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Abstract The determination of rates of macroalgal growth and
productivity via temporal fresh weight (FW) measurements is
attractive, as it does not necessitate the sacrifice of biomass.
However, there is no standardised method for FW analysis; this
may lead to potential discrepancies when determining growth
rates or productivity and make literature comparison problem-
atic. This study systematically assessed a variety of lab-scale
methods for macroalgal FW measurement for growth rate de-
termination. Method efficacy was assessed over a 14-day period
as impact upon algal physiology, growth rate on basis of FW
and dry weight (DW), nitrate removal, and maintenance of
structural integrity. The choice of method is critical to both
accuracy and inter-study comparability of the data generated.
In this study, it was observed that the choice of protocol had
an impact upon the DW yield (P values = 0.036-0.51). For
instance, those involving regular mechanical pressing resulted
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in a >25% reduction in the final DW in two of the three species
studied when compared to algae not subjected to any treatment.
This study proposes a standardised FW determination method
employing a reticulated spinner that is rapid, reliable, and non-
destructive and provides an accurate growth estimation.

Keywords Alga - Fresh weight - Dry weight - Cladophora
sp. - Spirogyra sp. - Growth rate

Introduction

Macroalgae encompass a phylogenetically diverse range of
macroscopic plants, mainly of marine origin. They are key con-
stituents of marine ecosystems and are a commercially and en-
vironmentally valuable natural resource. For instance, algae are
renowned for their potential as a feedstock for renewable
bioenergy and are already mass cultivated for food and
phycocolloid industries. Furthermore, they may be grown for
wastewater amelioration purposes or bio-prospected for value-
added products (Fleurence 1999; Zemke-White and Ohno
1999; Hafting et al. 2012; Borowitzka 2013; Schiener et al.
2015). The increased realisation of the commercial potential of
macroalgae as a direct product or as a feedstock for further
processes has necessitated the optimisation of current practices
and the development of a range of new tools and cultivation
approaches (Griffiths et al. 2016). Furthermore, determination
of the impact of abiotic and biotic conditions on biomass pro-
ductivity during an experimental timeline requires the develop-
ment of a set of standardised methods, which allows compari-
sons to be made between both treatments and experiments.
Determining algal biomass productivity through its tempo-
ral growth rate is one of the most fundamental aspects of algal
research in biological, environmental, and engineering fields.
For example, monitoring algal growth of taxa, including
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Cladophora, in Integrated Multi-Trophic Aquaculture
(IMTA), where they perform a key bioremediation role (de
Paula Silva et al. 2008), or for potential biomass applications
such as bioenergy (Lawton et al. 2013), is critical to assessing
both performance and productivity. Yet, there remains no
standardised approach for determining growth. The primary
parameters to consider when quantifying biomass are repro-
ducibility, reliability, and applicability. Other desirable facets
of a quantification method include: ease of use/speed and
minimal/no damage to the biomass, where the latter issue is
especially relevant for the accurate assessment of growth
rates. Errors associated with determining total biomass, or
growth rate, can lead to inaccuracies in estimating productiv-
ity and economic potential, as well as difficulties with litera-
ture comparison. It is therefore important to standardise pro-
cedures that are both accurate and reliable. Furthermore, the
method deployed has to be applicable for the species being
studied as macroalgae, and algae, in general, have varied phe-
notypes and growth habits. These characteristics effectively
dictate the approach that may be applicable. In most cases,
this is straightforward: for instance, many micro-algal taxa
are unicellular and their growth can be quantified by counting
the cells in a given volume of water, e.g. using either a
haemocytometer, a Coulter counter (Guillard and Sieracki
2005; Marie et al. 2005), or alternatively by methods
employing absorbance (Das et al. 2011) or light scattering
(Yamaoka et al. 1978). For multicellular algae, these ap-
proaches are unsatisfactory as optical methods require a uni-
form suspension of material so that a linear relationship with
biomass (weight or cell number) may be determined. In con-
trast, for large species of seaweed, such as members of the
Lamiariales, changes in biomass can be determined by tem-
porally measuring the length of the fronds, which can reach
more than 60 m in length (Kain 1982; Bold and Wynne 1985;
Dean and Jacobsen 1986; Hepburn and Hurd 2005). However,
the morphology of the thalli of some macroalgal species can be
quite varied, ranging from simple blades to more structurally
complex forms made up of parenchyma and corticated filaments
(Hurd et al. 2014). Therefore, determining the biomass of spe-
cies with variegated or multifarious thalli can be complex.

