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ABSTRACT
Methods for adapting and controlling the characteristics of output
speech are important topics in speech synthesis. In this work, we
investigated the performance of DNN-based text-to-speech systems
that in parallel to conventional text input also take speaker, gender,
and age codes as inputs, in order to 1) perform multi-speaker syn-
thesis, 2) perform speaker adaptation using small amounts of target-
speaker adaptation data, and 3) modify synthetic speech character-
istics based on the input codes. Using a large-scale, studio-quality
speech corpus with 135 speakers of both genders and ages between
tens and eighties, we performed three experiments: 1) First, we used
a subset of speakers to construct a DNN-based, multi-speaker acous-
tic model with speaker codes. 2) Next, we performed speaker adap-
tation by estimating code vectors for new speakers via backprop-
agation from a small amount of adaptation material. 3) Finally, we
experimented with manually manipulating input code vectors to alter
the gender and/or age characteristics of the synthesised speech. Ex-
perimental results show that high-performance multi-speaker mod-
els can be constructed using the proposed code vectors with a variety
of encoding schemes, and that adaptation and manipulation can be
performed effectively using the codes.

Index Terms— Speech synthesis, DNNs, speaker adaptation,
speech manipulation, voice morphing

1. INTRODUCTION

In some applications of speech technology, the flexibility and con-
trollability of speech synthesis systems are important factors, in ad-
dition to the quality of the synthetic speech. It is well known that
speech synthesis based on hidden Markov models (HMMs) is highly
flexible and controllable. This is exemplified by 1) speaker adapta-
tion, a technique to estimate a new acoustic model based on small
amounts of speech data uttered by a new target speaker or in a new
speaking style (e.g., a different emotion) [1, 2]; 2) speaker interpola-
tion, a technique to morph together several speakers or emotions by
interpolating mean vectors and variance matrices of Gaussian dis-
tributions from representative acoustic models [3]; and 3) multiple
regression HMMs (MR-HMMs) [4], a technique that modifies the
acoustic characteristics of synthesised speech by augmenting the text
input with additional input values (control parameters).

Recently, speech synthesis using deep neural networks (DNNs)
has become an active area of research, with applications to acoustic

⇤The first author performed this work while on an internship at the Na-
tional Institute of Informatics, Japan, in 2016.
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Technology (CREST) from the Japan Science and Technology Agency (JST)
(uDialogue project), by MEXT KAKENHI Grant Numbers (26280066,
26540092, 15H01686, 15K12071, 16H06302, 16K16096), and by The
Telecommunications Advancement Foundation Grant.

modelling [5, 6], duration modelling [7], feature extraction [8], and
text analysis [9] having been investigated by various groups. It has
been reported that DNN-based techniques have improved the quality
of synthetic speech significantly; cf. [10]. A new DNN baseline sys-
tem [11] added to the Blizzard Challenge 20161 also turned out to
be significantly better than the standard HMM-based baseline (that
uses a toolkit called HTS [12]), again confirming the speech quality
improvements brought on by deep learning approaches.

To harness these quality improvements also in scenarios where a
flexible synthesiser is required, a variety of speaker adaptation tech-
niques have been proposed for DNN-based acoustic models. Wu et
al. [13] proposed speaker adaptation using i-vectors as input, or by
adapting hidden unit contributions (LHUC [14]), or by applying out-
put transforms defined by GMMs, or combinations of these. Fan, et
al. [15] assumed that the output layer in the DNN captures most
speaker differences, and considered estimating speaker-dependent
output layers using multi-speaker data, while keeping the hidden net-
work layers shared across all speakers. This also allowed the model
to be adapted for new speakers by only updating the regression layer
[15]. However, their experiments only used four different speakers,
with a relatively large amount of data (one hour) from each.

There have also been attempts to enable control of DNNs sim-
ilar to multiple regression HMMs. In [16], two-dimensional per-
sentence control-vector inputs to a DNN synthesiser were learned in
an unsupervised fashion from a corpus of expressive speech. It was
found that one direction in the (unlabelled) control-vector space had
a consistent and interpretable influence on the generated speech, but
the orthogonal direction did not.

In this paper, we consider augmenting the conventional text-
based inputs of DNN-based acoustic models with auxiliary input fea-
tures – collectively referred to as input codes – that include speaker
codes as well as encodings of other labelled attributes, such as gen-
der and age. We show that these input codes have capabilities that
unify previous approaches to speaker adaptation, speaker interpola-
tion, and multiple regression. More specifically, we first show that
we can train a useful multi-speaker model based on input codes, even
from speech database with over 100 speakers, each contributing only
about 100 utterances. The model is trained exactly like a speaker-
dependent acoustic model, but augmenting the linguistic inputs with
additional features encoding each speaker’s identity, gender, and age.
Next, we show that the new model can perform speaker adaptation
from small amounts of speech by estimating speaker codes and/or
other input codes using backpropagation. Finally, we show that we
can achieve speaker, gender, and age morphing by gradually chang-
ing the input code from one value to another.

