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BRIE: transcriptome-wide splicing
quantification in single cells
Yuanhua Huang1 and Guido Sanguinetti1,2*

Abstract

Single-cell RNA-seq (scRNA-seq) provides a comprehensive measurement of stochasticity in transcription, but the
limitations of the technology have prevented its application to dissect variability in RNA processing events such as
splicing. Here, we present BRIE (Bayesian regression for isoform estimation), a Bayesian hierarchical model that
resolves these problems by learning an informative prior distribution from sequence features. We show that BRIE
yields reproducible estimates of exon inclusion ratios in single cells and provides an effective tool for differential
isoform quantification between scRNA-seq data sets. BRIE, therefore, expands the scope of scRNA-seq experiments to
probe the stochasticity of RNA processing.

Keywords: Single-cell RNA-seq, Isoform estimate, Differential splicing

Background
Next-generation sequencing technologies have revolu-
tionized our understanding of RNA biology, illustrating
both the diversity of the transcriptome and the richness
and complexity of the regulatory processes controlling
transcription and RNA processing. Recently, efficient
RNA amplification techniques have been coupled with
next-generation sequencing to yield transcriptome
sequencing protocols for measuring the abundance
of transcripts within single cells, known as single-cell
RNA-seq (scRNA-seq) [1]. scRNA-seq has provided
unprecedented opportunities to investigate the stochas-
ticity of transcription and its importance in cellular
diversity. Groundbreaking applications of scRNA-seq
include the ability to discover novel cell types [2], to study
transcriptome stochasticity in response to external signals
[3], and to enhance cancer research by dissecting tumor
heterogeneity [4], to mention but a few. However, such
advances have been limited to exploring the variability
between single cells at the gene level, and we know very
little about the global variability of RNA splicing between
individual cells. Bulk RNA-seq splicing quantification
algorithms cannot be easily adapted to the single-cell
case due to the minute amounts of starting material, low
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cDNA conversion efficiency, and uneven transcript cover-
age resulting in intrinsically low coverage and potentially
high technical noise [5]. This considerably limits the
usefulness of scRNA-seq to investigating questions about
RNA processing and splicing at the single-cell level.
Splicing analysis has been revolutionized by the advent

of (bulk) RNA-seq techniques. Early studies [6] quantified
splicing by considering junction reads that are uniquely
assigned to an inclusion/exclusion isoform, necessitating
very high coverage depth to achieve confident predictions.
The situation can be considerably improved by using
probabilistic methods based onmixture modeling, an idea
that is at the core of standard tools such as Cufflinks [7]
and MISO [8]. Nevertheless, low coverage represents a
challenge even for probabilistic methods. Recent work has
shown that improved predictions at lower coverage can be
achieved by incorporating informative prior distributions
within probabilistic splicing quantification algorithms,
leveraging either aspects of the experimental design, such
as a time series [9], or auxiliary data sets, such as mea-
surements of PolII localization [10]. Such auxiliary data
are not normally available for scRNA-seq data. Neverthe-
less, recent studies have also demonstrated that splicing
(in bulk cells) can be accurately predicted from sequence-
derived features [11]. This suggests that overall patterns of
read distributionmay be associated with specific sequence
words, so that one may be able to construct informative
prior distributions learned directly from data. Here we
introduce the Bayesian regression for isoform estimation
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method (BRIE), a statistical model that achieves extremely
high sensitivity at low coverage by using informative pri-
ors learned directly from data via a (latent) regression
model. The regression model couples the task of splicing
quantification across different genes, allowing a statisti-
cal transfer of information from well-covered genes to less
well covered genes, achieving considerable robustness to
noise in low coverage.

Results and discussion
High-level model description
Figure 1 presents a schematic illustration of BRIE (see
“Methods” section for precise definitions and details of
the estimation procedure). The bottom part of the figure
represents the standard mixture model approach to iso-
form estimation introduced in MISO [8] and Cufflinks
[7], where reads are associated with a latent, multinomi-
ally distributed isoform identity variable (see “Methods”
section for a self-contained review of mixtures of iso-
forms models). This module takes as input the scRNA-seq

