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Abstract We consider continuous time Markovian pro-

cesses where populations of individual agents interact

stochastically according to kinetic rules. Despite the

increasing prominence of such models in fields rang-

ing from biology to smart cities, Bayesian inference for

such systems remains challenging, as these are contin-

uous time, discrete state systems with potentially infi-

nite state-space. Here we propose a novel efficient al-

gorithm for joint state / parameter posterior sampling

in population Markov Jump processes. We introduce a

class of pseudo-marginal sampling algorithms based on

a random truncation method which enables a principled

treatment of infinite state spaces. Extensive evaluation

on a number of benchmark models shows that this ap-

proach achieves considerable savings compared to state

of the art methods, retaining accuracy and fast conver-
gence. We also present results on a synthetic biology

data set showing the potential for practical usefulness

of our work.
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1 Introduction

Discrete state, continuous time stochastic processes such

as Markov Jump Processes (MJP) [12] are popular math-

ematical models used in a wide variety of scientific and

technological domains, ranging from systems biology to

computer networks. Of particular relevance in many ap-

plications are models where the state-space is organ-

ised according to a population structure (population

Markov Jump Processes, pMJP): each state label cor-

responds to counts of individual entities in a number

of populations (or species). These models are at the

root of essentially all agent-based models, a class of

models which is gaining increasing popularity in appli-

cations ranging from smart cities, to epidemiology, to

systems biology. Despite their importance, solving in-

ferential problems within the pMJP framework is chal-

lenging: the discrete nature of the system prevents the

use of simple parametric distributions, and the size of

the state space (which can be unbounded for open sys-

tems) effectively rules out analytical computations. At

the same time, technological advances in areas as di-

verse as single cell biology and remote sensing are pro-

viding increasing amounts of data which can be natu-

rally modelled as pMJPs, creating a pressing need for

inferential methodologies.

In response to these developments, researchers in

the statistics, machine learning and systems biology

communities have been addressing inverse problems for

MJPs using a variety of methods, from variational tech-

niques [25,7] to particle-based [34,16] and auxiliary

variable sampling methods [26]. Markov-chain Monte

Carlo (MCMC) methods, in particular, offer a promis-

ing direction: while often computationally more inten-

sive than variational methods, they provide asymptoti-

cally exact inference. However, standard MCMC meth-
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ods rely on likelihood computations, which are compu-

tationally or mathematically infeasible for pMJPs with

a large or unbounded number of states. Such systems

are commonplace in many applications, where one is of-

ten confronted with open systems where upper bounds

on the numbers of agents are difficult to come by. As

far as we are aware, current methods address this issue

by arbitrarily truncating the state space according to

pre-defined heuristics, offering no control over the error

introduced by this procedure.

In this paper we present a novel Bayesian approach

to posterior inference in pMJPs which solves these is-

sues by adopting a pseudo-marginal approach based on

random truncations, yielding both asymptotic exact-

ness and computational improvements. We build on the

auxiliary variable Gibbs sampler for finite state Markov

Jump Processes (MJP) of [26], significantly increasing

its efficiency by leveraging the more compact represen-

tation of the kinetic parameters provided by the pMJP

framework. We then present a novel formulation of the

likelihood, which enables the deployment of a Russian

Roulette-like random truncation strategy as in [21,10].

Based on this, we develop a pseudo-marginal sampling

approach for general pMJPs, obtaining two novel algo-

rithms: a relatively straightforward Metropolis-Hastings

pseudo-marginal scheme, and an auxiliary variable pseudo-

marginal Gibbs sampler. We examine the performance

of these algorithms in terms of accuracy and efficiency

on non-trivial case studies. We conclude the paper with

a discussion of our contribution in the light of existing

research and possible future directions in systems biol-

ogy.

2 Background

2.1 Population Markov Jump Processes

Population Markov Jump Processes are a particular

type of Markov Jump Processes (also known as Popu-

lation Continuous Time Markov Chains); they are con-

tinuous time stochastic processes whose discrete state

vector s = (n1, n2, . . . , nM ) gives the agent counts of

each of M populations (or species) interacting through

R reaction channels. We will adopt here the language

of chemical reactions to describe such processes, but

the same considerations apply in general. Reactions be-

tween individual agents (or molecules) happen as a re-

sult of random collisions, and each reaction changes the

state by a finite amount, encoded in the stoichiometry

of the system, corresponding to the creation/ destruc-

tion of a certain number of molecules. Each reaction i

also has an associated kinetic law giving its rate: this

(2,2,0,0) (1,1,1,0)

(1,1,0,1) (0,0,1,1) (0,0,0,2)
θ1

θ2

4θ1

θ2

θ3

θ3

Fig. 1: State-space of an example system. Arrows indi-

cate transitions between states; the bolded transitions

are “instances” of the same reaction type, which up-

dates the state by (−1,−1, 1, 0) and occurs with rate

θ1s1s2, where s1, s2 are the first and second compo-

nents of the state.

is generally of the form

fi(n) = θiρi(n), (1)

where ρi is a fixed function of the state n, while θi are

(usually unknown) kinetic parameters. Therefore, while

in a general MJP there can be a parameter associated

with each possible transition, in pMJPs the dynamics

are captured more succinctly by a single parameter per

reaction. A schematic of a simple pMJP is given in Fig-

ure 1, where it can be seen that the same reaction can

correspond to multiple transitions in the state-space of

the process, all of which follow the same kinetic law and

incur the same update to the state.

