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Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian 

cancer risk 

ABSTRACT 
 

Rare and low frequency variants are not well covered in most germline genotyping arrays and are 

understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping 

arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the 

international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were 

conducted at the variant and gene level for 98,543 variants directly genotyped through two exome 

genotyping projects. Only common variants that represent or are in strong linkage disequilibrium 

(LD) with previously-identified signals at established loci reached traditional thresholds for exome-

wide significance (P<5.0x10
-7

). One of the most significant signals (Pall histologies=1.01x10
-13

;Pserous=3.54x10
-14

) 

occurred at 3q25.31 for rs62273959, a missense variant mapping to the LEKR1 gene that is in LD 

(r
2
=0.90) with a previously identified ‘best hit’ (rs7651446) mapping to an intron of TIPARP. Suggestive 

associations (5.0x10
-5

>P>=5.0 x10-7) were detected for rare and low-frequency variants at 16 novel loci. Four 

rare m i s s e n s e  variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), 

K R T 1 3  r s 1 5 0 3 2 1 8 0 9  ( 1 7 q 2 1 . 2 )  and MC2R rs104894658 (18p11.21)), but only MC2R 

rs104894668 had a large effect size (OR=9.66).  Genes most strongly associated with EOC risk included 

ACTBL2 (PAML=3.23 x 10
-5

; PSKAT-o=9.23x10
-4

) and KRT13 (PAML=1.67 x 10-4; PSKAT-o=1.07x10-5), 

reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency 

variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future 

studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the 

unexplained heritability and biology of this disease. 

INTRODUCTION 
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         Epithelial ovarian cancer (EOC) has a strong heritable component, with an estimated three-fold 

increased risk among women with a first-degree relative having the disease (1). The excess familial risk that 

is not attributed to high penetrance mutations in genes such as BRCA1 and BRCA2 may be due to a 

combination of common and rare alleles that confer low- to moderate penetrance(2, 3). Genome-wide 

association studies (GWAS) of EOC t h a t  h a v e  b e e n  c o n d u c t e d  u s i n g  m o s t  o f  t h e  

s a m p l e s  i n c l u d e d   i n  t h e  c u r r e n t  i n v e s t i g a t i o n  have identified common variants at 

approximately 22 loci that collectively a c c o u n t  for 4% of the estimated heritability (4-13).  Few data 

exist regarding the contribution of rare (minor allele frequency (MAF) <0.5%) and low frequency (MAF 

0.5-5%) protein-coding variants to EOC risk. This reflects the fact that protein- coding variants have not been 

targeted by conventional GWAS(14) despite prediction that their effects could be substantial(15) and 

imputation is known to be challenging for rare variants(16). 

Following GWAS arrays of the mid-2000s, exome-based arrays were developed in 2012. The 

Affymetrix Axiom ® Exome Genotyping Array and the Illumina HumanExome Beadchip each contain 

>245,000 putative functional coding variants and other categories of variants selected from 16 exome 

sequencing initiatives that included approximately 12,000 individuals of diverse ethnic backgrounds and a 

range of diseases(17) (Supplementary Table 1). Variants were included as ‘fixed’ content on the 

arrays if they occurred at least three times and were seen in two or more of the 16 studies (17). Here, we 

report the first large-scale genetic association study of uncommon exome-wide variants and EOC risk 

among nearly 20,000 women (Supplementary Table 2). 

 
 
 

RESULTS 
 

Of the 98,299 polymorphic variants successfully genotyped as part of EOC case-control set 1 and set 
 

2 (7,308 cases and 10,773 controls; Supplementary Figure 1), most (68%) were rare (MAF < 0.5%), 

many (20%) were common (n=19,565, MAF >5%), and 12% (n=12,175) were low frequency (MAF 
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between 0.5% and 5%). The majority of these variants were non-synonymous (87%) with 81% missense, 

1% nonsense, 4% located in splice sites, and <1% resulting in a frame shift. 

 
 
 

Single variant associations 
 

The quantile-quantile (Q-Q) plot of the distribution of test statistics for the comparison of 

genotype frequencies in cases and controls showed slight inflation in the median test statistics of the 

likelihood ratio tests (λ=1.15; Supplementary Figure 2). This slight inflation may be explained by 

properties of the likelihood ratio test which make it sensitive to rare variants(18). No rare or low-frequency 

variants were statistically significantly associated with EOC risk (P<5.0x10-7); only common variants that 

represent or are in strong linkage disequilibrium (LD) with previously-identified signals at 

established loci (2q31.1, 3q25.31, 8q24.21, 9p22.2, 17q12, 17q21.3, and 19p13.1) reached traditional 

thresholds for exome-wide significance (P<5.0x10
-7

) (Figures 1A and 1B, S u p p l e me n ta r y  Table 3).  

B r i e f l y ,  the most statistically significant association was observed at 9p22.2 for a previously 

identified intronic variant near the BNC2 (basonuclin2) gene(4), rs38114113, with an odds ratio (OR), 

95% confidence interval (CI), and P-value of 0.78 (0.75-0.82) (P=2.96 x10
-24

) and 0.75 (0.72-0.79) 

(P=3.32x10
-28

) among all histologies and serous histology, respectively. rs38114113 is correlated (r
2
=0.57-

0.95) with two other detected SNPs (P=10-18) near BNC2. The full genome-wide set of summary association 

statistics are given in Supplementary Table 4. 

