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Dr. Bruce Koppelman, Ph.D.       April 21, 2016  
Scientific Editor  
Immunity, Cell Press 
50 Hampshire St. 5th floor 
Cambridge, MA 02139 
 

 
Dear Dr. Koppelman,  
 
Per our previous discussion, please find attached our revised manuscript entitled "IL-13 Activates 
Distinct Cellular Pathways Leading to Ductular Reaction, Steatosis, and Fibrosis" (IMMUNITY-D-15-
00701).  We have included a point-by-point response to reviewer’s comments in a separate document 
and have added additional text to address the editorial concerns you brought to our attention. We believe 
we have adequately addressed all of the major and minor concerns of the reviewers, in several cases with 
additional supportive data, so we hope that you will find the revised paper as exciting as we do. 

 
I affirm that all authors concur with its re-submission.  The material submitted for publication has not 
been previously reported and is not under consideration for publication elsewhere.   

 
Sincerely yours, 

                  
Thomas A. Wynn    
Senior Investigator NIH/NIAID 
4 Memorial Dr  
Bethesda, MD 20892-0425, USA  
Ph: 301-496-4758     
twynn@niaid.nih.gov   
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               April 21, 2016  

 
Dear Dr. Koppelman,  

 
Thank you for considering our manuscript for publication in Immunity. We appreciate the reviewers’ helpful 

comments and have addressed the comments below. Additionally, as per our correspondence, we have added 

additional text citing previous human studies and ongoing clinical trials to emphasize the important pathogenic role 

of IL-13 in diseases impacting many organs and to place our IL-13 overexpression studies into appropriate context.  

We believe that our revisions have clarified and solidified the major conclusions of the manuscript, as explained in 

our point-by-point response below. 

 

REVIEWER SPECIFIC COMMENTS: 

1. In the previous critique it was stated " In Figure 1 H, …...At weeks 12 and 18, there seems to be a trend 

towards lower ALT and AST levels in the AlbCre+ mice but numbers at these time points are extremely 

low." The authors now state "Our n-values of 17 and 21 mice for Alb-Cre negative and positive respectively 

have enough power to discern significant differences between the groups", but the numbers in the Alb-Cre 

positive mice remains n=4 and n=3 at these time points. 

 

We appreciate the reviewer’s concern regarding the possible trend at later time points. Previously, we only provided 

representative results from the week 12 and 18 time points.  However, these experiments were replicated on four 

separate occasions with similar results at multiple time points. The new graph included below and incorporated into 

a revised Figure 1 now includes pooled results from individual mice at 4, 8, 12, and 18 weeks post-infection.  The 

new graphs clearly show a similar pattern of AST/ALT expression at multiple time points post infection. Additional 

data points are unlikely to alter the conclusion of these convincing results. As expected, peak AST/ALT levels were 

observed on week 8 post-infection, when the inflammatory response in the liver reaches a maximum.    

 

Response to Reviewers
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The data shown are week 4, 8, 12, and 18 for Cre negative (black symbols) and Cre positive (open symbols) mice.  

The additional data points increase the n of the Cre+ week 12 group from 4 to 11 and week 18 from 3 to 7. The data 

from other experiments also increased the “n” of the two earlier time points as well. 

 

Please refer to the original graphs for comparison: 

 
 

 

2. The authors continue to use a subtractive approach by comparing results in Alb-Cre positive mice (deleting 

in hepatocytes and cholangiocytes) and K19-CreERT mice. Previously, this reviewer had requested an AAV8-

Cre-based approach as a simple straightforward method for hepatocyte-specific deletion. This approach does 

not require any additional crosses of mice and vectors are easily available and highly efficient. It is an 

important and easy-to-do experiment. 

statements/headings such as "IL-4/13 Signaling in Hepatocytes and/or Biliary Cells drives DR but not 

Fibrosis" and "IL-13 Signaling in Hepatocytes and/or Biliary Cells Induces DR and Steatosis, but not 
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Fibrosis" need to be avoided and the reader really needs to know if a contribution in hepatocytes can be 

excluded. 

 

Firstly, we would like to point out that the use of the K19-CreERT model (which is specific for biliary lineage, i.e. 

ductular reaction) alone demonstrates a previously unknown relationship between ductular reaction and fibrosis, 

namely that in IL-13 driven liver disease, ductular reaction does not trigger fibrosis and fibrosis does not directly 

induce ductular reaction. This is an important point as most researchers in the field thought that either ductular 

reaction was driving the fibrosis or conversely that fibrosis was driving ductular reaction. Paired with the data from 

the PDGFRB-Cre model, we have unequivocally demonstrated that these two phenomena are uncoupled and that the 

correlation observed between the two is explained by the common driver of both, namely IL-13.  The Albumin-Cre 

mouse deletes the IL-4R in both hepatocytes and biliary cells, while the K19-Cre mouse deletes the IL-4R only in 

biliary cells.  IL-4Ra expression was preserved in hepatocytes in the K19-Cre mouse but ductular reaction was 

completely prevented in these mice. We obtained nearly identical results with both Cre expressing strains, 

unequivocally demonstrating that biliary cells but not hepatocytes are critical for epithelial cell proliferation and thus 

the ductular reaction. Therefore, we do not understand why it is important to further rule out a role for hepatocytes 

with a second approach when biliary cells were clearly identified as the critical population targeted by IL-13 that 

causes ductular reaction. The only difference we observed between the Alb-Cre model and K19-CreERT model is a 

difference in eotaxin expression, which was corroborated by differences in eosinophilic infiltration in our liver 

histological specimens. This was not a major conclusion of the paper.  Furthermore, although often ignored, AAV 

vectors are potentially problematic as they are known to induce a small, yet detectable, anti-viral immune response 

(Zaiss et al., 2002), which could complicate the interpretation of results. While the anti-viral response may be small 

enough to be ignored in some studies, because we are exploring an immunological mechanism of fibrosis, it’s 

possible the anti-viral response will become a complicating factor. We believe that it is highly unlikely that the 

proposed AAV-Cre model experiment suggested by the reviewer will produce different results.   

 

3. Recombination efficiency of PDGFRB-Cre needs to be confirmed. There is a big difference between 

fluorescent reporters and each recombined gene, and it is absolutely necessary to precisely quantify how 

efficiently IL4Rαflox/flox is deleted in hepatic stellate cells. 

 

We reiterate that the highly significant phenotypes shown in Figure 5, combined with previous studies assessing 

efficiency clearly suggest a very high level of recombination of IL4Ra. However, we have since performed isolation 

of HSCs and genomic DNA genotyping to confirm the recombination efficiency. As expected, the efficiency 

approaches 100% and thus these new data do not change the conclusions of the manuscript. 

 

4. Addition of a second model as suggested by this reviewer and reviewer #2 (BDL, DDC or NASH) is 

important and has not been addressed in the revision. The statement by the authors "it seems a bit unfair to 
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ask us to now duplicate the studies with several additional models of liver disease" is not well taken. Some of 

these models, e.g. DDC diet, are very quick and all mice should be in place. At minimum, the authors could 

have done studies in one additional model, in particular since reviewer #2 made similar requests. 

 

According to the World Health Organization liver cirrhosis (LC) is considered a major public health threat, with 

approximately 800,000 people dying from LC every year.  In the United States alone, LC is responsible for around 

27,000 deaths per year, representing a mortality rate of 9.2 per 100,000, placing it as the 12th overall cause of death.   

 

According to the WHO, schistosomiasis affects 210 million people worldwide as of 2012. The disease is most 

commonly found in Africa, Asia, and South America, with around 700 million people in more than 70 countries 

living in areas where the disease is endemic.  This makes it the most common parasitic infection after malaria and is 

second to malaria in terms of economic impact.   In many endemic areas, schistosomiasis infects a large proportion 

of children under 14 years of age, so it produces a huge disability-adjusted life year (DALY).  The WHO estimates 

that up to 200,000 people die as a direct result of liver complications associated with schistosomiasis each year 

and another 20 million suffer from complications, including portal hypertension, bleeding, severe anemia, and 

malnutrition. It is the most deadly of the neglected tropical diseases according to both the CDC and WHO. Of the 

nearly 800,000 cases of lethal cirrhosis world wide, nearly a quarter of the cases can be attributed to schistosomiasis 

(WHO estimate).  

 

Experimental schistosomiasis is one of the few models of liver cirrhosis that truly models the disease seen in 

humans.  The mode of infection and disease course is similar in man and mice.  The reviewer seems to imply our 

data are important only if the findings are applicable to all forms and causes of liver cirrhosis.  This scenario seems 

unlikely as the underlying etiologies and mechanisms of progressive liver disease in those etiologies are known to be 

diverse, including those observed in viral and parasitic infections, alcohol and drug toxicity, obesity, and 

autoimmune disorders.  For example, a recent paper by Brenner, Kiseleva et al. showed that carbon tetrachloride 

(CCL4)-induced liver fibrosis is driven by an IL-17A-TGF-beta dependent mechanism (Meng, F. et al. IL-17 

signaling in inflammatory Kupffer cells, hepatic stellate cells exacerbates liver fibrosis is mice. Gastroenterology. 

2012).  Therefore, it is unclear to us how additional studies with the CCL4 acute liver injury model will increase our 

understanding of the role of IL-13 and type 2 immunity in tissue regeneration and fibrosis. IL-13 is a well-accepted 

driver of fibrosis in many organ systems including the liver; therefore, we employed the very best model systems 

available to dissect its downstream mechanisms of action.    

 

Two recent papers in Science and Nature emphasized the importance of better understanding the downstream targets 

of IL-13 signaling, so we feel our paper is both timely and exciting since it specifically investigates this important 

question. In the Nature and Science papers, the focus was on gut epithelium while our paper focuses on bile duct 

epithelium.  Please refer to the recent commentary by Gronke and Diefenbach on these exciting papers: 
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(http://www.nature.com/icb/journal/v94/n3/full/icb201610a.html).  In their commentary, they hypothesize that, “IL-

13 may directly affect epithelial fate decisions”. They write “an important avenue of future research (will be) to 

better flesh out how IL-13 affects signaling in epithelial cells and epithelial stem cells”. These are the exact 

questions we explored in great detail in our study.  

 

The BDL model mentioned by the reviewer is a commonly explored model of bile duct obstruction. This model also 

induces both fibrosis and bile duct reaction, so of the various artificial models the reviewer proposes we study, it is 

the only model that at least partly recapitulates the severe liver disease (steatosis, fibrosis, ductular reaction, and 

cholestasis) we see in schistosomiasis.  However there is no existing literature suggesting that IL-13 plays a critical 

role in this experimental model of fibrosis. In the contrary, a recent study has attributed the pathology observed in 

BDL to upregulated TGF-B2 and IL-17 (Zepeda-Morales, A.S. et al.; 2016).   