The time evolution of the process marginals is given

by the Chemical Master Equation (CME):

dpi(t)

dt
=
∑
j 6=i

pj(t)aji − pi(t)
∑
j 6=i

aij (2)

where pi(t) is the probability of being in state i at time

t and aij is the rate of jumping from state i to state j,

which for pMJPs is known from the kinetic law.

For finite state-spaces, one can gather the transition

rates aij in the generator matrix A, and the CME can

be solved analytically as:

p(t) = p(0)eAt (3)

This solution can be computationally intensive, even

with the use of specialized algorithms like [2].

2.2 Uniformisation and inference

An alternative approach to solve the CME is given

by uniformisation [18], a well-known technique for the

transient analysis of Markovian systems, used widely

in fields like performance modelling. Given a MJP with

generator A, uniformisation constructs a discrete time
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Markov chain by imposing a common exit rate γ for all

states. For this procedure to be consistent, γ must be no

less than the highest exit rate among all states. The re-

sulting uniformised system is then faster than the origi-

nal, in the sense that transitions occur at a higher rate.

To compensate for this and maintain the behaviour of

the original MJP, virtual jumps must be added from

each state to itself. This results in a discrete time sys-

tem with transition probability matrix B = 1
γA + I,

in which likelihood computations are standard. In this

discrete time system, the waiting time before a jump oc-

curs now follows an exponential distribution with rate

γ, regardless of the current state. The probability of

jumping from state i to another state j is
aij
γ , but it is

now also possible to remain in i after the jump, with

probability 1− 1
γ

∑
j 6=i aij . Jensen’s classical result [18]

then guarantees that all the time-marginals of the dis-

crete time process match those of the continuous time

chain.

Uniformisation has previously been exploited by [26]

to draw posterior samples from a MJP conditioned on

a set of observations. The idea is to construct a dis-

crete time chain using uniformisation, sample a tra-

jectory (including self-loops) and run a standard for-

ward filtering-backward sampling (FFBS) algorithm on

it. This gives a new trajectory which, when self-jumps

are removed, is a sample from the posterior process.

This path-sampling algorithm can be alternated with

Gibbs updates to jointly sample transition probabili-

ties; in [26] this is accomplished by choosing conjugate

Dirichlet priors on each entry of the generator matrix,

resulting in potentially many parameters with conse-

quent storage/ computational issues.

3 Unbiased sampling for pMJPs

3.1 Efficient Gibbs sampling for finite state pMJPs

The special structure of pMJP systems implies consid-

erable inferential savings over the generic Gibbs sam-

pler [26]. In particular, the functional form of the kinetic

law associated with the ith reaction, fi(s) = θiρi(s),

suggests a different conjugate prior for the parame-

ters θi, which greatly simplifies the parameter sampling

steps within the Gibbs sampler.

Let (S, T ) be a full trajectory sampled from the uni-

formised conditional posterior in a Gibbs step, where

S = (s0, s1, . . . , sK) is the sequence of states at times

T = (t0, t1, . . . , tK). Let uk denote the reaction at time

tk+1, as inferred1 from inspection of sk and sk+1. From

Section 2.1, we know that the total rate of exiting state

1 We assume each reaction has a distinct update vector.

sk is rk =
∑R
i=1 θiρi(sk). Since the waiting time be-

tween jumps is exponentially distributed in a MJP, this

gives

p(tk+1 | tk, sk) = rke
−∆tkrk , where ∆tk = tk+1 − tk

The probability of the next state being sk+1 is
θuk

ρuk
(sk)

rk
.

The total likelihood is then

L(θ) = p(S, T | θ) = p(S | θ)p(T | S,θ)

=

K−1∏
k=0

θuk
ρuk

(sk)

rk
rke
−∆tkrk

=

K−1∏
k=0

θuk
ρuk

(sk)e−∆tkrk

Let each parameter be Gamma-distributed a priori :

p(θi) =
baii
Γ (ai)

θai−1i e−biθi

We then have:

p(θi | S, T ) ∝ p(θi)p(S, T | θ)

∝ θai+Ni−1
i e−bi−

∑K−1
k=0 ∆tkρi(sk)θi (4)

Therefore, conditioned on the trace, the parameters are

again Gamma-distributed with shape ai +Ni and rate

bi +
∑K−1
k=0 ∆tkρi(sk), where Ni is the number of times

the ith reaction type is observed in the trace. Hence,

we have exact Gibbs updates for the kinetic parame-

ters; notice that, since we have a single parameter for

each reaction, the number of parameters to be sampled

is often orders of magnitude lower than the number of

parameters sampled in [26] (one per possible state tran-

sition), yielding computational and storage savings.