 The next most significant signal was at 3q25.31, with rs62273959 P=1.01x10-13 and P=3.54x10-14 in all 
 

histologies (OR=1.41) and serous only (OR=1.45) analyses. rs62273959 is a missense variant mapping to the 

LEKR1 (leucine, glutamate and lysine rich 1) gene which is in LD (r
2
=0.90) with a previously identified 

‘best hit’, rs7651446(12) that is located in an intron of TIPARP (TCDD-inducible poly(ADP- ribose) 

polymerase). Imputation of the region (see Supplementary Methods) identified rs78561123 (T>C) 
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(P=2.97x10
-15

), a novel top-ranking variant that maps within 0.5kb of the 3’UTR for LINC00886 (long 

intergenic non-protein coding RNA 886) and is in strong LD with rs7651446 (r
2
=0.97) and rs62273959 

(r
2
=0.93) (Supplementary Figure 3A). The minor alleles of these three variants are located within the same 

haplotype associated with an increased risk among all histologies (OR (95% CI=1.41 (1.29-1.55), 

P=3.14x 10
-13

). A fixed-effect meta-analysis of our study with an imputed dataset from the COGS 

genotyping initiative (19) also revealed stronger associations for variants located near TIPARP and 

LINC00886 (Supplementary Figure 3B).   The combined analysis of set 1 and set 2 also confirmed the 

existence of known common EOC susceptibility alleles or their proxies at 17q12, 8q24.21, 17q21.3, and 

19p13.1 (P<5.0x10
-7

) (Supplementary Table 3). 

Associations for variants reaching a less stringent threshold (5.0x10
-5

>P>=5.0 x10
-7

) were detected 

among all histologies, serous histology, or endometrioid histology at 16 novel loci (1p36.33, 2p22.1, 3p25.1, 

3p14.2, 5q11.2, 6p22.1,  6p21.33, 6q25.2, 6p12.1, 8q21.13, 11q13.1, 15q12, 16q22.3, 17q.21.2, 18p11.21, 

and 22q11.2) (Table 1;Figures 2A and 2B). Of the novel variants that were identified, most were 

common and four were rare (MAFcontrols<0.003). The four rare missense variants (map to actin, beta-like 2, 

ACTBL2 (5q11.2), biotinidase, BTD (3p25.1), keratin 13 type I, KRT13 (17q21.2), and melanocortin 2 

receptor, MC2R (18p11.21). Visual inspection of cluster plots for all four rare variants underscored that 

the variant calling was good. Regional association plots for each of these rare variants reveal that they 

do not appear to be strongly correlated with other genotyped variants (Figure 3). The identified rare 

variants mapping to ACTBL2, BTD, and MC2R are predicted to be damaging per Polyphen-2 (Table 1). Due 

to low heterozygous genotype counts, it was not possible to estimate ORs for  variants at ACTBL2 and 

BTD. For rs150321809 in KRT13 and rs104894658 in MC2R, the magnitudes of association were 

relatively high, with ORs of 2.24 and 9.66, respectively, among all histologies.   Analysis of 883 

invasive endometrioid cancers identified three c o m m o n  variants at P<5.0x10
-5 (Figure 2C; Table 1). 
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We recently described the contribution of deleterious coding variants in seven putative EOC susceptibility 

genes (BRIP1, BARD1, PALB2, NBN, RAD51B, RAD51C, and RAD51D) to EOC risk (23, 24). The 

pooled exome dataset was used to examine associations for 68 variants that reside in these 7 genes. None 

of these variants reached levels of statistical significance (P<5.0x10
-5

) in overall, serous, or endometrioid 

specific analyses. The most significant rare variant in overall and serous analyses was BRIP1 rs4988345 

(MAF=0.0047; P=0.022 and P=0.024, respectively), whereas PALB2 rs57605939  (MAF=0.0002) was the 

variant most significantly associated with endometrioid cancer risk (P=0.007). Similarly, we followed up on 

an exome sequencing study of 429 serous EOC cases and 557 controls by Kanchi et al.(25) in which 

rare truncation and missense variants were detected in known EOC susceptibility genes including BRCA1, 

BRCA2, CHEK2, and PALB2 and in genes not previously associated with EOC susceptibility  such as NF1 

and CDKN2B. Only four of the rare truncation or missense variants they(25) identified were represented on 

either of the genotyping arrays utilized in the current investigation.  Applying a threshold of P<0.05 for 

these four variants (BRCA1_772, CLTC_1498, ERCC2_635, and ITK_448) only BRCA1_772 

(p.Val772Ala; rs80357467, MAF= 0.00033) was associated with overall EOC susceptibility in our pooled 

analysis (OR (95%CI): =4.64 (1.22-17.7)), with P=0.014 (serous OR=3.79, P=0.043). This variant is 

classified as non-pathogenic for the purposes of clinical management but may have a mild to moderate 

impact on risk(26). Thus, previously- detected rare variants were not strongly associated with EOC 

susceptibility in our larger dataset. 

We also evaluated association results for the 80,178 set 1 variants (N=5,431 case and 5,639 controls) 

that were not in the pooled dataset (Supplementary Figure 1). Results for the most statistically significant 

(P<5.0x10
-5

) set 1 variants are displayed in Supplementary Figures 4A-C and are summarized in 

Supplementary Table 5. Of six set 1 variants that were detected at the P<5.0x10
-5 threshold of statistical 

significance, the most statistically significant association was again with a common variant at a known 
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locus rs62273902 (MAF=0.06) in the 5’ untranslated region of LEKR1 showing an increased EOC risk 

among all histologies (OR=1.42, P=1.91x10-9
) and serous histology (OR=1.46, P=9.48x10-10

) that is 

strongly correlated (r2=0.95) with rs62273959, a variant identified in the pooled analysis (Supplementary 

Table 3). Of the remaining five variants, one is rare and two have low frequencies.  Rare variant 

rs115783655 (T>C) (MAF=0.005) maps to an intron in IZUMO4 (IZUMO family member 4) and was 

associated with endometrioid cancer risk (P=3.32 x 10
-5

) while low frequency missense variants 

chr19:38572993 (A>G, MAF=0.02) in SIPA1L3 (signal-induced proliferation- associated 1 like 3) and 

rs148738146 (T>C, MAF=0.01) in PLA2G12A (phospholipase A2, group XIIA) were associated with 

decreased risks of EOC in all histologies and serous histology analyses (Supplementary Table 5). 

