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An Efficient E2E Verifiable E-voting System
without Setup Assumptions
Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang

Abstract—End-to-end (E2E) verifiability has been widely identified as a critical property for the adoption of e-voting systems in real
world election procedures. In this work, we present a new e-voting system that is E2E verifiable without any additional “setup”
assumption or access to a random oracle. Previously known E2E verifiable e-voting systems required such additional assumptions
(specifically, either the existence of a “randomness beacon” or were only shown secure in the random oracle model). Furthermore, our
scheme only employs conventional cryptographic building blocks, such as the ElGamal encryption, and it does not require any
cryptographic functionality at the client-side to cast a vote. The E2E verifiability property of our scheme is guaranteed information
theoretically given the existence of a consistent bulletin board, and the voter privacy is achieved under the well-known DDH
assumption.

Index Terms—End-to-end verifiability, internet voting, e-voting, election integrity, security modeling

F

1 INTRODUCTION

In an end-to-end (E2E) verifiable election system, voters
have the ability to verify that their vote was properly cast,
recorded and tallied into the election result. Intuitively, the
security property that an E2E verifiable election intends to
capture is the ability of the voters to detect a malicious
election authority that tries to misrepresent the election
outcome.

E2E verifiability mandates that the voter can obtain a
receipt at the end of the ballot casting procedure that can
allow her to verify that her vote was (i) cast as intended, (ii)
recorded as cast, and (iii) tallied as recorded. Furthermore,
any external third party should be able to verify that the
election procedure was executed properly. In fact, it is
imperative that the receipts in an E2E system are delegatable
i.e., the voter may outsource the task of verifiability to any
interested third party, for instance an international organiza-
tion that aggregatively performs verification and is trusted
by some voters to do so. This requirement, as well as the fact
that it should be infeasible for the voter to use her receipt as
a proof of the way she voted (this is necessary to deter vote-
selling/buying), make the design of E2E verifiable systems
a challenging problem.

All known e-voting systems that offer E2E verifiability
are able to support it only under some “setup” assumption,
such as (i) the existence of a trusted party that provides
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a stream of unbiased and unpredictable random coins (a
randomness beacon) or a trustily generated common ref-
erence string (CRS), or (ii) in the random oracle (RO)
model. Notably, E2E verifiability can be argued, yet never
formally proven, for Helios [2] in the RO model while for
Remotegrity/Scantegrity II [3], [4] under the presence of a
randomness beacon. More general approaches for defining
auditable multiparty computation have recently been pro-
posed [5] and also rely on a setup assumption such as a
CRS.

A limitation of using setup assumptions for establishing
E2E verifiability in e-voting is the fact that a leap of faith
will be required in order to accept the setup assumption and
thus the election result. This can be an unfortunate state of
affairs: since the election authority (EA) cannot unequivo-
cally convince the voters that the election is correct, then the
election outcome can be always subject to dispute.

Our contributions. Motivated by the above, we design
a new e-voting system that we can prove E2E verifiable
information theoretically without any setup assumption except
the existence of a bulletin board (BB) which provides a
global consistent view of the election. The requirement for
BB consistency can be seen as a tight condition since without
it, it is easy to see that E2E verifiability of the election
cannot be achieved: by controlling the BB, an adversarial EA
can distribute voters to their own separate “islands” where
within each one the voters will have their own verifiable
view of an election result that can be - in reality - completely
skewed. The latter is in agreement with the compromise for
tolerating the possibility of independent execution attacks in
networks without any authentication mechanism discussed
by Barak et al. [6].

Our result is further strengthened by the fact that we
make the absolute minimal assumptions on the computation
capabilities of the voters: no cryptographic operations at
the voter side during ballot-casting. (Note the auditing
stage after the election would require the capability of
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cryptographic operations but they are optional and can be
performed at any time, in the post-election stage).

Our construction cherry picks ideas drawn from pre-
vious works, specifically, code-voting and double ballots
from [7], and secret-sharing homomorphisms from [8], but
also introduces a number of novel elements that enable
us to prove E2E verifiability. To achieve verifiability, our
system collects coins from the voters to form the challenge
(specifically, a single random coin per voter). Given that a
certain proportion of voters are honest and properly follow
the protocol, the sequence of voter contributed random-
ness has sufficient entropy to be used as the challenge of
zero-knowledge protocols. applying these techniques, we
prove information theoretically the E2E verifiability for our
scheme. For voter privacy, we utilize complexity leveraging
to show that in the underlying commitment scheme is
hiding then our system offers voter privacy.