3.2 Unbounded state-spaces

Many pMJPs of practical interest describe open sys-

tems with infinite state-spaces, which are not amenable

to uniformisation. A plausible solution would be to trun-

cate the system, possibly using methods such as in [23]

to quantify the error. However, any such bound would

be dependent on the unknown parameters, and in or-

der to achieve acceptable performance we may need to

still retain very large state spaces. An alternative ap-

proach may be to introduce random truncations in such

a way as to obtain an unbiased estimator of the likeli-

hood, which can be used in a pseudo-marginal MCMC

scheme [4,5]. We describe here two algorithms based

on random truncations, a simple Metropolis-Hastings

(M-H) sampler directly targeting the marginal likeli-

hood, and a Metropolized auxiliary variable Gibbs sam-

pler.
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3.2.1 Expanding the likelihood

We start by describing a formulation of the likelihood

in the pMJP setting as an infinite series. The basic idea

is to decompose the space of process trajectories into a

nested sum over subspaces of trajectories which differ

by at most N from the observations. We can then define

a generator matrix on each of these finite state-space

systems and compute transient probabilities using (3).

We now explicitly define the terms in this expansion of

the likelihood. For simplicity, we focus on deriving the

likelihood for a single, noiseless observation (t′, s′) in a

one-dimensional process, assuming the state at time 0

is known to be s ∈ N. Due to the Markovian nature

of the process, the actual likelihood will be given by a

product of such terms. If we write su = max(s, s′), we

have:

p(s′ | s,θ) =

∞∑
N=0

p(s′,max (s0:t′ − su) = N | x,θ)

≡
∞∑
N=0

p(N)(s′, s) (5)

The notation s0:t indicates all values of the process

in the time interval [0, t] and is used here as follows:

max (s0:t) = N means that the maximum value of the

process in the interval [0, t] is N . Similarly, max (s0:t) ≤
N means that the process does not exceed the value N

during [0, t].

Note that the constraint on the maximum of s0:t′ −
su does not simply define a state-space, but constrains

us to consider only those trajectories that actually achieve

a “dispersal” of N . If we define

f (N)(s′, s) = p(s′,max (s0:t − su) ≤ N | x,θ)

then each term of the series can be decomposed as:

p(N)(s′, s) = f (N)(s′, s)− f (N−1)(s′, s) (6)

These sub-terms are now the transient probability

for a finite state-space pMJP, and can be computed

using Equation 3. Any number of them are computable

but, naturally, the whole sum cannot be computed in

finite time. It can, however, be estimated in an unbiased

way.

3.2.2 Random truncations

Assume we wish to estimate an infinite sum

f =

∞∑
N=0

fN

where each term fN is computable. One way of ap-

proximating the sum is to pick a single term fk, where

k is chosen from any discrete distribution with mass

p0, p1, . . . . We can immediately see that f̂ = fk
pk

has ex-

pectation E[f̂ ] =
∑∞
N=0

fN
pN
pN = f and is therefore an

unbiased estimator of the infinite sum. An issue with

this approach is that, depending on the choice of distri-

bution pi, the variance of f̂ might be very large, even

infinite.

A reduced variance estimator can be obtained by

approximating f with a partial sum up to order N ,

weighted appropriately. The number of terms is chosen

randomly: at every term j, a random choice is made:

there is a probability qj of stopping the sum, otherwise

we continue to form iteratively the partial sum f̂ =∑j
N=0

fN
pN

, where pN =
∏N−1
j=1 (1 − qj). This scheme,

imaginatively termed Russian Roulette sampling [21],

can also be shown to yield an unbiased estimator of f .

3.2.3 Metropolis-Hastings sampling

Applying this random truncation strategy to the expan-

sion in (5) produces an unbiased estimator. Such esti-

mates can be obtained for every interval between suc-

cessive observations; since they are independent, their

product will be an unbiased estimate of the likelihood

under all the observations. Note that each summand in

(5) is a probability, and is therefore non-negative. Thus,

we avoid the problems of possibly negative estimators;

this positivity is important, as non-positive estimators

may result in a large or infinite variance. It is worth

remarking that the term for N = 0 corresponds to a

space that includes the observations at both ends of

the time interval, and hence will already include a sig-

nificant contribution of probability mass towards the

likelihood.

The same approach is easily extended to higher di-

mensions, where the states are vector of integers, by

adapting the notation: max (s0:t) ≤ N means that the

value in any dimension does not exceed N in the given

interval, whereas max (s0:t) = N now means that a

value of N is not exceeded in any dimension during

[0, t], and that it is achieved in at least one dimension.

This procedure directly gives rise to a pseudo-marginal

M-H algorithm, where the likelihood term is approxi-

mated by the unbiased estimate obtained as described

above. We refer to this as Algorithm 1 and examine its

performance in the next section.

For our purposes, we choose a qn sequence such that

the probability of accepting a term decreases geomet-

rically; specifically, we use qn = 1 − a(1 − qn−1), with

q0 = 0 and a = 0.95. We note that, since all terms in

the series are non-negative and tend to 0, we can make

use of a result from [21] to show that the variance of the

estimator is finite. We show an empirical analysis of the
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variance in Section 4.1 that validates our choice of qn
and indicates that performance is robust with respect

to the choice of the particular stopping distribution.