Eight of 9,600 indels assessed in set 1 only reached a threshold of P<9.0x10-4, and only one of these 
 

(rs147613544 at 8p21.3) is rare (MAF=0.0009) and was associated with a decreased risk for EOC (OR 

=0.16, P=5.0x10
-4

). Set 1 also assessed 146 variants in the mitochondrial genome; only one rare 

(MAF=0.003) non- synonymous variant c.6480G>A (p.Val193Ile) located within cytochrome c oxidase 

subunit 1 (COI) was strongly associated with decreased EOC susceptibility among all histologies (OR=0.54, 

P=0.0009) and serous histology (OR=0.24, P=0.0008). G6480A has been associated with an increased risk 

for prostate cancer in African Americans (27). 

 
 
 

Gene-level associations 
 

In combined analysis of Affymetrix- and Illumina-based data, thirteen genes had P-values less 

than 5x10-4 for an association with EOC susceptibility overall based on the RAML test(28) (Figure 4). 

Consistency was observed when comparing gene-level findings from RAML to those based on the SKAT-

O(29) tests (Table 2). The genes that were most strongly associated with EOC risk using RAML 

included actin, beta-like 2, ACTBL2 (PAML=3.23 x 10
-5

; PSKAT-o=9.23x10
-4

) and keratin 13, KRT13 
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(PAML=1.67 x 10-4; PSKAT-o=1.07x10-5); these genes contained individual variants ( rs73757391 and 

rs150321809) associated with EOC risk (5.0x10-5>P>=5.0x10-7) highlighted in Table 1.  Details regarding 

the set of rare variants that contributed to gene-level findings for ACTBL2 and KRT13 are summarized in 

Supplementary Table 6.   ACTBL2  and  KRT  were also  statistically  significant  in  the  serous- only  

analysis  after  multiple correction testing using a FDR threshold of 15%(30). Of the genes featured in 

Table 2, MC2R a l s o  contained individual r a r e  variants associated with EOC risk (5.0x10
-5

>P>=5.0x10
-7

) 

(Table 1). W h e n  c o m p a r i n g  primary high-grade serous EOC tumors and normal fallopian tube 

tissues in the TCGA dataset, two of the aforementioned genes were differentially expressed: KRT13 was 

overexpressed in tumor versus normal tissue (p=0.034) while MC2R was under-expressed (p=0.004), though 

neither finding was significant after adjustment for multiple comparisons. 

               Gene-level results for the 15,042 genes encompassed by set 1 only variants d i d  n o t  

h i g h l i g h t  ACTBL2 , KRT13, or MC2R.  Rather,  leukocyte receptor tyrosine kinase (LTK) (P=2.22x10
-5

), 

ATPase NA+/K+ transporting alpha 3 polypeptide (ATP1A3) (P=8.33x10-5), and son of sevenless homolog 

2 (SOS2) (P=4.55x10
-5

) were identified as the most strongly associated genes among all histologies, serous 

histology, and endometrioid histology, respectively (Supplementary Table 7; Supplementary Figure 5).    

Collectively, all genotyped uncommon variants (MAF<0.05%) explained 4.7% of the phenotypic variation in 

our subjects (54).  Only 2% (.11/4.7) of this variation c a n  b e  a t t r i b u t e d  t o variants with P< 5.0x10
-5 

(Supplemental Methods).  

 
 

DISCUSSION 
 

We report an EOC risk association analysis of 98,299 variants enriched for rare and low 

frequency protein-coding changes among nearly 20,000 women using commercially available genotyping 

arrays. Assuming a disease prevalence of 1.4%, our sample size was adequately powered (~89%) to detect 
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associations with low frequency variants i n c l u d e d  o n  t h e  e x o m e  a r r a y s  and moderate effect 

sizes (OR>1.35) should they exist, but we did not identify any novel uncommon variants at exome-wide 

levels of statistical significance (P<5.0x 10
-7

). Instead, association with common variants (MAF>5%) at 

known EOC loci (2q31.1, 3q25.31, 8q24.21, 9p22.2, 17q12, 17q21.3, and 19p13.1)(4-6, 10, 19) were 

identified; most of these variants were (or were in strong LD with) the previously reported top-ranking 

variant at the locus. Importantly, sixteen novel loci with low-frequency or rare variants at P<5.0 x10-5 were 

detected. Four rare variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), 

KRT13 rs150321809 (17q21.2), and MC2R rs104894658 (18p11.21)), and gene-level analyses revealed 

statistically significant associations with variation in three of these genes. These results are consistent with 

the known landscape of common genetic variation in EOC risk and the utility of multi-marker testing for 

rare variation. They suggest that the effect sizes of rare coding variants wi th  MAF that  a re  in  the 

range included on the exome arrays  may be less than 1.35, requiring larger sample sizes and the 

use of a family-based approach for their discovery. Indeed, recent simulation studies suggest that sample 

sizes of 60,000-100,000 will be needed to detect small effect sizes for rare variants (MAF<0.5%) when using 

exome genotyping arrays(31). 