In summary, our e-voting system is the first construction
achieving E2E verifiability and voter privacy without any
setup assumption assuming a consistent BB, which can be
seen as a minimal security assumption. Furthermore, we
propose a new formal cryptographic security framework.
Compared with [1], we simplify the E2E verifiability defi-
nition. Under the new security framework, we prove E2E
verifiability information theoretically, while we assume the
hardness of a well-studied cryptographic problem (Deci-
sional Diffie-Hellman (DDH) assumption) for voter privacy.
Finally, our system does not require that the voters perform
cryptographic operations at their engagement in the voting
procedure.

Summary of existing techniques for verifiability. To mo-
tivate further our approach it is worth-while to emphasize
in which way previous works fail to attain E2E verifiability
without any setup assumption. Helios, culminates a long
line of previous schemes that employ homomorphic type of
voting [9], [10] and utilizes the Benaloh challenge [11] as
the fundamental mechanism to attain verifiability. Helios by
design requires the voter to utilize a voter supporting device
to prepare a ciphertext and after an indeterminate number
of trials, the voter will cast the produced ciphertext. Such
ciphertexts are to be homomorphically tallied and thus they
should be accompanied by a proof of proper computation.
While such proofs can only be proved interactively (which
is insufficient in our setting since a corrupt EA together
with a corrupt voter may cook up a malformed proof that is
indistinguishable from a proper one). Instead, Helios adopts
a RO-based proof, thus imposing the RO restriction on the
adversary during an E2E verifiability attack. On the other
hand, in the case of Remotegrity/Scantegrity the required
randomness needs to be obtained from a randomness bea-
con in order to prove the result correct. It is easy to verify
that the system is insecure in terms of E2E verifiability in
case the randomness beacon is biased. As before, the only
parties active are the EA and the voters who cannot imple-
ment the randomness beacon required in the construction.

In light of the above, our construction offers a new
paradigm in e-voting design: the randomness for the ver-
ification of the election can be collected distributively from
the entropy generated by the voters’ interaction with the
system. This entropy is internal with respect to the election

environment, therefore the need for trusting an outer source
of randomness or restricting the adversary in the RO sense
is eliminated.

2 BUILDING BLOCKS

In this section, we describe the election notions and func-
tionalities that our system realizes with the use of crypto-
graphic tools. Similar building blocks can be found in other
noticeable systems, e.g. [2], [12]. In our text, we use the
term negligible to denote that a value gradually becomes
very small with respect to (w.r.t.) the increase of system’s
parameters. Formally, negligible refers to a real function
f(n) : N 7→ R over the integers that is asymptotically
smaller than the inverse of any polynomial in n.

2.1 Implementing an electronic envelope

To enable the correct counting of the votes while preserv-
ing privacy, we deploy a commitment scheme to realize the
concept of an “electronic envelope” that is (i) binding, in
the sense that an adversary cannot open an envelope to a
value different than the originally enclosed message and (ii)
hiding, i.e. an adversary obtains no information about the
enclosed message until the envelope is opened. A generic
commitment scheme consists of the following phases and
algorithms:

Key generation: is an algorithm that on input some
security parameter λ, it outputs a commitment key ck.

Commit phase: given ck, one can enclose a message M in
a digital envelope, by generating a commitment Comck(M)
for M.

Opening phase: the commitment Comck(M) can be dis-
closed given ck and opening data (M, r), so that one can
verify the correct opening of Comck(M).In our system we

utilize lifted ElGamal encryption to instantiate a commit-
ment scheme. Hence, the commitment scheme inherits the
security properties of the ElGamal cryptosystem. Namely,
the perfect correctness of ElGamal decryption implies the
perfect binding property against adversaries of unlimited
computational power. Moreover, the semantic security of
ElGamal implies the hiding property against computation-
ally bounded adversaries assuming the hardness of the
Decisional Diffie-Hellman (DDH) problem DDH problem
for the underlying encryption group.

2.2 Generating electronic envelopes for valid votes

In our system, the messages that need to be enclosed under
the ElGamal commitment scheme are valid encodings of a
candidate from a list P1, . . . , Pm. We encode candidate Pj
as the unit vector ej ∈ Zm, where the j-th position is 1 and
all the rest m − 1 positions are 0. For example, in the case
of three candidates P1, P2, P3 the candidate encodings are
(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. A commitment to ej
is vector of m commitments in one-to-one correspondence
with the components of ej . In the rest of the paper, we will
often refer to vector commitments to denote a component-
wise vector of commitments to a vector of messages.
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2.3 Facilitating secure vote counting
Besides binding and hiding, the lifted ElGamal commitment
scheme is additively homomorphic. Namely, multiplying two
commitments for messages M1,M2 under the same commit-
ment key ck produces a commitment for M1 + M2 as shown
below:

Comck(M1) · Comck(M2) = Comck(M1 + M2) .