We also investigate several ways of representing speaker, gen-
der, and age features in vector form. We compare three different en-
codings, namely the standard one-hot vector form, random vectors,

1
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Fig. 1. Schematic representation of discriminant codes. WDCC is a
projection matrix that reduces one-hot vectors to DCC vectors.

and a data-driven numerical encoding sometimes called “discrimi-
nant condition codes” (DCCs) [17]. We further analyse the dimen-
sionality required for the input code representations.

In the remainder of the paper, Section 2 describes training a neu-
ral network modelling several training speakers. Sections 3 and 4 ex-
plain speaker code estimation for new speakers via backpropagation
and the modification of input codes to change the speaker, gender,
and age characteristics of output speech. Section 5 evaluates the ap-
proaches in a number of experiments, while Section 6 concludes.

2. MULTI-SPEAKER MODELS USING INPUT CODES

We can train a multi-speaker acoustic model like a standard speaker-
dependent model by simply pooling the data in a multi-speaker
speech database. However, in order to retain speaker voice char-
acteristics and to allow speaker adaptation later on, we augment the
standard input features with auxiliary features such as the speakers
identity, gender, and age. These input codes allow the DNN to dis-
criminate individual speakers, gender, and age bands during training
and synthesis; by inputting the average value of the input code, a
kind of average voice is produced. This architecture is trivial, and
similar ideas have cropped up in prior literature, not only in speech
synthesis [13, 18, 19], but also in other fields [17, 20, 21, 22].

We first address the question of how to represent auxiliary fea-
tures like speaker, gender, and age in vector form. In particular, we
compare three different encodings, namely standard one-hot vectors,
random vectors, and DCC vectors, for the speaker codes:
One-hot vector speaker codes: The standard one-hot vector
speaker code is defined as follows: If there are N speakers in the
training set, the one-hot vector (sometimes called the 1-of-k vector)
for the ith speaker is si = (s1, s2, ..., sN ) where each value sn is
0 when n 6= i and 1 when n = i.
Random-vector speaker codes: Speaker codes based on random
vectors are vectors of a predetermined dimension K. The vector for
speaker i is si = (s1, s2, ..., sK) where sk are random values, here
sampled from a uniform distribution on [0, 1). This scheme provides
a simple method to reduce or expand the size of the speaker code.
Discriminant condition codes: DCCs were initially introduced by
Xue et al. [17] for speech recognition. Figure 1 provides a simplified
overview of the main idea. As seen in the figure, discriminant codes
constitute hidden-unit activations obtained by projecting one-hot
speaker codes into K dimensions using a matrix WDCC 2 RN⇥K .
The DCCs are trained jointly with the weights and biases of a DNN
[17, 20]. This code is equivalent to the one proposed by Watts et al.
[16], except that the latter work considers synthesis and used DCCs
to distinguish sentences instead of speakers.

2.1. Gender and age codes

For the gender and age codes, we consider two different represen-
tations: 1) one-dimensional numerical or binary representations, or
2) 1-of-k categorical representations. Gender information, for in-
stance, may be represented by binary values, e.g., 0 for female and
1 for male. Alternatively, we may use a two-dimensional 1-of-k cat-
egorical representation where, e.g., the first dimension corresponds
to male and the second dimension corresponds to female. For the
age information, we may use the raw age as a one-dimensional nu-
merical value, or we may divide speakers into several age bands and
assign a similar 1-of-k categorical representation.

3. ADAPTING DNN ACOUSTIC MODELS USING INPUT
CODES

To adapt the above multi-speaker models to a new speaker, one wants
to find the speaker code that makes generated speech resemble the
target speaker the most. Following [23], we use backpropagation
(BP) to minimise the mean square prediction error over a small
amount of data uttered by the target speaker.2 This differs from
[13, 24], whose adapted speaker codes do not minimise prediction
error directly. Note that the BP algorithm only updates the speaker
codes, without changing the DNN weights, in contrast to [19], which
used fixed codes but added new weights. We use a well-trained
multi-speaker acoustic model as described Section 2, initialised from
the average speaker code, since average voice models are known to
provide good starting points for HMM-based speaker adaptation [1].
Forward propagation and backpropagation are then iterated to esti-
mate the new speaker code until a stopping criterion is satisfied.