Among the four rare variants that were identified, rs73757391, rs200337373, and rs104894658 

are non-synonymous and predicted to be damaging. Moreover, according to the ClinVar database(26), 

BTD rs200337373 (G>A) and MC2R rs104894658 (C>A) are reported to be pathogenic for biotinidase 

deficiency and  adrenocorticotropic  hormone  (ACTH)  resistance  observed  in  familial  glucocorticoid  

deficiency(32), respectively. Importantly, gene-level analysis using different methods highlighted ACTBL2, 

KRT13, and MC2R as being strongly associated with EOC risk overall and serous disease. Whereas 

ACTBL2 is a cytoskeletal protein abundantly expressed in vascular smooth muscle cells(33) that has no 

reported link to cancer, BTD (biotinidase) is a putative biomarker of breast cancer(34), papillary thyroid 
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cancer aggressiveness(35), and lymph node involvement in patients with early stage cervical cancer(36). 

In vivo a deficiency of biotinidase affects the expression of central-carbon metabolism genes(37), a 

pathway important in the development and progression of EOC(38, 39). KRT13 encodes a cytoskeletal 

protein downregulated in an estrogen receptor (ER) positive ovarian cancer cell line(40) and contributes to 

breast cancer growth and metastasis through its interaction with estradiol and the selective estrogen receptor 

modulators, tamoxifen and raloxifene(41). MCR2 belongs to a family of melanocortin receptors involved 

in the regulation of food intake, inflammation, skin pigmentation, sexual function, and steroidogenesis, in 

part by binding to adrenocorticotropic hormone (ACTH)(42, 43). ACTH-producing ovarian tumors have 

been reported (44-46), but this has been in the context of Cushing’s syndrome and non-epithelial ovarian 

cancers. Taken together, there is biological plausibility to explain some but not all of the current association 

results. 

Independent replication of novel rare variant associations is important but challenging because of 

the lack of appropriate replication panels. The large COGS EOC meta-GWAS(19) with imputation to Phase I 

1000 genome project data was completed after the onset of this study. As a form of replication, we 

attempted to interrogate this dataset(19) for the most strongly associated novel rare variants. Unfortunately, 

rare variants and their proxies were not represented in the imputed dataset, precluding the possibility of 

replication and the opportunity  to  evaluate  associations  between  germline  genotype  and  gene  

expression  via  expression quantitative trait locus analysis. Furthermore, our attempt to replicate 

associations with rare variants identified in studies of EOC that were much smaller than ours (23-25) did not 

yield statistically significant findings. 

The limited evidence for novel rare or low frequency coding variants at exome-wide levels of 

significance is consistent with studies of other complex diseases (myocardial infarction(51), Alzheimer’s 

disease(52), and insulin processing and secretion(53)) that used these exome genotyping arrays. Published 

investigations of exome genotyping array data are limited for other cancers, precluding comparison of 
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findings across cancer types. The limited evidence for rare or low-frequency coding variants may be 

expected when using rare variant chips for cohorts or diseases for which they were not originally 

designed. Integration of sequencing data in very large sample sizes may be an effective strategy for 

discovering additional rare EOC alleles in the future since the arrays do not provide complete coverage of 

all functional variants at each locus and the accuracy of imputation for rare variants is suboptimal. Even 

with such limitations, the current study suggests that rare coding variants with large effects m a y  exist, 

although they did not account for a significant fraction of EOC heritability within our data. In total, rare 

variants accounted for 4.7% of the phenotypic variation in our subjects (54) with only 2% (.11/4.7) of this 

variation from variants with P< 5.0x10
-5 (Supplemental Methods). The remaining 98% of variance 

attributable to rare variants in this study could be due to small effect sizes that did not reach statistical 

significance. In the absence of opportunities to significantly increase sample sizes, future studies should 

rely on closer integration of epidemiology and laboratory assays of functional effects to further unravel 

the etiology of this disease. 

 
 
 
MATERIALS AND METHODS 

 
Study Population and Genotyping 

 
Study participants came from 27 independent studies in the international Ovarian Cancer 

Consortium (OCAC)(55) (Supplementary Table 2 ). In brief, cases were women with pathologically-

confirmed primary invasive EOC, fallopian tube cancer, or peritoneal cancer, and controls were women 

without EOC, with at least one ovary intact, and for most studies were frequency-matched to controls on 

age group and self-reported race. Specimens and data were collected according to protocols approved by 

local institutional review and ethics boards. Germline DNA samples from 19 studies (Set 1, 7,060 EOC 

cases and 6,712 controls) were genotyped on the Affymetrix Axiom Exome Genotyping Array at the 

Affymetrix Service Lab (Santa Clara, CA, USA), and those from eight studies (Set 2, 2,109 cases, 5,646 
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controls) were genotyped on the Illumina HumanExome Beadchip at the Strangeways Research Lab 

(University of Cambridge, United Kingdom). 

 
 
 

Genotyping Quality Control (QC) 
 

Set 1 genotyping was performed in batches grouped according to sample type (genomic  blood, 

genomic saliva, whole genome-amplified (WGA) blood, WGA saliva). Affymetrix Genotyping Console™ 

Software was used for automated allele calling for each batch, followed by initial sample and variant 

QC performed  per  protocol  (http://media.affymetrix.com/support/downloads/manuals/axiom). Since 

significant batch effects were observed, intensity data from the genomic samples were combined into a 

single batch to enable the automated clustering algorithm to more accurately detect rare variants(56). WGA 

samples were not recalled as one batch because of known chemistry differences between the component 

batches (personal communication, Affymetrix, Inc). Four hundred thirty-seven samples were genotyped in 

duplicate and were identified with 99.8% concordance. As shown in Supplementary Figure 1, of 13,772 

unique samples that were genotyped, 454 (3.3%) were excluded because they failed Affymetrix QC metrics 