In addition if (M1, r1) and (M2, r2) are the opening data
for Comck(M1) and Comck(M2) respectively, then the open-
ing data for the homomorphically added commitment
Comck(M1 + M2) are (M1 + M2, r1 + r2).

Homomorphic additivity naturally extends to multiple
vector commitments. Hence, it allows for the tally of all
the votes enclosed in the “electronic envelopes” as if these
were added within a large envelope. The latter denotes
the homomorphic product vector commitment consisting of m
ElGamal commitments to the components of the tally vector
T := (t1, . . . , tm), where tj represents the number of votes
for the j-th candidate. In turn, the large envelope can be
opened to T . The tally is performed without revealing the
individual votes that summed to it.

2.4 Proving ballot validity
As part of the verification mechanism of our system, it is
checked whether the envelopes (commitments of the votes)
included in the tally are well-formed, i.e. they enclose the
valid encoding of some candidate to a unit vector. This
is done by utilizing a special case of interactive zero-
knowledge proofs, called Σ-protocols. In a Σ-protocol, a
prover Prv with some private input w interacts with a verifier
Vrf to convince it of the validity of some statement x. More
formally, Prv and Vrf are modeled as interactive Turing Ma-
chines, where Prv is unbounded and Vrf runs in polynomial
time. The statement validity is expressed as x belonging in
some NP language L and Prv’s private input is typically
a witness w for x. The interaction is in three moves; in the
first move, Prv sends to Vrf a commitment message Σ(1). In
the second move Vrf provides Prv with a challenge ρ and in
the third move, Prv replies with a response Σ(2). Given its
whole view of the protocol, Vrf must output an accept or
reject message.

A Σ-protocol satisfies the following three properties,
here stated informally:

1) Completeness: Vrf always accepts the proof of Prv for
every valid statement x ∈ L.

2) Soundness: Vrf does not accept the proof of a poten-
tially malicious prover Prv∗ for some invalid statement
x /∈ L, except from some negligible soundness error
probability ε.

3) Honest verifier zero-knowledge (HVZK): There exists
an efficient simulator, s.t. for every x ∈ L, can simulate
a valid transcript (Σ(1), ρ,Σ(2)) without accessing to the
witness.

In our system, we adopt disjunctive Chaum-Pedersen (CP)
proofs [13] which are Σ-protocols for proving that an ElGa-
mal commitment commits to a unit vector. Specifically, for
every vector commitment C , we show that it commits to a
valid encoded vote as follows: for each of them components

of C , we generate a CP proof that the component commits
to a bit value. Then, applying the additive homomorphic
property we generate a CP proof that the products of the
components is a commitment of 1.

In the following proposition, we state the properties of a
CP proof, which can be seen as an adaptation of [1, Theorem
1] to the CP proof setting.

Proposition 1. A Chaum-Pedersen proof achieves completeness,
soundness with probability error 2−κ and HVZK, as long as the
min-entropy of the challenge string provided by the verifier Vrf is
at least κ bits.

3 SYNTAX AND THREAT MODEL

We build upon the syntax and threat model introduced
in [1]. We use λ as the security parameter. We denote
by V = {V1, . . . , Vn} and P = {P1, . . . , Pm} the set of
voters and candidates respectively, which sizes n and m are
polynomial in λ.

We stress that for simplicity, we consider an abstract
centralized election authority (EA) that administers the
setup, vote casting and tally phases of the election. This is
consistent with our definition of E2E verifiability in an all-
malicious setting, where the EA is adversarially controlled.

Regarding vote privacy, we will require the EA to be
honest, as it is fully aware of the encoding of the voters’
candidate selections. In Sect. 6.1 we show how to distribut-
ing the EA to set of trustees.

3.1 Syntax
The entities involved in an e-voting system are as follows:

� The election authority (EA) that manages the entire
election; in particular, EA prepares all the election
information, distributes the voters’ ballots, collects
the votes and is responsible for computing the tally
and announcing the election result.

� The voters V = {V1, . . . , Vn}, possibly equipped with
voting supporting devices (VSDs) and auditing support-
ing devices (ASDs).

� A publicly accessible and consistent bulletin board
(BB) where the election result and all audit informa-
tion is posted.

An e-voting comprises four phases: 1) election setup, 2) vote
casting, 3) election tally, and 4) auditing. The interaction
among e-voting entities at the four phases is illustrated in
Figure 1.