 

Taking into account the data from previously studies elucidating the mechanisms underlying the models proposed by 

the reviewer, we do not believe that repeating these studies will significantly add to this manuscript. However, we 

also must emphasize that this does not diminish the importance of the results we present for schistosomiasis, and the 

IL-13 pathway more specifically using IL-13 protein overexpression alone to recapitulate the pathologies observed 

during schistosomiasis. IL-13 has been identified as a key driver of pathology in a number of human diseases 

affecting multiple organ systems including idiopathic pulmonary fibrosis (IPF) (Chandriani et al., 2014; Murray et 

al., 2014), asthma (Choy et al., 2015; Scheerens et al., 2014), atopic dermatitis (Metwally et al., 2004), and 

ulcerative colitis (UC) (Heller et al., 2005), among others. Consequently, several clinical trials have been completed 

or are ongoing testing the safety and efficacy of modulating IL-13 levels in these various diseases (Beck et al., 2014; 

Brightling et al., 2015; Danese et al., 2015; Hamilton et al., 2014; Wenzel et al., 2013). In this context, we believe 

that our choice of models is both appropriate and timely, as it shows another instance of IL-13 directly driving 

fibrotic disease and associated pathology. 

 

We have amended the text and have now cited previous human studies and ongoing clinical trials to make readily 

apparent the importance of IL-13 in driving pathology in diverse etiologies affecting many organs and to put our IL-

13 overexpression studies into context. 

 

 

Minor points 

 

1. The statement that hydroxyproline measurement is more sensitive than picrosirius red staining is simply 

not correct. 
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Hydroxyproline accounts for approximately 23% of the amino acid content of collagen and is absent from nearly 

every other protein within the body (other proteins which contain hydroxyproline are produced in extremely low 

quantities and do not affect the outcome of the assay). Colorimetric quantitation of hydroxyproline gives a precise 

and highly linear estimate of the collagen content of a tissue and is sensitive and accurate over a 211 scale (R2 = 

0.9998). Picrosirius red staining (PSR) is not collagen specific when viewed under brightfield and is only specific 

for collagen when viewed under circularly polarized light, resulting in a black background with green, red, or 

yellowish collagen fibrils which vary in color and intensity based upon several variables including the type of 

collagen, density, and 3D organization. While PSR quantitation is possible, it almost always fails to reliably account 

for density of collagen deposition, which can have profound consequences on the pathogenesis of hepatic disease 

such as driving portal-hypertension and subsequent esophageal varices, a significant cause of mortality. PSR can 

accurately assess the morphology of fibrosis, such as septal, peri-portal, centrilobal, sinusoidal etc., and can 

highlight these differences, which hydroxyproline quantitation would miss. Thus, these two methods combined 

provide a robust assessment of both the total collagen content of the liver and the morphological distribution of 

those collagens. We do not believe that any disagreement on these points changes any of the conclusions reached 

within this work and have amended the text accordingly 

 

2. Original sources of mice should be properly cited (this applies to both the PDGFRB-Cre and the K19-

CreERT mice as they were not generated by Dr. Forbes or Dr. Henderson; proper citation is important to 

acknowledge this important work). 

 

We apologize for this omission and have added the appropriate citations to the methods to properly acknowledge the 

original generator of the lines. 

 

3. More a comment than a formal criticism. The >95% recombination efficiency by K19-CreERT in Fig.S3 

seems very unlikely. 

 

The generally used protocol of 3 x 4mg doses of tamoxifen administered IP over the course of a week results in 

suboptimal recombination (~50% +/- 20% depending on the various studies analyzed and exact dosing regimen). 

The tamoxifen diet we utilized in our studies is estimated at 2.4 mg tamoxifen daily intake for a 30 g mouse. We 

administered this diet three weeks prior to beginning experiments and continued throughout the course (1 week for 

plasmid studies, 12 weeks for S. mansoni studies). Although not directly assessed, since the mice are continually 

being dosed with tamoxifen, we presume that their plasma levels of tamoxifen remain stable for longer periods of 

time, increasing the likelihood of recombination. Given these facts and our observations of stark and highly 

significant phenotypes in the K19-CreERT mice, we do not find it surprising that we observe robust recombination 

in our mice and believe that these findings are indeed accurate. 
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Sincerely yours, 

                  
Thomas A. Wynn    
Senior Investigator NIH/NIAID 
4 Memorial Dr  
Bethesda, MD 20892-0425, USA  
Ph: 301-496-4758     
twynn@niaid.nih.gov   
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Summary:  19 

Fibroproliferative diseases are driven by dysregulated tissue repair responses and are a 20 

major cause of morbidity and mortality as they affect nearly every organ system in the body. 21 

Type-2 cytokine responses (interleukin-4 and interleukin-13) are critically involved in tissue 22 

repair; however, the mechanisms that regulate repair versus pathological fibrosis are not well 23 

understood. Here, we show that the type-2 effector cytokine interleukin-13 simultaneously, yet 24 

independently, directs hepatic fibrosis and the compensatory proliferation of hepatocytes and 25 

biliary cells in progressive models of liver disease induced by IL-13 over-expression or 26 

Revised Manuscript



following infection with Schistosoma mansoni. Using conditional mutant mice with interleukin-27 

13 signaling genetically disrupted in hepatocytes, cholangiocytes, or resident tissue fibroblasts, 28 

we reveal direct and distinct roles for interleukin-13 in fibrosis, steatosis, cholestasis, and 29 

ductular reaction. Together, these studies show that these mechanisms are simultaneously 30 

controlled but distinctly regulated by interleukin-13 signaling.	 Thus, it may be possible to 31 

promote IL-13-dependent hepatobiliary expansion without generating pathological fibrosis. 32 

 33 

Highlights and eTOC Blurb: 34 

• Type-2 fibrosis and regeneration are directly but independently mediated by IL-13 35 

• Pathological fibrosis is driven by direct IL-13 signaling in PDGFRB+ fibroblasts 36 

• IL-13 stimulates hepatobiliary progenitor cells and cholangiocytes to proliferate  37 

• IL-13 regulates lipogenesis, bile acid synthesis, and biliary-dependent steatosis  38 

 39 

Fibroproliferative diseases will affect nearly half of the global population and result in 40 

significant loss in quality of life. In this work, we demonstrate that the type-2 cytokine 41 

interleukin-13 signals through distinct cellular pathways to simultaneously drive hepatic fibrosis, 42 

steatosis, cholestasis, and hepatobiliary proliferation. The insights gained from this work 43 

demonstrating the possibility of decoupling IL-13-driven regenerative processes from tissue 44 

fibrosis may be instrumental in developing novel cell-targeted therapies exploiting these specific 45 

pathways for therapeutic benefit. 46 

 47 

Introduction: 48 

 The liver is remarkable in its ability to regenerate despite repeated injury. Different from 49 

many other organs which utilize stem cell populations in order to replace tissues, the liver relies 50 

heavily upon hepatocytes and cholangiocytes to exit quiescence and divide (Yanger et al., 2014). 51 

Recent studies have demonstrated distinct hepatocyte subsets, which contribute to hepatocyte 52 

turnover during homeostasis (Wang et al., 2015) and during mild chronic injury (Font-Burgada 53 

et al., 2015). However, during severe chronic injury, damaged hepatocytes can lose the ability to 54 



divide (Roskams, 2006), and in response, a population of putative hepatobiliary progenitor cells 55 

(HPCs) expands (Farber, 1956; Huch et al., 2015; Lu et al., 2015). Although several studies have 56 

questioned the source of HPCs and whether HPCs exhibit bipotent progenitor capacity (Jors et 57 

al., 2015), other recent studies have demonstrated that these cells can completely repopulate the 58 

liver following injuries that induce hepatocellular senescence (Lu et al., 2015). These differences 59 

in behavior and potency of HPCs may be explained by differences in the etiology of liver injury; 60 

nevertheless, it has been well established that the dysregulated signaling microenvironment of 61 

the injured liver can lead to aberrant proliferation of both HPCs and existing cholangiocytes, 62 

together facilitating a disorganized expansion of bile ducts and recruitment of inflammatory cells 63 

known as ductular reaction (DR) (Roskams et al., 2004).  64 

Ductular reactions are encountered in virtually every acute and chronic liver disorder in 65 

which there is organ-wide liver damage and cell loss. Proliferating ductules derived from HPCs 66 

or existing cholangiocytes may fail to drain bile contents properly, leading to local necrosis and 67 

progression towards cancers such as hepatocellular or cholangiocarcinoma (Alison and Lovell, 68 

2005; Park et al., 2007). Furthermore, it has been well documented that the presence of these 69 

proliferating cells is highly correlated with the progression of hepatic fibrosis and emergence of 70 

lipid abnormalities, although the detailed mechanisms behind these correlations are debated and 71 

not well understood (Clouston et al., 2005; Richardson et al., 2007). Thus, presence of DRs is an 72 

important prognostic marker of advanced liver disease, with patients exhibiting DRs generally 73 

having poorer clinical outcomes (Lowes et al., 1999; Roskams, 2006; Sancho-Bru et al., 2012). 74 

Nevertheless, the signaling pathways governing these dysregulated responses remain unclear, 75 

limiting our ability to combat these severe complications in the clinic. 76 

Interleukin-13 (IL-13) has been identified as a major pathogenic cytokine in helminth 77 

induced liver disease and several other chronic diseases associated with persistent type-2 78 

cytokine production (Chiaramonte et al., 1999). Consequently, therapeutic antibodies targeting 79 

IL-13 signaling pathways are currently being investigated in several major clinical trials. 80 

Interestingly however, type-2 cytokine responses have also been linked with wound repair 81 

following acute tissue injury (Chen et al., 2012; Kaviratne et al., 2004). Nevertheless, the 82 

mechanisms that govern tissue regeneration versus pathological type-2-driven fibrosis remain 83 

unclear. While previous studies have implicated M2 macrophages in repair and fibrosis 84 

(Borthwick et al., 2015; Chen et al., 2012), other cells including hepatocytes, cholangiocytes, 85 



HPCs, and fibroblasts also express functional IL-4/IL-13 receptors, yet their roles in the 86 

progression of liver disease, steatosis, fibrosis, DR, and liver regeneration during chronic type-2 87 

cytokine-driven inflammatory responses have remained unclear. Moreover, while clinical studies 88 

have found elevated type-2 cytokines and receptor expression in human patients with biliary 89 

atresia (Li et al., 2011), primary biliary cirrhosis, primary sclerosing cholangitis, hepatitis C 90 

infection, and autoimmune hepatitis (Landi et al., 2014), no previous studies have directly 91 

investigated the correlative and causal relationships between type-2-driven fibrosis and DR. 92 