(<97% call rate or dish QC < 0.82) and an additional 545 samples were excluded because of ambiguous 

gender, replicate discordance, sample relatedness, or failure to meet eligibility criteria for the primary 

analysis. Of 302,461 variants on the Affymetrix array, 123,934 variants (41%) were excluded for QC 

reasons which mostly included failed Affymetrix cluster QC, monomorphism, deviation from Hardy 

Weinberg Equilibrium (HWE) P<10-7 in controls, or discordant B allele frequencies between the 

genomic and WGA samples. A total of 12,773 samples (6,288 case and 6,485 controls) and 178,527 

variants genotyped on the Affymetrix platform passed QC steps. HapMap DNA samples for European 

(CEU, n=60), African (YRI, n=53) and Asian (JPT+CHB, n=88) populations were also genotyped, and the 

program LAMP(57) was used to estimate intercontinental ancestry based on the HapMap (release no. 23)  
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genotype frequency  data for  the European, Asian, and African populations. Subjects with greater than 90% 

European ancestry were included in analyses (5,431 cases, 5,639 controls) (Supplementary Figure 1). 

Genotype data for set 1 are being released into dbGAP per NIH guidelines. 

Set 2 genotyping was performed for 7,612 samples, and genotype calling was carried out according 

to Best Practice Guidelines(56) using the GenCall(58) module in Illumina's Genome Studio with a default 

GenCall threshold of 0.15. After initial sample QC, zCall(59) was calibrated to a z-value of 8 and run for 

all variants. One hundred and forty-three samples were genotyped in duplicate and identified with 92% 

concordance. Initial sample QC excluded 248 samples with low call rates (<70%). After zCall calibration 

and variant recall, we further excluded 221 (3%) samples for reasons including <99% call rate, high or 

low heterozygosity at a significance level of 10
-16

, ambiguous gender, relatedness, or genotypes discordant 

with prior genotypes from the international Collaborative Oncological Gene-Environment Study (iCOGS) 

genotyping array(19). Genotyping also included HapMap DNA samples (CEU, n=95; YRI, n=82; JPT+CHB, 

n=93), and ancestry was assessed using the IBS matrix for all samples combined with HapMap samples over 

the uncorrelated variants. Using this multi-dimensional scaling  on a weighted identity by state matrix, 

non-European samples at a distance of greater than 10% were excluded (n=97) (Supplementary Figure 

1). Of the 247,870 markers on the Illumina array, we excluded 94,231 variants (38%) for reasons 

including call rate <95%, poor cluster separation, duplicate probes, monomorphism, and deviation from 

HWE (Supplementary Figure 1). We tested for HWE using a Robertson and Hill test statistic stratified by 

study(60) and an exact test. Variants that failed both tests were excluded using exclusion thresholds of p-

values < 10-12 and 10
-6 for cases and controls, respectively. After all exclusions there were 7,046 

European ancestry samples (1,878 cases and 5,168 controls) and 153,639 variants genotyped on the 

Illumina platform (Supplementary Figure 1). Thirty-five samples were genotyped in common as part of set 

1 and set 2; the genotype concordance rate was 99.66%. 
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Thus, a combined total of 18,081 unique subjects of European ancestry (7,308 cases, 10,773 controls) 

were genotyped and passed sample QC. Of the 18,081 subjects, 5,138 (997 cases and 4,141 controls) were 

not previously genotyped as part of a previously described EOC GWAS or post-GWAS initiative (4, 5, 19). 

Of the variants passing QC for each set, 98,543 were present on both platforms and available for pooled 

analysis (Supplementary Figure 1), excluding non-autosomal variants (n=1,983) and those with 

discordant B allele frequencies between the two sets (n=32). On this combined dataset, we carried out 

principal components analysis (PCA) to examine the sub-European population structure using a linkage-

disequilibrium-pruned set of 27,335 autosomal markers with MAF>1% and HWE P value > 10
-7

. We 

inspected the first 10 principal components (PC) for evidence of population stratification in the pooled 

samples. 

 
Single Variant Analysis 

 
 

Each variant was tested for a per allele association with EOC risk using a likelihood ratio  test 

comparing the deviance (-2 × log-likelihood) of two generalized linear models with and without the 

variant. Models were adjusted for set (1 versus 2) and the first five PCs representing sub-European 

ancestry. When adjusted for study alone, there was an inflation of the test statistics (λ = 1.20, λ1000 = 

1.024) which was reduced to λ = 1.15, (λ1000 = 1.018) after adjustment for five principal components (61). 

Visual inspection of intensity cluster plots resulted in the elimination of 244 variants with poor 

differentiation between heterozygote and homozygote calls (Supplementary Figure 1). Subgroup 

analysis was conducted for the two most common histologic subtypes: serous and endometrioid. Using 

a stringent Bonferroni correction for 98,299 tests, we considered variants with P<5.0x10-7 to be statistically 

significant. Because of the greater number of variants and samples in set 1, we also explored associations 

for 80,178 variants from set 1 that passed visual cluster inspection and were not included in the Illumina 

array; for these analyses, we adjusted for the first 3 PCs. 
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Gene-level Analysis 
 

Given the emphasis of each array on exomic coverage(62), gene-level tests were also conducted, 

mapping variants within 50 kb to genes based on Genome Build 37 coordinates and gene annotation that was 

curated by Affymetrix from UCSC Genome Bowser data tables. In total, 71,044 variants mapped to 

15,118 genes of which 12,123 genes contained more than one variant and were evaluated for the pooled 

gene-level analysis. Two methods were used for gene-level analyses because of some similarity in 

assumptions and the ability to include covariates in the underlying regression model: a) the rare admixture 

maximum likelihood test (RAML)(63), which makes no assumptions about the proportion of variants 

that are associated with the phenotype of interest or the magnitude and direction of their effect and b) the 

Sequence Kernel Association Test -Optimal unified test (SKAT-O)(64), a score-based variance-component 

test that is powerful when the direction of association for variants can be increased or decreased. Both 

methods considered only rare variants (MAF <1%) and were not weighted based on MAF. False discovery 

rate (FDR) is used to adjust for multiple comparisons and FDR of 15% is used to declare significance. 