3.2 Modeling E2E verifiability
The adversarial goal for an attacker against system’s in-
tegrity is to cause deviation from the intended tally while
election auditing remains successful. Given that the candi-
dates are encoded as unit vectors and the tally is represented
as a vector in Zm, we measure tally deviation via the d1

metric derived by the `1-norm, ‖ · ‖1 scaled to half, i.e.,

d1 : Zm+ × Zm+ −→ R
(R,R′) 7−→ 1

2 ·
∑n
i=1 |Ri −R′i|

where Ri, R
′
i is the i-th coordinate of R,R′ respectively.

We consider an adversary that controls the entire election
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EA

BB

...

VnVSD ASD

V2VSD ASD

V1VSD ASD

1b

1a

3

4
4

4

2

2

2

FIGURE 1: The interaction among the entities in an e-voting
execution. The dotted lines denote read-only access to the
BB. The dashed arrows denote untappable channels for
voters’ private inputs distribution. Annotation: (1a): distri-
bution of voter’s private inputs; (1b): pre-election BB data;
(2): vote casting; (3): post-election BB data; (4): auditing.

by corrupting the EA and all the VSDs. In addition, it can
control up to a number of voters and their devices. Our E2E
verifiability threat model is presented in Fig. 2.

EA

BB

...

VnVSD ASD

V2VSD ASD

V1VSD ASD

FIGURE 2: An adversary against E2E verifiability that con-
trols voter V1. The corrupted nodes are colored in black.

We provide the following definitions:

Definition 1. Let R ∈ Zm be the announced result in an
election run by an E2E verifiability adversary A. Let Rh ∈
Zm be the partial result derived by the intended votes of the
honest voters, i.e. how the honest voters wanted their votes
to be counted. We say that A causes tally deviation δ, if for

every possible partial adversarial result R∗ ∈ Zm, it holds
that

d1(Rh +R∗, R) ≥ δ .

Namely, it is impossible to explain the adversarial votes, so
they produce a tally within a radius δ from R.

To provide intuition on Definition 1, consider an election
with voters V1, V2, V3 and candidates P3, where voter V1
and V2 vote for P1 and V3 is corrupted. Hence, Rh =
(1, 0, 0) + (1, 0, 0) = (2, 0, 0) while the possible adversarial
results are (1, 0, 0), (0, 1, 0), (0, 0, 1) and the non-vote vector
(0, 0, 0). IfA announces the result (1, 1, 1), then we have the
following four cases:

d1

(
(2, 0, 0) + (1, 0, 0), (1, 1, 1)

)
= 2

d1

(
(2, 0, 0) + (0, 1, 0), (1, 1, 1)

)
= 1

d1

(
(2, 0, 0) + (0, 0, 1), (1, 1, 1)

)
= 1

d1

(
(2, 0, 0) + (0, 0, 0), (1, 1, 1)

)
= 3/2

Hence for every possible partial adversarial result R∗ ∈ Zm,
it holds that d1(Rh + R∗, R) ≥ 1, which implies tally
deviation 1 (switching one vote).

Definition 2. We say that an e-voting system achieves E2E
verifiability with error ε for at least θ honest voters and tally
deviation δ, if the probability that an adversary A causes
tally deviation δ while all θ honest voters verify successfully,
is no more than ε.

Remark 1. We simplify the original definition in [1] by
not including an unbounded vote extractor algorithm E that
explains the adversarial tally by brute-force decrypting the
corrupted voters’ ballots and deviation would be defined
w.r.t. E ’s output. The reason is that the vote extractor ap-
proach and Definition 2 can be easily shown equivalent
against unbounded adversaries, which is the case we are
interested in the paper.

The proof is by contradiction; at a high level, if Def-
inition 2 fails, then there is an adversary A that causes
tally deviation δ by announcing the result R according
to Definition 1. Thus, for every adversarial partial tally,
denoted by RE , that an extractor E might output, it holds
that d1(Rh +RE , R) ≥ δ.

Conversely, consider the optimal extractor E∗ that
outputs an adversarial result R∗ that minimizes
{R′ | d1(Rh +R′, R)}. Given that the E2E verifiability
definition in [1] fails, there is an adversary A∗ that wins E∗,
hence it holds that d1(Rh + R∗, R) ≥ δ. Consequently, the
adversary A causes tally deviation δ and Definition 2 does
not hold.1

3.3 Modeling voter privacy
As in [1], we model voter privacy by also capturing the
property of coercion resistance against adversaries that
passively monitor the voting procedure and request the
voters’ transcripts after vote casting, including their receipts.
Such an adversary can corrupt all the voters’ devices and
schedule network traffic. It may also control up to a number
of voters. However, the voters’ private inputs are delivered

1. We acknowledge an anonymous reviewer of an IACR conference
for helpful remarks regarding one direction of this equivalence state-
ment.
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by the EA via untappable channels. Our voter privacy threat
model is presented in Fig. 3.