Therefore, we generated a series of cell-specific knockout mice in which the IL-4 receptor alpha 93 

chain (IL4Rα), an essential receptor component for both IL-4 and IL-13 signaling, was targeted 94 

for deletion in biliary cells (defined as both HPCs and existing cholangiocytes), hepatocytes, and 95 

fibroblasts in order to elucidate the cellular pathways instructed by IL-13 that regulate the 96 

emergence of ductular reactions and fibrosis during schistosomiasis, a disease affecting over 300 97 

million individuals that induces a progressive liver fibrosis that manifests many of the 98 

complications seen in advanced cirrhosis of many etiologies. 99 

 100 

Results: 101 

IL-4/13 Signaling in Hepatocytes and/or Biliary Cells drives DR but not Fibrosis 102 

IL4Rαflox/floxAlbuminWT/Cre (Alb-Cre+) mice and IL4Rαflox/flox (Alb-Cre–) littermates were 103 

studied over the course of an 18-week S. mansoni infection that results in progressive, type-2-104 

driven liver fibrosis. Due to expression of albumin by hepatoblasts (Sparks et al., 2010), the 105 

developmental precursor of both hepatocytes and cholangiocytes, these mice express cre-106 

recombinase in both the hepatocyte and biliary compartments, and therefore have impaired 107 

IL4Rα expression in both hepatocytes and biliary cells. No significant differences in fibrosis 108 

were seen at 10 or 18 weeks as assessed by tissue hydroxyproline levels (Figure 1A) and  109 

picrosirius red (PSR) staining (Figure 1B), ruling out a role for IL-4/IL-13 signaling through 110 

IL4Rα-expressing hepatocytes, cholangiocytes, or HPCs in the progression of fibrosis. Epithelial 111 

cell adhesion molecule (EpCAM) uniquely marks the biliary compartment and cells recently 112 

derived from HPCs within the liver (Yoon et al., 2011), and by 10 weeks post-infection, marked 113 

expansion of EpCAM+ cells was evident around the granulomas of Alb-Cre- mice but was 114 

significantly less in the Alb-Cre+ group  (6.0 ± 1.3% EpCAM+ vs. 2.3 ± 0.4% EpCAM+, p < 115 



0.01; Figure 1C upper panels, D). By 18 weeks, Alb-Cre- mice exhibited abundant EpCAM+ 116 

ductules in the periphery of the granulomas, but the Alb-Cre+ group did not (19.5 ± 4.3% 117 

EpCAM+ vs. 3.8 ± 0.5% EpCAM+, p < 0.001; Figure 1C lower panels, D,). Additionally, Alb-118 

Cre- mice exhibited significantly elevated liver weights compared to their Alb-Cre+ littermates 119 

(Figure 1E) in agreement with a recent study implicating IL-4 signaling with hepatocyte 120 

proliferation (Goh et al., 2013). Nearly 36% of EpCAM+ cells in Alb-Cre- mice co-stained 121 

positive for Ki-67 indicating active proliferation in response to IL-13, while only 2% of those in 122 

Alb-Cre+ littermates were actively proliferating (Figure 1F, H). Alb-Cre- mice also exhibited 123 

spotty microvesicular steatosis as assessed by Oil Red O staining (ORO) in hepatocytes 124 

throughout the liver (Figure 1I), which was visually diminished in the Alb-Cre+ group. No 125 

significant differences were seen in serum ALT and AST levels (Figure 1G), survival (Figure 126 

S1A), and worm burden (Figure S1B), suggesting that differences in liver injury severity were 127 

not contributing to these changes. Together, these data unequivocally demonstrate that IL-4/IL-128 

13 signaling through hepatocytes and/or biliary cells is necessary for the DR and steatosis 129 

associated with S. mansoni infection, but does not significantly affect fibrosis (Figure 1J). 130 

 131 

IL-13 but not IL-4 is Necessary for DR during S. mansoni Infection 132 

IL4Rα is implicated in two distinct signaling pathways (Ramalingam et al., 2008). Type-I 133 

signaling is mediated solely by IL-4 following engagement of IL4Rα:γc heterodimers by IL-4. 134 

Whereas type-II signaling is activated when either IL-4 or IL-13 engage IL4Rα:IL13Rα1 135 

heterodimers. In order to determine if the DR seen in Alb-Cre- but not in Alb-Cre+ littermates 136 

(Figure 2A, B, F) is mediated through type-I or type-II IL4Rα signaling, we utilized an IL13Rα1-137 
/- model in order to selectively deplete type-II signaling. After 12 weeks of infection, no evidence 138 

of DR was seen, suggesting that type-II signaling is necessary for the development of S. mansoni 139 

driven ductular response (Figure 2C, F). Given that both IL-4 and IL-13 can signal through the 140 

type-II IL4Rα signaling complex, we set out to determine if one of these cytokines plays a 141 

dominant role in the progression of DR or if either is sufficient. To this end, we utilized IL-4-/- 142 

and IL-13-/- mice to look for the presence of DR after the course of a 12-week infection. IL-4-/- 143 

mice developed DR similar to wild type controls (Figure 2D, F); however, DR in IL-13-/- mice 144 



was absent (Figure 2E, F), suggesting that IL-13 is the dominant type-2 cytokine in the 145 

progression of S. mansoni mediated DR (Figure 2G). 146 

 147 

IL-13 Signaling in Hepatocytes and/or Biliary Cells Induces DR and Steatosis, but not Fibrosis 148 

IL-13 has been identified as a key driver of pathology in a number of human diseases 149 

affecting multiple organ systems including idiopathic pulmonary fibrosis (IPF) (Chandriani et 150 

al., 2014; Murray et al., 2014), asthma (Choy et al., 2015; Scheerens et al., 2014), atopic 151 

dermatitis (Metwally et al., 2004), and ulcerative colitis (UC) (Heller et al., 2005), among others. 152 

Consequently, several clinical trials have been completed or are underway testing the safety and 153 

efficacy of modulating IL-13 levels in these diseases (Beck et al., 2014; Brightling et al., 2015; 154 

Danese et al., 2015; Hamilton et al., 2014; Wenzel et al., 2013). In the previous section, we 155 

showed that DR requires direct IL-13 signaling on hepatobiliary cells during the course of S. 156 

mansoni infection; however, helminth infections result in a complex immune response and an 157 

intercellular signaling environment that evolves over time (Pearce and MacDonald, 2002). In 158 

order to determine the specific role of IL-13 directly and in the absence of other etiological 159 

agents, we designed an IL-13 overexpression plasmid (13-OP) and used hydrodynamic tail vein 160 

injection in order to induce overexpression within the liver (Liu et al., 1999). Quantitation of 161 

mRNA collected from liver 9 days post injection determined that 13-OP caused a significant 162 

upregulation of IL-13 mRNA and specific STAT6-inducible targets such as procollagen 6a 163 

(Col6a1) and interleukin-13 receptor alpha 2 (IL13Rα2) without inducing an IL-4 response 164 

(Figure 3A). 13-OP induced a significant fibrotic response in both the Alb-Cre+ and Alb-Cre- 165 

groups as assessed by tissue hydroxyproline content (Figure 3B) and PSR staining (Figure 3C), 166 

again ruling out a role for IL-13 signaling through IL4Rα-expressing hepatocytes, 167 

cholangiocytes, or HPCs in the progression of fibrosis. Here again, EpCAM+ ductules in Alb-168 

Cre- mice were Ki-67+ (over 39%), indicating that they were actively proliferating, while little 169 

evidence of proliferation was observed in the Alb-Cre+ mice (under 1.8% Ki-67+, Figure 3D, G). 170 

Strikingly, 13-OP also induced significant steatosis in the Alb-Cre- mice but not in the Alb-Cre+ 171 

group (7.2 ± 0.8% ORO+ vs 0.04% ± 0.01% ORO+, p < 0.0001; Figure 3E, H) that corresponded 172 

with increases in serum triglyceride levels in the Alb-Cre- group (Figure 3F). No significant 173 

differences were seen in survival (Supplementary Figure 2A) or serum ALT and AST levels 174 



(Supplementary Figure 2b), once again suggesting that differences in injury severity are not 175 

underlying these changes.  176 

Microarray analyses were performed on whole liver from the 13-OP mice and GFP-OP 177 

control groups to elucidate the signaling pathways being activated by IL-13 signaling in 178 

hepatocytes and biliary cells. Over 130 genes exhibited over a two-fold difference (p < 0.01) 179 

between the 13-OP Alb-Cre+ and Alb-Cre- groups (Figure 3I). Key differences include the 180 

downregulation of the classical and acidic pathways of bile acid synthesis, induction of cellular 181 

senescence, metabolic switch to lipogenesis, and recruitment of type-2 immune mediators 182 

(Figure 3J, L), all of which were dependent on IL-13 signaling through IL4Rα+ 183 

hepatocytes/biliary cells. Furthermore, Ingenuity Pathway Analysis (IPA) revealed the key 184 

mediators induced by IL-13 signaling in Alb-Cre- mice that were not active in Alb-Cre+ 185 

littermates (Figure 3K). These data establish that IL-13 protein alone can directly recapitulate 186 

key aspects of S. mansoni-driven pathology including fibrosis, ductular proliferation, and 187 

steatosis. Furthermore, mice with non-functional IL4Rα in hepatocytes and biliary cells display 188 

markedly reduced ductular proliferation and steatosis but develop normal fibrosis, confirming the 189 

critical role of IL-13 and IL4Rα signaling in these cell types for development of DR and 190 

steatosis, further supporting the growing data demonstrating IL-13 as a key pathogenic agent in a 191 

variety of human diseases affecting many organ systems. 192 

 193 

Direct IL-13 Signaling in Biliary Cells Induces DR and Steatosis, but not Fibrosis  194 

Since the Alb-Cre model induces recombination in both the hepatocyte and biliary 195 

compartments, we next utilized an IL4Rαflox/floxKeratin19WT/CreERT model in order to restrict 196 

recombination to the adult biliary compartment (Means et al., 2008), allowing us to discern the 197 

distinct role of type-2 signaling in biliary cells. IL4Rαflox/floxK19WT/CreERT (K19-Cre+) and 198 

IL4Rαflox/flox (K19-Cre-) littermates were administered tamoxifen diet for 3 weeks prior to 13-OP 199 

injection to induce deletion of the IL4Rα-floxed segments in cholangiocytes and HPCs, but not 200 

hepatocytes. This administration regimen resulted in specific recombination in 95.1 ± 2.6% of 201 

EpCAM+ cells (Figure S3A, B). After 1 week, 13-OP induced a significant fibrotic response in 202 

both the K19-Cre+ and K19-Cre- groups as evaluated by tissue hydroxyproline content (Figure 203 