3.2.4 Modified Gibbs sampling

An alternative approach is to incorporate the trunca-

tion in the Gibbs sampler described in Section 3.1. The

difficulty is that there is no direct way to sample trajec-

tories without a bound on the state-space, as the uni-

formisation sampler requires a finite number of states.

To work around this limitation, we propose to sample

a truncation point, then draw a trajectory and param-

eters for this state-space as in Section 3.1. Since we are

no longer sampling from the true conditional posterior

over trajectories, but rather are also conditioning on

the chosen truncation, we are no longer able to accept

every trajectory and parameter sample drawn. Instead,

we must introduce an acceptance ratio that will ensure

we are sampling from an unbiased estimate of the true

conditional posterior. We refer to this as Algorithm 2 ;

the following is a summary of the procedure to form a

new sample (θt+1, St+1) from the current state (θt, St)

of the chain, given a set of observations O:

1. Sample θ∗ | St, as detailed above.

2. Sample S∗ | O,θ∗:
(a) Choose a truncation point m∗, defining a finite

state-space.

(b) Run the FFBS algorithm to draw S∗.

3. Calculate the acceptance ratio α:

(a) Compute p(t+1)(S∗ | θ∗, O) and p(t)(S∗ | θ∗, O),

the conditional posterior probabilities of the new

trajectory under the new and old truncations.
(b) Compute p(t+1)(St | θ∗, O) and p(t)(St | θ∗, O),

the conditional posterior probabilities of the old

trajectory under the new and old truncations.

(c) Set α = p(t+1)(S∗|θ∗,O)p(t+1)(St|θ∗,O)
p(t)(St|θ∗,O)p(t)(S∗|θ∗,O)

.

4. With probability min(α, 1), accept the new sam-

ple and set (θt+1, St+1) = (θ∗, S∗); otherwise, set

(θt+1, St+1) = (θt, St)

Note that the analysis from Section 3.1 giving the

conditional posterior of the parameters (Equation (4))

still holds and is not affected by the truncation. Step 1 is

therefore performed following (4). In Step 2a, we follow

the Rusian Roulette methodology as in Section 3.2.2

and take m∗ to be the number of terms before the trun-

cation stops. In the scheme used in our experiments,

the probability of taking an additional term follows a

geometric distribution, as with the previous algorithm.

Based on this truncation point m∗, we can define a

state-space

S =
{

(x1, x2, . . . , xM ) ∈ NM | xi ≤ y∗i +m∗
}

where y∗ = (y1, . . . , yM ) is a vector of the maximum

values observed in each dimension. The method of Sec-

tion 3.1 can then be used to sample a trajectory (Step 2b)

in this finite state-space.

Steps 3a and 3b involve the computation of proba-

bilities which can be performed via the forward-backward

algorithm on the appropriate state-spaces. So far in this

paper, the algorithm has been used to sample a new

path from the process, but it can easily be adapted to

calculate the probability of a given path, as shown in

the algorithm outline below.

In the following, we assume we have N observations

yi at time points ti, i = 1, . . . , N . For a finite state-space

S, we denote with Sk the k-th state of the space, ac-

cording to some arbitrary order. The forward and back-

ward messages are vectors of size |S|, and there is one

such message for each observed time point. a(i) denotes

the forward message at the i-th time point ti; its k-th

element is

a
(i)
k = p(y1, . . . , yi−1,Sk)

that is, the joint probability of the observations prior to

ti and the state at ti being Sk. Similarly, the backward

messages b(i) has elements:

b
(i)
k ∝ p(Sk | yi, . . . , yN )

and so the probability of the observed time-series can

be computed from the b(i). This is a slightly different

than the usual formulation of the forward-backward al-

gorithm, and necessitates the computation of the for-

ward messages a(i) first. The messages can be computed

recursively as shown in [26].

Forward-backward algorithm

Require: Observations Y = (y1, . . . , yN ), finite state-space
S, parameters θ

Ensure: Probability of Y
1: Compute transition probabilities pkl between states in S

based on θ
2: for i = 1..N do
3: Compute forward message a(i)

4: end for
5: Initialise p← 1
6: for i = N..1 do
7: Compute backward message b(i)

8: Find index k of observation yi in S
9: p = p · b(i)k

10: end for
11: return p

These probabilities computed this way are then used

in the acceptance ratio α (Step 4). As noted above, the

acceptance step is necessary because we are not propos-

ing trajectories from the exact conditional posterior.
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Instead, the truncation we impose gives an estimate

of the correct proposal distribution p(S∗ | θ∗, O), and

the ratio compensates for this estimate. Note that, if

we could draw trajectories from the whole state-space

without truncating it, the terms in α would cancel out,

giving standard Gibbs sampling with acceptance rate

of 1.

It is important to observe that this auxiliary vari-

able Gibbs sampler actually targets the joint posterior

distribution of parameters and trajectories. As such,

it provides richer information than the M-H sampler

(which directly targets the parameter posterior), but

may be less effective if one is solely interested in param-

eter inference. The performance can also be affected by

computational factors, particularly the costs of draw-

ing sample trajectories (which was not needed in Al-

gorithm 1, where we compute the likelihood by matrix

exponentiation). In general, such costs will be model-

and data-dependent, so that some initial exploration

may be advisable before deciding which algorithm to

use.