A commonly employed method to determine growth rate is
based on the dry weight (DW) of the organism, usually
achieved by drying in an oven, freeze drier, or by the sun
(Mata etal. 2010; Sharma et al. 2013). Although this approach
is reliable, simple, and reproducible, the drawback is that it
involves sacrificing the whole of the biomass sample, making
the determination of growth rates impossible over a time
course. When assessing temporal growth using DW, the prob-
lem of sacrificing samples can be overcome by utilising mul-
tiple replicates. However, this approach has its own con-
straints and pitfalls such as the time taken to ensure the sample
has fully dried, a requirement for a large working area and
other resources, as well as potential limitations in availability
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of biological material where sacrificing material would com-
promise the accuracy of the experiment.

Image analysis is a possible option as a method to deter-
mine yields and growth rates. This approach has previously
been successfully applied to macroalgae where individual
Cladophora filaments on agar have been measured temporally
using light microscopy (de Paula Silva et al. 2008). However,
from a practicality perspective, this approach is better suited
for screening projects involving individual filaments.
Macleod et al. (2016) used an alternative imaging software
for the analysis of biofouling coverage on buoys as proxies
for renewable energy structures in the marine environment.
This approach, although simple and time efficient, could only
provide data on coverage and not on the biomass of the ad-
hering flora and fauna. Although imaging software is becom-
ing a lot more powerful, making these techniques more readily
applicable, there are still constraints including the time and
resources required for analysis. Additionally, the three-
dimensional and often fractal nature of seaweed makes deter-
mination of any correlation between each image and its cor-
responding DW, or productivity, challenging.

In many environmental and applied studies, both mass and
growth rates of macroalgae are expressed as fresh weight
(FW) (Gordon and McComb 1989; Peckol and Rivers 1995;
Rivers and Peckol 1995). Despite the fact that FW is widely
assessed, no standardised method has been agreed and thus
comparisons between different studies are challenging. For
instance, the FW of the chlorophyte Cladophora has been
determined employing a variety of approaches, the most com-
mon of which is drying with a sorbent material, i.e. filter paper
(Robinson and Hawkes 1986; Planas et al. 1996; Pinowska
2002; Lamai et al. 2005). However, variations in material
used, application time and pressure will inevitably lead to
differences in the volume of water removed. In some studies,
FW is mentioned but no method of determination is reported
(Ozimek et al. 1991; Choo et al. 2004; Lawton et al. 2013). On
this basis, it may not be feasible, or valid, to draw conclusive
inferences when comparing data from different studies.

Another key consideration is the morphology of algal spe-
cies. Filamentous algae are multicellular, multifarious, and
often quite fragile (Robinson 1983), which makes accurate
growth rate and biomass quantification problematic. If the
viability of the algae is impaired during fresh weight quanti-
fication, for instance due to excessive pressure or dehydration,
this may have major implications on the accuracy of any as-
sessments of subsequent growth. A promising, yet seldom
employed method, with seemingly low mechanical impact,
involves dewatering filamentous algae using a reticulated
spinner (RS). In their respective in situ studies on ecology
and IMTA, both Peckol et al. (1994) (Peckol and Rivers
1995) and de Paula Silva et al. (2008; 2012) employed this
approach to remove excess water from Cladophora. However,
these studies did not detail the number or duration of iterations
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with the reticulated spinner, thus making a comparison diffi-
cult due to the possibility of non-standardisation in approach.
Furthermore, FW was only assessed at the beginning and end
of each experiment lasting 10-14 days, and the daily growth
rate inferred from the two data points. This non-intrusive
method could have the potential to be used periodically during
an experiment to determine growth rate, with little-to-no phys-
iological detriment to the organism, thus providing a higher
degree of resolution to productivity data.

The ability to accurately determine FW and productivity is
the cornerstone of any algal research, and the development
and use of a robust, standardised lab-scale method is an abso-
lute necessity. This study aimed to investigate the suitability of
a variety of methods for the FW determination of filamentous
macroalgae employing model strains of Cladophora and
Spirogyra. This is the first study of its kind to make a concert-
ed effort to assess FW methodologies in terms of reliability
and reproducibility, as well as their biological impact in terms
of viability, growth, and nutrient uptake. Furthermore, the ob-
jective was to adopt a dewatering technique that is a good
indicator of DW and has no detrimental impact upon the algae
over a time course, therefore maintaining their original exper-
imental purpose.

Materials and methods
Macroalgal strains and culture conditions

The algal strains studied were obtained from the Culture
Collection of Algae and Protozoa (CCAP), at the Scottish
Association for Marine Science (SAMS, Oban, UK). These
included two marine isolates: Cladophora coelothrix CCAP
505/10, Cladophora parriaudii CCAP 505/09, and the fresh-
water isolate Spirogyra varians CCAP 678/3 (see http://www.
ccap.ac.uk/our-cultures.htm).

