

Edinburgh Research Explorer

Belief and Truth in Hypothesised Behaviours

Citation for published version:
Albrecht, SV, Crandall, JW & Ramamoorthy, S 2016, 'Belief and Truth in Hypothesised Behaviours' Artificial
Intelligence, vol. 235, pp. 63–94. DOI: 10.1016/j.artint.2016.02.004

Digital Object Identifier (DOI):
10.1016/j.artint.2016.02.004

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/84145574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.artint.2016.02.004
https://www.research.ed.ac.uk/portal/en/publications/belief-and-truth-in-hypothesised-behaviours(a1dc2f09-c983-4cd8-bab1-66cc0eb9b924).html

Belief and Truth in Hypothesised Behaviours

Stefano V. Albrechta, Jacob W. Crandallb, Subramanian Ramamoorthyc

aThe University of Texas at Austin, United States
bMasdar Institute of Science and Technology, United Arab Emirates

cThe University of Edinburgh, United Kingdom

Abstract

There is a long history in game theory on the topic of Bayesian or “rational” learning, in which
each player maintains beliefs over a set of alternative behaviours, or types, for the other players.
This idea has gained increasing interest in the artificial intelligence (AI) community, where it is
used as a method to control a single agent in a system composed of multiple agents with unknown
behaviours. The idea is to hypothesise a set of types, each specifying a possible behaviour for
the other agents, and to plan our own actions with respect to those types which we believe are
most likely, given the observed actions of the agents. The game theory literature studies this
idea primarily in the context of equilibrium attainment. In contrast, many AI applications have a
focus on task completion and payoff maximisation. With this perspective in mind, we identify and
address a spectrum of questions pertaining to belief and truth in hypothesised types. We formulate
three basic ways to incorporate evidence into posterior beliefs and show when the resulting beliefs
are correct, and when they may fail to be correct. Moreover, we demonstrate that prior beliefs
can have a significant impact on our ability to maximise payoffs in the long-term, and that they
can be computed automatically with consistent performance effects. Furthermore, we analyse
the conditions under which we are able complete our task optimally, despite inaccuracies in the
hypothesised types. Finally, we show how the correctness of hypothesised types can be ascertained
during the interaction via an automated statistical analysis.

Keywords: Autonomous agents, multiagent systems, game theory, type-based method

1. Introduction

There is a long history in game theory on the topic of Bayesian or “rational” learning (e.g.
Nachbar, 2005; Dekel et al., 2004; Kalai and Lehrer, 1993; Jordan, 1991). Therein, players
maintain beliefs about the behaviours, or “types”, of other players in the form of a probability
distribution over a set of alternative types. These beliefs are updated based on the observed actions,
and each player chooses an action which is expected to maximise the payoffs received by the
player, given the current beliefs of the player. The principal questions studied in this context are
the degree to which players can learn to make correct predictions, and whether the interaction
process converges to solutions such as Nash equilibrium (Nash, 1950).

This general idea, which we here refer to as the type-based method, has received increasing
interest in the artificial intelligence (AI) community, where it is used as a method to control a
single agent in a system composed of multiple agents (e.g. Albrecht and Ramamoorthy, 2013a;
Barrett et al., 2011; Gmytrasiewicz and Doshi, 2005; Carmel and Markovitch, 1999). This interest

Preprint submitted to Artificial Intelligence Submitted: July 2015; Accepted: February 2016

ar
X

iv
:1

50
7.

07
68

8v
3

 [
cs

.A
I]

 2
 M

ar
 2

01
6

is, in part, motivated by applications that require efficient and flexible interaction with agents
whose behaviours are initially unknown. Example applications include adaptive user interfaces,
robotic elderly care, and automated trading agents. Learning to interact from scratch in such
settings is notoriously difficult, due to the essentially unconstrained nature of what the other agents
may be doing and the fact that their behaviours are a priori unknown. The type-based method is
seen as a way to reduce the complexity of such problems by focusing on a relatively small set of
points in the infinite space of possible behaviours.

More concretely, the idea is to hypothesise (“guess”) a set of types, each of which specifies a
possible behaviour for the other agents. A type may be of any structural form, and here we simply
view it as a “blackbox” programme which takes as input the interaction history and chooses
actions for the next step in the interaction. Such types may be specified manually by a domain
expert or generated automatically, e.g. from a corpus of historical data or the problem description.
By comparing the predictions of the types with the observed actions of the agents, we can form
posterior beliefs about the relative likelihood of types. The beliefs and types are in turn utilised
in a planning procedure to find an action which maximises our expected payoffs with respect
to our beliefs. A useful feature of this method is the fact that we may hypothesise any types of
behaviours, which gives us the flexibility to interact with a variety of agents. Moreover, since each
type specifies a complete behaviour, we can plan actions in the entire interaction space, including
in situations that have not been encountered before.

Nonetheless, there are several questions and concerns associated with this method, pertaining
to the evolution and impact of beliefs as well as the implications and detection of incorrect
hypothesised types. Specifically, how should evidence (i.e. observed actions) be incorporated into
beliefs and under what conditions will the beliefs be correct? What impact do prior beliefs have
on our ability to maximise payoffs in the long-term? Furthermore, under what conditions will we
be able to complete our task even if our hypothesised types are incorrect? And, finally, how can
we ascertain the correctness of our hypothesised types during the interaction?

The AI literature on the type-based method has focused on experimental evaluations, ex-
ploration mechanisms, and computational issues arising from recursive beliefs, but not or only
partially on the questions outlined above. (We defer a detailed discussion of related works to Sec-
tion 2). On the other hand, the game theory literature addresses such questions primarily in the
context of equilibrium attainment in repeated games (cf. Section 2). However, there are several
reasons why this renders the game theory literature of limited applicability to domains such as the
ones mentioned earlier. First, equilibrium concepts such as Nash equilibrium are based on nor-
mative assumptions, including perfect rationality with respect to one’s payoffs. However, such
normative assumptions are difficult to justify in situations in which we assume no prior knowledge
about the behaviour of other agents. For example, there is evidence that humans do not satisfy
such strict assumptions (e.g. Kahneman and Tversky, 1979). Second, an equilibrium solution pre-
scribes behaviours for all involved agents, whereas we control only a single agent and assume no
control over the choice of behaviour for the other agents. Finally, the existence of multiple equi-
libria with possibly differing payoff profiles means that equilibrium attainment may itself not be
synonymous with payoff maximisation for our controlled agent.

The purpose of the present article is to improve our understanding of the type-based method by
providing insight into the questions outlined above. Our analysis is based on stochastic Bayesian
games, which are an extension of Bayesian games (Harsanyi, 1967) that include stochastic state
transitions, and Harsanyi-Bellman Ad Hoc Coordination (HBA), which can be viewed as a general
algorithmic description of the type-based method (Albrecht and Ramamoorthy, 2013a). After
discussing related work in Section 2 and technical preliminaries in Section 3, the article makes

2

the following contributions:

• Section 4 considers three basic methods to incorporate observations into posterior beliefs and
analyses the conditions under which they converge to the true distribution of types, including
in processes in which type assignments may be randomised and correlated. We also discuss
examples to show when beliefs may fail to converge to the correct distribution.

• Section 5 investigates the impact of prior beliefs on payoff maximisation in a comprehensive
empirical study. We show that prior beliefs can indeed have a significant impact on the long-term
performance of HBA, and that the magnitude of the impact depends on the depth of the planning
horizon (i.e. how far we look into the future). Moreover, we show that automatic methods can
compute prior beliefs with consistent performance effects.

• Section 6 analyses what relation the hypothesised types must have to the true types in order for
HBA to be able to complete its task, despite inaccuracies in the hypothesised types. We formulate
a hierarchy of increasingly desirable termination guarantees and analyse the conditions under
which they are met. In particular, we give a novel characterisation of optimality which is based
on the concept of probabilistic bisimulation (Larsen and Skou, 1991).

• Section 7 shows how the truth of hypothesised types can be contemplated during the interaction
in the form of an automated statistical analysis. The presented algorithm can incorporate
multiple statistical features into the test statistic and learns its distribution during the interaction
process, with asymptotic correctness guarantees. We show in a comprehensive set of experiments
that the algorithm achieves high accuracy and scalability at low computational costs.

Finally, Section 8 concludes this work and discusses directions for future work. Elements of this
work appeared in (Albrecht et al., 2015; Albrecht and Ramamoorthy, 2015, 2014, 2013b).

2. Related Work

This section discusses related work and situates our work within the literature. We distinguish
between research on the type-based method in the areas of game theory and artificial intelligence.

2.1. Type-based Method in Game Theory

Perhaps the earliest formulation of the type-based method was in the form of Bayesian games
(Harsanyi, 1967, 1968a,b). Bayesian games were introduced to address incomplete information
games, in which certain aspects of the game are known to some players and unknown to others.
Harsanyi proposed to model this “private information” as types: every player has one of a number
of types which govern the player’s behaviour1, and the assignment of types is governed by some
distribution over types. By assuming that the type spaces and distribution are common knowledge,
this reduces the incomplete information game to a complete (but imperfect) information game, ad-
mitting a solution in the form of the Bayesian Nash equilibrium. While this idea was controversial
at the time2, Bayesian games have become a firm part of game theory.