4. MANIPULATING SPEECH USING INPUT CODES

Models from Section 2 can also be used to manipulate the acoustic
characteristics of synthesised speech, achieving behaviour similar to
HMM-based speaker interpolation as in [3]. We can linearly inter-
polate DCCs or other input codes, gradually changing them from the
value for one speaker to that of another. This should perform speaker
morphing.3 Having labelled control parameters (here age and gen-
der) in a synthesiser also opens up the possibility of manipulating
these characteristics in a given voice, by changing these control pa-
rameters while keeping the speaker code fixed. This is similar to
what multiple regression HMM approaches can achieve, and allows
us to manipulate the gender and/or age of a given voice. Related re-
gression techniques have previously been used to change perceived
voice age in GMM-based singing voice conversion [25].

5. EXPERIMENTS

5.1. Experimental conditions

For our experiments, we used a corpus of studio-quality native
Japanese speech uttered by 65 males and 70 females aged between
10 and 89. Of these, speech from 56 males and 56 females was
used to train the multi-speaker DNN, with the remaining speakers
(9 males and 14 females) held out for speaker adaptation, as listed
in Table 1. The training-set speakers were chosen to be equally dis-
tributed for each age band (8 speakers for each age band and gender).

2The same technique may also be used to estimate age and gender codes,
both to adapt synthesisers and to infer speaker age/gender. However, space
limitations prevented us from exploring this possibility in the current paper.

3An infinite supply of novel voices can also be created by randomising
new speaker codes, although this has been left for future work.



Table 1. Number of speakers used for training and adapting multi-
speaker DNN acoustic models.

(a) Multi-speaker task (b) Adaptation task
Age Male Female Total Age Male Female Total
10–20 8 8 16 10–20 0 2 2
21–30 8 8 16 21–30 2 2 4
31–40 8 8 16 31–40 2 2 4
41–50 8 8 16 41–50 1 2 3
51–60 8 8 16 51–60 2 2 4
61–70 8 8 16 61–70 2 2 4
71– 8 8 16 71– 0 2 2
Total 56 56 112 Total 9 14 23

Table 2. Models trained for the multi-speaker and adaptation tasks.
Speaker code (S) Gender code (G) Age code (A)

Model label Type Size Type Size Type Size
ONE-S One-hot 112 N/A N/A N/A N/A
ONE-SGA’ One-hot 112 One-hot 2 One-hot 7
ONE-SGA One-hot 112 Numeric 1 Numeric 1
RND112-SGA Random 112 Numeric 1 Numeric 1
RND008-SGA Random 8 Numeric 1 Numeric 1
DCC112-SGA DCC 112 Numeric 1 Numeric 1
DCC008-SGA DCC 8 Numeric 1 Numeric 1

With approximately 100 utterances for each speaker, this yielded a
total of 11,170 training-data utterances.

For the adaptation experiments, we used 100 utterances as adap-
tation material from each of 23 speakers not included in the training
set. In this case, we were not able to balance all factors due to the
limited number of speakers in the corpus, though we made our best
efforts to make it as balanced as possible.

To evaluate the multi-speaker speech synthesis and speaker
adaptation tasks, ten additional utterances per speaker were held out
as test data for every speaker in the training and adaptation datasets.

The speech signal waveforms were sampled at 48 kHz, 16
bits. STRAIGHT [26] analysis was used to obtain 259-dimensional
acoustic feature vectors every 5 ms, each comprising 60 mel-cepstral
coefficients (with a bilinear frequency warping parameter of 0.77),
a linearly interpolated fundamental frequency in the mel scale, and
25-dimensional band aperiodicities, along with their delta and delta-
delta counterparts. The 259th feature was a binary voiced/unvoiced
flag. During synthesis, the static and dynamic features were com-
bined as described in [27] to produce the most likely speech tra-
jectory sequence, based on a forced-alignment against the held-out
natural speech (i.e., an oracle duration model was used).

For the input linguistic features, Open JTalk4 was used to per-
form standard analysis of Japanese text for synthesis, including
grapheme-to-phoneme conversion, part-of-speech tagging, and mor-
phological analysis with the MeCab parser (based on [28]). The
derived quin-phone identity and syntactic and prosodic text infor-
mation were encoded into a 389-dimensional mixed discrete-and-
numeric vector of linguistic features. This input vector was then
augmented with the three types of auxiliary features mentioned ear-
lier and used as the input to the neural network speech synthesiser.

