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Executive Summary 

Background 

Solar photovoltaic (PV) systems can offer a low carbon, low cost and economically competitive method 

of providing electricity in such remote areas unlikely to be grid connected in the near future.  As such, 

they are being installed in significant numbers across sub-“;ｴ;ヴ;ﾐ AaヴｷI;く  M;ﾉ;┘ｷげゲ ﾗaa ｪヴｷS PV ｷﾐゲデ;ﾉﾉWS 
capacity has increased from 0.2 MW in 2007 to 5.7 MW in 2017 [1]. In 2012 there was an estimated 

7,000 PV systems present in the country [2]. Despite the increase of installed capacity, many solar PV 

systems fall into disrepair, usually only achieving 10% of their lifetime expectancy, due to lack of 

maintenance, poor initial design, end-user misuse, or insufficient ownership and business model 

strategies. Research into factors that affect sustainability of off grid PV systems is needed to support 

identification of appropriate interventions and ensure project longevity with reduced lifetime costs of 

systems serving rural communities in sub-Saharan Africa. 

Methodology 

The study employs a novel scoring method which is used to support a sustainability evaluation of 65 

off-grid community solar PV projects in Malawi. Projects are scored against the technical, economic, 

social, and organisational factors. An aggregated (total) sustainability factor is proposed here as a good 

early measure of project sustainability; however, there is insufficient evidence currently available to 

validate the accuracy this method as a predictor of long-term sustainability i.e. continued data 

collection and analysis of these sustainability factors, over several years, is required to obtain a 

sufficient evidence base to enable a deep understanding of the relative influence of the different 

sustainability factors for community energy projects in a variety of contexts. 

Funded by the Scottish Government, The Malawi Renewable Energy Acceleration Programme 

(MREAP) ran from 2012 to 2015. A key part of MREAP was the Community Energy Development 

Programme (CEDP) that had a focus of increasing access to energy for low income communities in 

Malawi both directly and through interventions in the enabling environmentく TｴW ヮヴﾗｪヴ;ﾏﾏWげゲ 
approach had a strong emphasis on community engagement, capacity building, and support; aspects 

deemed necessary for community energy projects to be sustainable. 

Two phases of data gathering are included in this study. The first, in 2014, involved 43 projects not 

associated with MREAP, but analysed as part of MREAP to improve overall sector learning on 

sustainability of community energy projects [3]. The second phase, carried out in 2016, added a 

further 22 projects to this data set, including all of the MREAP projects which involved solar PV at 

schools and health centres (14 projects in total). The study adopted 3 different groupings, based on 

project implementer: MREAP-CEDP refers to projects established under the MREAP CEDP programme, 

MREAP-WASHTED refers to projects established under MREAP by the WASHTED Strategic Energy 

Project, and OTHER which refers to all other projects.   

Results 

The study results are summarised in Figure 1. The columns represent the key sustainability factors. 

The final column represents the total sustainability (the combined result). The rows represent the 

three project categories (top row is MREAP-CEDP, middle row is MREAP-WASHTED and the bottom 

row is OTHER). All projects that were surveyed as part of this work are represented as a black dot. The 

coloured lines represent the global average for that particular sustainability factor. The dashed blue 

lines represent the average for the sustainability factor for that project category only, for comparison 

with the global average.  



 

Figure 1:  Summary of Sustainability Analysis 

Key findings 

 For the total sustainability factor, none of the MREAP-CEDP projects are scoring below the 

global average. 

 MREAP-CEDP systems score significantly above average, with a total average score of 0.56. 

 The MREAP-WASHTED projects are also above the global average with 0.40. 

 Across the data set, the global economic average score stands out as the lowest of all scores.  

Discussion 

Further development of models for economic sustainability are required in the sector - many projects 

have failed to establish a sufficient financial model. MREAP-CEDP outperforms other project groups 

on this factor, but could still be improved compared to the other factors. Technical performance has 

been improved by MREAP systems when compared to OTHER systems - systems appear to be sized 

better for current consumption expectations and are more often meeting those expectations. 

The OTHER projects consistently score low using the methodology employed in this analysis. Most 

significantly, this analysis highlights the large spread in responses for organisational, social and 

technical factors and a common economic score of 0. This suggests a low community engagement and 

low stakeholder management of the projects. The technical specification of OTHER projects is 

inconsistent and the economics are not secure.  

The results of this study should be considered by practitioners and project developers in Malawi as 

well as policy decision makers concerned with the sustainability at the project level.  
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1 Introduction 

1.1 Energy Access and Off Grid Solar PV as a Solution 

Access to energy is an enabler for development.  Conversely, a lack of energy is a barrier to economic 

empowerment and poverty eradication. Access to energy has been globally recognised as a high 

impact development priority through the UN Secretary Generalげゲ さ“┌ゲデ;ｷﾐ;HﾉW EﾐWヴｪ┞ aﾗヴ Aﾉﾉざ initiative 

[4] and a subsequent Sustainable Development Goal 7, with a target of universal access to energy [5]. 

Nearly 1.2 billion people lack access to electricity globally and the region of Sub Saharan Africa has the 

highest population percentage lacking electricity, where only 290 million out of 915 million people 

have access to electricity. To further compound the problem, the total number without access is also 

rising [6].  

Solar photovoltaic (PV) systems can offer a low carbon, low cost and economically competitive method 

of providing electricity in such remote areas unlikely to be grid connected in the near future. The cost 

of PV has been declining steadily in recent years [7]; the technology requires little maintenance 

compared to competitor technologies (such as small wind or hydro power); its modular nature allows 

systems to be up scaled easily. The availability of components is also improving, even in rural trading 

centres.  