1The interpretation of types as behaviours is consistent with the original definition of Harsanyi, who defines types as
parameters for both payoff and strategy functions (cf. Section 7 in Harsanyi, 1967). See also Dekel et al. (2004).

2The controversy was centred around the assumption that players a priori know the true distribution of types. (From a
personal conversation with Reinhard Selten.)

3

The model used in our work builds on Bayesian games but includes stochastic state transitions,
making it more naturally applicable to many problems of interest in artificial intelligence. This
also allows us to define concisely what it means to complete a task, namely to drive the game
from an initial state into a terminal state. Moreover, in contrast to Bayesian games, we explicitly
consider cases in which the type spaces and distribution are unknown to our agent, and we do not
assume that other agents necessarily use a type-based reasoning or have common prior beliefs.

Much work in game theory has focused on equilibrium attainment as the result of learning
through repeated interaction, in games in which players maintain Bayesian beliefs about the
strategies of other players. In the seminal work of Kalai and Lehrer (1993), the authors show that
under a certain assumption about players’ beliefs called “absolute continuity” (essentially, every
event that has true positive probability is assigned positive probability under the player’s belief),
players prediction of future play will become arbitrarily close to the true future play. A related
result was shown by Jordan (1991) for myopic players which consider only immediate payoffs.
In Section 4, we show that the convergence result of Kalai and Lehrer (1993) carries over to our
model, and we also provide convergence results for different formulations of posterior beliefs
which can recognise randomised and correlated type assignments.

In addition to posterior beliefs, it has been shown that prior beliefs are intimately connected
to the equilibrium solution that emerges as a result of learning. For example, Nyarko (1998) use
a similar but weaker condition than absolute continuity and show that the resulting subjective
equilibrium may not be a Nash equilibrium if the players have different prior beliefs. Similarly,
Dekel et al. (2004) show under certain conditions that learning without common prior beliefs
may converge to a self-confirming equilibrium (Fudenberg and Levine, 1993) which is not a
Nash equilibrium. While important in the context of equilibrium attainment, these results are less
applicable to our focus on individual payoff maximisation and task completion (cf. Section 1). In
Section 5, we show that prior beliefs can, nevertheless, have a significant impact on our ability
to maximise payoffs in the long-term. Moreover, our results indicate that prior beliefs can be
computed automatically with consistent performance effects.

The possibility of discrepancies between predicted and true behaviour has been recognised
in works such as (Nachbar, 2005; Foster and Young, 2001; Nachbar, 1997). Essentially, these
works show for certain games and conditions that players maintaining beliefs over behaviours
cannot simultaneously make correct predictions and play optimally with respect to their beliefs.
In Section 6, we consider the impact of incorrect hypothesised types on our ability to complete
tasks and show that a certain form of optimality is preserved under a bisimulation relation, which
can be verified in practice. Furthermore, in Section 7 we describe an automatic statistical analysis
to allow an agent to contemplate the correctness of its behavioural hypotheses.

2.2. Type-based Method in Artificial Intelligence
There is a substantial body of work in the AI literature on coordination (e.g. Kaminka and

Frenkel, 2007; Tambe, 1997; Grosz and Kraus, 1996) and learning (e.g. Conitzer and Sandholm,
2007; Hu and Wellman, 2003; Bowling and Veloso, 2002; Littman, 1994) in multiagent systems.
However, it has been noted (e.g. Stone et al., 2010) that many of these methods depend on
some form of prior coordination between agents. The type-based method has been studied as an
alternative method of interaction with agents whose behaviours are initially unknown.

Barrett et al. (2011) implement a variant of the type-based method in the “pursuit” grid-world
domain and demonstrate its practical potential. Albrecht and Ramamoorthy (2013a) introduce
a general algorithm called Harsanyi-Bellman Ad Hoc Coordination (HBA) (cf. Section 3) and
evaluate it in the “level-based foraging” grid-world domain and in matrix games played against

4

humans. Both works propose various implementations of the type-based method, including tree
expansion, dynamic programming, and reinforcement learning with stochastic sampling.

Carmel and Markovitch (1999) define types as deterministic finite state machines and study
optimal exploration in repeated games. Similarly, Chalkiadakis and Boutilier (2003) use types
in the context of multiagent reinforcement learning and develop exploration methods based on
the concept of “value of information” (Howard, 1966). Their work is essentially an extension of
Dearden et al. (1999), which study the related idea of maintaining Bayesian beliefs over a set of
environment models in reinforcement learning.

Southey et al. (2005) apply the type-based method to variants of the poker game. The poker
domain differs from the above works in that the state of the interaction process (i.e. player hands)
is only partially observable. The authors show how beliefs can be maintained in this setting and
compare various methods to compute optimal responses with respect to beliefs.

In interactive partially observable Markov decision processes (I-POMDPs) (Gmytrasiewicz
and Doshi, 2005), agents make decisions in the presence of uncertainty regarding the state of the
environment, the types of other agents, and their action choices. Several solution methods have
been developed for I-POMDPs (e.g. Doshi et al., 2009; Doshi and Gmytrasiewicz, 2009; Doshi
and Perez, 2008) and there have been attempts to apply I-POMDPs in practice (e.g. Doshi et al.,
2010; Ng et al., 2010). An interesting parallel to our work is that the convergence result of Kalai
and Lehrer (1993) has also been extended to I-POMDPs (Doshi and Gmytrasiewicz, 2006).

Bowling and McCracken (2005) use “play books” to control a single agent in a team of agents.
Plays are similar to types but specify behaviours for a complete team and include additional
structure such as applicability and termination conditions, and roles for each agent. Similarly,
“plan libraries” have been used to infer an agent’s goals (Carberry, 2001; Charniak and Goldman,
1993). Plans resemble types but may include intricate structure such as temporal and causal
orderings, and grammars (Sukthankar et al., 2014; Geib and Goldman, 2009).

The above works investigate various aspects of the type-based method, but they do not or only
partially address the questions outlined in Section 1. Specifically, most of the above works use a
posterior formulation in which the likelihood is defined as a product of action probabilities. In
Section 4, we show under what conditions this formulation will produce correct and incorrect
beliefs, and we also investigate alternative posterior formulations. Moreover, only Chalkiadakis
and Boutilier (2003) consider the effects of prior beliefs by comparing “uninformed” (i.e. uniform)
and “informed” (uniform with narrowed support) prior beliefs, but they provide no detailed
analysis. In Section 5, we investigate how prior beliefs affect our ability to maximise payoffs in
the long-term and how they can be computed automatically. Finally, none of the above works
consider the implications and detection of incorrect hypothesised types.

3. Model and Algorithm

This section introduces the general model and algorithm used in our work, and further elabo-
rates on connections to other related works.

3.1. Stochastic Bayesian Game

We model the interaction process as a stochastic Bayesian game (SBG) (Albrecht and Ra-
mamoorthy, 2013a) which can be viewed as a combination of the Bayesian game (Harsanyi, 1967)
and the stochastic game (Shapley, 1953). This combination is useful because it allows us to study
the type-based method of interaction via the established framework of Bayesian games while

5

also providing a means to specify an environment (via states) and the task to be completed. The
structural definition of SBGs is as follows:

Definition 1. A stochastic Bayesian game (SBG) consists of:

• finite state space S with initial state s0 ∈ S and terminal states S̄ ⊂ S

• players N = {1, ..., n} and for each i ∈ N:

– finite set of actions Ai (where A = A1 × ... × An)
– infinite type space Θi (where Θ = Θ1 × ... × Θn)
– payoff function ui : S × A × Θi → R
– strategy function πi : H × Ai × Θi → [0, 1]

• state transition function T : S × A × S → [0, 1]

• type distribution Υ : Θ+ → [0, 1], where Θ+ is a finite subset of Θ

and H denotes the set of all histories Ht = 〈s0, a0, s1, a1, ..., st〉 with t ≥ 0, such that s0, ..., st ∈ S
and a0, ..., at−1 ∈ A.

A SBG defines the interaction process as follows:

Definition 2. A SBG starts at time t = 0 in state s0:

1. In state st, the types θt
1, ..., θ

t
n are sampled from Θ+ with probability Υ(θt

1, ..., θ
t
n), and each

player i is informed only about its own type θt
i .

2. Based on the history Ht, each player i chooses an action at
i ∈ Ai with probability πi(Ht, at

i, θ
t
i),

resulting in the joint action at = (at
1, ..., a

t
n).

3. Each player i receives an individual payoff given by ui(st, at, θt
i), and the game transitions

into a successor state st+1 ∈ S with probability T (st, at, st+1).

This process is repeated until a terminal state st ∈ S̄ is reached, after which the game stops.