EA

BB

...

VnVSD ASD

V2VSD ASD

V1VSD ASD

FIGURE 3: An adversary against voter privacy that controls
voter V1. The corrupted nodes are colored in black. The
dashed arrows denote untappable channels for voters’ pri-
vate inputs distribution.

Recall that the adversary can also obtain the honest
voter’s transcript and receipt. In order to deceive the adver-
sary on the way they voted, the honest voters must be able
to lie about their interaction with the system by providing
fake views that are indistinguishable from the actual ones.

Definition 3. We say that an adversary A has negligible ad-
vantage against privacy if for an election, it has only negligible
additional probability to output the correct honest voter’s
votes compared with the trivial advantage.

For the better understanding of Definition 3, consider
the previous example where three honest voters V1, V2, V3
vote for P1, P1, P3 and produce the tally (2, 0, 1). The same
tally would derive if V1, V2, V3 had voted for P3, P1, P1 or
P1, P3, P1, i.e. there are three ways in total. Then, A has
negligible advantage against privacy if the probability of
outputting the votes of V1, V2, V3 is no more than 1/3 + ε,
where the 1/3 is the probability of random guessing the
votes and ε is a negligible term.

Definition 4. We say that an e-voting system achieves voter
privacy for at most t corrupted voters, if any probabilistic
polynomial time adversary A that controls up to t voters
has negligible advantage against privacy.

4 SYSTEM DESCRIPTION

In this section, we will describe an e-voting system for 1-
out-of-m type of elections.

4.1 Data structure

Prior to the election, the voters shall already receive a voting
card via a secure untappable channel. Fig. 4 illustrates an

example of the basic structure of such a voting card. Each
voting card has a serial number (SN) and consists of two
functionally equivalent parts: Side-A and Side-B. Each part
contains an unpredictable authentication code. Besides, it
lists m candidates together with their corresponding vote-
code.

SN: 100

Authentication code:
ABCDE

Side A

Alice
Bob

Candidate Votecode
1
2

Charlie 0

SN: 100

Authentication code:
ABCDE

Side B

Alice
Bob

Candidate Votecode
0
1

Charlie 2

FIGURE 4: Voting card.

To enable verifiability, the EA needs to post necessary
information regarding the election process on the BB. As
depicted in Fig. 5, there are 7 columns and 2 rows for
each ballot. Column I states a unique serial number, and
column II shows Side-A and Side-B. Column III is used for
vector commitments (cf. Section 2.2, above). Columns IV
and V are used for the first move and the third move of
the corresponding CP proofs for the validity of the vector
commitments. Column VI is used to reveal some of the
openings of the vector commitments in Column III. Finally,
Column VII is used to mark the voters’ submitted votecodes.
Notice that Columns V, VI, VII are only partially filled, and
this will be clarified in the due course.

Serial 
number Side Init

data

I II III IV V VIIVI

Side A
100

101

Side B

Side A

Side B

0 0 1

1 0 0

0 1 0

1 0 0

CP 1

CP 1

CP 1

CP 1

Side A
102

Side B

0 0 1

0 1 0

CP 1

CP 1

CP 2

CP 2

CP 2

Final
data Votecode

2

0

1

Partial
open

1 0 0

1 0 0

0 0 1

Phase 1 Phase 2

Vector
Commitment

FIGURE 5: BB structure.

4.2 Election setup
The EA first generates a commitment key ck and posts
ck along with the other public election information, e.g.,
election question, to the BB. For ` ∈ {1, . . . , n}, the EA
then generates the meta-data for ballot B` as follows. For
x ∈ {Side-A,Side-B}, the EA picks a random number
r`,x ← Zm; the EA then commits an m-ary unit vector
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er`,x , where the r`,x-th coordinate is 1 and the rest coordi-
nates are 0. Denote this vector commitment as C`,x. After
that, the EA computes the first move of the CP proofs,
denoted as Σ

(1)
`,x, showing that the vector commitment C`,x

indeed contains a unit vector. (cf. Section 2.4, above.) For
j ∈ {1, . . . ,m}, the EA sets the votecode of the j-th candi-
date as O`,x,j = j− r`,x−1 (mod m); namely, the votecode
is the offset of the j-th candidate by r`,x − 1. (Note that
the votecodes in each side of a ballot is essentially a cyclic
shift of the canonical ordering, i.e., 0, 1, . . . ,m). Finally, for
each ballot B`, the EA generates a random authentication
code and produces the corresponding voting card C` as in
Fig. 4. Meanwhile, the EA posts information about Columns
I, II, III, IV to the BB as depicted in Fig. 5 (phase 1), and it
also keeps its state. After election setup, the voting cards
are distributed to the voters via some secure untappable
channels, e.g. postal service.

