelling clays can be understood by Laplace model 

for capillary suction, wherein the pore size evolves during the drying process. Further, the 

swelling clays exhibit progressive shrinkage during drying, and during this process the 

desaturation of pores experiences delay as explained in Fig. 13. 

Fig. 15 depicts the d-ψm relationship for a hypothetical non-deformable capillary tube 

(viz., pores), hypothetical deformable capillary tube and Laplace curve (viz., theoretical d-

ψm relationship based on equation Eqn. 5). The point, where the d-ψm relationship for non-

deformable capillary tube crosses the Laplace curve, indicates the point of desaturation of non-

deformable pores. At this point, the suction in the largest pore accessible to air entry is larger 

than the capillary pressure that can be sustained by these pores. These pores do not undergo 

shrinkage as they desaturate.  

For deformable pores, when the suction reaches the capillary pressure that can be 

sustained by the pores, part of the water spills off the pores, and simultaneously the pores shrink 

to develop higher capillary pressure and shrinkage equal to the volume of the spilled water 

occurs. The new pores of reduced size can sustain the suction developed and remain saturated. 

This process continues till these pores can shrink and the capillary pressure is higher than the 
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suction developed, and the desaturation process starts only when the largest pores accessible to 

entry of air cannot shrink further. Fig. 15 also depicts the point, where the d-ψm relationship for 

deformable capillary tube crosses the Laplace curve, which indicates their point of desaturation.  

The deformable capillary tube concept is quite valid for the intact and reconstituted specimens of 

the swelling clay, which exhibit shrinkage for most part of drying.  

  The comparison of microstructural evolution of the soil during drying from undisturbed 

and reconstituted states, suggest that the pore-size distribution during dry end is quite similar for 

both intact and reconstituted specimens (refer Tables 2 and 3). Based on these inferences, and the 

discussion related to SWRCs of these clays, it can be opined that the deformability (shrinkage) of 

the pores during drying process results into convergence of the pore-size distribution of the 

swelling clay in intact and reconstituted states, after a stage of drying. However, generalization 

of this hypothesis requires extensive studies on other swelling clays.  

 

Conclusions  

The present study attempts to understand the water retention behaviour and 

microstructure of swelling clay dried from initial intact, reconstituted and compacted states. The 

following conclusions can be drawn from the study: 

1. It has been noted that the drying-path SWRCs for the swelling clay studied from the intact 

and reconstituted states, converge beyond a critical suction value. The drying path SWRCs of 

the clays in their compacted state exhibit lower suction at particular water content as 

compared to the intact and reconstituted states.  
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2. Based on the study, it can be opined that both the inter-aggregate and intra-aggregate pores 

influence the water retention behaviour of the compacted clays. This observation is in line 

with findings of earlier studies.  

3. For swelling clay (viz., soil SC1) it is observed that the specimens in the intact and 

compacted states exhibit bimodal pore-size distribution during drying path, whereas the 

specimens in reconstituted state exhibit mono-modal pore-size distribution.  

4. The pore-size distribution for swelling clay (viz., soil SC1) in relatively dry state (viz., 

beyond critical suction, ψc) is quite similar for both intact and reconstituted specimens, 

which may be attributed to shrinkage of pores to residual pore size distribution during drying. 

However, generalization of this hypothesis requires more studies on other swelling soils. 

5. The concept of entrance pore diameter, de has been introduced in the study to explain the 

desaturation process of intact, reconstituted and compacted specimens of swelling clay.  