1.2 Sustainability of Solar PV 

Despite the increase of installed capacity, many solar PV systems fall into disrepair, usually only 

achieving 10% of their lifetime expectancy, due to lack of maintenance, poor initial design, end-user 

misuse, or insufficient ownership and business model strategies. Research into factors that affect 

sustainability of off grid PV systems is needed to support identification of appropriate interventions 

and ensure project longevity, reduced lifetime costs of systems serving rural communities in sub-

Saharan Africa.  

Sustainability of such solar PV systems is not a trivial matter.  Research in this area has developed and 

implemented general frameworks for understanding the sustainable development aspects of rural 

electrification programs.  These include the technical, economic, social, institutional, and 

environmental pillars of sustainability [3, 8-11] (Figure 2). 

The pillars of sustainability provide a high-level framework; however, within this, a working definition 

of sustainability for the specific technology of solar PV systems is useful. For this study, sustainability 

ｴ;ゲ HWWﾐ SWaｷﾐWS ;ゲ さデｴW ヮWヴIWｷ┗WS ヮﾗデWﾐデｷ;ﾉ aﾗヴ ; ゲ┞ゲデWﾏ ﾗヴ ヮヴﾗﾃWct to endure, build a self-

perpetuating capacity within a community, and ultimately reach the end of its predefined lifespan or 

W┗ﾗﾉ┗W ｷﾐデﾗ ;ﾐﾗデｴWヴ HWﾐWaｷIｷ;ﾉ aﾗヴﾏざ.    

For this study, a survey was designed and implemented to extract a set of variables for each 

sustainability pillar, with the exception of environmental sustainability. The variables were then 

combined to create a sustainability factor for each pillar.  Environmental sustainability factors are not 

considered for PV systems because, in the current context of Malawi, the effect on the environment 

is assumed to be positive and therefore not included as a sustainability risk. The sustainability survey 

variables and factors are explained further in the following sections. 

 



 

Figure 2: Conceptualising Sustainability 

 

1.3 Solar PV in Malawi   

Malawi is one of the poorest countries in the world, with an economy highly dependent on agriculture 

(83% of the population is located in rural areas and approximately 75% of the population is living a 

subsistence farming lifestyle [12]). According to the World Bank Sustainable Energy for All (SE4ALL) 

database (2016) access to the national electricity grid in Malawi is currently just 9.8%, with rural 

electrification at only 5.3% [13].  This equates to over 15 million people in Malawi living without access 

to the main electricity grid, and those with access currently experiencing blackouts on a regular basis. 

Despite Government of Malawi efforts to extend and modernise the grid it is clear that new generation 

and grid extensions will not reach the entire population of Malawi in the short term. Mini-grids, though 

a promising option in the future, are in pilot stages currently. 

M;ﾉ;┘ｷげゲ ﾗaa ｪヴｷS PV ｷﾐゲデ;ﾉﾉWS I;ヮ;Iｷデ┞ ｴ;ゲ ｷﾐIヴW;ゲWS aヴﾗﾏ ヰくヲ MW ｷﾐ ヲヰヰΑ to 5.7 MW in 2017 [1]. In 

2012 there was an estimated 7,000 PV systems present in the country, though many are known by 

practitioners not to be fully functional [2]. Recent market assessment for off grid technologies found 

that PV systems have a significant role to play in the electrification of off-grid communities in Malawi, 

that PV is scalable across the entire country and its modularity and simplicity are ideally matched to 

the needs of off-grid communities, where technical capacity and individual household demand is low 

[14].  With market conditions favouring of off-grid project development, it is therefore crucial that 

these projects are developed to ensure sustainability. 

1.4 MREAP and Community Energy Malawi 

Funded by the Scottish Government, The Malawi Renewable Energy Acceleration Programme 

(MREAP) ran from 2012 to 2015 with a focus of increasing access to energy for low income 

communities in Malawi both directly and through interventions in the enabling environment [15]. The 

IﾗﾗヴSｷﾐ;デWS ﾏ┌ﾉデｷ ﾗHﾃWIデｷ┗W SW┗WﾉﾗヮﾏWﾐデ ヮヴﾗｪヴ;ﾏﾏWげゲ ;ヮヮヴﾗ;Iｴ ｴ;S ; ゲデヴﾗﾐｪ Wﾏヮｴ;ゲｷゲ ﾗﾐ 
community engagement, capacity building, and support, deemed necessary for community energy 

projects to be sustainable.  

Sustainability

Environmental

related to the environmental 
impact, positive and negative, 

デｴ;デ ; ヮヴﾗﾃWIデげゲ ｷﾐデヴﾗS┌Iデｷﾗﾐ ｷﾐデﾗ 
a community brings 

Organizational

considers how the human and 
business assets must be 
maintained over project 
inception and growth.  

Economic

concerned with the continued 
financial well-being of the project 
throughout the planned system 

lifespan.

Technical

ability of the system to operate 
as designed, from a technical 
perspective, and provide the 

expected level of energy service 
for the planned system lifespan

Social

related to engagement and 
representation, and acceptance 

of a project within a social 
structure, i.e. a commity



A key intervention to ensure renewable projects were supported following the completion of MREAP 

was the creation of the social enterprise Community Energy Malawi (CEM). CEM have continued to 

provide institutional and technical support the MREAP systems through training of technicians on 

maintenance of the solar PV systems, plus organisational and financial training. 