Throughout this work, we will use the contextual notation Hτ to denote the τ-prefix of Ht (i.e.
Hτ is the initial segment of Ht up until state sτ, with τ ≤ t). Similarly, we use sτ and aτ to denote
the respective τ-elements of Ht.

The set S can be used to specify the environment within which the players interact, where
each state s ∈ S is a specific configuration of the environment. For instance, the environment may
be a maze in a two-dimensional grid and the states may specify the positions of players and walls.
The task in the SBG is to drive the interaction process from the initial state to a terminal state.
Once a terminal state is reached, we say that the task is completed.

The type space Θi contains all possible behaviours for player i. Each type θi ∈ Θi corresponds
to a complete behaviour for player i by specifying its preferences, via ui, and the way in which
it chooses actions, via πi (see also Footnote 1). We place no restrictions on the behaviours that
players can exhibit; in particular, each player can make decisions based on the entire history Ht.
This includes behaviours that learn and change over time. In practice, it is useful to view a type as
a blackbox programme which, through πi, takes as input the current interaction history and returns
probabilities for each action available to the player. (Sections 4 and 5 provide various examples of
types; see also (Albrecht and Ramamoorthy, 2013a) for examples of types in complex SBGs.)

The types are assigned during the game via the type distribution Υ. In this work, we consider
two classes of types distributions:

6

Definition 3. A type distribution Υ is called pure if ∃θ ∈ Θ+ : Υ(θ) = 1. A type distribution which
is not pure is called mixed.

Pure type distributions specify one fixed type for each player, throughout the game. This is
what we would normally expect, since it means that each player has a single coherent behaviour.
However, there are cases in which it may make sense to assume a mixed type distribution. For
example, Albrecht and Ramamoorthy (2013a) used a mixed type distribution in their human-
machine experiments to allow for the possibility that human subjects may change between several
simple types (as opposed to defining one complex type which includes the simple types).

Note that the type space Θi is uncountable because the strategy πi assigns probabilities to
actions, and the interval [0, 1] is itself uncountable. Therefore, in order for Υ to be a well-defined
probability distribution, we define it over a finite or countable subset Θ+ ⊂ Θ. (Otherwise, Υ

would need to be defined as a density.) To differentiate the two spaces, we sometimes refer to Θi

as the full type space and to Θ+
i as the true types of player i. For convenience (and by abuse of

notation), we will allow Υ(θ) for any θ ∈ Θ, with Υ(θ) = 0 if θ < Θ+.

3.2. Harsanyi-Bellman Ad Hoc Coordination

As outlined in Section 1, we consider a single agent which employs the type-based method
to interact with other agents with unknown behaviours. Throughout this work, we use Harsanyi-
Bellman Ad Hoc Coordination (HBA) (Albrecht and Ramamoorthy, 2013a) as a general algorith-
mic description of the type-based method. Algorithm 1 provides a formal definition of HBA.

Given a SBG Γ, we use i to denote our player and j and −i to denote the other players (such as
in A−i = × j,i A j). The behaviour of player i is completely specified by HBA. In other words, i has
a single fixed type, Θ+

i =
{
θHBA

i

}
, where θHBA

i is defined by Algorithm 1. Thus, we may omit θHBA
i

in ui and πi for compactness. The behaviour of the other players is governed by Υ and a priori
unknown to us. Formally, we assume that all elements of Γ are known to us except for Θ+

j and Υ,
which are latent elements.

In HBA, these latent elements are essentially substituted for by the hypothesised type space
Θ∗j and the posterior belief Pr, respectively. Like Θ+

j , Θ∗j is a finite or countable subset of the
full type space Θ j. The posterior belief (probability) Pr(θ∗−i|Ht) quantifies the relative likelihood
that players j , i are of types θ∗−i = (θ∗1, ..., θ

∗
i−1, θ

∗
i+1, ..., θ

∗
n), given the history Ht. If we assume

independence of types, we can define Pr as

Pr(θ∗−i|Ht) =
∏

j,i

Pr j(θ∗j |Ht) (1)

Pr j(θ∗j |Ht) =
L(Ht |θ∗j) P j(θ∗j)∑

θ̂∗j∈Θ∗j L(Ht |θ̂∗j) P j(θ̂∗j)
(2)

where P j(θ∗j) is the prior belief (probability) that player j is of type θ∗j before any actions are
observed, and L(Ht |θ∗j) is the (non-negative) likelihood of history Ht assuming that player j is
of type θ∗j . It is convenient to define Pr j(θ∗j |H0) = P j(θ∗j). Note that the likelihood L in (2) is
unspecified at this point; we will consider two variants for L in Section 4.

The independence assumption of types is prevalent in the works discussed in Section 2. In the
game theory literature (cf. Section 2.1), it is justified by the fact that the Nash equilibrium assumes
that players choose actions independently. (This is opposed to concepts such as correlated equilib-
rium (Aumann, 1974) in which action choices may be correlated.) From a practical perspective,

7

Algorithm 1 Harsanyi-Bellman Ad Hoc Coordination (HBA)

Input: current history Ht = 〈s0, a0, s1, a1, ..., st〉
Output: action probabilities πi(Ht, ai) for player i

Parameters: hypothesised type spaces Θ∗j for players j , i, discount factor γ ∈ [0, 1]

1. For each ai ∈ Ai, compute expected payoff Eai
st (Ht) with

Eai
s (Ĥ) =

∑

θ∗−i∈Θ∗−i

Pr(θ∗−i|Ĥ)
∑

a−i∈A−i

Q(ai,a−i)
s (Ĥ)

∏

j,i

π j(Ĥ, a j, θ
∗
j) (3)

Qa
s(Ĥ) =

∑

s′∈S
T (s, a, s′)

[
ui(s, a) + γ max

ai∈Ai
Eai

s′
(
〈Ĥ, a, s′〉

)]
(4)

2. Distribute πi(Ht, ·) uniformly over arg maxai∈Ai Eai
st (Ht)

another justification is the fact that, while types are assumed to be independent, the behaviours
they encode may very well depend on the behaviour of other players. This is since each player
can make decisions based on the entire interaction history, which includes the observed actions of
other players. Nonetheless, Section 4 also discusses the possibility of correlated types.

Where do the hypothesised types θ∗j ∈ Θ∗j come from? In this work, we assume that the user
has some means to generate such hypotheses. One way is to have them specified manually by
domain experts, based on their experience with the problem (e.g. Albrecht and Ramamoorthy,
2013a). Another method is to generate types automatically from the problem description. For
example, in Sections 5 and 7 we use three different methods to automatically generate sets of
types for any given matrix game. Finally, one may use machine learning methods to extract types
from a corpus of historical data (e.g. Barrett et al., 2013; Gal et al., 2004).

HBA performs a planning procedure, defined by (3)/(4), to find an action which maximises its
expected long-term payoff with respect to its current beliefs and hypothesised types. Formally,
(3) corresponds to player i’s component of the Bayesian Nash equilibrium (Harsanyi, 1968a) and
(4) corresponds to the Bellman optimality equation (Bellman, 1957). Intuitively, (3)/(4) expand a
tree of all possible future trajectories of the interaction process and weight each trajectory based
on the posterior beliefs and predicted action probabilities of the hypothesised types. Note that Ht

denotes the current history while Ĥ is used to construct all future trajectories (histories), where
the notation 〈Ĥ, a, s′〉 in (4) denotes concatenation of Ĥ and (a, s′).

In practice, HBA may be implemented by limiting the recursion in (3)/(4) to some fixed depth
(e.g. as in Section 5). However, it is easy to see that this procedure has time complexity which is
exponential in factors such as the number of players, actions, and states in the game. This can
make it a very costly operation and usually requires more sophisticated approximate methods
when applied to complex domains. In this regard, a promising approach is given by stochastic
sampling methods such as those used in (Albrecht and Ramamoorthy, 2013a; Barrett et al., 2011).
In this work, unless stated otherwise, we assume that (3)/(4) are implemented as given.

It is worth noting that HBA does not require explicit exploration methods (i.e. deliberately
choosing actions which do not maximise Eai

st (Ht)) because exploration is implicit in the calculation
of Eai

st (Ht). Specifically, for each action ai, Eai
st (Ht) predicts the impact of ai on HBA’s beliefs and

8

future interaction. This allows HBA to reason about the benefit of choosing a particular action,
in the sense of what information that action can potentially reveal to HBA (Howard, 1966). Of
course, this assumes that the true types of other players are included in the hypothesised types.
Nonetheless, when the predictive ability of HBA is limited (e.g. due to a fixed recursion depth; cf.
Section 5) or if we use opponent modelling to learn new types during the interaction (e.g. Albrecht
and Ramamoorthy, 2013a; Barrett et al., 2011), then it may still be worthwhile to use explicit
exploration methods such as those discussed in (Carmel and Markovitch, 1999) or approximations
as in (Chalkiadakis and Boutilier, 2003).

3.3. Relation to Other Interactive Decision Models

Section 2 provided an overview of related works and models used therein. Here, we further
elaborate on the connections and differences to some of these models and other models.