4A), PSR staining (Figure 4B), and mRNA quantitation (Figure 4C), mirroring the results 204 



obtained with the Alb-Cre expressing mice. EpCAM+ ductules in K19-Cre- mice, but not K19-205 

Cre+, co-stained positive for Ki-67 expression (30.8 ± 4.6% vs. 5.8 ± 1.4%, p < 0.0001), 206 

illustrating a direct and critical role for IL-13-IL4Rα signaling in biliary cell proliferation 207 

(Figure 4D, E). Additionally, 13-OP induced severe steatosis in the K19-Cre- mice but not the 208 

K19-Cre+ mice (6.4 ± 0.5% ORO+ vs 0.07 ± 0.05% ORO+, p < 0.0001), suggesting that the 209 

upstream initiator of the steatosis seen in the Alb-Cre- and K19-Cre- mice is IL-13 signaling 210 

through the biliary compartment rather than through hepatocytes (Figure 4F, G). No significant 211 

differences were seen in survival (Figure S4A) and serum ALT and AST levels (Figure S4B) 212 

once again suggesting that differences in injury severity were not responsible for these changes.  213 

To verify these results in an infectious setting, we subjected the K19-Cre mice to a 12-214 

week S. mansoni infection. Mice were administered tamoxifen diet the entire course of infection 215 

to induce recombination. Similar to results from previous experiments using the Alb-Cre models 216 

and the K19-Cre 13-OP model, no significant differences in hydroxyproline content or 217 

picrosirius red staining were observed between the two infected groups (Figure 4I, J). In contrast 218 

to the Alb-Cre model, in which hepatocyte IL-4/13 signaling was disrupted, no differences in 219 

liver weight were observed between groups, again supporting previous work that has suggested 220 

that IL-4/13 acts directly on hepatocytes as a hepatocyte mitogen during injury (Goh et al., 2013) 221 

(Figure 4K). Similar to the other models, EpCAM+ ductules in K19-Cre- mice, but not K19-Cre+, 222 

co-stained positive for Ki-67 expression (27.8 ± 9.0% vs. 5.8 ± 1.2%, p < 0.05; Figure 4M, N). 223 

No significant differences in infection burden or serum ALT and AST were observed, ruling out 224 

that differences in ductular reaction are simply due to underlying differences in injury severity 225 

(Figure 4L, O). These data clearly establish that IL-13 signaling in biliary cells, not hepatocytes, 226 

results in ductular proliferation and steatosis without affecting fibrosis (Figure 4H). 227 

Since the K19-Cre targets both cholangiocytes and HPCs in the adult liver, we next 228 

explored whether IL-13 could directly stimulate isolated HPCs. CD45- CD31- TER119- EpCAM+ 229 

CD24+ CD133+ HPCs (Lu et al., 2015) were isolated from the livers of IL4Rαflox/flox mice and 230 

stimulated with 50 ng/mL recombinant murine IL-13 or a vehicle control for 72 hours. IL-13 231 

treatment caused cells to adopt a more cuboidal shape with clearly defined cell boundaries 232 

(Figure S5A). Additionally, IL-13 treated cells proliferated more quickly than controls as 233 

assessed by Alamar blue reduction (Figure S5B). We employed microarray analysis to determine 234 



the pathways driven by IL-13 to establish the observed phenotype. More than 200 genes 235 

exhibited over a 1.5-fold difference between the control and IL-13 treated groups (Figure S5C) 236 

including genes involved in Wnt and Notch signaling, key pathways in cholangiocyte 237 

differentiation, as well as immune cell trafficking and recruitment (Figure S5D). Taken together, 238 

these data suggest that IL-13 directs isolated HPCs towards a cholangiocyte fate and recruits 239 

cells that have been shown to further contribute to cholangiocyte differentiation. 240 

 241 

IL-13 Signaling through PDGFRB+ Fibroblasts is Necessary for Type-2 Fibrosis 242 

Next, in order to address the question of whether IL-13 signaling through fibroblasts is 243 

necessary for type-2-driven fibrosis and/or ductular proliferation, we utilized an 244 

IL4Rαflox/floxPDGFRBWT/Cre (PDGFRB-Cre+) model to disrupt IL-13 signaling specifically in 245 

liver resident tissue fibroblasts, also known as hepatic stellate cells (HSCs). Previous work has 246 

demonstrated that within the liver, the PDGFRB-Cre induces recombination specifically in HSCs 247 

and not in endothelium, macrophages, hepatocytes, cholangiocytes, or T cells (Henderson et al., 248 

2013). Furthermore, we isolated HSCs from wild type and PDGFRB-Cre+ mice and looked for 249 

the presence of native or recombined IL4Rα by genomic DNA genotyping and found efficiency 250 

of recombination approaching 100% (Figure S11). We subjected these mice to 13-OP and GFP-251 

OP injections and followed them for 7 days. PDGFRB-Cre+ mice were significantly protected 252 

from fibrosis as assessed by tissue hydroxyproline content (Figure 5A) and PSR staining (Figure 253 

5B), providing the first direct evidence that IL-13 signaling in PDGFRB+ fibroblasts in vivo is 254 

critical for the development of fibrosis. mRNA expression showed significant upregulation of the 255 

fibrosis related transcripts procollagen 6a and periostin in the PDGFRB-Cre- group compared to 256 

PDGFRB-Cre+ littermates (Figure 5C). Furthermore, PDGFRB-Cre+ mice were significantly 257 

protected from mortality (Figure S6A). Both groups exhibited marked microvesicular steatosis 258 

after 13-OP administration (Figure 5D). Despite the marked decrease in fibrosis and increased 259 

survival in the PDGFRB-Cre+ mice, both 13-OP groups exhibited EpCAM+Ki-67+ ductular 260 

reaction (36.1 ± 10.5% vs. 27.0 ± 4.5%, p > 0.05; Figure 5E, Figure S7A), further illustrating 261 

that ductular reaction and fibrosis are distinctly and independently regulated by IL-13. 262 

 In order to validate these results in a chronic disease setting, in a final series of studies, 263 

PDGFRB-Cre mice were infected with S. mansoni and followed for twelve weeks. PDGFRB-264 



Cre+ mice were markedly protected from the development of fibrosis as quantified by tissue 265 

hydroxyproline content (Figure 5F) and visualized by PSR staining (Figure 5G). Despite the 266 

significant differences in fibrosis, no significant differences were seen in survival at least through 267 

week 12 post-infection (Figure S6B). Quantitation of mRNA expression by qPCR revealed a 268 

stronger type-2 effector response in the PDGFRB-Cre+ mice, likely due to the decreased 269 

expression of the neutralizing decoy receptor IL13Rα2 by PDGFRB+ fibroblasts (Figure S8). 270 

Despite the significant decrease in fibrosis in the PDGFRB-Cre+ mice, both groups exhibited 271 

extensive ductular proliferation in the periphery of granulomas that co-stained EpCAM+Ki-67+ 272 

(27.3 ± 6.4% vs. 27.4 ± 6.7%, p > 0.05; Figure 5H, Figure S7B), clearly demonstrating that 273 

fibrosis and ductular proliferation are independently regulated by IL-13 signaling through 274 

distinct cell types. 275 

 276 

IL-13 Signaling in Hepatocytes and Fibroblasts Assists in the Recruitment of Eosinophils 277 

Previous studies have identified eosinophils as a local source of IL-13 during chronic 278 

liver injury (Reiman et al., 2006). In this study, we observed a significant role for hepatocytes 279 

and PDGFRB+ fibroblasts in eotaxin-1 expression and the recruitment of eosinophils to the liver 280 

following type-2-driven injury (Figure 6A-C). Although the results with K19-Cre+ mice revealed 281 

that IL4Rα-expressing biliary cells have no significant role in eotaxin-1 expression or eosinophil 282 

recruitment, the close proximity of PDGFRB+ periportal fibroblasts likely contributed to the 283 

marked accumulation eosinophils in areas surrounding bile ducts. Consequently, in addition to 284 

ILC2s and Th2 cells, eosinophils recruited by IL4Ra-expressing hepatocytes and fibroblasts 285 

likely serve as local sources of IL-13, which reinforce myofibroblast activation and ductular 286 

proliferation following injury (Figure 6D). As such, these findings reveal a previously unknown 287 

link between hepatocytes, fibroblasts, and eosinophils in the development of both fibrosis and 288 

ductular reactions and represent a new pathway contributing to these pathologies in the liver. 289 

 290 

IL-13 Driven DR Initiates Ductal Cholestasis Independently from Fibrosis 291 

 Cholestatic complications are a common feature of chronic fibrotic liver diseases and can 292 

result in local necrosis and progression towards cancers such as hepatocellular or 293 



cholangiocarcinoma (Alison and Lovell, 2005; Park et al., 2007). Despite this, it is unknown 294 

whether cholestasis originates from physical stricture of bile ducts (obstructive cholestasis) or 295 

from other distinct mechanisms during the progression of IL-13-dependent fibrosis. In our 296 

various models of type-2-driven liver damage, cholestasis was observed in the large branching 297 

ducts of Cre- groups from each experiment, all of which exhibited both extensive fibrosis and 298 

ductular proliferation (Figure 7A, B, C). Alb-Cre+ and K19-Cre+ mice, in which ductular 299 

proliferation was eliminated but fibrosis was maintained, showed little evidence of cholesterol 300 

crystal precipitation, suggesting that excessive ductular proliferation, rather than fibrosis, 301 

initiates cholestasis in response to IL-13 (Figure 7A, B). This hypothesis was further supported 302 

by the observation that PDGFRB-Cre+ mice, in which fibrosis is reduced to levels of naïve 303 

animals but ductular proliferation proceeds unimpeded, exhibited marked ductal cholestasis, as 304 

evidenced by the precipitation of cholesterol crystals in the large branching ducts (Figure 7C). 305 

Furthermore, in all mice exhibiting DR, many bile ducts had proliferated to the point of 306 

occluding the bile duct lumen (Figure 7D). Resin casting of the biliary tree in mice over-307 

expressing IL-13 confirmed that these mice have strictures, presumably induced by excessive 308 

proliferation that results in a truncated biliary tree with many proliferative nodules, further 309 

supporting our hypothesis that excessive ductal proliferation rather than fibrosis results in 310 

cholestatic precipitation and injury (Figure 7E, F). These discoveries emphasize that strategies 311 

utilizing type-2 cytokine driven repair and regeneration will need to be finely tuned and targeted 312 

to prevent these potentially serious complications. 313 

 314 

Discussion: 315 

Some studies have suggested that IL-13 promotes fibrosis by increasing autocrine CTGF 316 

signaling in fibroblasts and by inducing expression of the pro-fibrotic cytokine TGF-β1 via IL-317 