data (aligned reads) and forms the likelihood of our
Bayesian model. The multinomial identity variables are
assigned an informative prior in the form of a regression
model (top half of Fig. 1), where the prior probability
of inclusion ratios is regressed against sequence-derived
features. Crucially, the regression parameters are shared
across all genes and can be learned across multiple single
cells, thus regularizing the task and enabling robust pre-
dictions in the face of very low coverage. In the “Methods”
section and supplementary material, we give details of the
features used. While the class of regression models we
employ is different from the neural networks of [11], they
still provide a highly accurate supervised learning predic-
tor of splicing on bulk RNA-seq data sets. Additional file 1:
Figure S1 shows that the Bayesian regression approach of
BRIE can achieve a Pearson R in excess of 0.8 on test sets,
validating our choice of model within BRIE.
This architecture effectively enables BRIE to trade off

two tasks simultaneously: in the absence of data (drop-
out genes), the informative prior provides a way of
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Fig. 1 A cartoon of the BRIE method for isoform estimation. BRIE combines a likelihood computed from RNA-seq data (bottom part) and an
informative prior distribution learned from 735 sequence-derived features (top)
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imputing missing data, while for highly covered genes
the likelihood term dominates, returning a mixture-
model quantification. For intermediate levels of coverage,
BRIE uses Bayes’s theorem to trade off imputation and
quantification.

Benchmarking BRIE on simulated data
To assess the improvement in isoform quantification
afforded by BRIE’s informative prior, we simulated RNA-
seq reads for 11,478 human exon-skipping events, and
a correlated feature to learn the prior (see details in
“Methods” section and Additional file 1: Figure S2). As we
are interested in quantifying the effects of an informative
prior, we compare BRIE with similar methods developed
for bulk RNA-seq: MISO v0.5.3 [8], one of the first and
still very widely used probabilistic methods, and DICE-
seq v0.2.6 [9], a modification of MISO using informative
priors (for multiple time points). For completeness, we
also compare with Kallisto [12], which was recently pro-
posed as one of the most computationally efficient and
robust quantification tools. To simulate the effect of the
regression prior, we introduced an auxiliary variable with
correlation 0.8 with the desired inclusion ratios (the cor-
relation value was chosen to match the empirical perfor-
mance of BRIE’s regression prior on bulk RNA-seq data in
Additional file 1: Figure S1). We also consider the case
when BRIE’s auxiliary variable is uncorrelated with the
inclusion ratio (denoted as BRIE.Null) as a control.
Thanks to the informative prior, BRIE can also provide
an imputation for drop-out transcripts (see below), which
other methods cannot; to keep the simulation fair, we did
not include results on drop-out genes.
In the simulation, we set different coverage levels with

RPK (reads per kilobase) ranging from 25 to 400. Figure 2
clearly shows that an informative prior can bring very sub-
stantial performance improvements at low coverage. At
the lowest RPK level, BRIE achieves a gain of almost 20%
in correlation between estimates and ground truth. Fur-
thermore, this accuracy level is essentially maintained by
BRIE at all coverage values. Interestingly, BRIE.Null can
still achieve comparable accuracy to the other methods at
all coverage values. Therefore, even when an informative
prior could not be effectively learned, BRIE’s results would
not be worse than using a state-of-the-art bulk RNA-seq
method.

Imputation of drop-out in simulation
The informative prior learned by BRIE can also be used
to impute isoform usage when there is a drop-out, i.e.,
when no reads are sequenced for an expressed isoform.
In scRNA-seq experiments, drop-outs occur widely [5],
though they are sometimes hard to detect exactly, except
for spike-in RNAs. Here, we could coarsely define the
upper bound by counting exon-skipping events expressed

in bulk cells but not in a given single cell. In Additional
file 1: Figure S3, we see that after removing drop-out
events, the correlation of expression levels between a sin-
gle cell and bulk cells are dramatically higher for these
splicing events.
As BRIE can transfer information from a highly

expressed gene to lowly expressed genes across multiple
cells, we investigated the performance of BRIE in imputing
the isoform usage if a drop-out happens. Therefore, the
expression profile from a bulk RNA-seq library and the
drop-out probability profile estimated from 96 HCT116
human cell scRNA-seq libraries [13] (see Additional file 1:
Figure S4) were used for the simulation (see simulation
details in “Methods” section). Additional file 1: Figure S5
shows that BRIE can produce a good imputation of the
isoform usage simply by taking the mean of the informa-
tive prior learned from sequence features of the expressed
genes (Pearson’s R = 0.6–0.7).