As pointed out earlier, our SBG model can be viewed as a combination of Bayesian games
and stochastic games. If we remove states from the definition of SBGs (or, equivalently, assume a
single state and no terminal states), then this reduces to a standard Bayesian game. In this case, Θ+

j
corresponds to the type spaces used in Bayesian games and Υ corresponds to the “basic probability
distribution” (Harsanyi, 1967). (However, note that in contrast to Bayesian games, we assume no
knowledge of Θ+

j and Υ.) On the other hand, if we remove types from the definition of SBGs, then
the model reduces to a standard stochastic game. However, note that Shapley (1953) considers
Markovian (“stationary”) strategies whereas we allow strategies to depend on the entire interaction
history. This definition of strategies is consistent with the model used by Kalai and Lehrer (1993),
in which strategies are mappings from histories to probability distributions over actions.

A central assumption in SBGs is that the states and chosen actions are fully observable by
the players. This is in contrast to I-POMDPs (cf. Section 2) in which states and actions are not
directly observed. Instead, players receive noisy and possibly incomplete signals that depend on
the state, based on which players infer beliefs over states. This makes I-POMDPs a very general
model, but it also increases their computational complexity significantly. Another difference is that
SBGs allow for mixed type distributions while I-POMDPs generally assume fixed types. These
differences mean that the results of our work may not directly carry over to I-POMDPs.

Other models of interactive decision making exist, such as the decentralised POMDP (Bern-
stein et al., 2000) and partially observable stochastic game (e.g. Emery-Montemerlo et al., 2004).
Both of these models allow for partial observability of process states as described above. While
these models do not explicitly encode types, it is possible to emulate types by using factored states
which are composed of individual elements.3 Essentially, we can define the factored state space
Ŝ = S ×Θ+

1 × ...×Θ+
n , where the S -element is observed by all players and controlled by their joint

actions while the Θ+
i -elements are privately observed by the players and controlled by the type

distribution. An interesting question, then, is to what extent solving this model may produce a sim-
ilar or better solution than HBA. However, as we will discuss next, this leads to another crucial
difference between our work and the above works.

Once a model is fully specified, the usual goal is to solve it via some procedure. In the context
of game theory, a solution may be a profile of strategies that satisfy some equilibrium property
(e.g. Etessami and Yannakakis, 2010; Conitzer and Sandholm, 2008). In the context of artificial
intelligence, a solution is a control policy for one or more agents which satisfies certain guarantees
such as payoff maximisation (e.g. Dibangoye et al., 2013; Doshi et al., 2009; Hansen et al., 2004).

3We thank an anonymous reviewer for suggesting this line of thought.
9

This is in contrast to our work, in which we do not attempt to solve SBGs in this sense. Instead,
we prescribe a specific normative solution for a single agent, in the form of HBA. This is similar
in spirit to works such as (Kalai and Lehrer, 1993), except that we only consider a single agent
that uses HBA. The advantage of this approach is that HBA can be applied “instantly”, without
the need to solve the model beforehand. This means that HBA may be applied to problems which
are too complex to be solved in the conventional sense. Of course, the disadvantage is that we
do not exactly know how HBA will perform, and the purpose of the present work is precisely to
provide answers to this question.

4. Correctness of Posterior Beliefs

A central aspect of the type-based method are the beliefs over types. Beginning with some
initial beliefs about the relative likelihood of types, we compare the predictions of types with the
observed actions and update our beliefs to reflect the given evidence. Associated with this process
are two key questions: how may evidence be incorporated into beliefs, and under what conditions
will the beliefs be correct? As can be seen in Algorithm 1, these are important questions since the
accuracy of the expected payoffs (3) depends on the accuracy of the posterior belief Pr.

In this section, we consider three classes of type distributions to cover a broad spectrum
of scenarios: pure distributions, in which all agents have a fixed type; mixed distributions, in
which types are randomly re-allocated; and correlated distributions, in which type assignments
may be correlated. Corresponding to these classes, we consider three formulations of posterior
beliefs which prescribe different ways to incorporate evidence into beliefs. We provide theoretical
conditions under which these formulations produce correct beliefs, and we provide examples to
show when they may fail to do so.

Our definition of correctness is with respect to the type distribution Υ: beliefs are said to be
correct if they assign the same probabilities to true types as Υ. This requires that the beliefs can
point to the types in the support of the type distribution. Therefore, the results in this section
pertain to a situation in which the user knows that the true type space Θ+

j must be a subset of the
hypothesised type space Θ∗j . Formally, we assume:

Assumption 1. ∀ j , i : Θ+
j ⊆ Θ∗j

The case in which beliefs cannot be correct as defined above, due to incomplete or incorrect
hypothesised types, is examined in Sections 6 and 7.

Finally, recall from Section 3.2 that posterior beliefs of the form (1) assume independence of
player types. That is, they assume that the type distribution Υ can be represented as a product of n
independent factors Υ j (one for each player), such that Υ(θ) =

∏
j Υ j(θ j). Hence, in the following,

unless states otherwise, we assume that Υ satisfies this independence property. Section 4.3 also
considers the case of correlated type distributions.

4.1. Product Posterior

We begin our analysis with the product posterior:

Definition 4. The product posterior is defined as (1) with

L(Ht |θ∗j) =

t−1∏

τ=0

π j(Hτ, aτj , θ
∗
j). (5)

10

This is the standard posterior formulation used in Bayesian games and most of the works
discussed in Section 2. It can be shown that, under a pure type distribution and if HBA does not
a priori rule out any of the types in Θ∗j , then it will learn to make correct future predictions. Let
H∞ be an infinite history with prefix Hτ, and denote by PΥ(Hτ,H∞) and PPr(Hτ,H∞), respectively,
the true probability (based on Υ) and the probability assigned by HBA (based on Pr) that Hτ will
continue as prescribed by H∞.

Theorem 1. Let Γ be a SBG with a pure type distribution Υ. If HBA uses a product posterior and
if the prior beliefs P j are positive (i.e. ∀θ∗j ∈ Θ∗j : P j(θ∗j) > 0), then:
for any ε > 0, there is a time t from which (τ ≥ t)

PPr(Hτ,H∞)(1 − ε) ≤ PΥ(Hτ,H∞) ≤ PPr(Hτ,H∞)(1 + ε) (6)

for all H∞ with PΥ(Hτ,H∞) > 0.

Proof. The proof is not difficult but tedious, hence we defer it to Appendix A. Proof sketch:
Kalai and Lehrer (1993) studied a model which can be equivalently described as a single-state
SBG (|S | = 1) with pure type distribution Υ and proved Theorem 1 within their model. Their
convergence result can be extended to multi-state SBGs by translating the multi-state SBG Γ into
a single-state SBG Γ̂ which is equivalent to Γ in the sense that the players behave identically.
Essentially, the trick is to remove the states in Γ by introducing a new player whose action choices
correspond to the state transitions in Γ.

Theorem 1 states that HBA will eventually make correct future predictions when using a
product posterior against a pure type distribution (assuming the prior beliefs are positive). However,
there is a subtle but important asymmetry between making correct future predictions and knowing
the true type distribution: while the latter implies the former, the reverse is not generally true. The
following example4 illustrates this:

Example 1. Consider a SBG with two players and two actions, C and D. Player 1 is controlled
by HBA using a product posterior while player 2 has two types, Θ+

2 = {θλ=0.1, θλ=0.5}, which are
assigned by some pure type distribution. The two types choose action C if player 1 chose C in the
previous round. Otherwise, with probability λ, they will forever play action D. In this case, HBA
will never know the correct type with absolute certainty. Even if HBA chooses D and player 2
responds by playing D indefinitely, there is still no certainty because λ > 0 in both types.

Therefore, while HBA is guaranteed to make correct future predictions after some time, it is
not guaranteed to learn the type distribution of the game. Finally, note that Theorem 1 pertains to
pure type distributions only. The following example shows that the product posterior may fail in
SBGs with mixed type distributions:

Example 2. Consider a SBG with two players. Player 1 is controlled by HBA using a product
posterior while player 2 has two types, Θ+

2 = {θA, θB}, which are assigned by a mixed type
distribution Υ with Υ(θA) = Υ(θB) = 0.5. The type θA always chooses action A while θB always
chooses action B. In this case, there will be a time t after which both types have been assigned at
least once, and so both actions A and B have been played at least once by player 2. This means
that from time t and all subsequent times τ ≥ t, we have Pr2(θA|Hτ) = Pr2(θB|Hτ) = 0 (that is, Pr2
is undefined), and HBA will fail to make correct future predictions.

4All examples in this section assume Θ∗j = Θ+
j and uniform prior beliefs P j(θ∗j) = |Θ∗j |−1.