All acoustic models were feedforward DNNs with five hidden
layers of 1024 nodes each. Sigmoid activation functions were used
for all units in the hidden and output layers. The models were ini-
tialised randomly and trained to minimise mean square error using
stochastic gradient descent for 10 epochs with the learning rate fixed
at 0.05 and the minibatch size set to 256. The same learning rate was
also used for learning discriminant codes.

When adapting to new speakers, speaker codes were estimated
one-by-one for each of the 23 held-out speakers, using 10 BP epochs
with learning rate 0.2. The estimated speaker code with the lowest

4
http://open-jtalk.sourceforge.net/

Table 3. Objective evaluation results. Mel-cepstral distortion
(MCD) was measured in dB and F0 RMSE in Hz.

(a) Multi-speaker task (b) Adaptation task
Strategy MCD F0 RMSE Strategy MCD F0 RMSE
ONE-a 7.64 52.06 ONE-a 7.49 53.90
ONE-c 5.62 23.79 ONE-e 6.02 23.71
ONE-ccc’ 5.61 23.70 ONE-ecc’ 6.06 23.75
ONE-ccc 5.58 23.43 ONE-ecc 6.01 23.54
RND112-ccc 5.60 23.48 RND112-ecc 6.46 24.98
RND008-ccc 5.60 23.06 RND008-ecc 6.49 29.44
DCC112-ccc 5.60 23.18 DCC112-ecc 6.03 24.77
DCC008-ccc 5.62 22.88 DCC008-ecc 6.43 27.18

(a) Quality (b) Speaker similarity

Fig. 2. Subjective test results for the multi-speaker synthesis task.

error was used as the code for the new speaker in the experiments.
Because of the small amount of adaptation data available, it was not
obvious what would be the best training scheme. Our choice was
computationally fast and appeared effective in our evaluation, but
better optimisation procedures can probably be devised.

A total of seven different acoustic models, summarised in Ta-
ble 2, was trained and evaluated both objectively and subjectively.
The three speaker-code variations described in Section 2 were used
to train several models and compare their relative performance. Two
representations of gender and age codes were also evaluated: nu-
meric scalars and one-hot vectors. Numeric gender codes had a value
of 0 or 1 (female or male, respectively) while numeric age-code val-
ues were set at the midpoint of each age interval (i.e., 15 through 65,
also using 75 for speakers aged 70 and above). The categorical rep-
resentations, meanwhile, used one-hot vectors with two and seven
elements to encode gender and age categories, in that order.

Each system was assigned a label where the first part indicates
the type of speaker code used (ONE, RND, or DCC) and, where rele-
vant, its dimensionality K. The second part of the name indicates the
auxiliary features included, with S standing for speaker code, G for
gender code and A for age code. For example, ONE-S is the one-hot
model trained without the gender and age codes, while ONE-SGA’
is the model trained with these codes in their one-hot encoding; all
other models used the numerical encoding of gender and age.

For our objective evaluations we considered the mel-cepstral dis-
tortion (MCD) and the F0 root mean square error (RMSE). Two sub-
jective tests were also conducted using nine paid, native Japanese
listeners in a quiet office over high-end headphones: one to evaluate
the multi-speaker task, and another for the adaptation task. In the
former, listeners scored synthetic speech in terms of speech quality
and speaker similarity to a reference speaker on a standard 5-point
MOS scale. Four random samples were scored for each listener, sys-
tem, and metric. To evaluate speaker adaptation performance, an
AB test was used, where listeners chose which of two random out-
put sentences sounded more similar to a reference recording of the
target speaker, six times for each listener and system pair compared.

http://open-jtalk.sourceforge.net/


(a) Multi-speaker task (b) Adaptation task

Fig. 3. Objective evaluation of different discriminant code sizes.

5.2. Evaluation of the multi-speaker task

Table 3 (a) lists our objective measurements for the multi-speaker
speech synthesis task. Each system is labelled as follows: The first
part shows which model was used while the second part indicates the
value assigned to each global feature (S, G, and A, respectively) with
‘a’ denoting an average value while ‘c’ means that the corresponding
feature was set to the correct value for the speaker in question.

The first system in Table 3 (a), ONE-a, shows the objective per-
formance of the model ONE-S when all one-hot vector elements
were assigned their average value. We view this as the average, ref-
erence voice of our system. Notably, this average voice was signif-
icantly less accurate than all other systems, showing that the multi-
speaker system overall was successful at approximating the many
different speakers in the corpus. In general, the multi-speaker sys-
tems showed relatively small objective differences, though we note
that the F0 RMSE slightly improved for both RND and DCC when
reducing the speaker code (S) dimension to 8. The effect of the DCC
size on objective measures is explored in Figure 3 (a). Interestingly,
while the mel-cepstral distortion steadily decreases as the DCC size
increases, the F0 RMSE is the lowest when the DCC size is 8.