4 Results

This section describes the experimental validation of

our approach. The experiments were performed on MAT-

LAB implementations of the algorithms described in

the previous section2. The M-H proposals for Algo-

rithm 1 were Gaussian, with variances tuned using trial

runs. In the same algorithm, matrix exponentiation was

performed using the method of [2], with the code that

the authors have made available. Unless otherwise noted,

the Russian Roulette truncation used in the experi-

ments was chosen so as to yield 5.6 terms on average.

4.1 Variance of the estimator

Before showing how our algorithms perform against the

state of the art, we present empirical evidence that

our Russian Roulette-style truncation approach pro-

duces estimators with low variance, an issue that has

recently received attention in pseudo-marginal meth-

ods [8,30]. In order to achieve estimators of low vari-

ance, the tails of the distribution of the number of terms

taken must match those of the sequence being approx-

imated [27] (or the estimator is likely to ignore signifi-

cant terms). To our knowledge, there are no established

results on the behaviour of transient probabilities in

general pMJPs as the state-space grows. Our approach

is to use a geometric truncation distribution, which is

2 available at https://github.com/ageorgou/roulette

a = 0.95 a = 0.75 a = 0.2
(5.6 terms) (2.4 terms) (1.2 terms)

0.0002 0.0008 0.0223
0.0051 0.0151 0.0344
0.0003 0.0013 0.0245

< 10−4 < 10−4 0.0016
< 10−4 < 10−4 0.0008
0.0005 0.0021 0.0109

< 10−4 < 10−4 < 10−4

0.0003 0.0014 0.0223
0.0002 0.0011 0.0073
0.0002 0.0009 0.0077

Table 1: Coefficient of variation for the log-likelihood,

estimated from 1000 samples for the LV model, under

three truncation schemes (varying α) and ten parame-

ter configurations (Section 4.1)

well known ([19]) to arise as a steady-state distribution

of simple pMJPs such as queueing systems, and might

thus be a plausible candidate distribution. Our focus

in this section is to provide an empirical evaluation of

our method. Additionally, we show that the estimator

is robust to the choice of the particular stopping distri-

bution qn used in the truncation scheme. To verify this,

we considered three different qn sequences, applied to

the predator-prey model described in Section 4.2. For

clarity, we write q̄n ≡ 1−qn, the probability of continu-

ing at term n. All schemes were of the form q̄n = aq̄n−1
with q̄0 = 1 and a ∈ {0.95, 0.75, 0.2}, respectively yield-

ing 5.6, 2.4 and 1.2 terms on average. For each scheme,

we calculated 1000 estimates of the transition probabil-

ities between observations, obtaining estimates of the

log-likelihood and computing its mean and variance.

This was repeated for 10 different parameterizations of

the model. It can be seen (Table 1) that the variance of

the estimator (measured as the coefficient of variation

of the log-likelihood, due to small values) is consistently

low. This validates our approach and indicates that the

stopping distribution does not critically affect perfor-

mance and therefore does not require fine-tuning.

An intuitive explanation for this comes from remem-

bering that the “base” space (corresponding to the first

term in the expansion) comprises all states between

consecutive observations. Often, this is large enough

that there is a substantial probability of the process

remaining within or around it. Hence, even with a few

terms, we are capturing a large part of the probabil-

ity mass, and obtaining good estimates. We expect our

estimator to have low variance if the process does not

change radically between the observation times. It is

possible, however, to find situations where the trunca-

tion strategy needs many terms in order to yield good

performance. This is more likely to occur if the process

https://github.com/ageorgou/roulette
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is very sparsely observed, or if it is highly volatile. In

both cases, the observations may not be very indicative

about the behaviour of the process during the interval

under consideration, therefore only taking few terms

may produce inaccurate estimates of the true likeli-

hood. This situation is also likelier when high counts

are involved, in which case other proposed solutions are

more appropriate (discussed in Section 5).

To illustrate this, we considered the example of a

birth-death process involving a single species, X, with

a constant birth rate of 150 and a death rate of X.

From an initial value of X = 10, we simulated the sys-

tem and used the values at 5 time points (Figure 2a).

The three truncation schemes described above did not

yield accurate estimates, even when taking 5 terms on

average. With a stopping scheme q̄n = 0.99q̄n−1 (corre-

sponding to 12.5 terms on average), we were able to get

good estimates of the true probabilities. The more ag-

gressive truncation schemes display higher variance and

could cause problems when their estimates are used in

Algorithm 1: when taking 5.6 terms on average, the

variance causes the sampling chain to “stick”, as seen

in Figure 2b.

As a way of improving the behaviour of the sam-

pler, we examined the use of the so-called Monte Carlo

within Metropolis (MCWM) pseudomarginal variant [5],

in which the estimate of the likelihood of the current

state of the chain is recomputed at every step. This can

potentially alleviate the “sticking” problem and lead

to better mixing, but at the cost of making the re-

sulting chain sample from an approximation instead

of the true posterior. Experiments on the predator-

prey model of Section 4.2 showed that there was no

noticeable improvement in either the number of steps

needed to reach convergence or the acceptance rate

when using MCWM. This, in addition to the bias intro-

duced and the additional computational burden from

re-estimating the likelihood, leads us to believe that in

this case there is no benefit from using MCWM.