BRIE yields robust splicing estimates on real data
To assess BRIE’s performance on real scRNA-seq data,
we used 96 scRNA-seq libraries from individual HCT116
human cells from the benchmark scRNA-seq study of Wu
et al. [13] (see “Methods” section for details). Importantly,
a bulk RNA-seq data set in the same conditions was also
obtained from one million cells. To explore performance
on real data better, we expanded the set of competing
methods to include Cufflinks v2.2.1 [7], RSEM v1.3.0, and
the recently proposed single-cell quantification method
Census (in Monocle v2.2.0) based on Cufflinks Fragments
Per Kilobase per Million (FPKM) [14]. Figure 3 shows the
results: BRIE clearly outperforms all other methods by a
large margin, both in terms of correlation between esti-
mates from different single cells (Fig. 3f), and in terms of
correlations between estimates from individual single cells
and bulk (Fig. 3c). Example scatter plots for both com-
parisons are given in Fig. 3e and b, clearly showing very
consistent predictions. Notably, the performance of other
methods was strongly degraded by the inability to handle
the large drop-out rates (see Fig. 3a and d for DICE-seq,
where many estimates of splicing are centered around the
uninformative prior value of 0.5). The high correlation
between bulk and scRNA-seq predictions is particularly
remarkable, as the analysis of the two data sets is not
done with a shared prior. Similar levels of correlation were
found between splicing estimates obtained by BRIE in sin-
gle cells and estimates from bulk RNA-seq obtained by
other methods (Additional file 1: Figure S6).
These statistical advantages are reflected in a more

effective and confident quantification: considering genes
with quantified uncertainty smaller than 0.3 (a threshold
adopted, e.g., in [15] to select for downstream analysis),
Additional file 1: Figure S7 shows that BRIE retained
10.9% out of 11,478 genes on average from each single cell,
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a b

c

Fig. 2 BRIE improves isoform estimates by using an informative prior on simulated data. a, b At very low coverage RPK = 25, a scatter plot between
the estimates of the exon inclusion ratios by BRIE and the simulation truth. a BRIE.Null uses five random uniformly distributed features to learn the
prior. b BRIE uses one correlated feature with Pearson’s R = 0.8 to the truth to learn an informative prior. c Pearson’s R between truth and estimate
by BRIE, BRIE.Null, and three other methods for different coverages. RPK reads per kilobase

compared with 3.1% and 5.6% for MISO and DICE-seq,
respectively.

BRIE gives higher sensitivity in differential splicing analyses
BRIE can also be used for differential splicing detec-
tion across different data sets. To do so, we compute
the evidence ratio (Bayes factor, BF) between a model
where the two data sets are treated as replicates (null
hypothesis) and an alternative model where the two data
sets are treated as separate. We use the Savage–Dickey
density-ratio approach and relax it to obtain more robust
estimates (see “Methods” section). Notice that there are
several ways in which differential comparisons could be
performed: we could compare groups of cells or individual
cells, and we could share the learning of the prior across
conditions, or learn separately. All of these options are
supported in the BRIE software.
To benchmark the effectiveness of this strategy, we

again turned to a simulation study, investigating the abil-
ity of BRIE to detect differential splicing as we vary
coverage and the extent of the differential effect (see
“Methods” section for details of the simulation). This
benchmarking is important, as the informative prior
might be expected to impede differential quantifica-
tion. In practice, we see that, for substantial effect sizes

(�ψ = 0.6), we can detect a substantial fraction of differ-
entially spliced genes already at 50 RPK, further improving
when the effect size is 0.8 (Additional file 1: Figure S8a).
We also use the simulation to explore the effect of dif-
ferent library sizes on our differential comparisons. We
do this by fixing one of the comparison cells to an RPK
level. The results shown in Additional file 1: Figure S8b, c
demonstrate that BRIE is robust to normalization issues.
This is not surprising, since relative quantification algo-
rithms normally combine normalization with estimation
(see [14] for a discussion of this topic in the scRNA-seq
context).
We then investigated the effectiveness of BRIE to detect

differential splicing in real cells. To estimate a background
level of differential splicing between identical cells, we
considered again the 20 single-cell HCT116 libraries from
Wu et al. [13], and compared all possible pairs of cells.
Figure 4a shows the fraction of genes called as differ-
entially spliced at different BF thresholds in this control
experiment. As we can see, this number is always very
small, and around 1% at the normally recommended
threshold of BF = 10. This level of background calling
could be partly attributed to intrinsic stochasticity or to
residual physiological variability that was not controlled
for in the experiment, such as cell cycle phase. As an
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a b c