Similarly, we also conducted gene-level analysis with the larger set of variants in set 1 which totaled 15,042 

genes and 128,992 variants. For genes that were most strongly associated with EOC susceptibility, we 

mined publicly available gene expression data from the Cancer Genome Atlas Project (TCGA)(65) and 

compared gene expression between 568 high-grade serous ovarian tumors and 10 normal fallopian tube 

tissues according to previously described methods(9). 
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LEGENDS TO FIGURES 
  

Figure 1. Manhattan plot of association for 98,299 SNPs from a pooled analysis of Affymetrix and Illumina 

exome genotyping arrays.  Plots show the strength of association versus chromosomal position for 

(A) all invasive EOC risk and (B) serous invasive EOC risk. The red line represents exome-wide significance 

(5.0x10-7). Exome-wide significant variants are annotated for the gene in which they are located. Known 

variants previously reported to have the strongest association signal are indicated by a black diamond. 

 
 
 

Figure 2. Manhattan plot of association for sub-exome-wide (P > 5.0x10-7) variants from a pooled 

analysis of Affymetrix and Illumina exome genotyping arrays. SNPs with P < 5.0x10-7 were filtered out and 

the strength of genetic association versus chromosomal position was plotted for the remaining 98,287 SNPs  for 

the risk of (A) all invasive EOCs, (B) serous invasive EOCs, and (C) endometrioid invasive EOCs.  Known 

variants previously reported to have the strongest association signal are indicated by a black diamond. Sub- 

exome-wide significant SNPs (P < 5.0x10-5) are annotated for the gene in which they are located. 
 
 
 

Figure 3. Regional association plots for rare variants associated with EOC susceptibility. 
 

A)  BTD rs200337373 (3p25.1), B) ACTBL2 rs73757391 (5q11.2), C) KRT13 rs150321809, 
 

(17q21.2), and D) MC2R rs104894658 (18p11.21)). Linkage disequilibrium (LD, r2) between the strongest 

signal (noted by a purple diamond) and other variants is indicated by the color scheme. 

 
 
 

Figure 4. Gene-level association of rare variants (MAF<1%) using the Rare Admixture Maximum 

Likelihood (RAML) association test. Results of association with all invasive EOC risk are shown for 15,118 

genes, adjusting for study and first 5 PCs. Genes with P < 5.0x10-4 are annotated. 

 
 

Supplemental Figure 1. Sample and variant quality control and data pooling flowchart. 
 
 
 
 

Supplemental Figure 2. Quantile-Quantile plot of distribution of test statistics for 98,299 SNPs in primary 

pooled analysis. Plot shows the observed test statistics from the likelihood ratio test versus the 
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expected test statistic. The ratio of the empirically observed median test statistic to the expected median (λ) is 1.13. 

 
 
 

Supplemental Figure 3. Regional association plot for variants directly genotyped or imputed at the 3q25 

susceptibility locus.  Directly genotyped variant in LEKR1, rs62273959, is strongly correlated (0.93>r2>0.96) 

with previously reported intronic variant near TIPARP (rs7651446) and newly imputed variant, rs78561123,which 

that maps within 0.5kb of the 3’UTR for LINC00886. 

 
 
 

Supplemental Figure 4. Manhattan plot of association for 80,178 SNPs from Set 1 only analysis (Affymetrix). 

Plots show association between genotype and risk of (A) all invasive EOC, (B) serous EOC, and 

(C) endometrioid EOC. The red line represents exome-wide significance (5.0x10-7) and exome-wide or sub- 

exome-wide significant SNPs (P < 5.0x10-5) are annotated for the gene in which they are located. 
 
 
 

Supplemental Figure 5. Gene-level association of rare variants (MAF<1%) using RAML association test for 

Set 1 only analysis (Affymetrix). Results of association with all invasive EOC risk are shown for 15,042 genes, 

adjusting for the first 3 PCs. Genes with P < 5.0x10-4 are annotated.  
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       Table 1.  Variants at Novel Loci Associated with Epithelial Ovarian Cancer Susceptibility with 5.0x10-5>P>=5.0 x10-7 

       All Invasive 
(7308 cases, 10773 controls) 

Serous 
(5955 cases, 10773 controls) 

Endometrioid 
(883 cases, 10773 controls) 

Regiona rsID 
(major>minor allele) 

Position 
(hg19) 

Nearest 
Gene(s) 

Function 
(Polyphen 

score/ 
prediction) 

Case 
MAF 

Control 
MAF 

OR 
(95% CI)b P value OR 

(95% CI)b P value OR 
(95% CI)b P value 

1p36.33 rs138031468 (G>T) 977028 AGRN Missense: 
A375S 0.005 0.007 0.79 (0.60-1.03) 8.34E-02 0.91 (0.7-1.2) 5.20E-01 0.08 (0.01-0.56) 3.80E-05 

2p22.1 rs61757604 (C>T) 39095403 DHX57 
Missense: 

G49S 
(0.318/B) 