To further study of the impact of the choice of trun-

cation distribution, we examined how it affects conver-

gence. We tried ten different stopping distributions qn
of the form described above, chosen so that they pro-

duce 1, 2, . . . , 10 terms on average. For each of them,

we measured the steps required for convergence, as de-

scribed in the next section. Overall, we found that tak-

ing more terms generally leads to faster convergence

(Figure 3). This indicates that the variance of the esti-

mates decreases when taking more terms.

4.2 Benchmark data sets

We now assess the performance the two algorithms de-

scribed in the previous section as well as the Gibbs sam-

pler based on uniformisation (Section 3.1). We could

not run the original Gibbs sampler of [26] as the high

number of parameters (one per state) swiftly led to stor-

age problems. We first compared the performance of the

three methods on two widely used pMJP models:

Lotka-Volterra (LV) model This predator-prey system

involves four types of reactions, representing the birth

and death of each species, and is a classic model in

ecology and biochemistry. Truncated LV processes have

been studied in previous work ([25],[6]), making it an

attractive candidate for evaluating our approach.

X + Y → 2X + Y at rate θ1XY

X → ∅ at rate θ2X

Y → 2Y at rate θ3Y

X + Y → X at rate θ4XY

We start from an initial state of 7 predators and 20

prey. When a finite state-space is required, we impose

a maximum count of 100 for each species, as in previous

work.

SIR epidemic model A commonly-used model of dis-

ease spreading (see e.g. [3]), where the state comprises

three kinds of individuals: S(usceptible), I(nfected) and

R(ecovered). We examine two variants of the model, a

finite version where the total population is constant:

S + I → 2I at rate θ1SI

I → R at rate θ2I

and an infinite state variant where new individuals can

join the S population with unknown arrival rate:

∅→ S at rate θ3

The initial state in both cases is (S, I,R) = (10, 5, 0).

For the finite-state version, this gives a state-space of

121 states. For the infinite case, we chose a truncation

with upper limit (28, 33, 33), corresponding to 18 new

arrivals in the system. To see this, note that the number

of arrivals in a time interval of duration T is Poisson-

distributed, with mean θ3T . We used the final obser-

vation time and the prior mean of θ3, and chose the

95-percentile of the distribution governing the new ar-

rivals. In broad terms, this means our truncation will

accommodate new arrivals with 95% probability.

Table 2 summarises our evaluation results across

the models considered; the metrics we use are total

computational time for 5000 samples, mean relative er-

ror in parameter estimates (using the posterior mean
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Fig. 2: (a) Full trace (continuous line) and observations (dots) used in the birth-death process example; (b)

Parameter samples for the birth rate using Algorithm 1, illustrating undesirable “sticking” behaviour when taking

5.6 terms on average
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Fig. 3: Steps until convergence for different stopping

distributions (results shown for one parameter of the

LV model).

as a point estimate), Effective Sample Size (ESS) per

minute of computation, and number of iterations to

convergence, defined as Potential Scale Reduction Fac-

tor (PSRF) < 1.1 [14].

Results on the LV model show that methods based

on random truncations achieve very considerable im-

provements in performance compared to the Gibbs sam-

pler (where the state space was truncated at a maxi-

mum number of 100 individuals per species). In par-

ticular, Algorithm 2 shows excellent behaviour in most

aspects, with a high ESS suggesting it is a more efficient

sampler. The running time of Algorithm 2 is compara-

ble to that reported for a variational mean field approx-

imation in [25], and its rapid convergence time suggests

that this is a very competitive algorithm in practice.

Gibbs Alg.1 Alg. 2

LV

Time 1011min 55min 29min
Error 14% 10.66% 12.75%

ESS/min 0.63 0.67 4.5
Iter. 24 1314 180

SIR finite

Time 1min 10min 4min
Error 2.24% 13.17% 2.13%

ESS/min 1752.13 63.01 422.72
Iter. 13 33 27

SIR infinite

Time 1585min 291min 666min
Error 31.6% 25% 24.3%

ESS/min 0.45 2.6 0.23
Iter. 5 65 136

Table 2: Performance of the various algorithms tested.

Metrics are averaged over all parameters. Experiments

were performed on a 24-core Xeon E5-2680 2.5GHz,

to accommodate the increased memory requirements of

some cases.

Sample results from Algorithm 2 are presented in Fig-

ure 4a for the reaction parameters, and in Figure 4b

for the state of the process itself. Algorithm 1, while

still computationally feasible, requires a long time to

converge, reflecting potential difficulties in choosing ef-

fective proposal distributions (a problem naturally by-

passed by Algorithm 2). The simple Gibbs algorithm

is much slower than the other two, undoubtedly owing

to its large state-space of 10000 states and very high

memory requirements during the FFBS algorithm. Note

that the impact of the (necessarily) large truncation is

twofold. Firstly, the large state-space directly affects the

running time of the FFBS algorithm, whose complex-

ity is quadratic in the number of states. Secondly, since
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the rates in this model are increasing functions, having

states with high counts means the generator matrix has

high diagonal entries (exit rates). This, in turn, requires

choosing a high exit rate for uniformisation, leading to

long paths with many self-jumps, and ultimately fur-

ther slowing down the FFBS step. The results for this

model clearly show the usefulness of the random trunca-

tion approach compared to using a static, conservative

truncation.