1.5 Evaluating Solar PV Sustainability in Malawi 

In 2016, with many of the systems reaching the 3rd year of their lifetime, it was an opportune time to 

compare the sustainability of MREAP projects against other projects installed in Malawi. This study 

therefore, proposes a novel scoring method which is used to support a sustainability evaluation of 65 

off-grid community electrical projects in Malawi.  Projects are scored against the technical, economic, 

social, and organisational factors.   

The study adopted 3 different groupings, based on project implementer: MREAP-CEDP refers to 

projects established under the MREAP CEDP programme (later becoming CEM projects), MREAP-

WASHTED refers to projects established under MREAP by the WASHTED Strategic Energy Project, and 

OTHER which refers to all other projects.   

The results of this study are relevant to project developers in Malawi as well as practitioners 

concerned with the sustainability at the project level.  The proposed scoring framework is novel in 

that it is aimed squarely at off-grid projects and indicators relevant to their sustainability (as opposed 

デﾗ ; ┘ｷSWヴ さゲ┌ゲデ;ｷﾐ;HﾉW SW┗WﾉﾗヮﾏWﾐデざ aヴ;ﾏW┘ﾗヴﾆ [16]).   

The data set is described in Section 2.  Analysis of individual sustainability factors is in Sections 3 に 6.  

Analysis of the overall sustainability factor is described in Section 7.   

2 Data Set Description 

2.1 Questionnaire design and data handling 

Two phases of data gathering are included in this study.  The first, in 2014, involved 43 projects not 

associated with MREAP, but analysed as part of MREAP to improve overall sector learning on 

sustainability of community energy projects [3].  The second phase, carried out in 2016, added a 

further 22 projects to this data set, including all of the MREAP projects which involved solar PV at 

schools and health centres.   

Data gathering was carried out by a facilitated questionnaire with project managers and their support 

staff on site.  Records, such as log books and financial reporting, were used when available; however, 

this was rare.  The facilitated questionnaire captured current finances, technical conditions and 

equipment, organisational structure, and social support networks for each project.  Enumerators were 

trained by the research staff at University of Strathclyde and, during phase 1, the survey was field 

tested.  Minor changes for clarity adjusted the survey between phase 1 and phase 2, though the 

content was identical.  

A major difference in the survey methodology between phase 1 and 2 was the update to use of 

KoboCollect, a digital data collection platform which utilises smart phones for recording questionnaire 

data and uploads it to a digital server. The data presented in this paper represent the data available 

from both data-sets. 

2.2 Overview of Projects 

An overview of project statistics is shown in Table 1.  65 individual projects were included in this study.  

A project has been defined as a set of energy assets in which a distinct management team is 

responsible. Within an energy project, multiple systems may have been installed, e.g. a school with a 



system for classroom lighting and further systems providing lighting and ヮﾗ┘Wヴ デﾗ デW;IｴWヴげゲ ｴﾗﾏWゲく  
Within a system, lighting and power may have been supplied to several rooms.  In order to accurately 

capture technical equipment and energy consumption data, it was necessary to survey at the system 

and room level. In total 246 systems were found, consisting of 642 separate rooms.  Economic, social 

and organisational data, which was available at relatively greater granularity, was surveyed for the 

project as a whole. 

Table 1: Statistical Overview of Projects included in Study 

Metric MREAP-CEDP 

MREAP-

WASHTED OTHER TOTAL  

Number of Projects 10 4 51 65 

Number of Systems 87 21 138 246 

Number of Rooms 275 28 339 642 

Metric MREAP-CEDP 

MREAP-

WASHTED OTHER Average 

     

Mean design PV system 

size (Wp) per system 

197 357 288 259 

Mean design number of 

panels per system 

2.24 4.10 2.9 2.79 

Mean battery capacity 

(Ahat 12V) per system 

241 475 225 257 

Mean no. of batteries 

per system 

2.51 4.63 2.41 2.65 

Mean total daily load 

(kWh) per system 

0.43 0.31 0.49 0.45 

Mean daily lighting load 

(kWh) per system  

0.12 0.07 0.11 0.11 

Median Year of 

Installation 

2014 2014 2010  

 

The age of the systems is an important consideration as older systems are more likely to have 

experienced issues in comparison to more recent installation. From Table 1 and Figure 3, it is clear 

that the OTHER set of systems spans a significant age range compared to the relatively new MREAP 

installations. 

Further basic statistical information on the technical capacity of the systems surveyed is shown in 

Table 1 for reference and comparison during the study. 

 



 

Figure 3: Project Year of Installation by Project Group 

 

2.3 General Scoring Methodology 

The choice of scoring metrics, weight and reduction immensely affects the conclusions which can be 

drawn. Due to lack of literature supporting specific valuations of sustainability metrics, the selection 

of metrics is theoretical and involves some subjectivity. This research therefore starts to build an 

empirical base for more objective approaches. The choice of included metrics for this study, are 

proposed as generally relevant indicators to the sustainability factor and in the context of off-grid 

community energy projects in Malawi. 

Sustainability factors are computed by an average of sustainability metrics. Each metric has equal 

weighting and is normalised to a scale ranging from 0 (lowest) to 1 (highest). Ranking is conducted at 

the project level for all factors except technical sustainability, which is analysed on a per system basis.   