d e f

Fig. 3 BRIE improves splicing estimates by using sequence features. a–c Pearson’s correlation between bulk and single cells on exon inclusion ratio
ψ in HCT116 cells. Scatter plot of ψ estimates by DICEseq (a) or estimated by BRIE (b). Box plot for all methods (c) in 96 cells. d–f Pearson’s
correlation between single-cell pairs. Scatter plot of ψ estimates by DICEseq (d) or estimated by BRIE (e). Box plot for all methods (f) in 4608 cell pairs

additional comparison, we considered two bulk RNA-seq
methods for differential splicing, MISO and the recently
proposed rMATS [16]. Both methods could call only a
negligible number of events, far fewer than the expected
number of false positives, confirming that bulk methods
are not suitable for scRNA-seq splicing analysis.
We then considered amouse early development scRNA-

seq data set [17], and compared the single-cell transcrip-
tomic profiles from cells from mouse embryos at 6.5
and 7.75 days. We compared both the profiles of indi-
vidual cells at the same and different time points. The
results are summarized in Fig. 4b. Comparing individ-
ual cells at 6.5 days yielded approximately 1% of events
called as significantly differential (BF ≥ 10) at 6.5 days.
Comparing this result with our investigation of HCT116
cells suggests that murine cells at 6.5 days are still like a
homogeneous population, from the splicing point of view.
The percentage nearly doubled at 7.75 days, suggesting
that differential splicing becomes more widespread at this
later stage of differentiation. A similar fraction of exon-
skipping events were differentially called between cells
at 7.75 days and cells at 6.5 days. To define a group of
differentiation-associated skipping events, we considered
events that we called as differential in at least 10% of
7.75 vs 6.5 comparisons. The resulting 159 events were
highly enriched for organelle and intracellular part gene
ontology terms (p < 0.01) (see Additional file 2: Tables

S1 and S2). Figure 4c shows the example of DNMT3B,
a regulator of DNA methylation maintenance, which is
known to undergo functionally relevant alternative splic-
ing [18]. DNMT3B exhibited differential splicing between
7.75 days and 6.5 days in 153 out of 400 comparisons
between individual single cells, clearly highlighting the
strong differential inclusion effect. Four more example
events, all of which show differential splicing in more
than 100 pairs of comparisons, are presented in Additional
file 1: Figure S9.
We also directly compared the two groups of cells within

a single test (7.75 vs 6.5). This can easily be achieved by
assuming a shared splicing ratio ψ across all cells in a
condition. Mathematically, this is equivalent to multiply-
ing the likelihood terms associated with each cell, or in
practice pooling the reads from different cells. While this
achieves higher power (see the diamond dot in Fig. 4b), it
loses the considerable amount of cell-to-cell heterogeneity
highlighted by the single-cell analysis. It would be inter-
esting to explore a more refined way of partial pooling
within the hierarchical model [19], or to combine BRIE
with scRNA-seq clustering approaches that can identify
more homogeneous groups of cells [2].

Conclusions
Our results demonstrate that BRIE can provide a reliable
and reproduciblemethod to quantify splicing levels within



Huang and Sanguinetti Genome Biology  (2017) 18:123 Page 6 of 11

Fig. 4 Detection of differential splicing between cells. a Percentage of differential splicing events between human HCT116 cells, detected by MISO,
rMATS, BRIE, and its mode with shared weights (i.e., BRIE.share) with different thresholds. MISO and BRIE use the Bayes factor (BF) and rMATS uses
false discovery rate (q value). b Percentage of differential splicing events between mouse early embryonic cells at day 6.5 or day 7.75. The threshold
is BF > 10 for MISO and BRIE, and q < 0.05 for rMATS. The diamond indicates pooled reads of 20 cells in each group. c An example exon-skipping
event in DNMT3B in three mouse cells at 6.5 days and three cells at 7.75 days. The left panel is a sashimi plot of the read density and the number of
junction reads. The right panel shows the prior distribution as a blue curve and a histogram of the posterior distribution in black, both learned by BRIE.
For the histogram, the red line is the mean and the dashed lines are the 95% confidence interval. BF Bayes factor

single cells. Alternative splicing is a major mechanism
for regulation of the transcriptome, and splicing analyses
within bulk studies have revealed important associations
of splicing with disease. Therefore, the ability to quantify
alternative splicing in individual cells would consider-
ably expand the relevance of scRNA-seq technology to
investigate variations in RNA processing, and its rele-
vance to diseases. We believe a data-driven informative
prior is essential for this task. Directly using bulk RNA-
seq methods on scRNA-seq is not a viable route due to
the limitations of the technology, an observation that was