4.3 Vote casting

Having obtained the voting card, the voter V` can cast her
vote once the election starts. To cast a vote, V` randomly
selects a side to use, say Side-A. She looks up the votecode
of her intended candidate in A side of the voting card, say
2. She then inputs her authentication code to a VSD; after
authentication, she utilizes the VSD to send the side and
votecode, A-2 to the EA. At the end of vote casting, V`
keeps the unused side, i.e., Side-B of her voting card and
the submitted message, A-2 as the receipt, denoted as α`.
(cf. Fig. 6, below.)

SN: 100

Authentication code:
ABCDE

Side A

Alice
Bob

Candidate Votecode
1
2

Charlie 0

SN: 100

Authentication code:
ABCDE

Side B

Alice
Bob

Candidate Votecode
0
1

Charlie 2

EA

SN:	100
21839	Yes
47485	No

SN: 100

Authentication code:
ABCDE

Side A

Alice
Bob

Candidate Votecode
1
2

Charlie 0

SN: 100

Authentication code:
ABCDE

Side B

Alice
Bob

Candidate Votecode
0
1

Charlie 2

FIGURE 6: Vote Casting.

4.4 Election tally

After the election ends, the EA marks Column VII on the BB
according to the received votes. For ` ∈ {1, . . . , n}, define
the voter’s coin b` = 0 if Side-A was used and b` = 1
otherwise. Consider all the voters’ coins B := (b1, . . . , bn)
as the Σ protocol challenge of the CP proofs. The EA
completes the third moves of the CP proofs, denoted as
Σ

(2)
` , corresponding to the marked vector commitments for

the side of the voting card that was used. For the unused
side of the voting card, the EA opens all the corresponding
vector commitments, denoted as D`. The EA posts Σ

(2)
` and

D` to the BB.

For each cast ballot B`, the EA performs cyclic right
shift on the corresponding vector commitment according
to the submitted votecode. Note that the resulting vector
commitment, denoted as C ′`, should only contain 1 at the
j`-th coordinate, where the j`-th candidate is the intended
choice of voter V`. Let V be the set of all the voters who
cast a vote. For all V` ∈ V , the EA entry-wise multiplies C ′`,
obtaining a vector commitment of the final tally, denoted
as E. (Cf. Section 2.3, above.) The EA then posts the de-
commitment of E to the BB, opening E to the election tally
T := (t1, . . . , tm), where tj represents the number of votes
for the j-th candidate.

4.5 Auditing
The voter V` can use her ASD to audit the election w.r.t.
the BB information and her receipt α`. More specifically, she
checks

• The annotated Column VII content is consistent with
the side and votecode she submitted.

• The opened vector commitment in Column VI is
consistent with the unused side of her voting card.
More precisely, let u be the opening of the vector
commitment. If we apply cyclic right shift to u ac-
cording to the printed votecode (cf. Fig. 4, above) for
the j-th candidate, then the resulting opening is the
unit vector ej .

Moreover, V` or any third-party auditor can use an ASD
to check the following on the BB:

• All the CP proofs and commitment openings are
valid.

• The announced tally is consistent with the decom-
mitment of E.

5 SECURITY

5.1 E2E verifiability
In this section, we demonstrate the E2E verifiability that our
system achieves under the security model in Section 3.2. We
stress that our E2E verifiability theorem holds information
theoretically in the standard model.

Before stating the theorem, we list the plausible attacks
against the verifiability of our system, describing their ef-
fectiveness and detection probability at a high level. For
simplicity, we exclude all the trivial attacks that the ad-
versary may follow, i.e. the ones that will be detected with
certainty (e.g. malformed or unreadable election transcript).
Therefore, the meaningful types of attack that an adversary
may launch against our system are the following:

� Invalid encoding attack: the adversary creates an
option-encoding commitment to some invalid value,
i.e. a non-unit vector that does not encode a legit-
imate candidate selection (e.g., multiple votes for
some specific candidate). This attack can be pre-
vented by the soundness of the CP protocol, except
from the negligible soundness error. The proof veri-
fication is done via a trusted ASD.