The marine taxa were cultivated in 250 mL Guillard’s F/2
medium (see http://www.ccap.ac.uk/pdfrecipes.htm), based
on artificial seawater at 33.5 g Lt (Instant Ocean, Nemo’s
World, UK) (Guillard and Ryther 1962). The freshwater iso-
late S. varians was grown in 250 mL of Jaworski’s Medium
(see http://www.ccap.ac.uk/pdfrecipes.htm). The cultures
were incubated in an illuminated shaker (Sartorius Stedim
Biotech, Germany) at 24 °C, under an 18:6 h (light/dark)
photoperiod with 30-40 pumol photons m > s~ ! of
photosynthetically active radiation (PAR 400-700 nm) (LM-
100 Light Meter, Amprobe, Germany) at 100 rpm. After a 7-
day acclimation period, 35.7 mg FW sub-samples determined
employing the reticulated spinner, beaker + reticulated spinner
(B+RS) method described in Table 1, were inoculated into
triplicate 100 mL flasks containing 50 mL of the experimental
media and then incubated as outlined above for 14 days.
Samples were aseptically removed in a laminar flow five times

over the 14-day growth period (MSC Advantage, Thermo
Scientific) for FW and nutrient determination.

Fresh weight determination

Seven different techniques for algal FW determination were
assessed in this study. The different biomass dewatering
methods involved centrifugation with a reticulated spinner,
gently blotting with filter paper, agglomeration using a perfo-
rated crucible, and pressing between microscope slides or a
combination of the above. The methods used are described in
detail in Table 1. During the 14-day incubation period, the
algal biomass was removed a total of five times and the dif-
ferent methods applied, followed by gravimetrical weighing
with an analytical balance (PS-60, Fisher Brand, UK) for FW
determination. After each assessment, the algal samples were
transferred back to their original flasks and returned to the
standardised cultivation regime.

Optimisation of reticulated spinner FW determination

Some of the methods tested removed excess water from algal
biomass by centrifugation using a small Chef’n Salad Spinner
(Electronic Supplementary Material), referred to from hereon as
reticulated spinner (RS). This operates using a lever, which,
when pressed, rotates an internal basket. The basket has a diam-
eter of 370 mm, with elliptical or circular perforations of max-
imal and minimal sizes of 18.5 mm % 3 mm to 3 mm % 3 mm,
respectively. The optimal duration of dehydration using the re-
ticulated spinner was determined for all algal species. Initially,
samples were measured using the B method, as described in
Table 1, and then sequentially spun in 15 s intervals, for a total
of 120 s, with the FW determined after each step by weighing
using an analytical balance (PS-60, Fisher Brand, UK).

Dry weight determination

After 14 days, all algal samples were harvested and rinsed
with deionised water to remove extracellular salts and nutri-
ents. Excess water was removed using the B+RS method for
C. coelothrix and C. parriaudii or the perforated crucible +
reticulated spinner (PC+RS) method for S. varians and sam-
ples frozen (Table 1). The frozen algal biomass was then
freeze-dried overnight (Modulyo 4K freeze dryer), or until a
<5% variation in final mass was achieved. The lyophilised
biomass was weighed gravimetrically using an analytical bal-
ance (PS-60, Fisher Brand, UK) to determine its DW.

Microscopy
The effect of the procedures on gross cellular morphology was

examined using an inverted microscope (Eclipse TE2000-U,
Nikon, UK). After 14 days, samples were mounted on a
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Table 1 A description of

methods used for fresh weight Method employed Abbreviation  Description of procedure
(FW) determination and their
acronyms Beaker B Using a spatula, algal biomass was transferred directly
from the flask to a weigh boat and weighed gravimetrically.
Beaker + reticulated B+RS B, followed by reticulated spinner (RS) centrifugation with
spinner optimised time (see below) and then weighed gravimetrically.
Beaker + filter paper B+FP B, followed by gently pressing the biomass with GF/F filter paper
(FP) and then weighed gravimetrically.
B + reticulated spinner ~ B+RS+FP B+RS, followed by gentle pressing of the biomass with GF/F
+ filter paper filter paper and then weighed gravimetrically.
Beaker + cavity B+MS*? B, followed by placing the biomass between two cavity microscope
microscope slide® slides (MS) to remove excess water and then weighed
gravimetrically.
Perforated crucible® PC* Cultures were poured through a perforated crucible (PC)
(Coors Gooch crucible) and then weighed gravimetrically.
Perforated crucible + PC+RS? PC, followed by reticulated spinner centrifugation with optimised
reticulated spinner® time (see section below) and then weighed gravimetrically.
Positive control +C The positive control was only weighed at the end of the experiment.

Therefore, it remained unperturbed during the experimental
period.