made earlier [1], which our results confirm. Recent work
[20] has addressed the issue of the detection of alternative
splicing across a population of single cells, but as far as we
are aware, BRIE is the first method to be able to quantify
splicing in individual single cells and to detect differential
splicing between individual cells from scRNA-seq data.
We notice that, since BRIE focusses on estimating splic-
ing ratios, it is relatively immune to normalization issues,
since it is essentially a relative quantification method (see
[14] for a compelling demonstration of this property of
relative quantification methods).
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BRIE provides a flexible framework for modeling and,
while sequence features are particularly appealing due to
their ease of use and availability, additional side informa-
tion, such as DNA methylation and chromatin accessi-
bility, could easily be incorporated. Importantly, BRIE is
not specific to single-cell RNA-seq technology, and can
be of use in any situation where standard quantification is
hampered by low coverage.
BRIE’s use of an informative prior enables a smooth

trade-off between imputation (at extremely low cover-
ages) and quantification. While this can be a highly effec-
tive strategy, it comes at the cost of biasing results at
low coverage. In particular, when used with an informa-
tive prior learned across several cells, this may lead to
underestimating splicing heterogeneity at low coverage.
BRIE’s probabilistic formulation, however, brings consid-
erable advantages. In particular, BRIE can be easily com-
bined with other probabilistic modeling strategies aimed
at removing confounders such as cell-cycle stage [21], or
at estimating pseudo-time [22].
BRIE cannot be deployed on all scRNA-seq protocols, as

it assumes that sequenced reads can be distributed along
whole transcripts. Naturally, protocols such as CEL-seq
or STRT-seq that bias reads towards the ends of the tran-
script cannot provide information about exon-skipping
events that may be very far from the ends of a transcript.
We believe that the availability of splicing quantification
approaches such as BRIE can, therefore, be an impor-
tant consideration in experimental design, particularly at a
time when single-cell omic technologies are about to start
being more routinely employed.

Methods
Exon-skipping event annotation
Gene annotations were downloaded from GENCODE
human release H22 and mouse release M6. Altogether,
24,957 and 9343 exon-skipping events were extracted
from protein-coding genes on human and mouse, respec-
tively. To ensure the high quality of the splicing events,
we applied six constraints following two recent studies
[11, 23] for filtering:

1. Located on chromosome 1-22 (1-19 for mouse) and X
2. Not overlapped by any other AS exon
3. Surrounding introns are no shorter than 100 bp
4. Length of alternative exon regions between 50 and

450 bp
5. A minimum distance of 500 bp from transcription

start site (TSS) or transcription termination site
(TTS)

6. Surrounded by AG-GT, i.e., AG-AS.exon-GT

Consequently, 11,478 and 4549 exon-skipping events
from human andmouse, respectively, were finally used for
this study.

Feature extraction for Bayesian regression
Following Xiong et al. [11], we extract predictive sequence
features from the following seven genomic regions for
each exon-skipping event (see cartoon in Fig. 1a): C1 (con-
stitutive exon 1), I1-5ss (300 nt downstream from the 5′
splice site of intron 1), I1-3ss (300 nt upstream from the 3′
splice site of intron 1), A (alternative exon), I2-5ss (300 nt
downstream from the 5′ splice site of intron 2), I2-3ss
(300 nt upstream from the 3′ splice site of intron 2), and
C2 (constitutive exon 2).
From these seven regions, four types of splicing reg-

ulatory features are defined. First, eight length-related
features are included, i.e., log length of C1, A, C2, I1, I2,
and the ratio of the log length of A/I1, A/I2 and I1/I2.
Second, the motif strengths of the four splice sites, i.e.,
I1-5′ss, I1-3′ss, I2-5′ss, and I2-3′ss, were calculated from
mapping each sequence to its averaged position weight
matrix. Here, we considered −4 nt upstream to +6 nt
downstream around 5′ss (11 nt in total), and from −16 nt
to 4 nt for 3′ss. Third, we also include evolutionary con-
servation scores for each of the seven genomic regions,
which were calculated by phastCons [24], and are available
in the UCSC genome browser. We used the phastCons
files in bigWig format with version hg38 for human and
mm10 for mouse, where 99 and 59 vertebrate genomes
were mapped to the human and mouse genome, respec-
tively. Then the mean conservation scores for the above
seven regions were extracted using the bigWigSummary
command-line utility. Lastly, 716 short sequences were
extracted from the seven regions, including 1-2mers for
I1-5ss and I2-3ss (20 sequences each), and 1-3mers for C1,
I1-3ss, I2-5ss, and C2 (84 sequences each), and 1-4mers
for A (340 sequences). In total, 735 splicing regulatory
features were used to predict the exon inclusion ratio in
Bayesian regression.