Results on the SIR model show that, in the finite

state space case, the Gibbs sampler of Section 3.1 is

highly efficient and by some way the best algorithm.

This is unsurprising, as truncations incur additional

computational overheads which are not needed for such

a small state space. The picture is completely differ-

ent for the infinite SIR model. In this case, the M-H

sampler clearly seems to be the best algorithm, achiev-

ing very fast convergence and outperforming the other

two. For parameter values within the prior range, the

infinite SIR model exhibits fast dynamics which lead

to very long uniformised trajectories, considerably in-

creasing the computational costs of sampling trajecto-

ries via the FFBS algorithm. The problem is further

compounded for the simple Gibbs sampler algorithm of

Section 3.1. Even with the truncation described above,

there are 32594 states, resulting in very severe compu-

tational and storage costs.

4.3 Genetic toggle switch

As a real application of our approach, we consider a

model of a synthetic biological circuit describing the

interaction between two genes (G1 and G2) and the

proteins they encode (P1 and P2). Each protein acts as

a repressor for the other gene, inhibiting its expression.

This leads to a bistable behaviour, switching between

a state with high P1 and low P2, and one with low

P1 and high P2 (hence the name toggle-switch). The

interactions are encoded as eight chemical reactions:

G1,on → G1,on + P1 at rate θ1
G2,on → G2,on + P2 at rate θ2
P1 → ∅ at rate θ3P1

P2 → ∅ at rate θ4P1

G1,off → G1,on at rate θ5
G2,off → G2,on at rate θ6
G1,on → G1,off at rate θ7e

rP2

G2,on → G2,off at rate θ8e
rP1

where r is a constant assumed known.

This system was engineered in vivo in one of the pi-

oneering studies in synthetic biology [13] and has been

further studied in [32]. Statistical inference is increas-

ingly being recognised as a crucial bottleneck in syn-

thetic biology: while genome engineering technologies

enable researchers to reliably synthesise circuits with a

desired structure, predicting the dynamic behaviour of

a circuit requires knowledge of the kinetic parameters

of the system once it is implanted in the cell, which

cannot be directly measured. As synthetic biology is

intrinsically at the single cell level, inference techniques

for stochastic models have the potential to be of great

aid in the rational design of synthetic biology circuits.

Following [32], we model the system using a binary

state for each gene and discrete levels for the proteins.

The genes can be active or inactive, with protein be-

ing produced only in the former case. Each gene can

be modelled with a telegraph process: an inactive gene

becomes active at a constant rate, and an active one

becomes inactive at a rate depending on the level of its

repressor. When a gene is active, the level of its prod-

uct follows a birth-death process; that is, proteins are

produced at a constant rate and degrade at mass-action

rates. We use a single production reaction for each pro-

tein to abstract various underlying mechanisms, includ-

ing transcription and translation. The model comprises

eight types of reaction; note that the requirements of

our method on the form of the kinetic laws (Section 3.1)

are flexible enough to accommodate the deactivation

dynamics used here, even though they are not mass-

action. We simulated the system to produce behaviour

similar to the simulated traces in [32]. We kept 20 time

points of measurements, which varied between 0 and 24

for each observed protein.

We used Algorithm 2 to infer the joint posterior dis-

tribution of the eight parameters and state trajectories

in this system. Our results indicate that the likelihood

is relatively insensitive to the parameters governing the

activation and deactivation of the two genes. This is a

reasonable result, since we do not observe the state of

the genes but only the levels of the two protein prod-

ucts. Therefore, the effect of the switching parameters is

seen only indirectly through the switching events, which

are rare in the data. In contrast, the protein expression

and degradation rates have sharp posteriors which cap-

ture interesting correlations between the parameters —

for instance, we observe a strong correlation between

the production and degradation rate of each protein, as

perhaps expected given the similarity to a birth-death

process. Figure 5 shows parameter posteriors and con-

vergence statistics for one such experiment, showcasing

the good behaviour of the algorithm.



10 Georgoulas, Hillston & Sanguinetti

0 2 4

x 10
−4

0

500

0 1 2

x 10
−3

0

200

400

0 1 2

x 10
−3

0

200

400

0 0.5 1

x 10
−3

0

500

1000

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

(b)

Fig. 4: (a) Posterior marginals and pairwise correlations for the parameters of the LV model, from 5000 samples

using Algorithm 2 (true values marked by red line, prior shown in dashed line); (b) Samples of the posterior

process: prey (top), predators (bottom). Dots indicate the observations.
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Fig. 5: (a) Posterior marginals and pairwise correlations for four parameters (θ1, θ2, θ3 and θ4) of the toggle switch

model, from 5000 samples using Algorithm 2 (priors shown in dashed line); (b) PSRF for all eight parameters.