Since robust longitudinal studies that quantify the degree to which each sustainability factor metric 

and sub-metric actually influences the long term sustainability of a project have not been published, 

assigning an arbitrary weighting is not justified. It is unclear whether other approaches, such as metric 

identification and weighting by stakeholder consensus, have thus far been validated. 

3 Technical sustainability factor 

3.1 Technical variable definitions and methodology 

Technical sustainability refers to the quality of technical system design as well as the ongoing 

functionality of the sub-components.  For this factor, each individual system in a project was analysed.  

Because some projects contain more than one system, it is useful to see which systems are performing 

technically and which are not. 

A set of technical questions were used to investigate the health of system components, system use 

and system design. The variables utilised in the analysis presented here are: quality of PV panels 



installed, quality of batteries installed, battery health at time of survey, and three ratios related to 

usage and design. 

The first ratio is Actual Usage against Expected Usage. This provides a gauge of how well the system 

is meeting user expectations. 

The second ratio is Installed PV Panel Array Size against Optimal PV Panel Array Size. Optimal size is 

calculated by applying a known design standard to the expected usage revealed from the survey.  This 

variable provides a gauge of the installed systems ability to meet user expectations effectively. A 

system may be incorrectly sized due to either poor design methods and/or incorrect estimation of 

usage and associated load profiles. 

The third ratio is Installed Battery Bank Size against Optimal Battery Bank Size.   

These technical variables are averaged to create an overall Technical Sustainability Score. Further 

details of variable methodology can be found in table A of the Appendix. 

3.1.1 Technical analysis 

Figure 4 compares the actual sizing of panels and batteries against the optimal sizing of panels and 

batteries in MREAP-CEDP, MREAP-WASHTED and OTHER systems.  The red line on each graph 

indicates the optimal sizing of the system, which is normalised to 100 in all cases for comparison. The 

columns indicate three different system sizing methods from the literature (Practitioner, 

IEEE_Optimistic and IEEE_Pessimistic) [17] [18] [19].  The Practitioner method represents a commonly 

used method in the practitioner community, the IEEE methods are implementations of an IEEE 

standard.   

The top row of Figure 4 shows MREAP-CEDP systems, the second row is MREAP-WASHTED systems 

and the third row is OTHER systems. A score of 100 refers to an optimally sized battery/panel 

compared to the usage, with <100 being considered under-sized and >100 scores indicate the 

components are oversized. 

 



 

Figure 4: Ratios of optimal sizing of panels and batteries versus actual sizing 

The violin chart utilised in Figure 4 shows the kernel density distribution of the selected variable along 

a vertical centre line. Bulges indicate relatively more observations were found, while thin "strings" 

indicate relatively fewer observations.  Plotted on top of the violin chart is a box and whisker plot 

which shows median (dark black line), and 25% and 75% percentile (within box).  The whiskers are 1.5 

times the inter-quartile range (range between 25% and 75% percentile).  Solid dots indicate outliers 

outside the whisker range. 

For all projects, these graphs of system sizing show a significant variation between how the community 

is using the systems and how the system was designed, the tendency being to be undersize. These 

results highlight the difficulties in correctly sizing an energy system at installation.  This is not surprising 

as even though design guides take into consideration load growth, the installation of the energy 

system itself significantly changes the living patterns and associated energy use of the local 

population.  



In general, the MREAP-CEDP panel arrays are undersized, but to a much lesser degree than OTHER 

systems.  MREAP-WASHTED projects have tended to oversize panel arrays. The same pattern exists 

for battery banks, although batteries tend to be more undersized than panels.  System under-sizing 

may be due to a combination of: incorrect estimates of system usage, inaccurate methods for system 

sizing, and unanticipated load growth over time.  Relatively fewer systems meet IEEE standards, which 

are generally require larger systems providing a higher level of reliability/availability.   

This study highlights the wider question and difficulties of けIﾗヴヴWIデﾉ┞げ ゲｷ┣ｷﾐｪ ; PV ｷnstallation at the 

design stage, raising the complex question of how engineers correctly size PV energy installations in 

rural off-grid locations, knowing that the introduction of electricity access will significantly affect the 

social and economic activities and profile of the local area. 

Figure 5 shows the actual to expected usage of daily lighting specifically (this reasonably reflects all 

loads on the system). The average actual usage is less than the average expected usage for all 3 

categories of project. This result may be due to poor system design, or system inadequacy (not 

performing due to failure). Conversely, the result could also be caused by user expectations increasing 

after positive experience of energy access. 

 

Figure 5: Expected and actual Watt-Hours for the 3 categories of project  

The charts show that design for OTHER systems has, in most cases, underestimated expected usage 

and/or made poor design assumptions.  MREAP-CEDP system design has, in some cases, encountered 

the same issue; however, these systems are better designed on average.  MREAP-CEDP achieves the 

least difference between average actual and expected usage, indicating that the design incorporated 

thorough community consultation and needs assessment. Although MREAP-WASHTED systems have 

average actual usage significantly less than average expected usage, those systems appear to be 

correctly or oversized much more often.  A design approach that avoids optimistic assumptions would 

yield this result. 

These results highlight the need for further research into the optimal way to size a project before 

installation. There may need to be more recognition of the change in local behaviour, population 

aspirations and population priorities (in terms of lighting vs. other appliances); with this change 

instigated by an energy system. Energy systems should be designed for future activities rather than 

current activities and further research into how to estimate future activities based on current activities 

will be useful for improving sustainability of energy installations. There will be significant change to 



local economics and social profile with the introduction of electricity and a system is expected to begin 

over-sized in an ideal case. As a system ages, and the local and social economy normalises with 

electricity access the system will naturally move towards being undersized. Project life-time projection 

and scenario modelling can be used as part of future work to investigate lifetime profiles and to 

backwards-engineer from the best case scenarios to determine system size when designing the system 

for the future. This forms part of future research activities and interests at Strathclyde University.  