11

4.2. Sum Posterior

We continue our analysis with the sum posterior:

Definition 5. The sum posterior is defined as (1) with

L(Ht |θ∗j) =

t−1∑

τ=0

π j(Hτ, aτj , θ
∗
j). (7)

The sum posterior allows HBA to recognise changing types. In other words, the purpose of
the sum posterior is to learn mixed type distributions. It is easy to see that a sum posterior would
indeed learn the mixed type distribution in Example 2. However, we now give an example to show
that, without additional requirements, the sum posterior does not necessarily learn any (pure or
mixed) type distribution:

Example 3. Consider a SBG with two players. Player 1 is controlled by HBA using a sum posterior
while player 2 has two types, Θ+

2 = {θA, θAB}, which are assigned by a pure type distribution Υ

with Υ(θA) = 1. The type θA always chooses action A while θAB chooses actions A and B with
equal probability. While the product posterior converges to the correct probabilities Υ, the sum
posterior converges to probabilities 〈 2

3 ,
1
3 〉, which is incorrect.

Note that this example can be readily modified to use a mixed type distribution, with similar
results. Therefore, we conclude that, without further assumptions, the sum posterior does not
necessarily learn any type distribution.

Under what condition is the sum posterior guaranteed to learn the true type distribution of the
game? Consider the following two quantities, which can be computed from a given history Ht:

Definition 6. The average overlap of player j in Ht is defined as

AO j(Ht) =
1
t

t−1∑

τ=0

[
|Λτ

j | ≥ 2
]
1

∑

θ∗j∈Θ∗j
π j(Hτ, aτj , θ

∗
j) |Θ∗j |−1 (8)

Λτ
j =

{
θ∗j ∈ Θ∗j | π j(Hτ, aτj , θ

∗
j) > 0

}
(9)

where [b]1 = 1 if b is true, else 0.

Definition 7. The average stochasticity of player j in Ht is defined as

AS j(Ht) =
1
t

t−1∑

τ=0

|Θ∗j |−1
∑

θ∗j∈Θ∗j

1 − π j(Hτ, âτj , θ
∗
j)

1 − |A j|−1 (10)

where âτj ∈ arg maxa j π j(Hτ, a j, θ
∗
j).

Both quantities are bounded by 0 and 1. The average overlap describes the similarity of the
types, where AO j(Ht) = 0 means that player j’s types (on average) never chose the same action in
history Ht, whereas AO j(Ht) = 1 means that they behaved identically. The average stochasticity
describes the uncertainty of the types, where AS j(Ht) = 0 means that player j’s types (on average)
were fully deterministic in the action choices in history Ht, whereas AS j(Ht) = 1 means that they
chose actions uniformly randomly.

Example 4. Consider the SBG from Example 3. Here, player 2 always chooses action A, since

12

its type is always θA. Therefore, for any history Ht, we have AO2(Ht) = 0.75, which indicates a
substantial amount of overlap between θA and θAB. Furthermore, we have AS2(Ht) = 0.5, which
indicates a certain degree of randomisation. In fact, θA is fully deterministic while θAB is uniformly
random, hence the average stochasticity in in the centre of the spectrum [0, 1].

It can be shown that, if the average overlap and stochasticity of player j converge to zero as
t → ∞, then the sum posterior is guaranteed to converge to any pure or mixed type distribution:

Theorem 2. Let Γ be a SBG with a pure or mixed type distribution Υ. If HBA uses a sum posterior,
then, for t → ∞: If AO j(Ht) = 0 and AS j(Ht) = 0 for all players j , i, then Pr(θ−i|Ht) = Υ(θ−i)
for all θ−i ∈ Θ+

−i.

Proof. Throughout this proof, let t → ∞. The sum posterior is defined as (1) where L is defined as
(7). Given the definition of L, both the numerator and the denominator in (2) may be infinite. We
invoke L’Hôpital’s rule which states that, in such cases, the quotient u(t)

v(t) is equal to the quotient
u′(t)
v′(t) of the respective derivatives with respect to t. The derivative of L with respect to t is the
average growth per time step, which in general may depend on the history Ht of states and actions.
The average growth of L is

L′(Ht |θ j) =
∑

a j∈A j

F(a j|Ht) π j(Ht, a j, θ j) (11)

where
F(a j|Ht) =

∑

θ j∈Θ+
j

Υ(θ j) π j(Ht, a j, θ j) (12)

is the probability of action a j after history Ht, with Υ(θ j) being the marginal probability that
player j is assigned type θ j. As we will see shortly, we can make an asymptotic growth prediction
irrespective of Ht. Given that AO j(Ht) = 0, we can infer that whenever π j(Ht, a j, θ

∗
j) > 0 for

action a j and type θ∗j , then π j(Ht, a j, θ̂
∗
j) = 0 for all other types θ̂∗j , θ

∗
j with θ̂∗j ∈ Θ∗j . Therefore,

we can write (11) as
L′(Ht |θ j) = Υ(θ j)

∑

a j∈A j

π j(Ht, a j, θ j)2 (13)

Next, given that AS j(Ht) = 0, we know that there exists an action a j in (13) with π j(Ht, a j, θ j) = 1,
and, therefore, we can conclude that L′(Ht |θ j) = Υ(θ j). This shows that the history Ht is irrelevant
to the asymptotic growth rate of L. Finally, since

∑
θ j∈Θ+

j
Υ(θ j) = 1, we know that the denominator

in (2) will be 1, and we conclude that Pr j(θ j|Ht) = Υ(θ j).

Theorem 2 explains why the sum posterior converges to the correct type distribution in Exam-
ple 2. Since the types θA and θB always choose different actions and are completely deterministic
(i.e. the average overlap and stochasticity are always zero), the sum posterior is guaranteed to
converge to the type distribution. On the other hand, in Example 3 the types θA and θAB produce
an overlap whenever action A is chosen, and θAB is completely random. Therefore, the average
overlap and stochasticity are always positive, and an incorrect type distribution was learned.

The assumptions made in Theorem 2, namely that the average overlap and stochasticity
converge to zero, require practical justification. First of all, it is important to note that it is only
required that these converge to zero on average as t → ∞. This means that in the beginning there
may be arbitrary overlap and stochasticity, as long as these go to zero as the game proceeds. In fact,

13

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Time

Error
Average overlap
Average stochasticity

Figure 1: Example run in random SBG with 2 players, 10 actions, and 100 states. Player j has three reinforcement learning
types with ε-greedy action selection (decreasing linearly from ε = 0.7 at t = 1000, to ε = 0 at t = 2000). The error at time
t is computed as

∑
θ j∈Θ+

j
|Pr j(θ j |Ht) − Υ(θ j)|, where Pr j is the sum posterior.

with respect to stochasticity, this is precisely how the exploration-exploitation dilemma (Sutton
and Barto, 1998) is solved in practice: In the early stages, the agent randomises deliberately over
its actions in order to obtain more information about the environment (exploration) while, as the
game proceeds, the agent becomes gradually more deterministic in its action choices so as to
maximise its payoffs (exploitation). Typical mechanisms which implement this are ε-greedy and
Softmax/Boltzmann exploration (Sutton and Barto, 1998). Figure 1 demonstrates this in a SBG in
which player j has three reinforcement learning types. The payoffs for the types were such that
the average overlap would eventually go to zero.

Regarding the average overlap converging to zero, we believe that this is a property which
should be guaranteed by design, for the following reason: If the hypothesised type space Θ∗j is such
that there is a constantly-high average overlap, then this means that the types in Θ∗j are in effect
very similar. However, types which are very similar are likely to produce very similar trajectories
in the planning step of HBA (cf. Ĥ in (3)/(4)) and, therefore, constitute redundancy in both time
and space. Thus, we believe it is advisable to use type spaces which have low average overlap.

4.3. Correlated Posterior

As noted earlier, an implicit assumption in (1) is that the type distribution Υ can be represented
as a product of n independent factors (one for each player), such that Υ(θ) =

∏
j Υ j(θ j). Therefore,

since the sum posterior is in the form of (1), it is in fact only guaranteed to learn independent type
distributions. This is opposed to correlated type distributions, which cannot be represented as a
product of n independent factors. Correlated type distributions can be used to specify constraints on
type combinations, such as “player j can only have type θ j if player k has type θk”. The following
example shows how the sum posterior may fail to converge to a correlated type distribution:

Example 5. Consider a SBG with 3 players. Player 1 is controlled by HBA using a sum posterior.
Players 2 and 3 each have two types, Θ+

2 = Θ+
3 = {θA, θB}, which are defined as in Example 2. The

type distribution Υ chooses types with probabilities Υ(θA, θB) = Υ(θB, θA) = 0.5 and Υ(θA, θA) =

Υ(θB, θB) = 0. In other words, player 2 can never have the same type as player 3. From the
perspective of HBA, each type (and hence action) is chosen with equal probability for both players.
Thus, despite the fact that there is zero overlap and stochasticity, the sum posterior will eventually
assign probability 0.25 to all constellations of types, which is incorrect. This means that HBA
fails to recognise that the other players never choose the same action.

We now propose a posterior formulation which can learn any correlated type distribution:

14

Definition 8. The correlated posterior is defined as

Pr(θ∗−i|Ht) = η P(θ∗−i)
t−1∑

τ=0

∏

θ∗j∈θ∗−i

π j(Hτ, aτj , θ
∗
j) (14)

where P specifies prior beliefs over Θ∗−i (analogous to P j) and η is a normaliser.