*Employed with S. varians

microscope slide with a small volume of growth medium, to
avoid desiccation. Filaments on the periphery of the culture
were selected for ease of visualisation and were examined
under a 100x objective lens. Images were captured using a
CooISNAP HQ2 camera (Photometrics) assisted by
MetaMorph® Microscopy Automation and Image Analysis
Software (Molecular Devices).

Residual nutrient determination

The concentration of nitrate in the culture media was mea-
sured for each of the five sampling days, as well as day 0.
Soluble nitrate was measured by ion chromatography (883
Basic IC Plus, Metrohm, UK), equipped with a peristaltic
pump, an 863 Compact Autosampler, a Metrohm A sup
5250/4.0 mm column, and a 850 Professional IC conductivity
detector. The eluent employed was 3.2 mM sodium carbonate
and 1 mM sodium bicarbonate per L of dH,O. A MSM
Suppressor, operated at 10 MPa, was used to suppress the
eluent, using 0.1 M H,SOy,, 0.1 M oxalic acid, and 5% (v/v)
acetone per L of dH,O as the regenerant. Blanks and internal
standards were analysed periodically to ensure the accuracy of
the method.

Optimised method—validation of the temporal FW/DW
relationship

To ensure that FW growth rates determined with the optimal
method from Table 1 were an accurate measurement of bio-
mass growth, the constancy of the relationship between FW
and DW growth rates was determined. A total of 15 flasks of
each algal species were inoculated and incubated under the
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standard regime as outlined above. The algal biomass in these
flasks was harvested on days 0, 3, 5, 10, and 14 following the
B+RS method for Cladophora sp. or the PC+RS method for
S. varians (Table 1) and the FW determined gravimetrically
using an analytical balance (PS-60, Fisher Brand, UK). Three
flasks of each algal species were subsequently sacrificed for
the determination of their DW, as outlined above.

Growth rates for FW and DW were determined according
to the formula prescribed by Yong et al. (2013):

W 1/d
Growth Rate(%) = <Wt> ~1| x 100
0

where W, and W is the final and initial mass and dis the time (days).

Statistical analysis

All experiments were performed in triplicate and the experi-
mental error was calculated and expressed as one standard
deviation (SD). The significance of difference in the DW yield
of macroalgal samples periodically subjected to a variety of
dewatering methods was obtained by one-way ANOVA with
Tukey’s post hoc analysis (P = <0.05; n = 3). Pearson corre-
lation coefficients, », were used to assess the temporal rela-
tionship between FW and DW. All statistical analysis was
performed using Minitab Statistical Software version 17.

Results and discussion

In this study, a variety of methods, described in Table 1, were
assessed for the determination of the FW of three species of
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filamentous macroalgae: C. coelothrix, C. parriaudii, and
S. varians (Electronic Supplementary Material). These three spe-
cies have differing physical appearances and growth characteris-
tics. Cladophora coelothrix grows quite slowly in tightly knit
“clusters” with thick cell walls, whereas C. parriaudii grows
quickly in a loose skein. Cladophora has been described as an
“ecological engineer”: they are a robust, bloom-forming species
and have shown high removal rates of nutrients and heavy metals
(Deng et al. 2006; Deng et al. 2009; de Paula Silva et al. 2012;
Zulkifly et al. 2013; Liu and Vyverman 2015). Furthermore, they
are resistant to grazers (Zulkifly et al. 2013), making them strong
candidate species for wastewater bioremediation (de Paula Silva
etal. 2012). Spirogyra varians has a central core of biomass, from
which helical-shaped filaments grow toward the water surface.
These filaments are very fragile, tending to fragment when
disturbed.

The three species were selected as model organisms to
explore the applicability of dewatering methods across a range
of phenotypes. Systematic measurement of FW, final DW,
FW/DW ratio, and NO;  uptake and microscopic image anal-
ysis were used to ascertain the viability, growth, and metabolic
activity of the algae periodically subjected to the different
harvesting methods.

Optimisation of the reticulated spinner

Some of the harvesting methods tested employ a reticulated spin-
ner, which has the ability to rapidly remove extracellular water
from filamentous algae and hence facilitate accurate FW deter-
mination. In order to ensure a consistent level of water removal,
the operation of the reticulated spinner was standardised. The FW
of the three algal species was determined after each 15 s spin, up
to amaximum duration of 120 s (Fig. 1). There was a reduction in
the overall weight corresponding to 77—81% of the original wet
weight, irrespective of the species studied. This indicated the
potential applicability of the method to a wide range of filamen-
tous taxa. The majority of water removal, i.e. 61-68%, occurred
within the first 15 s. This was followed by areduction in the rate of
weight change, with minimal further water removal after 90 s
operation, corresponding to a reduction in mass up to 75-80%.
Additional spinning, beyond 90 s, resulted in a further reduction
inmass of less than 1.5% for all species tested. A spinning time of
90 s was adopted for the reticulated spinner. It is recommended
that a similar approach is employed when implementing and
standardising this method for different algal taxa, varying
amounts of algal biomass, or when cultivating in very different
conditions, such as extremes of salinity (Angell et al. 2015).