13Rα2 signaling (Liu et al., 2011; Shimamura et al., 2008; Sugimoto et al., 2005). However, 318 

studies with neutralizing anti-TGF-β antibodies, soluble antagonists (soluble TGF-βR-Fc), and 319 

Tg mice (Smad3-/- and TGF-βRII-Fc), have suggested that IL-13 can also induce fibrosis 320 

independently from TGF-β. IL13Rα2-/- mice were also found to develop significantly worse IL-321 

13 driven fibrosis than wild type littermates, shedding further doubt on the importance of 322 

IL13Rα2 triggered TGF-β1 expression (Chiaramonte et al., 2003). Instead, related studies have 323 



argued for a direct and critical role for IL4Rα-IL13Rα1 triggered STAT6-signaling in the 324 

development of type-2 cytokine driven fibrosis (Wynn, 2015). However, whether IL-13 driven 325 

fibrosis is induced by direct targeting of fibroblasts in vivo or by other intermediate cell types 326 

and signaling mechanisms has remained unknown until this study. Here, we provide unequivocal 327 

evidence that IL-13 must engage fibroblasts directly to promote fibrosis and that disruption of 328 

this signaling pathway in PDGFRB+ HSCs is sufficient to reduce fibrosis to levels found in naïve 329 

animals. Furthermore, these studies establish that ductular reaction is completely uncoupled from 330 

fibrosis. During chronic type-2 driven injury, circulating IL-13 directly targets both fibroblasts 331 

and biliary cells, resulting in the activation of ECM-producing myofibroblasts and concurrent 332 

ductular reaction (Figure 5I), thus finally resolving the enigmatic correlation between ductular 333 

reactions and fibrosis. 334 

Together, these studies have revealed the distinct cell types targeted by IL-13 that 335 

concurrently drive hepatobiliary fibrosis, proliferation, steatosis, and associated pathologies 336 

(Figure 5I). The duration and magnitude of the IL-13 response likely dictates whether the 337 

resulting repair response is adaptive or maladaptive. For example, in schistosomiasis, the fibrotic 338 

response initially encapsulates parasite eggs to prevent hepatocyte damage from cytotoxic egg 339 

antigens; however, during chronic infection, excessive accumulation of extracellular matrix 340 

components ultimately impedes blood flow, thus exacerbating damage.  341 

Similarly, we have shown that IL-13 can act directly on cholangiocytes in vivo (Figure 4) 342 

and promote HPC differentiation towards a cholangiocyte fate in vitro (Figure S5). We 343 

hypothesize that IL-13, a known angiogenic factor (Fukushi et al., 2000) that regulates 344 

neovascularization, also evolved to target HPCs and cholangiocytes to promote ductular repair 345 

following injury. During acute hepatic injury, local sources of IL-13 from cell types such as 346 

ILC2s may assist in regeneration by prompting a transient proliferation of cholangiocytes to 347 

replace damaged ducts. However, in chronic cases where tissue-damaging irritants cannot be 348 

cleared, or during adaptive Th2-driven immune responses such as those present during chronic 349 

parasitic diseases, ductular proliferation can become maladaptive, predisposing to cholestatic 350 

complications as evidenced by the rapid occlusion of bile ducts and precipitation of cholesterol 351 

crystals within the large branching ducts (Figure 7).  352 



The fact that steatosis was not seen in Alb-Cre+ and K19-Cre+ mice (Figures 1I, 3H, and 353 

4G), which have impaired ductular proliferation but normal fibrosis, but was present in 354 

PDGFRB-Cre+ mice (Figure 5D), which have extensive ductular proliferation yet minimal 355 

fibrosis, supports the conclusion that steatosis is caused by IL-13-driven ductular occlusion 356 

rather than a result of severe fibrotic complications and fibrosis-driven ductal stricture. 357 

Furthermore, since steatosis failed to develop in both Alb-Cre+ (impaired IL-13 signaling 358 

through hepatocytes) and K19-Cre+ mice (normal IL-13 signaling in hepatocytes), one can rule 359 

out that cholestatic steatosis is induced by metabolic changes due to IL-13/STAT6 (Ricardo-360 

Gonzalez et al., 2010) or IL-13/STAT3 (Stanya et al., 2013) signaling in hepatocytes as has been 361 

suggested previously. Instead, we posit that malabsorbtion of fat, due to lack of bile flow to the 362 

intestine secondary to IL-13 driven ductal occlusion, results in the induction of a lipogenic 363 

program (Figure 3J) within hepatocytes in order to compensate for lack of dietary fat, resulting in 364 

the steatotic appearance of hepatocytes in mice with ductular reaction. These findings are 365 

consistent with the steatosis that develops in rats during experimental bile duct ligation (Lin et 366 

al., 2011) and in human patients with extrahepatic cholestasis (Schaap et al., 2009). Indeed, our 367 

mice developed decreased glucokinase, decreased CYP7A1, increased FGF21, decreased 368 

glucose, and increased triglycerides (Figure 3), features commonly observed in patients with 369 

extrahepatic cholestasis. 370 

We further hypothesize that the downregulation of the bile acid biosynthesis pathway 371 

(Figure 3I-L) may be part of a previously unappreciated feedback loop to mitigate the cholestatic 372 

damage ensuing from counterproductive ductular proliferation. Surprisingly, we find no evidence 373 

of hepatocytic cholestasis (Figure S9) despite the fact that we have ample evidence of obstructive 374 

cholestasis, likely due to this downregulation of bile acid synthesis secondary to bile duct 375 

occlusion. These data likely explain the previously underappreciated link between ductular and 376 

lipid abnormalities that has been noted in patients with primary biliary cirrhosis (Sorrentino et 377 

al., 2010) and warrant further detailed investigation into the metabolic changes induced by IL-378 

13-driven ductular proliferation in the context of chronic fibrosis. 379 

In summary, we have shown that IL-13 simultaneously, yet independently, directs 380 

fibrosis and hepatobiliary proliferation in both an infection induced and a sterile model of liver 381 

fibrosis. Surprisingly, both mechanisms appear to operate independently of IL-33 (Figure S10), 382 

which was recently found to promote extrahepatic, but not intrahepatic, ductal proliferation in 383 



experimental biliary atresia (Li et al., 2014). These IL-13-driven pathways likely represent an 384 

evolutionary response to preserve liver function during the course of chronic inflammatory liver 385 

disease. Nevertheless, during a relentless type-2-driven disease, these regenerative responses 386 

quickly evolve into maladaptive processes as fibrosis and ductular reactions accrue, and the 387 

associated steatosis and cholestasis worsen. It has been noted that between 80-90% of liver 388 

transplants experience major bile duct epithelium loss during the procedure, resulting in serious 389 

complications in up to 40% of patients (Karimian et al., 2013). Thus, these findings are of 390 

significant interest to clinical and translational medicine because they reveal the potential 391 

therapeutic and biomarker potential of IL-13 signaling in cholangiocyte differentiation and 392 

biliary regeneration. Particularly, we believe the insights gained from this work demonstrating 393 

the possibility of decoupling the IL-13-driven proliferative processes from tissue fibrosis will be 394 

instrumental in developing novel cell-targeted therapies exploiting these specific pathways. 395 

 396 

Experimental Procedures: 397 

Ethics Statement 398 

The National Institute of Allergy and Infectious Diseases Division of Intramural 399 

Research Animal Care and Use Program, as part of the National Institutes of Health Intramural 400 

Research Program, approved all of the experimental procedures (protocol LPD 16E). The 401 

Program complies with all applicable provisions of the Animal Welfare Act 402 

(http://www.aphis.usda.gov/animal_welfare /downloads/awa/awa.pdf) and other federal statutes 403 

and regulations relating to animals. 404 

 405 

Mice 406 

Alb-Cre: IL4Rαflox/flox mice were kindly provided by Dr. Frank Brombacher (University 407 

of Cape Town; Cape Town, South Africa). AlbCre/Cre mice were purchased from Jackson 408 

Laboratories. IL4Rαflox/flox females were crossed with AlbCre/Cre males to generate IL4RαWT/flox 409 

AlbWT/Cre mice. IL4RαWT/floxAlbWT/Cre males were backcrossed to IL4Rαflox/flox females to 410 

generate IL4Rαflox/floxAlbWT/Cre and IL4Rαflox/floxAlbWT/WT progeny. IL4Rαflox/floxAlbWT/Cre males 411 



were continually backcrossed to IL4Rαflox/flox females. The resulting IL4Rαflox/floxAlbWT/Cre and 412 

IL4Rαflox/floxAlbWT/WT progeny were used for experiments. 413 

K19-Cre: K19CreERT/CreERTRosa26tdTomato/tdTomato mice were kindly provided by Prof. Stuart 414 

Forbes (University of Edinburgh, Edinburgh, UK) and were generated by Dr. Guoqiang Gu  415 

(Means et al., 2008). IL4Rαflox/flox females were crossed with 416 

K19CreERT/CreERTRosa26tdTomato/tdTomato males to produce IL4Rαflox/WTK19WT/CreERT 417 

Rosa26WT/tdTomato progeny. IL4Rαflox/WTK19WT/CreERT Rosa26WT/tdTomato males were backcrossed to 418 

IL4Rαflox/flox females to produce IL4Rαflox/floxK19WT/CreERTRosa26WT/tdTomato and 419 

IL4Rαflox/floxK19WT/WT Rosa26WT/tdTomato offspring that were used for experiments. 420 

PDGFRB-Cre: PDGFRBCre/Cre mice were kindly provided by Dr. Neil Henderson 421 

(University of Edinburgh, Edinburgh, UK) and were generated by Dr. Ralf Adams (Foo et al., 422 

2006). IL4Rαflox/flox females were crossed with PDGFRBCre/Cre males to produce 423 

IL4Rαflox/WTPDGFRBCre/WT progeny. IL4Rαflox/WTPDGFRBCre/WT males were backcrossed to 424 

IL4Rαflox/flox females to produce IL4Rαflox/floxPDGFRBCre/WT and IL4Rαflox/floxPDGFWT/WT 425 

offspring that were used for experiments. 426 

Other mice: IL4-/- mice were kindly provided by Dr. William E. Paul (NIAID, NIH). 427 

IL13-/- mice were kindly provided from Dr. Andrew Mckenzie (MRC Laboratory of Molecular 428 

Biology). IL13Rα1-/- mice were kindly provided by Regeneron Pharmaceuticals Inc. (Tarrytown, 429 

NY). IL33-/- mice were kindly provided by Amgen Inc. (Seattle, WA). 430 

All animals were housed under specific pathogen-free conditions at the National 431 

Institutes of Health in an American Association for the Accreditation of Laboratory Animal 432 