0.02 0.02 0.82 (0.68-0.99) 3.55E-02 0.92 (0.75-1.11) 3.69E-01 0.26 (0.12-0.56) 2.21E-05 

3p25.1 rs200337373 (G>A) 15686027 BTD 
Missense: 

D222N 
(0.999/D) 

0.001 0 NEc 8.61E-06 NEc 1.75E-05 NEc 4.74E-02 

3p14.2 rs4679621 (C>T) 59324733 
C3orf67 
(289kb) 

FHIT 
(410kb) 

Intergenic 0.47 0.44 1.1 (1.05-1.14) 4.19E-05 1.1 (1.05-1.15) 3.95E-05 1.03 (0.93-1.14) 5.82E-01 

5q11.2 rs381852 (G>A) 54459961 GPX8 
CDC20B 

Missense: 
K182R (0/B), 

Intron 
0.21 0.18 1.13 (1.07-1.2) 1.63E-05 1.14 (1.08-1.21) 9.07E-06 1.05 (0.92-1.2) 4.72E-01 

5q11.2 rs73757391 (C>T) 56778213 ACTBL2 
Missense: 

E108K 
(1.0/D) 

0.001 0 NEc 6.37E-06 NEc 5.15E-06 NEc 4.24E-02 

6p22.1 rs114979098 (C>T) 29785235 HLA-G 
(10kb) Intergenic  0.42 0.41 1.11 (1.05-1.18) 4.82E-04 1.08 (1.02-1.15) 1.15E-02 1.37 (1.19-1.56) 5.15E-06 

6p21.33 rs149771958 (C>T) 31079994 C6orf15 
Missense: 

G48R 
(0.895/PD) 

0.07 0.08 0.84 (0.77-0.91) 4.24E-05 0.84 (0.77-0.92) 1.25E-04 0.86 (0.71-1.03) 1.01E-01 

 rs116682468 (C>T) 31112484 CCHCR1 
Missense: 

R627Q 
(1.0/D) 

0.07 0.07 0.83 (0.76-0.91) 3.90E-05 0.84 (0.77-0.92) 2.86E-04 0.82 (0.68-1) 4.55E-02 

 rs116151586 (T>C) 31118019 CCHCR1 Intron 0.32 0.32 0.88 (0.83-0.94) 4.60E-05 0.88 (0.83-0.94) 9.03E-05 0.84 (0.73-0.97) 1.39E-02 

 rs114470046 (C>A) 31125257 CCHCR1 Nonsense: 
E41Stop 0.07 0.07 0.83 (0.76-0.91) 3.61E-05 0.84 (0.77-0.92) 2.75E-04 0.82 (0.67-1) 4.31E-02 

 rs115538919 (C>T) 31129707 TCF19 
Missense: 

P241L 
(0.906/PD) 

0.07 0.07 0.83 (0.76-0.91) 3.76E-05 0.84 (0.77-0.93) 3.09E-04 0.82 (0.68-1) 4.49E-02 

6p21.33 rs113935384 (G>A) 31231989 
HCG27 
(60kb) 
HLA-C 
(4.5kb) 

Intergenic 0.36 0.36 0.89 (0.84-0.94) 3.66E-05 0.89 (0.84-0.94) 1.09E-04 0.9 (0.79-1.02) 9.54E-02 

6p12.1 rs2297980 (A>G) 54173413 TINAG Missense: 
Q22R (0/B) 0.09 0.11 0.84 (0.78-0.9) 1.90E-06 0.83 (0.77-0.9) 2.25E-06 0.91 (0.76-1.07) 2.47E-01 

6q25.2 rs199761238 (T>C) 152652052 SYNE1 
Missense: 
N4590D 

(0.818/PD) 
0 0.001 0.15 (0.03-0.63) 1.06E-03 NEc 2.78E-05 1.33 (0.29-6.08) 7.22E-01 

11q13.1 rs145514333 (C>T) 64527189 PYGM Missense: 
R61H (1.0/D) 0.004 0.0001 3.18 (1.69-6.01) 1.49E-04 3.59 (1.91-6.77) 2.67E-05 0.84 (0.19-3.77) 8.18E-01 

15q12 rs147432497 (G>A) 25940059 ATP10A 
Missense: 

R999C 
(1.0/D) 

0 0.001 0.16 (0.04-0.67) 1.61E-03 NEc 4.13E-05 NEc 1.31E-01 

16q22.3 rs147445846 (G>C) 72992910 ZFHX3 
Missense: 

L379V 
(0.979/D) 

0.001 0.002 0.37 (0.22-0.62) 4.86E-05 0.34 (0.19-0.61) 7.01E-05 0.42 (0.13-1.34) 9.42E-02 

17q21.2 rs150321809 (C>T) 39657599 KRT13 Missense: 
R429H 0.003 0.001 2.24 (1.52-3.31) 3.20E-05 2.45 (1.65-3.65) 6.49E-06 1.03 (0.4-2.67) 9.48E-01 
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(0.266/B) 

18p11.21 rs104894658 (C>A) 13885297 MC2R Missense: 
S74I (1.0/D) 0.002 0.0003 9.66 (2.73-

34.24) 3.66E-05 10.15 (2.86-35.99) 2.76E-05 NEc 5.78E-02 

22q11.2 rs141200301 (C>T) 24123521 MMP11 
Missense: 

R334C 
(1.0/D) 

0.001 0 NEc 7.49E-05 NEc 3.91E-05 NA NA 

50
51
52
53
54
55
56
57
58
59
60

 at Mayo Clinic Library on July 7, 2016 http://hmg.oxfordjournals.org/ Downloaded from 

http://hmg.oxfordjournals.org/


 

Gene Information  Rare Admixture Maximum Likelihood (RAML) test1  Sequence Kernel Association Test (SKAT)1
 

 

All Invasive Serous Endometrioid All Invasive Serous Endometrioid 
  N SNPs             

Gene Region (total/rare) P-value2
 FDR P-value2

 FDR P-value2
 FDR P-value2

 FDR P-value2
 FDR P-value2

 FDR 
 

Table 2: Genes most strongly associated with epithelial ovarian cancer risk, with P<5.0x10-4 by RAML 
 

 
 
 

      1Both the RAML and SKAT methods were limited to rare variants (MAF<1%).  No weighting by minor allele frequency was used in either method. 
2Analyses are adjusted for site and the first five principal components representing European ancestry. 