5 Related work

Parameter inference in pMJPs has been the subject of

previous work, with a significant body of literature fo-

cusing on continuous approximations to the process, in

order to work around the complexities entailed by the

stochastic dynamics. In general, such approximations

are more accurate when the populations involved are

high, and their accuracy degrades for lower populations

as the impact of discrete stochastic behaviour becomes

more pronounced. Two general classes of methods have

been proposed to this end. The first involves approxi-

mating a pMJP with a diffusion process, as in [15], and

using the resulting stochastic differential equations to

calculate the likelihood. The second approach uses van

Kampen’s Linear Noise Approximation [33], which as-
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sumes that the marginal distribution of the approximat-

ing process at any time is Gaussian. Under this assump-

tion, ordinary differential equations for the mean and

covariance can be derived as in [29,9,20] and used to

compute the likelihood as part of an inference scheme.

In contrast to these methods, our suggested approach is

expected to be more accurate for smaller populations,

as it maintains the stochastic dynamics. This makes it

particularly useful for a range of systems which are large

enough that a direct solution is inefficient, but not as

large as to be accurately represented with continuous

dynamics.

In addition to MCMC-based approaches, like ours,

particle methods have also been proposed for use with

pMJPs, either with the exact dynamics [16,34] or with

continuous approximations such as the ones mentioned

above. However, they do require more user choices (e.g.

number of particles) and can also incur heavy com-

putational overheads for large models or state spaces.

For infinite MJPs, in particular, the transition kernel is

not available explicitly, making particle methods non-

trivial and intrinsically expensive. Variational methods

have been developed in [25], and can offer computa-

tional savings; however, the work in [25] only performed

state inference, providing point estimates for parame-

ters. Furthermore, the error introduced by the varia-

tional approximation is often difficult to quantify.

Recent work has made use of random truncations in

different contexts: Strathmann et al. [31] propose using

a Russian Roulette-style approach in large data scenar-

ios where computing the likelihood from all data points

is impractical, while Filippone & Engler [10] exploit the

methodology to perform efficient inference for Gaussian

processes. More generally, the construction of unbiased

estimators has been the subject of theoretical and prac-

tical analysis. McLeish [22] and Rhee & Glynn [27] ex-

amine the use of a method similar to Russian Roulette

for obtaining unbiased estimates from biased ones. Aga-

piou et al. [1] consider ways of debiasing the estimates

obtained by MCMC methods, particularly focusing on

infinite spaces. Jacob & Thiery [17] examine the theo-

retical existence of estimators that are both unbiased

and guaranteed to be non-negative under different gen-

eration schemes.

6 Conclusions

MJPs are common models in many branches of science,

yet they still present fundamental statistical challenges.

In this paper, we have proposed a novel MCMC frame-

work for asymptotically exact inference for pMJPs, an

important class of MJPs widely used in chemistry and

systems biology. We remark that, while our focus is on

biological applications, models with exactly the same

structure are employed in many other fields, from epi-

demiology to ecology to performance modelling. Our

random truncations pseudo-marginal approach enables

a principled treatment of systems with potentially un-

bounded state-spaces. Interestingly, our results show

that random truncations can also bring computational

benefits over the naive alternative of bounding the state-

space ab initio, as done in [26]. Intuitively, this is be-

cause choosing a truncation which guarantees a cer-

tain error bound usually requires still retaining a large

state-space, while our random truncation method gen-

erally samples from much smaller systems. The two

truncation-based algorithms we consider here appear

to perform best in different kinds of systems, and so

neither can be said to be clearly superior in the general

case.

The performance of our proposed methods may vary

with the system in question. As the number of species

grows, the state-space grows exponentially larger, lead-

ing to increased computational overheads for our method

(as for many other methods). While this may be a

serious limitation for large models, it is worth point-

ing out that many practical applications of pMJPs de-

scribe systems with a small number of species, where

our method’s performance should not be affected. High

counts of the species involved also result in larger state-

spaces, leading to heavier computations, particularly

for Algorithm 1. For Algorithm 2, the rates of the reac-

tions can also have an impact: very fast reactions lead

to a fine time-discretization and slower computations

in the forward-backward step. Our methods perform

best when particle numbers are not exceedingly large

(otherwise, a continuous approximation would be both

accurate and more efficient) and when observations are

relatively dense or, equivalently, the process is not too

volatile (or a truncation with many terms would be re-

quired for a good result).

Pseudo-marginal methods based on random trunca-

tions are relatively new to statistics and machine learn-

ing [28,21,10]: to our knowledge, this is the first time

that they are employed as a way of truncating an un-

bounded state space, and we think this idea may be

appealing in other scenarios where unbounded state

spaces are normal, such as non-parametric Bayesian

methods. Compared to pseudo-marginal methods based

on importance sampling [11,16], random truncations

offer several advantages: there is no need to choose a

proposal distribution, a notoriously difficult problem

in high dimensions. The choice of the truncating dis-

tribution, which controls the variance of the estima-

tor, can in general be aided by some initial exploratory

runs with different truncation distributions with differ-
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ent expected numbers of retained terms. Recent work

on improving the behaviour of pseudo-marginal MCMC

methods [24] may also be relevant to enhancing the per-

formance of our proposed method.
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