4 Economic sustainability factor 

4.1.1 Economic variable definition and methodology 

The economic analysis of the systems is dependent on two input variables: income as reported in the 

survey, and a model of expected operating and maintenance costs based on known or estimated 

system install costs. Although the systems are primarily schools and health posts, rather than a 

commercial operation, income may be achieved through a number of routes: a maintenance revenue 

budget provided by local government, a maintenance revenue budget provided by community 

fundraising, and income generation activities associated with the project. 

 The yearly expected operating and maintenance costs were estimated as 10% of initial capital costs. 

 The ratio of the income and expenditure variables provides the economic sustainability factor.   

4.1.2 Economic analysis 

Figure 6 provides a breakdown of the mean monthly income from a range of income generating 

activities.  MREAP-CEDP project significantly outperform all other projects in this respect. 

 

 

Figure 6: Mean Monthly Income 

 

 



Figure 7 shows the yearly income, expenses breakdown and NET income (after minus expenses) for 

all projects, MREAP-CEDP projects, MREAP-WASHTED projects and OTHER projects. The All_Projects 

graph shows how generally projects break even as the expenses meet the yearly income. In each 

graph, the first bar is the yearly income, the following 4 bars are the breakdown of expenses and the 

final bar is the NET income (i.e. yearly income に expenses). If the final bar is positive, then income from 

the system covers the maintenance and operational costs for the energy system. The MREAP-CEDP 

systems are the only projects showing a positive income after expenses.   

 

 

Figure 7: Income compared to expenditure (MWK per year).  

The economic stability for the PV system is an important sustainability factor. An equally weighted 

combination of the reported income and the model of expected operation and maintenance costs is 

a logical initial indicator of the economic stability of a PV project. The minimum considerations and 

requirements of income exceeding expenses seems to be a low consideration in most PV installations, 

despite the high impact economic stability has for sustainability. This study highlights the gap in 

economic planning at the design and installation stage, indicated in Figure 7.  



5 Social sustainability factor 

5.1.1 Social variable definition and methodology 

A set of questions were implemented through the survey to assess: the degree of community 

participation in the design, implementation and operation of the project, the range and level of 

stakeholder involvement, and the degree of district government involvement in the project. 

These scores were combined with equal averaging to obtain an overall social sustainability score. 

5.1.2 Social analysis 

Engaging the local community is understood to be an important step towards sustainable projects in 

Malawi and for rural off-grid communities in general.  As a result of this, stakeholder involvement was 

a significant aspect of the MREAP methodology to improve community ownership of the projects and 

therefore sustainability.  

Figure 8 shows the % of projects with different types of stakeholders present within the three 

categories of MREAP-CEDP, MREAP-WASHTED and OTHER. The MREAP projects have purposefully 

involved stakeholders in as many areas of project development and management as possible. This 

represents a significant improvement compared to OTHER projects and, considering the literature 

review findings, stakeholder involvement in this way is expected to improve sustainability of the 

MREAP installations. 

 

Figure 8: Percentage of projects with different types of stakeholders present.  

Sustainability is linked to community consultation and contribution as this fosters a sense of 

community ownership at the concept stage. Figure 9 shows how MREAP installation methodology 

includes local community consultation and local community needs assessment.  

 



 

Figure 9: Numbers of Projects Including Inception Activities 

As well as having multiple stakeholders, sustainability is linked to the frequency of the stakeholder 

meetings to make decisions about the energy system. Figure 10 is a bar chart of the meeting frequency 

of the stakeholders. MREAP project stakeholder are encouraged to meet more often. Most 

surprisingly, OTHER project stakeholders usually never meet to discuss the project together. This is a 

negatively indicator for project sustainability.  

 

Figure 10: Meeting Frequency of Stakeholders  

Figure 11 is the percentage of district involvement in projects. 90% of MREAP-CEDP projects have 

district involvement. There is currently no framework or formal support mechanism for energy 

projects and governmental support is given in an ad-hoc way. This is surprising, given that energy 

access is an enabling infrastructure, and the government of Malawi recognise the need for a national 

policy and framework to offer support for rural electrification (alongside grid extension). The 



government is dedicated to initiating District Energy Officers in every district in Malawi and the current 

system of gaining support through the district council is expected to improve. Although the MREAP 

projects include district governance as a stakeholder, the projects have suffered from inconsistent 

district council support and sudden changes to their contributions. As the government of Malawi 

create a more formal framework for rural energy projects, the support from government is expected 

to be clear and consistent and have a positive impact on the sustainability of energy system 

installations.   

 

Figure 11: Percentage of projects with district government involvement 

Although the types of decisions a stakeholder makes is not included in the scoring, projects with more 

stakeholders were given a greater sub-score. However, clearly the decision process and roles of these 

stakeholders are important for managing a project. Each project was asked the stakeholder and type 

of decision made, broken down into major areas as shown in Figure 12. Obviously, not all stakeholders 

are considered equal.  Community based organisations (CBOS) stand out as instrumental in all forms 

of decision making whereas other common stakeholders, such as traditional authority, served a 

limited and specific role.  