 
 
 
 
 
 
 
 
 
 
 
 

ACTBL2 5q11.2 6/6 3.23E-05 0.38 2.00E-05 0.15 2.99E-01 1 9.23E-04 0.56 1.50E-03 0.46 2.60E-01 0.98 
KRT13 17q21.2 7/7 1.67E-04 0.38 2.94E-05 0.15 2.65E-01 1 2.04E-05 0.15 5.24E-06 0.08 3.62E-01 0.98 
CLCNKA 1p36.13 3/3 2.00E-04 0.38 8.33E-05 0.25 5.60E-01 1 2.98E-04 0.48 6.08E-05 0.14 5.61E-01 0.98 
MYO19 17q12 14/11 2.00E-04 0.38 7.50E-04 0.37 1.84E-02 1 5.41E-03 0.64 9.30E-03 0.66 1.76E-02 0.74 
TNFSF15 9q32 8/3 2.20E-04 0.38 5.56E-05 0.21 2.56E-01 1 2.79E-04 0.48 4.39E-05 0.14 2.62E-01 0.98 
TRIB1 8q24.13 4/2 2.80E-04 0.38 3.67E-04 0.29 7.76E-01 1 4.90E-04 0.51 3.09E-04 0.26 7.25E-01 0.99 
MC2R 18p11.21 6/6 3.25E-04 0.38 2.00E-04 0.29 9.62E-02 1 1.32E-01 0.91 2.01E-01 0.93 8.26E-02 0.98 
LIG3 17q12 7/6 3.33E-04 0.38 1.70E-03 0.46 3.59E-02 1 4.91E-03 0.64 9.80E-03 0.66 4.62E-03 0.55 
CAMSAP3 19p13.2 4/3 3.67E-04 0.38 2.40E-04 0.29 3.54E-01 1 1.10E-04 0.37 6.76E-05 0.14 4.20E-01 0.98 
GSDMB 17q21.1 15/7 3.67E-04 0.38 4.33E-04 0.31 5.41E-01 1 2.78E-01 0.95 2.47E-01 0.93 2.49E-01 0.98 
KIAA1586 6p12.1 3/2 4.00E-04 0.38 3.33E-04 0.29 1.80E-01 1 4.70E-04 0.51 2.00E-04 0.26 1.53E-01 0.98 
SPTBN1 2p16.2 9/8 4.00E-04 0.38 2.10E-03 0.48 2.06E-01 1 1.16E-05 0.15 2.20E-04 0.26 3.88E-02 0.97 
STPG1 1p36.11 9/3 4.50E-04 0.40 7.50E-04 0.37 2.21E-01 1 4.50E-01 0.95 1.71E-01 0.92 1.84E-01 0.98 
GPATCH2 1q41 8/7 5.00E-04 0.42 3.67E-04 0.29 7.06E-01 1 3.26E-02 0.81 5.37E-02 0.84 1.00E+00 1.00 
CCDC136 7q33 12/11 5.33E-04 0.42 1.43E-04 0.26 7.47E-01 1 1.07E-02 0.75 8.68E-03 0.66 7.53E-01 0.99 
WDR59 16q23.1 10/8 1.00E-03 0.50 3.67E-04 0.29 2.58E-01 1 2.81E-03 0.61 2.67E-03 0.55 4.51E-01 0.98 
NEXN 1p31.1 3/3 1.00E-03 0.50 3.67E-04 0.29 1.91E-01 1 5.46E-03 0.64 3.64E-03 0.61 4.53E-01 0.98 
MMP11 22q11.23 5/4 1.20E-03 0.50 4.33E-04 0.31 2.98E-01 1 2.69E-01 0.95 4.25E-02 0.83 1.87E-01 0.98 
BCL9L 
 
PYGM 

11q23.3 
11q12- 
q13.2 

2/2 
 

11/11 

1.30E-03 
 

3.10E-03 

0.50 
 

0.66 

1.57E-04 
 

3.33E-04 

0.26 
 

0.29 

4.52E-01 
 

3.52E-01 

1 
 

1 

1.31E-03 
 

1.56E-01 

0.57 
 

0.92 

1.58E-04 
 

5.24E-02 

0.26 
 

0.83 

4.99E-01 
 

3.13E-01 

0.98 
 

0.98 
ATMIN 16q23.2 7/6 5.06E-02 0.94 3.27E-01 1 3.67E-04 1 1.23E-01 0.91 5.30E-01 0.94 9.09E-04 0.30 
SOS2 14q21 9/9 1.30E-01 0.99 3.71E-01 1 6.88E-05 1 8.85E-02 0.89 1.83E-01 0.92 6.34E-02 0.98 
OR7G1 19p13.2 9/3 1.97E-01 1.00 3.85E-01 1 2.40E-04 1 9.47E-02 0.90 3.00E-01 0.94 4.23E-04 0.23 
PRR5 22q13 5/4 3.71E-01 1.00 6.75E-01 1 3.67E-04 1 4.08E-01 0.95 8.36E-01 0.94 7.86E-02 0.98 
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