Care-approved facility. Experiments used littermates (both sexes) between 8-16 weeks of age 433 

unless otherwise noted. 434 

 435 

S. Mansoni Infection 436 

Mice were infected percutaneously by suspending tails in water containing 35 437 

Schistosoma mansoni cercariae for 45 minutes. Cerceriae were obtained by shedding infected 438 

Biomphalaria glabrata snails (Biomedical Research Institute; Rockville, MD). At the time of 439 



euthanasia, livers were perfused in order to determine worm burden and were removed for 440 

subsequent analyses.  441 

 442 

Plasmid Overexpression 443 

IL-13 and eGFP overexpression plasmids were produced by GenScript USA Inc. 444 

(Piscataway, NJ) by ligating the ORFs for IL-13 (NM_008355) and eGFP into the multi-445 

restriction site of a pRG977 vector (kindly provided by Regeneron Pharmaceuticals Inc.). 446 

Hydrodynamic delivery was performed as described previously (Liu et al., 1999). 447 

 448 

Blood Analysis 449 

Blood was collected in Serum Gel Z/1.1 tubes (Sarstedt) and serum was separated by 450 

centrifuging for 5 minutes at 5,000g. Serum was analyzed for sodium, potassium, chloride, 451 

calcium, magnesium, phosphorus, glucose, BUN, creatinine, uric acid, albumin, total protein, 452 

cholesterol, triglycerides, alkaline phosphatase, AST, ALT, amylase, creatine kinase, and lactate 453 

dehydrogenase at the National Institutes of Health Clinical Center using a Vista Analyzer 454 

(Siemens; Deerfield, IL).  455 

 456 

Histopathology 457 

Liver tissue was fixed in Hollande’s fixative overnight and subsequently washed with 458 

70% ethanol. Tissue was then embedded in paraffin for sectioning and stained with Wright's 459 

Giemsa and picrosirius red (Histopath of America; Clinton, MD). Samples stained for DAB-460 

EpCAM were first deparaffinized and rehydrated. Samples were then washed for 5 minutes in 461 

water. During this time, citrate antigen retrival buffer was preheated in a microwave for 3 462 

minutes on high power. Samples were then microwaved in the citrate buffer for 10 minutes on 463 

high power. Samples were washed with PBS and then blocked for peroxidase activity using 464 

Bloxall (SP6000 VectorLabs) for 15 minutes at room temperature. Samples were washed three 465 

times in PBS. 3 drops of Avidin Block (004303 Invitrogen) were added to each slide for 15 466 

minutes at room temperature. Samples were then washed three times with PBS. 3 drops of Biotin 467 

Block (004303 Invitrogen) were added to each slide for 15 minutes at room temperature. 468 



Samples were rinsed three times in PBS. 3 drops of protein block (DPB-125 Spring Bioscience) 469 

were added for 30 minutes at room temperature. 120 µl of goat-anti-EpCam (AbCam ab71916 470 

1:200) diluted in antibody diluent were added to slides and incubated overnight at 4C. Slides 471 

were then washed three times with PBS. 120 µL of biotinylated anti-rabbit secondary antibody 472 

diluted 1:500 in antibody diluent and incubated for 30 minutes at room temperature. Sample was 473 

then rinsed three times in PBS. 3 drops of Vector RTU ABC reagent were added and incubated 474 

for 30 min at room temperature. Samples were then rinsed three times in PBS. 1 drop of DAB 475 

was added 1 ml substrate buffer. 120 µL of the DAB working solution were added to each 476 

sample and incubated for 4-5 minutes. Samples were washed three times with PBS and then 477 

counterstained with haematoxylin for 1 minute. Samples were rinsed with tap water until cleared. 478 

Samples were submerged in Scotts water for 20 seconds to blue haematoxylin and rinsed again 479 

in tap water. Samples were finally dehydrated to xylene and mounted.  480 

 481 

Immunofluorescence 482 

Liver tissue was snap frozen immediately after perfusion using a CoolRack M96-ID 483 

freezing block on dry ice. Tissue was sectioned at 8 µm using a cryostat and maintained at -80C 484 

until needed. Slides were removed from -80C and immediately fixed for 15 minutes using 10% 485 

neutral buffered formalin. Sections were permeabilized for 20 minutes using 0.2% Triton-X 100 486 

PBS (PBST). Sections were then blocked with 2% BSA PBST for 30 minutes. Endogenous 487 

biotin was blocked for 15 minutes using streptavidin block (abcam 3387), washed 3 times with 488 

PBS, and followed by a 15-minute block with biotin (abcam 3387) to bind any remaining open 489 

binding sites on the streptavidin. Sections were washed 3 times with PBST for 5 minutes each. 490 

Primary antibodies were diluted in PBST 2% BSA and incubated with sections for 2 hours at RT. 491 

Sections were rinsed three times with PBST for five minutes each. Secondary antibodies were 492 

diluted in PBST 2% BSA and incubated with sections for 1 hour at RT. Sections were rinsed 493 

once with PBST for five minutes. Sections were then stained with 300nM DAPI in PBST for 3 494 

minutes. Sections were rinsed three times with PBST for five minutes each and then mounted for 495 

imaging using Fluoromount G (Southern Biotech). Primary antibodies (EpCAM – eBioscience 496 

14-5791-85, 1:100; Ki67- Abcam ab15580, 1:200). Secondary antibodies (Goat anti-Rabbit 497 

TRITC – Novex A24536, 1:1000; Goat anti-Rat Alexa Fluor 488 – Invitrogen A11006, 1:1000). 498 



 499 

Hydroxyproline Quantitation 500 

200-300 mg of tissue was hydrolyzed in 2 mL of 6 N HCl at 110°C for 18 hours. 10 µL 501 

of hydrolyzed sample or standard was placed in 30 µL of citric acetate buffer consisting of 10 g 502 

citric acid (5% w/v), 2.4 ml Glacial Acetic Acid (1.2% v/v), 14.48 g sodium acetate (7.24% w/v), 503 

6.8 g sodium hydroxide (3.4% w/v), made up to 200 ml with sterile, deionized water. 100 µL of 504 

Chloramine T solution, consisting of 0.282 g Chloramine T, 2 ml isopropanol, 2 ml sterile water, 505 

16 ml citrate acetate buffer, was mixed with the samples or standards and allowed to oxidize for 506 

20 minutes at room temperature. 100 µL of Ehrlich’s Reagent consisting of 2.5 g of p-507 

dimethylaminobenzaldehyde, 9.3 ml isopropanol, and 3.9 ml 70%-perchloric acid, was mixed 508 

with the oxidized samples and standards and allowed to incubate at 65C for 20 minutes. 509 

Absorbance was read at 550 nm and compared to the standard curve for quantitation.  510 

 511 

DNA Isolation and PCR Genotyping 512 

Ear punches from mice or isolated HSCs were suspended in 25 mM NaOH, incubated at 513 

95°C for 15 minutes, and then neutralized with 40 mM Tris-HCl. DNA was amplified for 34 514 

cycles using GoTaq DNA Polymerase (Promega) according to the manufacturer’s instructions. 515 

Primers are listed in Supplementary Table 1. Gels were imaged using a BioSpectrum gel viewer 516 

with VisionWorksLS software (UVP; Upland, CA). HSCs were isolated as has been described 517 

previously (Mederacke et al., 2015). 518 

 519 

RNA isolation and quantitative RT-PCR 520 

100-200 mg tissue was homogenized in 1mL TRIzol Reagent (Life Technologies; Grand 521 

Island, NY) using Precellys 24 (Bertin Technologies; Montigny-le-Bretonneux, France). Total 522 

RNA was extracted from the homogenate by addition of 200µL chloroform, vigorous shaking for 523 

5 minutes, followed by centrifugation for 20 minutes at 12,000 RPM at 4C. RNA from the 524 

aqueous phase was removed and purified using a MagMax-96 Total RNA Isolation Kit (Life 525 

Technologies). RNA was reverse transcribed using SuperScript II Reverse Transcriptase (Life 526 

Technologies). Real-time RT-PCR was performed on an ABI Prism 7900HT Sequence Detection 527 



System (Applied Biosystems) using the following cycle profile: 95C for 10 minutes followed by 528 

40 cycles of 95C for 15 seconds, 60C for 1 minute. mRNA expression was determined using 529 

Power SYBR Green PCR Master Mix (Applied Biosystems), normalized to either 18S mRNA 530 

levels. Primers are listed in Supplementary Table 1.  531 

 532 

Isolation of Murine Non-parenchymal Cell Fraction and Purification of HPCs 533 

HPCs were isolated and cultured as has been described previously (Lu et al., 2015). 534 

 535 

Histological Quantification 536 

Quantification of EpCAM positivity and Ki-67 co-expression was conducted in ImageJ. 537 

An intensity filter was used to determine the percent positivity of at least 3, 20x views for each 538 

sample. Eosinophils stained with the Wright-Giemsa method and bile duct numbers were scored 539 

by a blinded pathologist. Blinding was achieved by covering group labels, randomizing slides, 540 

and replacing with labels with numbers. For S. mansoni infections, at least 5 granulomas were 541 

scored for each sample. For plasmid overexpression experiments, at least 5, 20x views were 542 

scored for each sample. ORO pixel percentage was quantified using Leica Aperio Scanscope 543 

Software. 544 

 545 

Statistical Analyses 546 

Prism 6 was used to compute statistical analyses. Two-tailed Welch’s t-tests were used to 547 

determine statistical significance between the majority of samples. Samples with very large 548 

deviation between means (due to overexpression vectors) used Mann-Whitney U-tests to 549 

determine significance. Survival was compared using log-rank (Mantel-Cox) tests. Initial group 550 

sizes were estimated based on previous study variance and expected mortality. No statistical 551 

methods were used to predetermine sample size. Randomization during processing was achieved 552 

by processing mice according to cage (Cre- and Cre+ littermates were not separated). Mice were 553 

excluded from 13-OP studies if IL-13 overexpression was not detected by qPCR at time of 554 

euthanasia.  555 



 556 

Microarrays 557 

 RNA isolated as described above was submitted to the NIAID Research Technologies 558 

Branch who performed microarray analyses using MouseWG-6 v2.0 and MouseRef-8 v2.0 559 

arrays. Subsequent analyses were performed using TM4 MeV microarray software suite. 560 

Welch’s t-tests were used to generate volcano plots (p < 0.05) from which list subsets were 561 

generated by using fold-difference cutoffs. Microarray data have been uploaded to the Gene 562 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with the accession numbers GSE70704 563 

and GSE70705.  Fold change values were uploaded to Ingenuity Pathway Analysis (Qiagen) to 564 

determine potential upstream regulators.    565 

 566 

Resin Casting 567 

 Resin casting was completed as described previously (Walter et al., 2012). 568 
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Figure Legends: 765 