RNA-seq data and preprocessing
Bulk RNA-seq libraries for the K562 cell line were pro-
duced by the ENCODE project [25], and downloaded
from the Gene Expression Omnibus (GEO: GSE26284).
These were used to validate the prediction performance
of the splicing regulatory features on bulk RNA-seq
(Additional file 1: Figure S1).
Two single-cell RNA-seq data sets were used to validate

the BRIE model. The first data set is from a bench-
mark study [13], consisting of 96 single-cell RNA-seq
libraries from the HCT116 cell line (GEO: GSE51254).
These single-cell RNA-seq libraries were prepared with
the SMART-seq protocol, and have paired-end reads
with a read length of 125 bp. Using a bar code, 48 cells
were sequenced per lane, resulting in an average of 2.2
million reads per cell. From the same study, two bulk
RNA-seq libraries, each with 31.2 million reads, gener-
ated from 1 million HCT116 cells, were also used for
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comparison. Only reads mapping to alternatively skipped
exons and their flanking regions (as described in the
previous section) were considered.
To study differential splicing across different cell types,

scRNA-seq data produced by the SMART-seq2 protocol
from mouse embryo at embryonic day 6.5 and day 7.75
[17] were used. From each of the two groups, 20 individual
cells were used, which can be accessed at Array Express
(E-MTAB-4079).
All above RNA-seq reads were aligned to the relevant

genome reference by HISAT 0.1.6-beta with known
splicing junctions.

Assessing BRIE via a simulation study
Three simulations were conducted to assess BRIE’s per-
formance in quantifying isoforms with low coverages,
detecting differential splicing, and imputing splicing in
drop-out cases. All synthetic reads were generated by the
Spanki simulator [26], while we provide Python wraps to
run the simulations easily, which are publicly available in
the BRIE GitHub repository.
First, we assessed the robust performance of BRIE in

very low coverage on 11,478 human exon-skipping events.
We assume that the ψ value follows a logitNormal distri-
bution with mean μ = 0 and σ = 3, i.e., logit(ψ) ∼
N (0, 3.0), as presented in Additional file 1: Figure S2,
which is like that in the ENCODE K562 cell line. We set
all splicing events at the same sequencing coverage, by
fixing RPK in each experiment. Finally, five different cov-
erage levels are used, including RPK = 25 (very low, but
comparable to an average covered gene in a scRNA-seq
experiment), RPK = 50,RPK = 100,RPK = 200, and
RPK = 400.
For generating a feature to learn an informative prior,

we added Gaussian noise to the output ψ values from
the Spanki simulator in its logit format, and ensured a
Pearson’s correlation coefficient of 0.8 between the fea-
ture and the truth, as shown in Additional file 1: Figure S2.
This correlation is like that achieved by supervised learn-
ing in a human data set (see Additional file 1: Figure S1).
By contrast, five uniformly distributed random features
were used to learn a null prior (i.e., a random prior), which
is named BRIE.Null.
Second, we tested the power of BRIE in detecting dif-

ferential splicing events on 400 random mouse exon-
skipping events with length ranging from 300 to 800 bp.
Eight categories of ψ from 0.1 to 0.9 (except 0.5) were
equally distributed over the 400 splicing events, and oppo-
site ψ values were assigned to two conditions, e.g., ψ =
0.1 in condition 1 and ψ = 0.9 in condition 2. Then, the
prior was set by the same procedure as the first simulation.
Third, we mimicked the drop-out situation on 11,478

human exon-skipping events, and studied the imputa-
tion of BRIE in drop-out cases. We looked at one bulk