� Voting card attack: the information in an honest
voter’s voting card side part is inconsistent with the
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respective audit data committed in the BB, e.g., the
votecode and candidate correspondence is altered.
The tally deviation achieved from this type of attack
is at most 1, by switching the voter’s vote. The
probability of detection is 1/2, as the voter chooses
to audit using the inconsistent voting card side with
probability 1/2.

� Clash attack [14]: the adversary instructs y honest
voters to point at the same BB location, by pro-
viding them with voting cards indexed under the
same serial number. Thus it creates y − 1 empty BB
location that it can associate them with injected votes
its choice. During auditing, all y voters verify the
correct counting of their votes by auditing the same
information on the BB and hence, miss the injected
votes that produce the tally deviation. The deviation
achieved by this type of attack is y − 1, whereas the
probability of detection is 1−2−(y−1). This is because
the attack succeeds only when all y voters choose the
same voting card side to vote with, which happens
with 2/2y = 2−(y−1) probability.

Remark 2. It can be easily shown that the above list ex-
hausts all possible attack strategies against our system in
our threat model; in the case where all ballot information
is tabulated using all valid commitments in the BB without
being deleted or replaced, the adversary can only perform
a combination of voting card attacks and clash attacks on
the honest votes. If no such combination occurs, then all
honestly cast votes are in correct (yet unknown) one-to-one
correspondence with the BB audit data, hence by the perfect
binding property of the ElGamal commitment scheme, the
opening of the homomorphic tally matches the intended
result.

Theorem 1. The e-voting system described in Section 4 achieves
achieves E2E verifiability for at least θ honest voters and tally
deviation δ, with error 2−θ + 2−δ .

Proof: Let A be an adversary against the E2E verifiability of
our system that allows at least θ voters to be honest and
audit while it causes tally deviation at least δ. Consider the
following two cases:

Case 1. Assume that A performs at least one invalid
encoding attack. Each of the honest voters contributes 1 bit
of entropy by her coin flipping, thus the generated challenge
for the CP proofs will have at least θ bits of min-entropy. By
Proposition 1, the soundness error of each CP proof is 2−θ ,
hence the probability that A succeeds is bounded by 2−θ .

Case 2. If A performs no invalid encoding attack. Then,
all cast votes are legitimate, therefore the adversarial ones
will produce an acceptable partial result R∗ ∈ Zm included
in the election result R that A announces. By Definition 1,
we have that

d1(Rh +R∗, R) ≥ δ ,

where and Rh is partial result derived by the vote intention
of the honest voters. Therefore, we have that

d1(Rh, R−R∗) ≥ δ ,

where now R − R∗ is the partial result produced by homo-
morphically tallying all the honest ballots that A (acting as

a malicious EA) marked for counting. The latter suggests
that at least δ honest votes where altered via combinations
of voting card attacks and clash attacks. In the attacks
description, we showed that when performing voting card
attacks or clash attacks, the increase of tally deviation by 1
implies a drop of success probability for by 1/2. Therefore,
by combinations of these two attacks, A has no more than
2−δ probability to achieve tally deviation at least δ.

By taking the disjunction of the two cases, A’s strategy
has no more than 2−θ + 2−δ success probability. �

5.2 Voter privacy

In the following theorem, we show how the voting card
format, generation and distribution, as well as the security
of the applied cryptographic tools serve to protect the voter
privacy of our system.

Theorem 2. Assume there exists a constant c, 0 < c < 1 such
that for any adversary A running in 2λ

c

-time cannot break the
hiding property of the underlying ElGamal commitment scheme.
The e-voting system described in Section 4 achieves privacy for
at most t corrupted voters for any t = λc

′
for any constant 0 <

c′ < c.

Proof: Recall that the voting cards are delivered to the voters
via some secure untappable channels. Therefore, when the
EA is honest, the adversary does not know the link between
votecodes and candidates. Hence, the adversary gains no
information about honest voters’ choices by eavesdropping
their cast votecodes.

In addition, the voters are able to lie about their views,
consistently with the passive coercion resistance property.
Specifically, since the voting cards are not authenticated,
they merely display a correspondence between the candi-
dates and integers from 0 to m − 1 that can be generated
and printed by any party. Thus, the voting cards can be
faked and provide no proof of how the voter has voted.

As a result, the system’s components that the voter pri-
vacy adversary is left to attack, is its cryptographic payload,
i.e. the ElGamal commitments and the CP proofs. The CP
proofs, used for ballot validity, reveal no information about
the intended vote associated with the ballot, due to the
HVZK property. Besides, the ElGamal commitments, play-
ing the role of electronic envelopes, do not leak information
about the enclosed candidate, due to the hiding property.
It is easy to show that any adversary A can break the the
hiding assumption of the ElGamal commitment with less
than 2λ

c

time if she can break privacy for t = 2λ
c′

. �

6 OUR SYSTEM IN THE REAL-WORLD

The proposed e-voting system has been fully implemented
and applied in the following use cases.