 766 

Figure 1. IL-4/13 Signaling in Hepatocytes and/or Biliary Cells Drive DR. 767 

(A) Assessment of collagen deposition by hydroxyproline quantitation of naïve mice and mice 768 

infected with S. mansoni for 10 or 18 weeks. N-values left to right: n = 5, 5, 8, 7, 12, 11. 769 

(B) Picrosirius red stain visualizing quality of fibrotic deposition in mice infected for 18 weeks.  770 

(C) DAB-EpCAM immunohistochemistry of mice infected for 10 and 18 weeks highlighting 771 

peri-granuloma DR. 772 

(D) Quantitation of EpCAM+ pixels per randomly chosen 20X microscopic field view. N-values 773 

left to right: n = 9, 9, 11, 15, 10, 14.  774 

(E) Quantitation of liver weights of naïve mice and mice infected for 10 or 18 weeks. N-values 775 

left to right: n = 5, 5, 8, 7, 12, 11.  776 

(F) Quantitation of ductular reaction as assessed by percentage of EpCAM+ cells per randomly 777 

chosen 20X microscopic field view co-expressing Ki-67 at 18 weeks. N-values left to right: n = 778 

9, 9.  779 

(G) Quantification of serum alanine transaminase (ALT) and aspartate transaminase (AST). 780 

Serum was taken from ongoing infections at 4, 8, and 12 weeks. Serum from the 18-week time 781 

point was obtained at the time of euthanasia. N-values left to right: n = 40, 41, 24, 29, 16, 11, 9, 782 

7. 783 

(H) Ki-67/EpCAM immunostaining with DAPI nuclear counterstain of mice infected for 18 784 

weeks.  785 

(I) Oil Red O staining highlighting microvesicular lipid droplets after 18 weeks. 786 

(J) Alb-Cre- animals exhibit DR, steatosis, and fibrosis after infection with S. mansoni. In 787 

contrast, Alb-Cre+ animals, in which IL-4/13 signaling is blocked in hepatocytes and 788 

cholangiocytes, do not develop significant DR or steatosis yet still have significant fibrosis. 789 

(Note) Results representative of three replicate experiments; All scale bars 100 µm; SME: non-790 

specific staining due of S. mansoni eggs; DR: Ductular Reaction; results reported as mean ± 791 

S.E.M.;  p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 792 

 793 



Figure 2. IL-13 is Necessary for DR during S. Mansoni Infection. 794 

(A, B) Wright-Giemsa staining of 18-week infected (A) Alb-Cre- and (B) Alb-Cre- mice 795 

highlighting bile ducts.  796 

(C-E) Wright-Giemsa staining of 12-week infected (C) IL13Rα1-/-, (D) IL-13-/-, (E) IL-4-/- mice 797 

highlighting bile ducts. 798 

(F) Quantitation of number of bile ducts pixels per randomly chosen 20X microscopic field 799 

view. N-values left to right: n = 35, 40, 70, 40, 15, 75. Data is presented as mean ± SEM of at 800 

least 5 fields per mouse from at least 3 mice per group.  801 

(G) Schematic illustrating the signaling pathways blocked and active in each of the knockout 802 

models. IL13Rα1-/- mice, in which all IL-13 signaling is blocked and IL-4 can only signal 803 

through the type-1 receptor complex, fail to develop DR, demonstrating that the type-1 receptor 804 

is not involved in DR. Similarly, IL-13-/- mice, in which IL-4 signaling is normal, fail to develop 805 

DR, demonstrating that IL-4 is not involved in DR. However, IL-4-/- mice, in which IL-13 806 

signaling is normal, develop florid DRs, suggesting a crucial role for IL-13 in the pathogenesis 807 

of DR. 808 

(Note) All scale bars 100 µm; Arrows highlight bile ducts; p*<0.05, p**<0.01, p***<0.001, 809 

p****<0.0001. 810 

 811 

Figure 3. IL-13 Signaling in Hepatocytes and/or Biliary Cells Induces DR.  812 

(A) Quantitation of mRNA expression by qPCR of IL-13 responsive genes relative to 18S of 813 

mice injected with an eGFP or IL-13 overexpression plasmid after 9 days. N-values left to right: 814 

n = 5, 5, 8, 6. 815 

(B) Assessment of collagen deposition by hydroxyproline quantitation. N-values left to right: n = 816 

5, 5, 8, 6. 817 

(C) Picrosirius red staining visualizing fibrotic deposition.   818 

(D) Quantitation of ductular reaction as percentage of EpCAM+ cells per randomly chosen 20X 819 

microscopic field view co-expressing Ki-67. N-values left to right: n = 9, 9.  820 

(E) Quantitation of percentage of ORO strong positive pixels per randomly selected 20X view. 821 

N-values left to right: n = 9, 9.  822 

(F) Quantification of serum triglycerides taken at the time of euthanasia. N-values left to right: n 823 

= 8, 6. 824 



(G) Ki-67/EpCAM immunostaining with DAPI nuclear counterstain of IL-13 overexpression 825 

mice.  826 

(H) Oil Red O staining highlighting steatotic lipid droplets of IL-13 overexpression mice.  827 

(I) Subset of Illumina Beadchip microarray analysis showing genes selected using the following 828 

criteria: p < 0.01 (Welch’s t-test, Alb-Cre+ IL-13 v. Alb-Cre– IL-13), |Fold Difference| > 2 (Alb-829 

Cre+ IL-13 v. Alb-Cre– IL-13).  830 

(J) Select pathways significantly perturbed by IL-13 signaling through Alb+ cells (p < 0.01).  831 

(K) Ingenuity Pathway Analysis was utilized to identify differences in key downstream 832 

downstream mediators of metabolism, senescence, and bile acid synthesis in the Alb-Cre– mice 833 

compared to the Alb-Cre+ mice.   834 

(L) Quantitation of mRNA expression by qPCR of select metabolism, bile synthesis/excretion, 835 

and inflammation-related genes identified by microarray analysis. N-values left to right: n = 5, 5, 836 

8, 6. 837 

(Note) Data representative of two replicate experiments reported as mean ± S.E.M.; All scale 838 

bars 100 µm; Arrows point to bile ducts; p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 839 

 840 

Figure 4. Direct IL-13 Signaling in K19+ Cells Induces DR and Steatosis.  841 

(A) Assessment of collagen deposition by hydroxyproline quantitation of mice injected with an 842 

eGFP or IL-13 overexpression plasmid after 1 week.  N-values left to right: n = 3, 4, 4, 6. 843 

(B) Picrosirius red staining visualizing quality of fibrotic deposition.   844 

(C) Quantitation of mRNA expression by qPCR of IL-13 responsive genes relative to 18S. N-845 

values left to right: n = 3, 4, 4, 6. 846 

(D) Quantitation of ductular reaction as assessed by percentage of EpCAM+ cells per randomly 847 

chosen 20X microscopic field view co-expressing Ki-67. N-values left to right: n = 9, 9.  848 

(E) Ki-67/EpCAM immunostaining with DAPI nuclear counterstain of IL-13 overexpression 849 

mice.  850 

(F) Quantitation of percentage of ORO strong positive pixels per randomly selected 20X view. 851 

N-values left to right: n = 9, 9.  852 

(G) Oil Red O staining highlighting steatotic lipid droplets of IL-13 overexpression mice after 9 853 

days.  854 



(H) K19-Cre- animals exhibit DR, steatosis, and fibrosis after 13-OP. In contrast, K19-Cre+ 855 

animals, in which IL-13 signaling is blocked in cholangiocytes, but not hepatocytes and other 856 

cells, do not develop significant DR or steatosis, yet still have significant fibrosis. 857 

(I) Assessment of collagen deposition by hydroxyproline quantitation of infected with S. 858 

mansoni for 12 weeks.  N-values left to right: n = 14, 8. 859 

(J) Picrosirius red staining visualizing quality of fibrotic deposition.   860 

(K) Quantitation of liver weights of mice infected for 12 weeks. N-values left to right: n = 14, 8. 861 

(L) Infection Burden as assessed by number of mature worm pairs recovered after perfusion of 862 

the liver at time of euthanasia. N-values left to right: n = 14, 8. 863 

(M) Quantitation of ductular reaction as assessed by percentage of EpCAM+ cells per randomly 864 

chosen 20X microscopic field view co-expressing Ki-67. N-values left to right: n = 8, 10.  865 

(N) Ki-67/EpCAM immunostaining with DAPI nuclear counterstain of infected mice.  866 

(O) Quantification of serum alanine transaminase (ALT) and aspartate transaminase (AST) 867 

obtained at the time of euthanasia. N-values left to right: n = 14, 8. 868 

(Note) Data representative of two replicate experiments; All scale bars 100 µm; Arrows point to 869 

bile ducts; p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 870 

  871 

Figure 5. IL-13 Signaling through PDGFRB+ Fibroblasts is Necessary for IL-13 Driven Fibrosis. 872 

 (A) Assessment of collagen deposition by hydroxyproline quantitation of mice injected with an 873 

eGFP or IL-13 overexpression plasmid after 1 week.  N-values left to right: n = 3, 3, 4, 8. 874 

(B) Picrosirius red staining visualizing fibrotic deposition.   875 

(C) Quantitation of mRNA expression by qPCR of IL-13 responsive genes relative to 18S. N-876 

values left to right: n = 3, 3, 4, 8. 877 

(D) Oil Red O staining highlighting steatotic lipid droplets of IL-13 overexpression mice after 9 878 

days.  879 

(E) Ki-67/EpCAM immunostaining with DAPI nuclear counterstain of IL-13 overexpression 880 

mice highlighting ductular proliferation.  881 

(F) Assessment of collagen deposition by hydroxyproline quantitation of mice infected with S. 882 

mansoni for 12 weeks.  N-values left to right: n = 6, 4. 883 

(G) Picrosirius red staining visualizing fibrotic deposition in mice infected for 12 weeks. 884 



(H) Ki-67/EpCAM immunostaining with DAPI nuclear counterstain of mice infected for 12 885 

weeks highlighting ductular proliferation. 886 

(I) Schematic illustrating the different cell types targeted by IL-13 and downstream phenomenon 887 

related to each cell type.  888 

(Note) S. mansoni data representative of two replicate experiments; All scale bars 100 µm; 889 

p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 890 

 891 

Figure 6. IL-13 Signaling in Hepatocytes and Fibroblasts Assists in the Recruitment of 892 

Eosinophils. 893 

(A) Wright-Giemsa Staining used to quantify eosinophils (pink staining).   894 

(B) Quantitation of number of eosinophils per randomly chosen 20X microscopic field view.  895 

Data is presented as mean ± SEM of 5 fields per mouse from at least 3 mice per group.  896 