RNA-seq library and 96 single-cell libraries of HCT116
cell lines [13], and focussed only on the splicing events
that are expressed in the bulk cells (FPKM > 0). We
define the drop-out events as those splicing events that are
expressed in the bulk cells (FPKM > 0) but not in a given
single cell (FPKM = 0). We further define the drop-out
rate of a single cell as the fraction of drop-out events in this
cell, and the drop-out probability of a skipping event as
the fraction of its drop-out in 96 cells. Distributions of the
drop-out rates and the drop-out probabilities are shown
in Additional file 1: Figure S4.
Given an expression profile (e.g., FPKM or transcripts

per million (TPM)) Z from a bulk library and a profile
of drop-out probability calculated from a group of single
cells (e.g., the 96 cells here), we simulated the RPK for each
isoform (or transcript) as follows. For each isoform k, we
generate a binary variable Ik , i.e., either 0 or 1, following a
binomial distribution with the mean as its corresponding
drop-out probability. Then each isoform expression level
for the simulated single cell is αIkZk , where coefficient α

is included to ensure a given number of total reads. If one
wants a different overall drop-out rate but keep the simi-
larity of the drop-out probability profile, an intercept will
be added to the drop-out probability in its logit space.
In the simulation of drop-outs, the 735 sequence features
from real data were used to learn the informative prior.
We take the mean of the learned prior as the imputed ψ

for those drop-out events.

BRIE model for isoform estimates
Here, we formally define the BRIE statistical model. We
consider exon inclusion and exclusion as two different
isoforms. We start by reviewing the mixture model-
ing framework for isoform quantification, introduced in
MISO [8]. The likelihood of isoform proportions ψi for
observingNi reads Ri,1:Ni in splicing event i, can be defined
as follows

P
(
Ri,1:Ni |�i

) =
Ni∏

n=1

2∑

Iin=1
P (Rin|Iin)P(Iin|ψi), (1)

where the latent variable Iin denotes read identity, i.e.,
where the isoform read n in cell i came from. For bulk
RNA-seq methods like MISO [8] and DICEseq [9], the
conditional distribution of the read identity Iin|ψi is
assumed to be a multinomial distribution, and the prior
distribution over ψi is taken to be an uninformative uni-
form distribution (suitably adjusted to reflect the poten-
tially different isoform lengths). The pre-computed term
P(Rin|Iin) encodes the probability of observing a certain
read coming from a specific isoform Iin. Bulk methods
then proceed usually by adopting a Markov-chain Monte
Carlo strategy to sample from the posterior distribution of
the ψi variables.
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BRIE enhances the mixture model approach by combin-
ing it with a Bayesian regression module to automatically
learn an informative prior distribution by considering
sequence features. First, we use a logit transformation
of ψi, i..e, yi = logit(ψi). We then model the trans-
formed exon inclusion ratio yi as a linear function of a
set of m covariates X ∈ R

m (here the covariates are the
sequence features described previously): yi = W�X + εi,
where W is a vector of weights shared by all samples and
εi follows a zero-mean Gaussian distribution. All exon-
skipping events are independently modeled with shared
W parameters.
Here, we use a conjugate Gaussian prior for the weights,

i.e., W ∼ N (0,�−1), with a common choice of � = λI,
for a positive scalar parameter λ. A graphical representa-
tion of the full model is shown in Additional file 1: Figure
S10, and the full posterior is as follows (omitting the cell
index for simplicity),

P(W , σ ,�|X,R) ∝

P(W |λ)

K∏

k=1

⎧
⎨

⎩
P (�k|Xk ,W , σ)

Nk∏

n=1

2∑

Ikn=1

P
(
Rk
n|Ikn

)
P

(
Ikn |�k

)
⎫
⎬

⎭
.

(2)

Inference in BRIE
As shown above, BRIE involves the whole set of exon-
skipping events, thus there are thousands of parameters
to infer jointly, which can lead to very high computa-
tional costs that are not easily distributed. Therefore, we
introduce an approximate method to learnψ andW alter-
nately. Also, to alleviate the computational burden, there
is an option to merge reads from all cells to learn param-
eters. For simplicity, we set λ empirically, using the value
λ = 0.1, which gave the best predictive performance
on tests on ENCODE data. Then, we collapse W and
σ by taking their expected value in Bayesian regression
given a set of ψ , i.e., W = (

X�X + σ 2�
)−1 X�Y and

σ = std
(
Y − W�X

)
. At a single exon-skipping event

level, we used an adaptive Metropolis–Hastings sampler
to sample � , where a univariate Gaussian distribution is
used for proposal with adaptive variance, i.e., η = 2.38 ×
std

(
y(1:m)

)
. At this step, we could run short parallel

Markov chain Monte Carlo chains on multiple events to
alleviate computational costs, for example h = 50 steps if
the total iteration is n × h = 1000. The pseudocode for
sampling from the (approximate) posterior distribution of
� is given in Algorithm 1. Also, this model supports fixed
W and σ , which can be learned from other data sets, e.g.,
bulk RNA-seq, in which case lines 3 and 5 are turned
off in Algorithm 1. The convergence of the sampling is
diagnosed using the Geweke diagnostic Z score; in our

experiments 1000 burn-in steps appeared to be sufficient
in all cases.