The correlated posterior is closely related to the sum posterior. In fact, it converges to the
correct type distribution under the same conditions as the sum posterior:

Theorem 3. Let Γ be a SBG with a correlated type distribution Υ. If HBA uses the correlated
posterior, then, for t → ∞: If AO j(Ht) = 0 and AS j(Ht) = 0 for all players j , i, then Pr(θ−i|Ht) =

Υ(θ−i) for all θ−i ∈ Θ+
−i.

Proof. The proof is analogous to the proof of Theorem 2.

It is easy to see that the correlated posterior would learn the correct type distribution in Exam-
ple 5. Note that, since it is guaranteed to learn any correlated type distribution, it is also guaranteed
to learn any independent type distribution. Therefore, the correlated posterior would also learn the
correct type distribution in Example 2. This means that the correlated posterior is complete in the
sense that it covers the entire spectrum of pure/mixed and independent/correlated type distribu-
tions. However, this completeness comes at a higher computational complexity. While the sum
posterior is in O(n max j |Θ∗j |) time and space, the correlated posterior is in O(max j |Θ∗j |n) time and
space. In practice, however, the time complexity can be reduced substantially by computing the
probabilities π j(Hτ, aτj , θ

∗
j) only once for each j and θ∗j ∈ Θ∗j (as in the sum posterior), and then

reusing them in subsequent computations.

5. Practical Impact of Prior Beliefs

The previous section was concerned with the evolution of posterior beliefs as we observe
more evidence. However, before we observe any evidence based on which to form our posterior
beliefs, we will have to make an initial judgement as to the relative likelihood of types. This initial
judgement is called the prior belief.

Given the lack of evidence, it may be tempting to use uniform prior beliefs in which all
types have equal probability. Indeed, the fact that beliefs can change rapidly after only a few
observations suggests that prior beliefs may have negligible effect. On the other hand, there is a
substantial body of work in the game theory literature arguing the importance of prior beliefs (cf.
Section 2). However, these works consider the impact of prior beliefs on equilibrium attainment
when all players use the same type-based reasoning. In contrast, our interest is in the practical
impact of prior beliefs, i.e. payoff maximisation, for a single agent using the type-based method.

In addition, there is the work of Bernardo (1979), Jaynes (1968), and others on “uninformed”
priors. The purpose of such priors is to express a state of complete uncertainty, whilst possibly
incorporating subjective prior information. (What this means and whether this is possible has been
the subject of a long debate, e.g. De Finetti (2008).) However, this again differs from our interest
in the impact of prior beliefs on payoff maximisation.

Thus, we are left with the following questions: Do prior beliefs have an impact on our ability
to maximise payoffs in the long-term? If so, how? And, crucially, can we automatically compute
prior beliefs so as to improve our long-term performance?

15

To find answers to these questions, we conducted a comprehensive empirical study which
compared 10 methods to automatically compute prior beliefs from a given set of types. The results
show that prior beliefs can indeed have a significant impact on the long-term performance, and
that the depth of the planning horizon (i.e. how far we look into the future) plays a central role.
Finally, and perhaps most intriguingly, we show that automatic methods can compute prior beliefs
with consistent performance effects across a variety of scenarios. An implication of this is that
prior beliefs could be eliminated as a manual parameter and instead be computed automatically.

The following subsections describe the experimental setup used in our study. The results are
discussed in Section 5.7.

5.1. Games
We used a comprehensive set of benchmark games introduced by Rapoport and Guyer (1966),

which consists of 78 repeated 2 × 2 matrix games. The games are strictly ordinal, meaning that
each player ranks each of the four possible outcomes from 1 (least preferred) to 4 (most preferred),
and no two outcomes have the same rank. Furthermore, the games are distinct in that no game
can be obtained by transformation of any other game, which includes interchanging the rows,
columns, and players (and any combination thereof) in the payoff matrix of the game.

The games can be grouped into 21 no-conflict games and 57 conflict games. In a no-conflict
game, the two players have the same most preferred outcome, and so it is relatively easy to arrive
at a solution that is best for both players. In a conflict game, the players disagree on the best
outcome, hence they will have to find some form of a compromise.

We note that the games in this benchmark correspond to SBGs with single states. The simplicity
of these games facilitates a thorough inspection of the interaction process and, thereby, explanation
of observations. It also allows us to specify a complete benchmark set in the sense that it contains all
games that satisfy the above description, which in turn allows us to draw more general conclusions.
Finally, the fact that we use single-state games does not limit the inherent complexity of the
interaction, since multi-state SBGs can always be emulated as single-state SBGs via an additional
“nature” player (cf. Appendix A). Therefore, we expect that the principal observations we make
will also hold in multi-state SBGs.

5.2. Performance Criteria
Each play of a game was partitioned into time slices which consist of an equal number of

consecutive time steps. For each time slice, we measured the following performance criteria:

Convergence An agent converged in a time slice if its action probabilities in the time slice did
not deviate by more than 0.05 from its initial action probabilities in the same time slice. Returns 1
(true) or 0 (false) for each agent.

Average payoff Average of payoffs an agent received in the time slice. Returns value in [1, 4]
for each agent.

Welfare and fairness Average sum and product, respectively, of the joint payoffs received in
the time slice. Returns values in [2, 8] and [1, 16], respectively.

Game solutions Tests if the averaged action probabilities in the time slice formed an approximate
stage-game Nash equilibrium, Pareto optimum, Welfare optimum, or Fairness optimum. Returns 1
(true) or 0 (false) for each game solution.

Precise formal definitions of these performance criteria can be found in (Albrecht and Ra-
mamoorthy, 2012).

16

5.3. Algorithm

We used HBA to control player 1 and a fixed type in each play to control player 2, which was
included in the set of hypothesised types Θ∗2 provided to HBA (discussed in detail in Section 5.6).
Therefore, we used the product posterior formulation (cf. Section 4.1) to update HBA’s beliefs.
The planning step in HBA was implemented by expanding a finite tree of all future trajectories.
Formally, HBA chooses an action ai which maximises the expected payoff Eai

h (Ht), defined as

Eai
h (Ĥ) =

∑

θ∗j∈Θ∗j
Pr j(θ∗j | Ĥ)

∑

a j∈A j

π j(Ĥ, a j, θ
∗
j) Q(ai,a j)

h−1 (Ĥ) (15)

Q(ai,a j)
h (Ĥ) = ui(ai, a j) +

0 if h = 0, else

maxa′i Ea′i
h

(
〈Ĥ, (ai, a j)〉

) (16)

where h specifies the depth of the planning horizon (i.e. HBA predicts the next h actions of player
j). Note that (15) and (16) correspond closely to (3) and (4), respectively. The difference is that
(15)/(16) use h to specify the planning depth while (3)/(4) use the discount factor γ. Hence, a
“deeper” planning horizon h translates into a greater discount factor γ. All results reported in this
section hold for both variants.

5.4. Types

We used three different methods to automatically generate parameterised sets of types Θ∗j for
any given game. The generated types cover a broad spectrum of adaptive behaviours, including
deterministic (CDT), randomised (CNN), and hybrid (LFT) policies. Algorithmic details and
parameter settings can be found in Appendix B of (Albrecht, 2015).

Leader-Follower-Trigger Agents (LFT) Crandall (2014) described a method to generate sets
of “leader” and “follower” agents which seek to play specific sequences of joint actions, called
“target solutions”. A leader agent plays its part of the target solution as long as the other player does.
If the other player deviates, the leader agent punishes the player by playing a minimax strategy.
The follower agent is similar except that it does not punish. Rather, if the other player deviates, the
follower agent randomly resets its position within the target solution and continues play as usual.
We augmented this set by a “trigger” agent which is similar to the leader and follower agents,
except that it plays its maximin strategy indefinitely once the other player deviates.

Co-Evolved Decision Trees (CDT) We used genetic programming (Koza, 1992) to automati-
cally breed sets of decision trees. A decision tree takes as input the past n actions of the other
player (in our case, n = 3) and deterministically returns an action to be played in response. The
breeding process is co-evolutional, meaning that two pools of trees are bred concurrently (one for
each player). In each evolution, a random selection of the trees for player 1 is evaluated against a
random selection of the trees for player 2. The fitness criterion includes the payoffs generated by
a tree as well as its dissimilarity to other trees in the same pool. This was done to encourage a
more diverse breeding of trees, as otherwise the trees tend to become very similar or identical.

Co-Evolved Neural Networks (CNN) We used a string-based genetic algorithm (Holland, 1975)
to breed sets of artificial neural networks. The process is basically the same as the one used for
decision trees. However, the difference is that artificial neural networks can learn to play stochastic
strategies while decision trees always play deterministic strategies. Our networks consist of one
input layer with 4 nodes (one for each of the two previous actions of both players), a hidden

17

layer with 5 nodes, and an output layer with 1 node. The node in the output layer specifies the
probability of choosing action 1 (and, since we play 2 × 2 games, of action 2). All nodes use a
sigmoidal threshold function and are fully connected to the nodes in the next layer.