Though CBOs provided the most comprehensive decision making, it is unclear which combination is 

most effective at managing projects.  If one assumes that a capacity to make all the decisions is needed 

for a sustainable project, then a combination of entities seems necessary.  The mechanics of decision 

making is out of the scope of this project, but this data suggests further research is needed into their 

decision making process in greater detail than is typically identified. 

 



 

Figure 12: Percentage of the stakeholders that are making the decisions about the installations 

6 Organisational sustainability factor 

6.1.1 Organisational variable definition and methodology 

The organisational scoring variables are obtained from questions regarding 3 different roles needed 

to sustain the installation. For the technical, financial and managerial roles of the project, the survey 

asks: 

 Is there someone fulfilling this role? 

 Did they receive initial training to carry out the role? 

 Do they receive ongoing training to carry out the role?  

The final question is whether there is a maintenance arrangement currently in place (i.e. a contract 

with a company). The organisational variables are combined by averaging with equal weighting to 

obtain an overall organisational sustainability score. 

6.1.2 Organisational analysis 

The MREAP projects rely on initial and ongoing training for financial, technical and managerial roles to 

improve sustainability through organisation. Despite detailed project knowledge confirming that this 

training has been delivered in all of the MREAP-CEDP projects, results do not reflect this, instead 

showing between 30% and 80%.  This anomaly is to be investigated with respect to survey design and 

implementation.  MREAP-WASHTED projects provide training prior to installation only and no ongoing 

training is available. OTHER projects also provide some initial and ongoing training, although the % is 

generally less at 5% to 40% of projects.   

 



 

Figure 13: Level of  ongoing (top graph) and prior training (bottom graph) in terms of percentage of projects within the 

three project categories.  

Figure 14 shows the roles present at the time of survey for each project category. The most obvious is 

the lack of any organisational role at all OTHER installations. This highlights the important issue of 

community ownership and knowledge sharing between community members. The community could 

implement an apprentice scheme to spread knowledge beyond the initial training and involve more 

people, to retain knowledge and mitigate against the risk of the organisational roles not being filled.  

 

 

Figure 14: Percent of projects with technical, financial and managerial roles present  

 



7 Aggregated Sustainability Factor 
The final aggregated sustainability factor combines survey results of technical factors, economic 

factors, social factors and organisational factors. The aggregated sustainability factor is proposed here 

as a good early measure of project sustainability; however, there is insufficient evidence currently 

available to test this method as a predictor of sustainability.  i.e. continued data collection and analysis 

of this project set, and others, over several years, is required to obtain a sufficient evidence base for 

sustainability measures of community energy projects.   

Figure 15 shows the final results of the sustainability survey and modelling, using the methodology 

described in this report. The columns of Figure 15 represent the economic sustainability, 

organisational sustainability, social sustainability, technical sustainability. The final column represents 

the total sustainability (the combined result). The rows of Figure 15 represent the three project 

categories (top row is MREAP-CEDP, middle row is MREAP-WASHTED and the bottom row is OTHER). 

All projects that were surveyed as part of this work are represented as a black dot.  The coloured lines 

in Figure 15 represent the global average for that particular sustainability factor. The dashed blue lines 

represent the average for the sustainability factor for that project category only, for comparison with 

the global average.  

 

 

Figure 15: Aggregated Sustainability Scores by Project 



Table 2 provides a summary of the mean scores for the individual and aggregated factors. 

Table 2: Sustainability Factor Mean Scores 

Metric MREAP-CEDP 

MREAP-

WASHTED OTHER Factor Mean 

Economic 0.37 0.02 0.13 0.16 

Organisational 0.58 0.31 0.28 0.33 

Social 0.61 0.54 0.32 0.39 

Technical 0.75 0.73 0.30 0.40 

Project-Group Mean 0.56 0.40 0.26  

Overall Mean    0.32 

 

The results show that, for all sustainability factors, the MREAP-CEDP systems score significantly above 

average, with a total average score of 0.56.  None of the MREAP-CEDP projects are scoring below the 

global average.  The MREAP-WASHTED projects are also above the global average with 0.40. The 

MREAP-WASHTED projects are significantly affected by a very low economic factor score.  This is due 

to a very low yearly income and a relatively high yearly OPEX.  

Across the data set, the global economic average score stands out as the lowest of all scores.  Further 

improvement in the sector is required as many projects have failed to establish a sufficient financial 

model. MREAP-CEDP outperforms other project groups on this factor, but on the whole has low scores 

compared to the other factors. Technical performance has been improved by MREAP systems when 

compared to OTHER systems, as systems appear to be sized better for current consumption 

expectations and are more often meeting those expectations. 

The OTHER projects consistently score low using the methodology employed in this analysis. Most 

significantly, this analysis highlights the large spread in responses for organisational, social and 

technical factors and a common economic score of 0. This suggests a low community engagement and 

low stakeholder management of the projects. The technical specification of OTHER projects is 

inconsistent and the economics are not secure.  

  



8 Appendix に Tables of Sustainability Metrics 

Table A: Technical Sustainability Factor 

 

 

Technical 

variables 

Variable 

range and 

type 

N/A 

number as 

a % of 

responses 

(out of 139) 

Value assignment methodology 

Panel Quality Discrete 

values 0 and 

1 

3% Determined through prior experience and internet search for the panel 

manufacturer and make. If the panel manufacturer and make is known 

or easily found on the internet - the panel is assumed good and given a 

score of 1. If the panel manufacturer and make is not known or not 

easily found on the internet - the panel is assumed a sustainability risk 

and given a score of 0. 