Dewatering efficiency for the tested methods
Although DW is an accurate measure of biomass, its determi-

nation necessitates the sacrifice of the culture. However, FW
determination is non-destructive and can be reiterated across a
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Fig. 1 Optimisation of spinning time required to dewater C. parriaudii,
C. coelothrix, and S. varians in the reticulated spinner. Algal FW values
were measured after 15 s increments in the reticulated spinner. The

biomass change (%) represents the mass change of FW relative to the
initial wet biomass (n = 3, error bars denote 1 SD)

time series to give high-resolution productivity data. In this
study, cultures were harvested periodically over a 14-day pe-
riod to obtain FW, and on the final day, DW was also deter-
mined and an FW/DW ratio obtained (Fig. 2). This ratio
would be expected to inform how strong an indicator of bio-
mass a particular dewatering method is: the lower the ratio, the
more efficient the dewatering method should be. However, the
size of the error bars will also indicate how reproducible each
method is, therefore providing a more accurate and consistent
measure of actual productivity.

Of the methods tested, B and PC required the least mechan-
ical effort, but they resulted in high FW/DW ratios for the
three species, ranging between 2644 and >60, respectively
for Cladophora sp. and S. varians (Fig. 2). Although one
would anticipate that these methods would not result in any
physical damage to the alga and therefore have no deleterious
effects on metabolic function or growth, they did have a high
degree of error that was associated with the greater volume of
unpredictable water carry-over, making these methods unsuit-
able for implementation. Conversely, beaker + filter paper (B+
FP) and beaker + reticulated spinner + filter paper (B+RS+FP)
have FW/DW ratios of <10 for S. varians and <4 for both
species of Cladophora, with low error throughout. These
methods involved lightly pressing the biomass with an absor-
bent filter paper (Table 1) and resulted in the highest removal
of water from the biomass (Fig. 2). The B+RS method, which
removes water centrifugally, also has a great degree of highly
consistent residual water removal, with ratios of 6.3 (x 0.3)
and 8.6 (£0.2) for C. coelothrix and C. parriaudii, respective-
ly. Methods B+RS, beaker + cavity microscope slide (B+MS),
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intensity of 30-40 umol photons m ? s !, 18:6 h L/D photoperiod),
periodically harvested, and dewatered following the methods: beaker
(B), beaker + reticulated spinner (B+RS), beaker + filter paper (B+FP),
beaker + reticulated spinner + filter paper (B+RS+FP), beaker + cavity
microscope slide (B+MS), perforated crucible + reticulated spinner (PC+
RS), and perforated crucible (PC). More detailed descriptions on each
method can be found in Table 1 (rn = 3, error bars denote 1 SD)

o
P
[

and PC+RS all had a similar degree of water removal when
employed with S. varians: ratios were 20.3 (= 0.05), 18.6 (=
6.1), and 19.3 (+ 4.2), respectively.

The final DW obtained for the different harvesting methods
is shown in Fig. 3. The + C corresponds to biomass grown and
harvested without any additional dewatering procedures being
applied and hence acted as a positive control. Variations in the
final DW were observed for the different methods adopted,
which indicated that there was an impact on the algal growth.

The DW obtained for the different treatments of
C. coelothrix ranged between 13.13—16.43 mg and no statis-
tically significant differences in the yield were observed (P
value = 0.51). This species grows in tightly knit “clusters”
and has a basal cell wall thickness of up to 15 um, which
may make it resistant to mechanical damage (Leliaert and
Coppejans 2003). Although the choice of FW method was
not significant for C. parriaudii (P = 0.102), the DW yield
was reduced from 15 mg in the positive control to 11.3 and
9.6 mg when employing methods B+FP and B+RS+FP, re-
spectively. As shown in Table 1 and Fig. 2, methods that
involve pressing the biomass with absorbent filter paper tend
to have a low and reproducible FW/DW ratio, indicating good
water removal. However, high levels of water removal and a
low growth indicated that damage occurred during the sam-
pling and FW determination procedures. The less dense
growth habit exhibited by the C. parriaudii may make them
more susceptible to physical damage when harsher dewatering
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Fig. 3 Final dry weight (DW) of C. parriaudii, C. coelothrix, and
S. varians, grown for 14 days (100 rpm, 24 °C, light intensity of 30—
40 umol photons m 2 s™', 18:6 h L/D photoperiod), periodically
harvested, and dewatered following the methods: beaker (B), beaker +
reticulated spinner (B+RS), beaker + filter paper (B+FP), beaker +
reticulated spinner + filter paper (B+ RS+ FP), beaker + cavity microscope
slide (B+MS), perforated crucible + reticulated spinner (PC+RS), and
perforated crucible (PC). More detailed descriptions on each method
can be found in Table 1 [n = 3 (except S. varians “+ C” n = 8), error
bars denote 1 SD]. For each species, means that do not share a letter are
significantly different from one another, P = <0.05

approaches were applied. For instance, commonly used large-
scale harvesting techniques, such as centrifugation and cross-
flow membrane filtration, can exert large amounts of shear
stress that can damage and lyse micro-algal cells (Chen et al.
2011; Bilad et al. 2013).