5.5. Prior Beliefs

We specified a total of 10 different methods to automatically compute prior beliefs P j for a
given set of types Θ∗j:

Uniform prior The uniform prior sets P j(θ∗j) = |Θ∗j |−1 for all θ∗j ∈ Θ∗j . This is the baseline prior
against which the other priors are compared.

Random prior The random prior specifies P j(θ∗j) = .0001 for a random half of the types in Θ∗j .
The remaining probability mass is uniformly spread over the other half. The random prior is used
to check if the performance differences of the various priors may be purely due to the fact that
they concentrate the probability mass on fewer types.

Value priors Let U t
k(θ∗j) be the expected cumulative payoff to player k, from the start up until

time t, if player j (i.e. the other player) is of type θ∗j and player i (i.e. HBA) plays optimally against
it. Each value prior is in the general form of P j(θ∗j) = η ψ(θ∗j)

b, where η is a normalisation constant
and b is a “booster” exponent used to magnify the differences between types θ∗j . Based on this
general form, we define four different value priors:

• Utility prior: ψU(θ∗j) = U t
i (θ
∗
j)

• Stackelberg prior: ψS (θ∗j) = U t
j(θ
∗
j)

• Welfare prior: ψW (θ∗j) = U t
i (θ
∗
j) + U t

j(θ
∗
j)

• Fairness prior: ψF(θ∗j) = U t
i (θ
∗
j) ∗ U t

j(θ
∗
j)

Our choice of value priors is motivated by the variety of metrics they cover. As a result, these
priors can produce substantially different probabilities for the same set of types. In this study, we
set t = 5 and b = 10.

LP-priors LP-priors are based on the idea that optimal priors can be formulated as the solution
to a mathematical optimisation problem (in this case, a linear program). Each LP-prior generates
a quadratic matrix A, where each element A j, j′ contains the “loss” that HBA would incur if it
planned its actions against the type θ∗j′ while the true type of player j is θ∗j . Formally, let U t

k(θ∗j |θ∗j′)
be like U t

k(θ∗j) except that HBA believes that player j is of type θ∗j′ instead of θ∗j . We define four
different LP-priors:

• LP-Utility: A j, j′ = ψU(θ∗j) − U t
i (θ
∗
j |θ∗j′)

• LP-Stackelberg: A j, j′ = ψS (θ∗j) − U t
j(θ
∗
j |θ∗j′)

• LP-Welfare: A j, j′ = ψW (θ∗j) − [U t
i (θ
∗
j |θ∗j′) + U t

j(θ
∗
j |θ∗j′)]

• LP-Fairness: A j, j′ = ψF(θ∗j) − [U t
i (θ
∗
j |θ∗j′) ∗ U t

j(θ
∗
j |θ∗j′)]

18

The matrix A can be fed into a linear program of the form minc cTx s.t. [z, A]x ≤ 0, with
n = |Θ∗j |, c = (1, {0}n)T , z = ({−1}n)T , to find a vector x = (l, p1, ..., pn) in which l is the minimised
expected loss to HBA when using the probabilities p1, ..., pn (one for each type) as the prior belief
P j. In order to avoid premature elimination of types, we furthermore require that pv > 0 for all
1 ≤ v ≤ n. As before, we set t = 5 and b = 10.

While this is a mathematically rigorous formulation, it is important to note that it is a simplifi-
cation of how HBA really works. HBA incorporates its beliefs in every recursion of its planning
procedure, whereas the LP formulation implicitly assumes that HBA uses its prior beliefs to ran-
domly sample one of the types against which it then plans optimally. Nonetheless, this is often a
reasonable approximation.

5.6. Experimental Procedure

We performed identical experiments for every type generation method described in Section 5.4.
Each of the 78 games was played 10 times with different random seeds, and each play was repeated
against three opponents (30 plays in total): (RT) A randomly generated type was used to control
player 2 and the play lasted 100 rounds. (FP) A fictitious player (Brown, 1951) was used to control
player 2 and the play lasted 10000 rounds. (CFP) A conditioned fictitious player (which learns
action distributions conditioned on the previous joint action) was used to control player 2 and the
play lasted 10000 rounds.

In each play, we randomly generated 9 unique types and provided them to HBA along with
the true type of player 2, such that |Θ∗2| = 10. (That is, each play had a pure type distribution; cf.
Section 3.1) Thus, the true type of player 2 was always included in the set of hypothesised types
Θ∗2. To avoid “end-game” effects, the players were unaware the number of rounds. We included
FP and CFP because they try to learn the behaviour of HBA. (While the generated types are
adaptive, they do not create models of HBA’s behaviour.) To facilitate the learning, we allowed for
10000 rounds. Finally, since FP and CFP will always choose dominating actions if they exist (in
which case there is no interaction), we filtered out all games in the FP and CFP plays that had a
dominating action for player 2 (leaving 15 no-conflict and 33 conflict games for the C/FP plays).

5.7. Results

We report three main observations:

Observation 1. Prior beliefs can have a significant impact on the long-term performance of HBA.

This was observed in all classes of types, against all classes of opponents, and in all classes
of games used in this study. Figure 2 provides three representative examples from a range of
scenarios. Many of the relative differences due to prior beliefs were statistically significant, based
on paired two-sided t-tests with a 5% significance level.

Our data explain this as follows: Different prior beliefs may cause HBA to take different
actions at the beginning of the game. These actions will shape the beliefs of the other player (i.e.
how it models and adapts to HBA’s actions) which in turn will affect HBA’s next actions. Thus, if
different prior beliefs lead to different initial actions, they may lead to different play trajectories
with different payoffs.

Given that there is a time after which HBA will know the true type of player 2 (since it is
provided to HBA), it may seem surprising that this process would lead to differences in the long-
term. In fact, in our experiments, HBA often learned the true type after only 3 to 5 rounds, and in
most cases in under 20 rounds. After that point, if the planning horizon of HBA is sufficiently deep,

19

20 40 60 80 100
3.76

3.78

3.80

3.82

3.84

3.86

3.88

3.90

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 100 steps)

(a) LFT (h=3) – CFP – No-Conflict

20 40 60 80 100
3.22

3.24

3.26

3.28

3.30

3.32

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 100 steps)

(b) CDT (h=5) – FP – Conflict

20 40 60 80 100

3.12

3.14

3.16

3.18

3.20

3.22

3.24

3.26

3.28

3.30

3.32

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 100 steps)

(c) CNN (h=5) – FP – Conflict

2 4 6 8 10 12 14 16 18 20

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

Av
er

ag
e

Pa
yo

ff
(p

1)

Time Slice

Uniform
Random
Utility
Stackelberg
Welfare
Fairness
LP−Utility
LP−Stackelberg
LP−Welfare
LP−Fairness

Figure 2: Prior beliefs can have significant impact on long-term performance. Plots show average payoffs of player 1
(HBA). X(h)–Y–Z format: HBA used X types and horizon h, player 2 was controlled by Y, results averaged over Z games.

it will realise if its initial actions were sub-optimal and if it can manipulate the play trajectory to
achieve higher payoffs in the long-term, thus diminishing the impact of prior beliefs.

However, deep planning horizons can be problematic in practice since the time complexity
of HBA is exponential in the depth of the planning horizon. Therefore, the planning horizon
constitutes a trade-off between decision quality and computational tractability. Interestingly, our
data show that if we increase the depth, but stay below a sufficient depth (“sufficient” as described
above), it may also amplify the impact of prior beliefs:

Observation 2. Deeper planning horizons can diminish and amplify the impact of prior beliefs.

Again, this was observed in all tested scenarios. Figures 3 and 4 show examples in which
deeper planning horizons diminish and amplify the impact of prior beliefs, respectively.

How can deeper planning horizons amplify the impact of prior beliefs? Our data show that
whether or not different prior beliefs cause HBA to take different initial actions depends not only on
the prior beliefs and types, but also on the depth of the planning horizon. In some cases, differences
between types (i.e. in their action choices) may be less visible in the near future and more visible
in the distant future. In such cases, an HBA agent with a myopic planning horizon may choose the
same (or similar) initial actions, despite different prior beliefs, because the differences in the types
may not be visible within its planning horizon. On the other hand, an HBA agent with a deeper
planning horizon may see the differences between the types and decide to choose different initial
actions based on the prior beliefs.

We now turn to a comparison between the different prior beliefs. Here, our data reveal an
intriguing property:

Observation 3. Automatic methods can compute prior beliefs with consistent performance effects.

Figure 5 shows that the prior beliefs had consistent performance effects across a wide variety
of scenarios. For example, the Utility prior produced consistently higher payoffs for player 1 (i.e.
HBA) while the Stackelberg prior produced consistently higher payoffs for player 2 as well as
higher welfare and fairness. The Welfare and Fairness priors were similar to the Stackelberg prior,
but not quite as consistent. Similar results were observed for the LP variants of the priors, despite
the fact that the LP formulation is a simplification of how HBA works (cf. Section 5.5).