Algorithm 1: Approximation of � ,W , σ
Data: X,R,�; optional:W and σ
Result: � ,W , σ

1 initialization Y(0) = 0; σ = 1.0; η = 1.0
2 for i ← 0 to n do
3 W (i) = (

X�X + σ 2�
)−1 X�Y(i∗h)

4 Ȳ = W (i)�X
5 σ = std

(
Y(i∗h) − Ȳ

)

6 for k ← 1 to K do
7 if i ∗ h > 10 then
8 η = 2.38 ∗ std

(
y(0:i∗h)
k

)

9 for j ← i ∗ h to (i + 1) ∗ h do
10 Sample: μ ∼ U(0, 1); y∗

k ∼ Qy
(
y∗
k |y(j)

k , η
)

11 Calculate: P(y∗
k |R) = N

(
y∗
k |ȳk , σ

)
P

(
R|y∗

k
)

12 if μ < min

⎧
⎨

⎩

P
(
y∗
k |R

) × Qy
(
y(j)
k |y∗

k , η
)

P
(
y(j)
k |R

)
× Qy

(
y∗
k |y(j)

k , η
) , 1

⎫
⎬

⎭
then

13 y(j+1)
k ← y∗

k ;�
(j+1)
k ← logistic

(
y∗
k
)

14 else
15 y(j+1)

k ← y(j)
k ;�(j+1)

k ← logistic
(
y(j)
k

)

16 returnW (0:n),�(0:n∗h) ;

BRIE then outputs an approximate posterior distribu-
tion on the ψ values as well as the learned regression
weights. BRIE offers functionality to visualize both such
posterior distributions as histograms (Fig. 4c) and learned
weights as heat maps (Additional file 1: Figure S11 for 19
sequence-related features).
In terms of computational efficiency, on a small sever

(48 CPUs and 64GBmemory) using 20 CPUs, BRIE could
finish a transcriptome-wide splicing quantification for a
human cell (11,478 events) in 5 min, and for a mouse
cell (4549 events) in 2 min. This running time is a lin-
ear function of the number of cells (learning separate
priors for different cells), and can be reduced by using
more CPUs.

Detection of differential splicing using Bayes factors
The BF [27] is a posterior odds in favor of a hypothesis rel-
ative to another, and is also able to detect whether splicing
in two cells or conditions is different or not.
To detect differential splicing between two cells (or cell

groups), A and B, δ = �A − �B, we introduce a null
hypothesis (H0) as δ ≈ 0, and the alternative hypothe-
sis (H1) as δ �≈ 0. Here, D is the data used to sample the
posterior of � in two cells. Then, the BF in favor of the
alternative hypothesis on observing data D is defined as

BF = P(H1|D)

P(H0|D)
= P(D|H1)P(H1)

P(D|H0)P(H0)
. (3)
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As usual, we assume that both hypotheses have the
same prior, i.e., P(H1) = P(H0), and we can clearly see
that P(D|H0) = P(D|δ ≈ 0,H1). Therefore, by taking
the Savage–Dickey density ratio [28], we can simplify the
calculation of BF as follows,

BF = P(D|H1)

P(D|δ ≈ 0,H1)

= P(δ ≈ 0|H1)

P(δ ≈ 0|D,H1)

= P(−ε < δ < ε|H1)

P(−ε < δ < ε|D,H1)
,

(4)

where ε can be set as 0.05.
As BRIE samples �A and �B following their posteriors,

the distribution of P(δ|D,H1) can be readily approximated
by empirically re-sampling �A − �B. With a set of re-
sampled δ1:M, we take the proportion of |δi| < ε as the
posterior probability P(−ε < δ < ε|D,H1). Similarly, we
could sample a set of �̂A and �̂B following their prior
distributions, and use the same procedure to approximate
the prior probability P(−ε < δ < ε|H1). When comparing
two cell groups, one can multiply the individual likeli-
hoods (with shared ψ values). This, however, is equivalent
to pooling reads across different cells, and will lose the
quantification of cell-to-cell heterogeneity.

Additional files
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