1) In a pilot experiment during the European Elections in
May 2014 (747 participants), testing the usability and
people’s trust in the system.

2) In a pilot experiment during the Greek National Elec-
tions in January 2015 (400 participants), studying the
effect of E2E verifiability support on people’s trust in
the system.
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FIGURE 7: E2E verifiability error bound w.r.t. total min
entropy hθ, for tally deviation δ = 100 and auditing par-
ticipation rate p = 1/4, 1/8, 1/16.
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FIGURE 8: E2E verifiability error bound w.r.t. normal-
ized tally deviation δ/n for at least n/2 honest vot-
ers with parameters h = 0.234, p = 2.8%, and n =
10000, 50000, 100000 voters.

3) As the fundamental component of the platform that
will support the electronic democratic procedures of the
General Confederation of Workers of Greece (GSEE),
one of the largest work unions in Greece.

In the following subsections, we provide an overview of
the implementation design and comment on the importance
of the human factor in the system’s security along with real-
world evaluation from the two pilot experiments.

6.1 Distributing the EA

In our security model, we consider the EA as a single entity
that is malicious in the verifiability game and honest in
the privacy game. In practice one may want to distribute
the EA to a number of “sub-authorities” that collectively
implement the EA functionality to improve the resiliency
of the privacy property. Our notion of voter privacy can
be easily extended to allow corrupted sub-authorities in the
same way that the adversary controls corrupted voters. In
the real-world implementation of our system, we distribute
the EA to a setup authority, a vote collector and a set of
trustees T1, . . . , Tk. During the election setup phase, the

setup authority prepares all the ballots and voting cards.
After that, the setup authority distribute its distributes its
private state as k shares to T1, . . . , Tk via a verifiable secret
sharing scheme. This allows the trustees to jointly open the
tally and complete the necessary CP proofs at the end of
the election. When setup is finished, the working tape of the
setup authority is destroyed and the election run is privacy-
preserving, as long as at least one trustee is not corrupted.

Thanks to this design, our systems achieves (a) E2E
verifiability in an all-malicious setting and (b) voter privacy
as long as at least one trustee remains honest.

6.2 Humans as a source of randomness

For simplicity in our security analysis, we assumed that all
honest voters that engage in an election run with our system
will (i) flip a fair coin and (ii) always verify the election.
In this idealized setting, at least θ honest voters generate at
least θ bits of entropy that implies the 2−θ+2−δ error bound
in E2E verifibiality proven in Theorem 1. Nonetheless, in a
real-world execution one can not expect such an idealized
human behavior. To approximate an actual election setting,
we have to made the following relaxations:

1) The voters flip biased coins that have min entropy at
least h ≤ 1.

2) The voters will perform audit with some probability at
least p ≤ 1.

By the properties of binomial distribution and without
proceeding to technical details, we can show that the E2E
verifiability error is now

2−hθ +
(

1− p

2

)δ
(1)

for any p ≤ 1/2 (which is what we could expect in the real-
world). Clearly the error in Eq. (1) is upper bounded by
2−θ + 2−δ , for the special ideal case where h = p = 1.

In Fig. 7, we provide the error bound w.r.t. total min
entropy hθ for tally deviation δ = 100 and various values of
p. Note that if we normalize tally deviation per the number
of voters, say n = 10000, 100000, 1000000, the deviation is
δ/n = 1%, 0.1%, 0.01% respectively. Hence, the impact of an
attack with a certain success probability diminishes rapidly
as we move towards large (national) scale elections.

From the data collected by our pilot experiments we
deduced that the voters were choosing to use side A to
vote with probability ≈ 85%. If, for simplicity, we treat the
voters’ behavior uniformly (this can be argued assuming the
adversary does not hold any history of every individual’s
behavior), then the latter implies min entropy per voter
of h = −log(max{0.85, 0.15}) ≈ 0.234. In addition, the
ratio of participants that audited the bulletin board was
p = 2.8%. In Fig. 8, we plot the probability error for the
specific values h, p w.r.t. normalized tally deviation δ/n and
various electorate sizes, given that the majority of voters
is honest (otherwise, clearly, the adversary can completely
manipulate the result). We observe that even in this pes-
simistic scenario, the probability that the election integrity is
violated beyond δ/n = 1% is below < 10−6 for n = 100000
(note that the same probability error holds for δ = 0.1% and
n = 1000000).
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