In the case of S. varians, the choice of FW method had a
significant impact upon the DW yield, P value = 0.036. It was
observed that the biomass of S. varians was prone to fragmen-
tation when disturbed, and obtaining sufficient biomass to
ascertain FW was problematic for several of the methods
employed. For instance, disintegrating into a suspension of
short filaments meant that the algae would tend to pass
through the apertures of the reticulated spinner and were chal-
lenging to gently blot with a piece of filter paper. The use of a
cavity microscope slide (B+MS) was intended to reduce fila-
ment loss and to minimise damage caused by actively blotting
or from effects of desiccation. A pre-collection step, involving
pouring the contents of the flask through a perforated crucible
(PC in Table 1), was incorporated into the harvesting protocol
for this alga. The apertures were small enough to retain most
of the biomass and agglomerate it, allowing it to then be sub-
jected to a further dewatering method with the reticulated
spinner. As can be observed (Fig. 3), the PC method had no
obvious impact on the biomass levels of S. varians obtained
when compared to the control. However, implementing the
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PC step prior to utilising the RS method increased the DW
yield from 10.8 to 12.4 mg, compared to employing the B+RS
technique alone.

Variation in the FW/DW ratio is dependent upon the growth
conditions. For instance, Angell et al. (2015) found that the
FW/DW of Ulva ohnoi was the greatest when cultivated in low
to optimal salinities and the lowest when exposed to high salinity.
This difference in ratio was most likely caused by a change in
osmotic potential. Care should be taken when determining
FW/DW across a range of environmental variables or cultivation
conditions. However, this is not the case of the present study as
the algae were grown under the same conditions.

The FW/DW ratio was also found to depend upon the
dewatering methods applied. Those involving spinning (B+
RS, B+RS+FP, and PC+RS) or blotting with filter paper (B+
FP, B+RS+FP) will result in a lower FW/DW ratio than those
that apply minimal pressure, such as pouring through a perfo-
rated crucible (PC). Furthermore, the FW/DW ratio obtained
and its degree of error will also depend upon the species or
morphology of the alga that it is applied to. For instance, the
FW/DW values varied between species using the same meth-
od due to differences in water retention, both intra- and extra-
cellularly. Finally, the DW yield is also species specific. The
choice of dewatering method will have minimal impact upon
robust cultures, with thick cell walls or protective growth
habits, such as C. coelothrix. In contrast, fragile species like
S. varians are more strongly influenced by the choice of
dewatering method, with more stringent methods compromis-
ing the viability of the culture. Furthermore, S. varians re-
quires a pre-collection step to ensure the minimisation of bio-
mass losses, which would further reduce the DW yield.

Physiological assessment

The reduced DW yields observed for some of the species may
be due to the viability of the biomass being compromised as a
result of the different protocols employed. Images of the har-
vested algae subjected to methods + C, B+RS or PC+RS, and
B+FP were taken, to ascertain whether the algae showed any
physical damage (Fig. 4a—i). Healthy, undamaged filaments
were observed in the positive control treatment for all three
species (Fig. 4a, d, and g). The filaments were considered to
be phenotypically normal as they exhibited the characteristic
large breeze-block type cells, with typical green colouration
throughout the cells. Furthermore, C. coelothrix displayed
some branching, indicative of growth (Fig. 4a). Cladophora
cultures that were periodically harvested using the B+RS
method (Fig. 4 b, ¢) and the amended PC+RS method for
S. varians (Fig. 5Sh) were similar in appearance to the positive
controls, with only some superficial damage visible for
C. coelothrix. In contrast, algal cultures periodically harvested
using the B+FP treatment (Fig. 4c, f, and i) displayed obvious
damage, with their cellular contents having been expelled and