Subjective test results for quality and speaker similarity, with
95% confidence intervals based on Student’s t-distribution, are plot-
ted in Figures 2 (a) and (b), respectively. All models achieved sim-
ilar scores with no statistically significant differences in either test.
However, since ONE-ccc’ got the poorest scores for both quality
and similarity, we view the numerical encodings of age and gender
as preferred, especially since those also are easier to manipulate.

5.3. Evaluation of the adaptation task

To evaluate the adaptation task, we used a similar objective eval-
uation as for the multi-speaker task. We also employed the same
labelling convention, with one addition: the letter ‘e’ indicates a fea-
ture that was estimated using the method proposed in Section 3. The
results are summarised in Table 3 (b). As mentioned earlier, only the
speaker code was estimated in these experiments.

Like before, the first system in the table, ONE-a, is an average,
reference voice based on ONE-S. It can be seen that all seven mod-
els, and thus all three types of speaker code, achieved significantly
lower errors than the average voice by adapting to the 23 different
target speakers. Compared to the known voices in Table 3 (a), we see
that the performance was slightly worse on unknown voices, which
is not unexpected. For both RND and DCC we note that the larger
code dimensionality we tested achieved better objective results. Fig-
ure 3 (b) shows that, unlike the multi-speaker task, both mel-cepstral
distortion and F0 RMSE decreased as the dimensionality of the dis-
criminant code used for adaptation increased.

Figure 4 shows the results of our AB tests comparing different
adaptation schemes. Contrasting the average voice ONE-a against
the adapted ONE-e (bottom test), listeners overwhelmingly preferred
the adapted voice, confirming the efficacy of the adaptation. The

ONE-a

ONE-e

ONE-ecc'

ONE-ecc

DCC112-ecc

DCC008-ecc

RND008-ecc

ONE-e

ONE-ecc'

ONE-ecc

DCC112-ecc

DCC008-ecc

RND008-ecc

RND112-ecc

Fig. 4. AB-test results with 95% confidence intervals for the adap-
tation task. The x-axis indicates the observed relative preference (in
%) for the system on the left-hand side in each pairwise comparison.

next two tests from the bottom compared three one-hot speaker-code
models with or without gender and age codes. The pattern is clear:
adding age and gender information to the input improved the subjec-
tive adaptation performance, as expected, with the numerical encod-
ing of gender and age being superior to the categorical encoding.

Several tests did not exhibit any statistically significant differ-
ences. In particular, 1) ONE and DCC performed similarly, 2) re-
ducing DCC dimensionality from 112 to 8 did not hurt performance,
and 3) RND performed similarly to DCC when using 8-dimensional
speaker codes. Surprisingly, however, increasing RND dimensional-
ity from 8 to 112 yielded a significant subjective improvement.

5.4. Manipulating speech characteristics

Next we performed three types of manipulation of the input codes.
The first manipulation was speaker interpolation, where we gradu-
ally interpolated between the speaker codes of two speakers. We also
experimented with changing the gender or age codes while keeping
the other input codes constant; example manipulations can be found
at http://www.hieuthi.com/papers/icassp2017/.

Although it is not straightforward to evaluate these manipula-
tions because correct references are not available, informally, we
found that changing the inputs altered the perception of the voice in
a plausible manner for gender conversion, including some changes
to the pitch. Similar to [25], modifying speaker age inputs also pro-
duced plausible audible differences, at least for larger changes. Ma-
nipulation effects were generally more pronounced when RND and
DCC speaker codes were of lower dimensionality, with results ap-
pearing to be most consistent for the model DCC008-SGA.

6. CONCLUSIONS

In this paper, we considered augmenting the conventional text-
derived inputs of DNN-based speech synthesis acoustic models with
various input codes. We showed that a single DNN with input codes
simultaneously was able to 1) learn a useful multi-speaker model
even from a speech database with over 100 speakers and only a lim-
ited amount of speech from each; 2) perform adaptation to novel
speakers; and 3) meaningfully control the synthetic speech output.
This unifies previous approaches to adaptation and control in DNN-
based synthesis. We also found that using gender and age codes im-
proved speaker adaptation performance. Several speaker-code vari-
ations were investigated, finding that the most appropriate encoding
and code size may depend on the task and the acoustic feature(s)
considered. As future work, it would be interesting to consider sim-
ilar input code setups for BLSTM-based acoustic models [29, 24].

http://www.hieuthi.com/papers/icassp2017/
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