6.  The study observes the progressive deformation of the pores during drying for the intact and 

reconstituted specimens of swelling clay, which suggests the applicability of Laplace 

equation in general for swelling clays.  
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Table 1 Physical and mineralogical characteristics of the swelling clay SC1 

Clay G 

Particle size 

distribution (%) 

Atterberg Limits 

(%) 
FSI 

(%) 

SSA USCS Major 

Minerals 

Sand Silt Clay wl wp Ip ws Is m
2
/g 

SC1 2.62 5 25 70 114 22 92 16 06 130* 303 CH 
Quartz, 

Montmorillonite 

*Colloidal suspension observed 
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Table 2. Summary of the MIP results for intact & compacted specimens of swelling clay 

SC1 based on the modified van Genuchten dual porosity model 

Specimen 
*
dd1 

(�m) 

*
dd1avg 

(�m)
 

*
dd2 

(�m)
 

*
dd2avg 

(�m) 

Intra-aggregate 

pore 

 

Inter-aggregate 

pore 

 

(%) **em (%) **eM 

I1 0.018-0.026 0.022 21.44-44.33 32.89 64.80 0.432 35.20 0.235 

I2 0.015-0.019 0.017 24.74-35.01 29.88 72.34 0.380 27.66 0.144 

I3 0.012-0.016 0.014 20.11-37.44 28.78 80.88 0.380 19.12 0.090 

I4 0.007-0.009 0.008 18.87-35.24 27.06 76.44 0.222 23.56 0.068 

C21P1 0.017-0.027 0.022 10.84-20.37 15.61 73.06 0.325 26.94 0.120 

C21P2 0.012-0.016 0.014 12.79-24.66 18.73 72.70 0.200 27.30 0.075 

C25P1 0.024-0.032 0.028 31.22-49.44 40.33 72.88 0.280 27.12 0.100 

C25P2 0.012-0.018 0.015 25.67-40.73 33.20 60.48 0.168 39.52 0.110 

*
dd1 =Dominant pore diameter (intra-aggregate pores as per van Genuchten dual porosity model) 

*
dd2 =Dominant pore diameter (inter-aggregate pores as per van Genuchten dual porosity model) 

**em = voids ratio of intra-aggregate pores from MIP results 

**eM = voids ratio of inter-aggregate pores from MIP results 
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Table 3. Summary of the MIP results for reconstituted specimens of swelling clay SC1 

based on the modified van Genuchten porosity model (mono-modal) 

Specimen 
*
dd 

(�m) 

*
ddavg 

(�m)
 

 

**eMIP 

R1 4.10 4.10 2.65 

R2 0.080-0.103 0.092 0.79 

R3 0.007-0.011 0.009 0.34 

R4 0.006-0.008 0.007 0.24 

*
dd =Dominant pore diameter  

**
eMIP =voids ratio from MIP results  
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Table 4 Comparison of the ew and e at different stages of drying for different specimens of 

the swelling clay SC1 

 

Specimen ew e 

I1 1.10 1.03 

I2 0.99 0.93 

I3 0.57 0.66 

I4 0.37 0.48 

R1 3.20 3.11 

R2 1.21 1.15 

R3 0.68 0.64 

R4 0.33 0.41 

C21P1 0.54 0.56 

C21P2 0.24 0.37 

C25P1 0.66 0.65 

C25P2 0.26 0.40 
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Table 5 Estimation of matric suction, ψψψψm for different specimens of the swelling clay SC1 

based on Peroni and Tarantino (2004) model for osmotic suction 

Specimen 
w ψψψψ ψψψψo    ψψψψm =ψψψψ −−−−ψψψψo    

(g/g) MPa MPa MPa 

I1 0.420 0.07 0.06 0.01 

I2 0.379 1.52 0.36 1.16 

I3 0.233 12.71 0.69 12.02 

I4 0.147 66.96 1.53 65.43 

R1 1.157 0.13 0.10 0.03 

R2 0.458 1.25 0.29 0.96 

R3 0.259 13.11 0.60 12.51 

R4 0.131 62.50 1.84 60.66 

C21P1 0.210 6.77 0.80 5.97 

C21P2 0.100 62.10 3.74 58.36 

C25P1 0.250 4.09 0.62 3.47 

C25P2 0.092 51.02 5.10 45.92 
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