with chloroplasts observed in large, often discoloured con-
glomerates attached to the outside of the cell wall. Although
the absorbent filter paper removed superficial water, it was
assumed that it caused some shear or mechanical stress upon
the organism in the process. The greater parity between the
FW/DW ratio for methods employing a filter paper (Fig. 2)
was potentially not only due to the removal of superficial and
interstitial water but this approach may also have removed
intercellular fluid, resulting in cellular injury, as the cells di-
minished in size, and were in some cases devoid of contents.
The image analysis evidencing the presence or absence of
mechanical or physical damage to the algal cellular morphol-
ogy is in agreement with the corresponding DW data (Fig. 3).
The methods employed to determine FW growth might not be
appropriate as they adversely impact upon the viability of the
cell. Although methods B+FP and B+RS+FP offer a good
estimation of the DW yield, this comes at a cost. In addition
to a reduction in the DW yield, visual imaging indicated that
the B+FP technique clearly damaged all cultures tested. Given
the methodological similarity between B+FP and B+RS+FP, it
may be inferred that employing the B+RS+FP method results
in comparable levels of cellular damage. On the other hand,
B+RS and PC+RS have similar biomass yields compared to the
+ C for all three species, whilst providing an accurate estimation
of DW and with negligible obvious damage to the algae.

Disparities in nutrient uptake were observed, depending on
the FW assessment approach employed, further indicated that
under some treatment regimes, physiological damage had oc-
curred (Fig. 5). For all species tested, the positive control
cultures demonstrated a high capacity to remove NO;  from
the media, with ~45, 55, and 65% removal for C. coelothrix,
C. parriaudii, and S. varians, respectively (Fig. Sa—d). In gen-
eral, cultures subjected to the mildest dewatering methods
(Table 1/Fig. 2) demonstrated the highest nitrate removal ca-
pacity: B with 59% and B+RS with 45-62% removal for both
species of Cladophora, whereas 76 and 95% NO;z; removal
was observed for S. varians with methods PC and PC+RS,
respectively. Conversely, algae subjected to protocols that fea-
tured mechanical pressing (B+FP, B+RS+FP, and B+MS)
were amongst those with the lowest rates of nutrient uptake.
This indicated that the more harsh methods had a detrimental
effect on the algae in terms of algal metabolism. This was
further exemplified by the discrepancy in nutrient uptake be-
tween algae subjected to the FW methods after day 2, which
became increasingly pronounced with each successive har-
vest. Conversely, in comparison with the + C, algae treated
using the B+RS or PC+RS protocols had similar nutrient up-
take capabilities for all species tested. This suggests that these
harvesting methods have little-to-no impact on the physiolog-
ical integrity of the organism. This aspect is particularly
important for small-scale algal systems where routine
sampling is required and sampled algae are returned to
the cultivation system.
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Fig. 4 Plates of C. coelothrix (a—¢), C. parriaudii (d—f), and S. varians
(g—i) taken with an inverted microscope after a 14-day growth trial
(100 rpm, 24 °C, light intensity of 30-40 pmol photons m 2 s, 18:6 h
L/D photoperiod) with frequent harvesting using different methods
described in Table 1: positive control (+ C) (a, d, and g), beaker +

The results obtained in this study may be partially ex-
plained by the differences in morphology and algal growth
strategy of the taxa studied. Members of the genus
Cladophora are characterised by their multi-nucleate cells ar-
ranged in either branched or unbranched filaments. Their cell
wall is primarily composed of highly crystalline cellulose I
(Bold and Wynne 1985; Hoek et al. 1995). As previously
mentioned, C. coelothrix (see http://www.ccap.ac.uk/our-
cultures.htm) typically grows in floating clusters or mats,
which are tightly wound (Electronic Supplementary
Material). This characteristic provides mechanical protection
to the cells and it was noted in this study that C. coelothrix was
largely unaffected by the FW determination methods
employed. In contrast, C. parriaudii (see http://www.ccap.
ac.uk/our-cultures.htm) tends to grow in a loose skein, with

@ Springer

reticulated spinner (B+RS) (b, e), beaker + filter paper (B+FP) (c, f,
and i), and perforated crucible + reticulated spinner (PC+RS) (h). W
denotes the cell wall, CL indicates the chloroplasts, P is the pyrenoid,
and CY highlights the multi-nucleate cytoplasm that contains pyrenoids,
chloroplasts, and vacuoles

filaments that grow rapidly outwards to any vacant space; this
growth strategy will mean that the younger, less robust
filaments are likely to be more susceptible to mechanical
damage (Electronic Supplementary Material). This was
observed in this study (Figs. 3, 4f, and 5b) where the DW
yield, physical damage, and a reduced metabolic capability/
nutrient sequestration were observed in cultures subjected to
the more stringent dewatering methods. Less mechanically
stressful treatments, such as B+RS, were better suited for this
species. Spirogyra are almost exclusively found in freshwater
and are characterised by growing in unbranched filaments
with an intracellular helical ribbon of chloroplasts (Whitton
1999). Spirogyra varians (see http://www.ccap.ac.uk/our-
cultures.htm) grows as a benthic mass, with filaments
intertwined in a helical arrangement growing toward the
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Fig. 5 The temporal removal of nitrate from the media by C. coelothrix
(a), C. parriaudii (b), and S. varians (¢, d). Their growth was assessed
periodically using different protocols: beaker (B), beaker + reticulated
spinner (B+RS), beaker + filter paper (B+FP), beaker + reticulated
spinner + filter paper (B+RS+FP), beaker + cavity microscope slide

water surface (Electronic Supplementary Material). The
filaments are thin, fragile, and readily fragment when
agitated or swirled (Chapman and Chapman 1973; Hoek
et al. 1995). This propensity for the colony to disintegrate
meant that many of the approaches employed were unsuitable
owing to the frailty of its filaments.