Battery Quality Discrete 

values 0 and 

1 

12% 
Determined through prior experience and internet search for the battery 

manufacturer and make. If the battery manufacturer and make is known 

or easily found on the internet - the battery is assumed good and given a 

score of 1. If the battery manufacturer and make is not known or not 

easily found on the internet - the battery is assumed a sustainability risk 

and given a score of 0.   

Battery Health Discrete 

values 0, .5 

and 1 

15% Usually there is a traffic light health indicator on the battery, though this 

depends on the type of battery. The indicator red/orange/green light 

directly is allocated 0/0.5/1 scoring. N/A means there is no indication of 

the health of the battery. 

Ratio of Actual 

Usage to 

expected usage 

Continuous 

values 

between 0 

and 1 

58% 
The ratio of actual usage versus expected usage (in Watt-hours/day) for 

each system.  For each system, all appliances are accounted for and their 

expected as well as actual usage estimated by the user. 

If the system is not used at all, it receives a score of 0.  A maximum of 1 

occurs if actual usage meets or exceeds expected usage.  In all other 

cases, this variable is equal to the ratio described.  A ratio higher than 1 

would usually indicate growth.  However, with the low usage, this ratio 

can reach very high numbers.  As such, a cap of 1 is used. This variable is 

the actual usage of the system as a ratio of expected usage of the 

system. 

Ratio of the 

designed panel 

sizing to an 

optimal panel 

sizing. 

Continuous 

values 

between 0 

and 1 

58% By using the values for expected usage, and using a chosen standard for 

system sizing, the optimal system size can be compared to that actually 

installed.  A score of 1 in this component refers to a perfectly optimally 

sized panel array, with less than one being considered under-sized.  

Nominally, scores over 1 indicate systems that are oversized.  However, 

there is a limit of 1 as, with low usage, the ratio can reach very high 

numbers. 

Ratio of 

designed 

battery sizing to 

an optimal 

battery sizing. 

Continuous 

values 

between 0 

and 1 

58% 

Calculated similar to the panel design, this is the ratioTechnical battery 

description of designed battery sizing to an optimal battery sizing.  

Overall 

Technical 

Sustainability 

Score 

  
The above variables are combined through averaging with equal 

weighting given to each variable. 



Table B: Economic Sustainability Factor 

Economic 

variables  

Variable 

range and 

type 

N/A 

number 

as a % of 

responses 

(out of 

139) 

Value assignment methodology 

Ratio of 

Income to 

Expenditure 

Continuous 

value 0 to 1 

0% A simple economic model was calculated for each system.  

 

System capital costs were estimated using known component sizing (panels 

and batteries) for each system.  Project capital costs include aggregate 

system costs.  Other components (labour, install, inverter, charge controller, 

other costs) are estimated as a ratio of estimated system costs.  Panel costs 

were calculated as $1.555/Wp, battery costs $0.168/12VAh.  This was 

determined by linear regression from roughly 20 quotes of each taken in 

2015.  Additional capital costs (as proportion of panel and battery costs) are 

24.2% (balance of system). 

 

Operating costs were estimated as 10% of initial capital costs. 

 

A replacement for panels (every 20 years), batteries (every 5 years), and 

other capital equipment (every 10 years) was assumed. 

 

Yearly operating and maintenance costs were levelised and compared to 

reported income. 

The ratio of reported income to required income to cover calculated costs is 

used.  If this ratio is >1, it is capped at 1. 

 

Table C: Social Sustainability Factor 

Social 

variables  

Variable 

range and 

type 

N/A number 

as a % of 

responses 

(out of 139) 

Value assignment methodology 

Needs 

Assessment 

Discrete 

values 0 and 1 

0% Did a needs assessment take place? If so 1, if not 0. 

District 

Involvement 

Discrete 

values 0 and 1 

0% Is there district governance involvement? If so 1, if not 0. 

Meeting 

Frequency 

Discrete 

positive 

values 

0% How often does the community meet?  6 steps, representing more 

or less frequent meeting was recorded.  0 = never, 1=every year, 2= 

every 6 months, 3= every two months, 4= every 2 weeks, 5 = once 

every week. This was rescaled to range from 0-1. 

Theft Discrete 

values 0 and 1 

0% Has theft occurred in the history of the project? 

Stakeholders Discrete 

positive 

values 

0% How many stakeholders are there? For all projects that maximum 

number is 6.  It is assumed in general, for off-grid projects more 

stakeholders have a positive effect on the social sustainability, 

representing higher level of local engagement and wider impact.  A 

score of 1 is given to projects with 3 stakeholders or more.  Projects 

with 2 stakeholders receive .66, 1 stakeholder .33, and no 

stakeholders 0. 

Community 

Contribution 

Discrete 

positive 

values 

0% Three types of community contribution were possible, money, 

materials, or labour.  Hence if a community contributed all three, a 

score of 3 was given.  If they did not contribute anything, a score of 

0.  This was scaled to range from 0-1. 

Overall Social 

Sustainability 

Score 

  The above variables are combined through averaging with equal 

weighting given to each variable. 

 



Table D: Organisational Sustainability Factor 

Organisational variables  Variable range and 

type 

N/A number as a 

% of responses 

(out of 139) 

Value assignment methodology 

Technical role Discrete values 0 

and 1 

0% Is there an organisation/individual 

responsible in the community for 

technical organisation of the 

project? If so 1, if not 0. 