(C) Quantitation of eotaxin-1 (ccl11) mRNA expression by qPCR relative to 18S. N-values left 897 

to right: Alb-Cre: n = 5, 5, 8, 6; K19-Cre: n = 3, 4, 4, 6; PDGFRB-Cre: n = 3, 3, 4, 8. 898 

(D) Schematic illustrating the role of fibroblasts and hepatocytes in recruiting eosinophils 899 

through the IL-13 induced expression of eotaxin-1. 900 

(Note) All scale bars 100 µm; Arrows point to bile ducts; p*<0.05, p**<0.01, p***<0.001, 901 

p****<0.0001. 902 

 903 

Figure 7. IL-13 Driven DR Initiates Ductal Cholestasis Independently from Fibrosis. 904 

(A) Picrosirius red staining visualizing fibrotic deposition and highlighting the accumulation of 905 

yellow cholesterol crystals in Alb-Cre- mice.   906 

(B) Picrosirius red staining visualizing fibrotic deposition and highlighting the accumulation of 907 

yellow cholesterol in K19-Cre- mice.   908 

(C) Picrosirius red staining visualizing fibrotic deposition in PDGFRB-Cre- and highlighting the 909 

accumulation of yellow cholesterol crystals in both PDGFRB-Cre- and PDGFRB-Cre+ mice. 910 

(D) EpCAM/Ki-67 co-staining demonstrating that bile ducts in mice overexpressing IL-13 911 

proliferate to the point of occluding bile ducts (arrow). 912 

(E) Resin casting of biliary trees from WT and 13-OP mice demonstrate a truncated biliary tree 913 

in 13-OP treated mice as a result of proliferation-induced ductal occlusion. 914 



(F) Schematic illustrating the role of ductular proliferation in inducing cholestasis through the 915 

occlusion of large branching ducts, and subsequent induction of a pro-lipogenic program within 916 

hepatocytes resulting in steatosis. 917 

(Note) All scale bars 100 µm.  918 
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Supplementary Figure 1. Mortality and Infection Burden in Alb-Cre Mice During S. mansoni 1 

Infection. 2 

(A) Survival of Alb-Cre mice during chronic S. mansoni infection. N-values Alb-Cre-: n = 32; 3 

Alb-Cre+ n = 30. 4 

(B) Quantitation of infection burden by mature worm pair count from perfusate and egg count 5 

from KOH digested tissue. N-values Alb-Cre-: n = 12; Alb-Cre+ n = 11. 6 

 (Note) Results representative of three replicate experiments; p*<0.05, p**<0.01, p***<0.001, 7 

p****<0.0001. 8 

 9 

Supplementary Figure 2. Mortality and Liver Damage in Alb-Cre Mice During 13-OP. 10 

(A) Survival of Alb-Cre mice after 13-OP. N-values Alb-Cre-: n = 10; Alb-Cre+ n = 9. 11 

(Excluding mice deemed not over-expressing) 12 

(B) Quantitation of serum ALT and AST levels after 13-OP. N-values Alb-Cre-: n = 8; Alb-Cre+ 13 

n = 6. 14 

 (Note) Results representative of two replicate experiments; p*<0.05, p**<0.01, p***<0.001, 15 

p****<0.0001. 16 

 17 

Supplementary Figure 3. Efficiency of K19-CreERT Recombination 18 

(A) Quantitation of percentage of EpCAM+ cells expressing tdTomato R26R stop-floxed 19 

reporter. N-values left to right: n = 11, 11. 20 

(B) Representative micrograph showing co-localization of EpCAM with tdTomato R26R stop-21 

floxed reporter. 22 

(Note) Data reported as mean  S.E.M; p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 23 

 24 

Supplementary Figure 4. Mortality and Liver Damage in K19-Cre Mice During 13-OP. 25 

(A) Survival of K19-Cre mice after 13-OP. N-values K19-Cre-: n = 6; K19-Cre+ n = 8. 26 

(B) Quantitation of serum ALT and AST levels after 13-OP. N-values K19-Cre-: n =4; K19-Cre+ 27 

n = 5. 28 

(Note) Results representative of two replicate experiments; p*<0.05, p**<0.01, p***<0.001, 29 

p****<0.0001. 30 

  31 
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Supplementary Figure 5. IL-13 Stimulation of Isolated HPCs. 32 

(A) Murine HPCs isolated by EpCAM+Prom1+CD24+ TER119-CD31-CD45- sorting develop 33 

noticeable morphological changes after IL-13 treatment.  34 

(B) Assessment of cellular proliferation by Alamar Blue Reduction. (Data presented as mean  35 

SEM from 6 independent experiments.)  36 

(C) Subset of Illumina Beadchip microarray analysis showing genes selected using the following 37 

criteria: p < 0.05 (Welch’s t-test, Control v. IL-13), |Fold Difference| > 1.5 (Control v. IL-13).  38 

(D) Select cholangiocyte differentiation and immune regulation markers significantly perturbed 39 

by IL-13 signaling on HPCs (p < 0.05).  40 

 41 

Supplementary Figure 6. Mortality in PDGFRB-Cre Mice. 42 

(A) Survival of PDGFRB-Cre mice after 13-OP. N-values PDGFRB-Cre-: n = 8; PDGFRB -Cre+ 43 

n = 10. 44 

(B) Survival of PDGFRB-Cre mice during chronic S. mansoni infection. N-values PDGFRB-Cre-45 

: n = 11; PDGFRB-Cre+ n = 7.   46 

(Note) p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 47 

 48 

Supplementary Figure 7. Ki-67 Quantitation in PDGFRB-Cre Mice. 49 

 (A) Quantitation of percentage of EpCAM+ cells per randomly chosen 20X microscopic field 50 

view expressing Ki-67 after 13-OP. N-values left to right: n = 8, 9.  51 

 (B) Quantitation of percentage of EpCAM+ cells per randomly chosen 20X microscopic field 52 

view expressing Ki-67 after 12 week S. mansoni infection. N-values left to right: n = 8, 9.    53 

(Note) Data reported as mean  S.E.M. Results representative of two replicate experiments; 54 

p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 55 

 56 

Supplementary Figure 8. Type-2 Response in PDGFRB-Cre Mice During S. mansoni Infection. 57 

Quantitation of mRNA expression by qPCR of type-2 response genes relative to 18S of 58 

PDGFRB-Cre mice after 12 week infection with S. mansoni.  59 

(Note) p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 60 

 61 



 62 

Supplementary Figure 9. Assessment of Intrahepatic Steatosis. 63 

Hall’s bilirubin staining demonstrating lack of intrahepatic cholestasis in mice treated with 13-64 

OP. (Green – bilirubin, yellow – counterstain, red – collagen) 65 

  66 

Supplementary Figure 10. IL-33 is Not Required for DR during S. mansoni  Infection. 67 

(A) Wright-Giemsa staining of 12-week infected C57BL/6 control mice and IL-33-/- mice 68 

highlighting bile ducts. 69 

(B) Quantitation of number of bile ducts pixels per randomly chosen 20X microscopic field 70 

view. Data is presented as mean ± SEM of 5 fields per mouse from at 5 mice per group. 71 

(C) IL-13 mRNA quantitation by qPCR from 12 week infected mice. N-values left to right: n =  72 

(D) Flow Cytometry results illustrating percentage of IL-13+ CD4+ T cells from 12 week infected 73 

mice. N-values left to right: n = 5, 7, 9. 74 

(Note) p*<0.05, p**<0.01, p***<0.001, p****<0.0001. 75 

 76 

Supplementary Figure 11. PDGFRB-Cre Recombines with High Efficiency. 77 

(1) E-Gel Low Range Quantitative DNA Ladder (Invitrogen). Ladder consists of 100ng x 2000 78 

bp, 40 ng x 800 bp, 20 ng x 400 bp, 10 ng x 200 bp, 5 ng x 100 bp. 79 

(2-5) Genotyping for IL4R native allele (not recombined, top band)  80 

(2) PDGFB-Cre- sorted HSCs. 81 

(3) PDGFB-Cre+ sorted HSCs. 82 

(4) PDGFB-Cre- pre-sort. 83 

(5) PDGFB-Cre- pre-sort. 84 

(6) Ladder (see 1). 85 

(7-10) Genotyping for IL4R KO allele (after recombination) 86 

(7) PDGFB-Cre- sorted HSCs. 87 

(8) PDGFB-Cre+ sorted HSCs. 88 

(9) PDGFB-Cre- pre-sort. 89 

(10) PDGFB-Cre- pre-sort. 90 

 (11) Ladder (see 1). 91 
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Supplementary Table 1.  List of Primer Sequences for qPCR and PCR Genotyping 

Gene Forward Sequence 5’-3’ Reverse Sequence 5’-3’ 

ABCB11 ACATCTGTAGGGTTGTTGAGTG CAAAGAAGCCAACTCGAGCG 

CCL11 GAATCACCAACAACAGATGCAC ATCCTGGACCCACTTCTTCTT 

COL6A1 CGCCCTTCCCACTGACAA GCGTTCCCTTTAAGACAGTTGAG 

CYP7A1 TTCTGCGAAGGCATTTGGAC TACATCCCTTCCGTGACCCA 

FIZZ1 CCCTCCACTGTAACGAAGACTC CACACCCAGTAGCAGTCATCC 

IL13 CCTCTGACCCTTAAGGAGCTTAT CGTTGCACAGGGGAGTCTT 

IL13Ra2 CCTGGCATAGGTGTACTTCTTG CCAAATAGGGAAATCTGCATCCA 

IL4 ACGAGGTCACAGGAGAAGGGA AGCCCTACAGACGAGCTCACTC 

IL5 TGACAAGCAATGAGACGATGAGG ACCCCCACGGACAGTTTGATTC 

Periostin CTGGTATCAAGGTGCTATCTGC AATGCCCAGCGTGCCATAA 

PTGIS TGGGTTGAGAATCCTGCGG CCACCAGCACAGTAAATATGTC 

SPP1 CTGGCTGAATTCTGAGGGACT TTCTGTGGCGCAAGGAGATT 

YM1 CATGAGCAAGACTTGCGTGAC GGTCCAAACTTCCATCCTCCA 

Alb-Cre GCGGTCTGGCAGTAAAAACTATC GTCAAACAGCATTGCTGTCACTT 

Alb-Cre Control CTAGGCCACAGAATTGAAAGATCT GTAGGTGGAAATTCTAGCATCATCC 

IL4Ra-WT GTACAGCGCACATTGTTTTT CTCGGCGCACTGACCCATCT 

IL4Ra-KO GGCTGCCCTGGAATAACC CCTTTGAGAACTGCGGGCT 

K19-Cre TTAATCCATATTGGCAGAACGAAAACG CAGGCTAAGTGCCTTCTCTACA 

tdTomato AGATCCACCAGGCCCTGAA GTCTTGAACTCCACCAGTAGTG 
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