Investigating the temporal relationship between FW/DW
under optimal harvesting conditions

In comparison with methods for DW determination, B+RS
and PC+RS are rapid, are less energetically expensive to per-
form, and are non-destructive to the algal sample. In order to
ensure that FW measurements using B+RS and PC+RS were
reliable indicators of DW (Fig. 6a, ¢, and e) and consequently
of' biomass growth (Fig. 6b, d, and f), the relationship between
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(B+MS), perforated crucible + reticulated spinner (PC+RS), and
perforated crucible (PC) (Table 1). Nitrate was measured in the media
using ion chromatography (n = 3, [except S. varians “+ C” where n = 8]
error bars denote 1 SD)

FW and DW was determined for a 14-day incubation period. It
was noted that there is a strong positive relationship between
the FW and DW mass: Pearson correlation coefficients were
determined as r = 0.871, 0.948, and 0.954 for C. coelothrix,
C. parriaudii, and S. varians, respectively, with P values of
<0.001 and with low error throughout. Interspecies variation
in biomass growth rate can be clearly determined using the B+
RS and PC+RS methods. The initial “dip” in growth observed
for S. varians (Fig. 6e, f) was assumed to be caused by the
fragmentation of the colony and incomplete retention of the
biomass on the perforated crucible.

One of the purposes of this study was to be able to assess the
feasibility of using non-destructive FW measurements to deter-
mine macroalgal growth rates, instead of using sacrificial DW
measurements. The FW/DW ratios of 6.3, 8.6, and 19.3 for
C. coelothrix, C. parriaudii, and S. varians, respectively (Fig.
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Fig. 6 The FW, DW, predicted DW, and rates of FW and DW growth of
the three species of algae: C. coelothrix (a, b), C. parriaudii (¢, d), and
S. varians (e, f). The temporal relationship between FW and DW (a, ¢,
and e) was assessed using Pearson’s correlation coefficients, ». On each
harvest day, triplicate flasks were harvested and the algal biomass was
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dewatered using either the optimised beaker + reticulated spinner (B+RS)
method for Cladophora species or the perforated crucible + reticulated
spinner technique (PC+RS) for S. varians (Table 1). The DW was
attained by freezing the samples overnight followed by overnight
lyophilisation (n = 3, error bars denote 1 SD)



J Appl Phycol

2), were applied to the temporal FW measurements from Fig. 6,
in order to predict the temporal DW for each species and com-
pare against actual DW yields (all determined for identical cul-
ture conditions). This allows the accuracy of the FW method to
be demonstrated. The results indicated that the B+RS or PC+RS
methods can be used to estimate the DW yield of filamentous
macroalgal species across time. In addition, the growth rates of
FW and DW are comparable. This further demonstrated that the
values are closely related and that the prescribed FW method-
ology can be used as a strong estimation of DW productivity.

The constancy of the FW to DW relationship, irrespective
of species, backed up with statistical evidence, demonstrates
that a reticulated spinner is a reliable and accurate method for
generating samples for FW determination and consequently
DW estimation. Moreover, the ability to accurately assess pro-
ductivity between species mean this approach can be a useful
tool for a variety of scientific applications, including experi-
mental growth screening.

Conclusions

This is the first study to systematically assess a range of
dewatering approaches to determine the FW of filamentous
macroalgae at lab scale using effectiveness, reliability, practi-
cality, and biological and physical impact as factors. The re-
sults demonstrate differences in the effectiveness of a variety
of dewatering methods and the physical and metabolic impli-
cations at both species and genus levels.

This study proposes a method involving a reticulated spin-
ner that is rapid, robust, inexpensive, and easily implemented
or standardised for other algal taxa or amounts of biomass.
This method marries together high accuracy in biomass as-
sessment due to excellent dewatering capabilities, with negli-
gible impact upon algal performance, assessed as growth, ni-
trate removal, and structural integrity. Further studies are re-
quired for the scaling up of this method for larger cultures at
pilot and full scale, which can include assessing and
standardising the application of a gentle spinning cycle using
a washing machine (Mata et al. 2016).
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