Finance role Discrete values 0 

and 1 

0% Is there an organisation/individual 

responsible in the community for 

financial organisation of the 

project? If so 1, if not 0. 

Managerial role Discrete values 0 

and 1 

0% Is there an organisation/individual 

responsible in the community for 

managerial organisation of the 

project? If so 1, if not 0. 

Technical training Discrete values 0 

and 1 

0% Was technical training provided 

prior to installation? If so 1, if not 0. 

Financial training Discrete values 0 

and 1 

0% Was financial training provided 

prior to installation? If so 1, if not 0. 

Managerial training Discrete values 0 

and 1 

0% Was managerial training provided 

prior to installation? If so 1, if not 0. 

Technical training ongoing Discrete values 0 

and 1 

0% Is ongoing technical training 

provided? If so 1, if not 0. 

Financial training ongoing Discrete values 0 

and 1 

0% Is ongoing financial training 

provided? If so 1, if not 0. 

Managerial training ongoing Discrete values 0 

and 1 

0% Is ongoing managerial training 

provided? If so 1, if not 0. 

Maintenance arrangement Discrete values 0 

and 1 

0% Is there a maintenance 

arrangement in place currently? If 

so 1, if not 0. 

 

 

 

 

 

 

 

 

 

 

 



9 References 
1. IRENA, Renewable capacity statistics 2017. 2017, International Renewable Energy Agency Abu 

Dhabi. 

2. Zalengera, C., et al., Overview of the Malawi energy situation and A PESTLE analysis for 

sustainable development of renewable energy. Renewable and Sustainable Energy Reviews, 

2014. 38: p. 335-347. 

3. Dauenhauer, P.M. and D.F. Frame. Sustainability analysis off-grid community solar PV projects 

in Malawi. in 2016 IEEE Global Humanitarian Technology Conference (GHTC). 2016. 

4. United Nations. Sustainable Energy for All. 2015; Available from: http://www.se4all.org/  

5. United Nations. Sustainable Development Goals. 2015; Available from: 

http://www.un.org/sustainabledevelopment/sustainable-development-goals/  

6. IEA, Africa Energy Outlook 2014. 

7. UNA-UK. The new power Generation 2015; Available from: 

http://www.climate2020.org.uk/the-new-power-generation/   

8. Frame, D., et al. A community based approach for sustainable off-grid PV systems in 

developing countries. in 2011 IEEE Power and Energy Society General Meeting. 2011. 

9. Ilskog, E., Indicators for assessment of rural electrificationͶAn approach for the comparison 

of apples and pears. Energy Policy, 2008. 36(7): p. 2665-2673. 

10. Ilskog, E. and B. Kjellström, And then they lived sustainably ever after?ͶAssessment of rural 

electrification cases by means of indicators. Energy Policy, 2008. 36(7): p. 2674-2684. 

11. Louie, H., et al., Eternal Light: Ingredients for Sustainable Off-Grid Energy Development. Power 

and Energy Magazine IEEE, 2014. vol. 12(no. 4): p. pp. 70-78. 

12. Trading Economics. Malawi Population Available at: . 2016; Available from: 

http://www.tradingeconomics.com/malawi/population  

13. World Bank. SE4All Database. 2016; Available from: http://data.worldbank.org/data-

catalog/sustainable-energy-for-all. 

14. Wind Empowerment. A Market Assessment of Locally Manufactured PV-Wind hybrid Systems 

in Malawi. 2015; Available from: 

http://www.communityenergymw.org/press%20release/WE-

CEM%20Market%20Assesssment%20for%20Locally%20Manufactrured%20PV-

wind%20Hybrid%20Systems%20in%20Malawi%20Submitted%20June%2016.pdf  

15. Dauenhauer, P., MREAP End of Project Report. 2015, University of Strathclyde: Glasgow. 

16. Brundtland, G.H., Brundtland Report. Our Common Future. Comissão Mundial, 1987. 

17. IEEE, IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems. IEEE 

Std 1562-2007, 2008: p. i-22. 

18. IEEE, IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stand-Alone Photovoltaic 

(PV) Systems. IEEE Std 1013-2007 (Revision of IEEE Std 1013-2000), 2007: p. 1-55. 

19. Louie, H. and P. Dauenhauer, Effects of load estimation error on small-scale off-grid 

photovoltaic system design, cost and reliability. Energy for Sustainable Development, 2016. 

34: p. 30-43. 

 

http://www.se4all.org/
http://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://www.climate2020.org.uk/the-new-power-generation/
http://www.tradingeconomics.com/malawi/population
http://data.worldbank.org/data-catalog/sustainable-energy-for-all
http://data.worldbank.org/data-catalog/sustainable-energy-for-all
http://www.communityenergymw.org/press%20release/WE-CEM%20Market%20Assesssment%20for%20Locally%20Manufactrured%20PV-wind%20Hybrid%20Systems%20in%20Malawi%20Submitted%20June%2016.pdf
http://www.communityenergymw.org/press%20release/WE-CEM%20Market%20Assesssment%20for%20Locally%20Manufactrured%20PV-wind%20Hybrid%20Systems%20in%20Malawi%20Submitted%20June%2016.pdf
http://www.communityenergymw.org/press%20release/WE-CEM%20Market%20Assesssment%20for%20Locally%20Manufactrured%20PV-wind%20Hybrid%20Systems%20in%20Malawi%20Submitted%20June%2016.pdf