We note that none of the prior beliefs, including the Uniform prior, produced high rates for
the game solutions (i.e. Nash equilibrium, Pareto optimality, etc.). This is because we measured
stage-game solutions, which have no notion of time. These can be hard to attain in repeated games,

20

20 40 60 80 100

3.80

3.82

3.84

3.86

3.88

3.90

3.92

3.94

3.96

3.98

4.00

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 100 steps)

(a) h = 1

20 40 60 80 100

3.80

3.82

3.84

3.86

3.88

3.90

3.92

3.94

3.96

3.98

4.00

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 100 steps)

(b) h = 3

20 40 60 80 100

3.80

3.82

3.84

3.86

3.88

3.90

3.92

3.94

3.96

3.98

4.00

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 100 steps)

(c) h = 5

2 4 6 8 10 12 14 16 18 20

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

Av
er

ag
e

Pa
yo

ff
(p

1)

Time Slice

Uniform
Random
Utility
Stackelberg
Welfare
Fairness
LP−Utility
LP−Stackelberg
LP−Welfare
LP−Fairness

Figure 3: Deeper planning horizons can diminish impact of prior beliefs. Results shown for HBA with LFT types, player 2
controlled by FP, averaged over no-conflict games. h is depth of planning horizon (predicting h next actions of player 2).

5 10 15 20

2.84

2.86

2.88

2.90

2.92

2.94

2.96

2.98

3.00

3.02

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 5 steps)

(a) h = 1

5 10 15 20

2.84

2.86

2.88

2.90

2.92

2.94

2.96

2.98

3.00

3.02

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 5 steps)

(b) h = 3

5 10 15 20

2.84

2.86

2.88

2.90

2.92

2.94

2.96

2.98

3.00

3.02

A
v
e

ra
g

e
 p

a
y
o

ff
 (

p
1

)

Time slice (each 5 steps)

(c) h = 5

2 4 6 8 10 12 14 16 18 20

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

Av
er

ag
e

Pa
yo

ff
(p

1)

Time Slice

Uniform
Random
Utility
Stackelberg
Welfare
Fairness
LP−Utility
LP−Stackelberg
LP−Welfare
LP−Fairness

Figure 4: Deeper planning horizons can amplify impact of prior beliefs. Results shown for HBA with CNN types, player 2
controlled by RT, averaged over conflict games. h is depth of planning horizon (predicting h next actions of player 2).

especially if the other player does not actively seek a specific solution, as was often the case in
our study.

Observation 3 is intriguing because it indicates that prior beliefs could be eliminated as a
manual parameter and instead be computed automatically, using methods such as the ones specified
in Section 5.5. The fact that our methods produced consistent results means that prior beliefs
can be constructed to optimise specific performance criteria. Note that this result is particularly
interesting because the prior beliefs have no influence, whatsoever, on the true type of player 2.

This observation is further supported by the fact that the Random prior did not produce
consistently different values (for any criterion) from the Uniform prior. This means that the
differences in the prior beliefs are not merely due to the fact that they concentrate the probability
mass on fewer types, but rather that the prior beliefs reflect the intrinsic metrics based on which
they are computed (e.g. player 1 payoffs for Utility prior, player 2 payoffs for Stackelberg prior).

How is this phenomenon explained? We believe this may be an interesting analogy to the
“optimism in uncertainty” principle (e.g. Brafman and Tennenholtz, 2003). The optimism lies in
the fact that HBA commits to a specific class of types – those with high prior belief – while, in
truth and without further evidence, there is no reason to believe that any one type is a priori more
likely than others.

Each class of types is characterised by the intrinsic metric of the prior belief. For instance, the
Utility prior assigns high probability to those types which would yield high payoffs to HBA if it

21

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
s
s
 o

p

W
e
lf
a
re

 o
p

P
a
re

to
 o

p

N
a
s
h
 e

q

F
a
ir
n
e
s
s

W
e
lf
a
re

P
a
y
o
ff
 (

p
2
)

P
a
y
o
ff
 (

p
1
)

C
o
n
v
 (

p
2
)

C
o
n
v
 (

p
1
)

(a) LFT (h=3) – RT – Conflict

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
s
s
 o

p

W
e
lf
a
re

 o
p

P
a
re

to
 o

p

N
a
s
h
 e

q

F
a
ir
n
e
s
s

W
e
lf
a
re

P
a
y
o
ff
 (

p
2
)

P
a
y
o
ff
 (

p
1
)

C
o
n
v
 (

p
2
)

C
o
n
v
 (

p
1
)

(b) LFT (h=1) – CFP – Conflict

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
s
s
 o

p

W
e
lf
a
re

 o
p

P
a
re

to
 o

p

N
a
s
h
 e

q

F
a
ir
n
e
s
s

W
e
lf
a
re

P
a
y
o
ff
 (

p
2
)

P
a
y
o
ff
 (

p
1
)

C
o
n
v
 (

p
2
)

C
o
n
v
 (

p
1
)

(c) CDT (h=3) – RT – Conflict

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
ss

 o
p

W
e
lfa

re
 o

p

P
a
re

to
 o

p

N
a
sh

 e
q

F
a
ir
n
e
ss

W
e
lfa

re

P
a
yo

ff
 (

p
2
)

P
a
yo

ff
 (

p
1
)

C
o
n
v

(p
2
)

C
o
n
v

(p
1
) 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
s
s
 o

p

W
e
lf
a
re

 o
p

P
a
re

to
 o

p

N
a
s
h
 e

q

F
a
ir
n
e
s
s

W
e
lf
a
re

P
a
y
o
ff
 (

p
2
)

P
a
y
o
ff
 (

p
1
)

C
o
n
v
 (

p
2
)

C
o
n
v
 (

p
1
)

(d) CDT (h=5) – FP – Conflict

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
s
s
 o

p

W
e
lf
a
re

 o
p

P
a
re

to
 o

p

N
a
s
h
 e

q

F
a
ir
n
e
s
s

W
e
lf
a
re

P
a
y
o
ff
 (

p
2
)

P
a
y
o
ff
 (

p
1
)

C
o
n
v
 (

p
2
)

C
o
n
v
 (

p
1
)

(e) CNN (h=3) – RT – Conflict

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
s
s
 o

p

W
e
lf
a
re

 o
p

P
a
re

to
 o

p

N
a
s
h
 e

q

F
a
ir
n
e
s
s

W
e
lf
a
re

P
a
y
o
ff
 (

p
2
)

P
a
y
o
ff
 (

p
1
)

C
o
n
v
 (

p
2
)

C
o
n
v
 (

p
1
)

(f) CNN (h=3) – FP – Conflict

Random

Utility

Stackelberg

Welfare

Fairness

LP−Utility

LP−Stackel

LP−Welfare

LP−Fairness

F
a
ir
n
e
ss

 o
p

W
e
lfa

re
 o

p

P
a
re

to
 o

p

N
a
sh

 e
q

F
a
ir
n
e
ss

W
e
lfa

re

P
a
yo

ff
 (

p
2
)

P
a
yo

ff
 (

p
1
)

C
o
n
v

(p
2
)

C
o
n
v

(p
1
) 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Automatic prior beliefs have consistent performance effects. Rows show prior beliefs, columns show performance
criteria. Each element (r, c) in the matrix corresponds to the percentage of time slices in which the prior belief r produced
significantly higher values for criterion c than the Uniform prior, averaged over all plays in all tested games. All significance
statements are based on paired right-sided t-tests with 5% significance level. See Figure 2 for X(h)–Y–Z format.

played optimally against the types. By committing to such a characterisation, HBA can effectively
utilise Observation 1 by choosing initial actions so as to shape the interaction to maximise the
intrinsic metric. If the true type of player 2 is indeed in this class of types, then the interaction will
proceed as planned by HBA and the intrinsic metric will be optimised. However, if the true type
is not in this class, then HBA will quickly learn the correct type and adjust its play accordingly,
albeit without necessarily maximising the intrinsic metric.

This is in contrast to the Uniform and Random priors, which have no intrinsic metric. Under
these priors, HBA will plan its actions with respect to types which are not characterised by a
common theme (i.e., all types under the Uniform prior, and a random half under the Random
prior). Therefore, HBA cannot effectively utilise Observation 1.

6. Optimal Type Spaces

A potential concern in the type-based method is the fact that the hypothesised types may be
incorrect. This can range from slight deviations in predicted action probabilities, to predicting
entirely different actions from what was observed. The following example illustrates this:

22

Example 6. Consider a SBG with two players and actions L and R. Player 1 is controlled by
HBA while player 2 has a single type, θLR, which chooses L,R,L,R, etc. HBA is provided with
hypothesised types Θ∗j =

{
θ∗R, θ

∗
LRR

}
, where θ∗R always chooses R while θ∗LRR chooses L,R,R,L,R,R

etc. Both hypothesised types are incorrect in the sense that they predict player 2’s actions in only
≈ 50% of the game.

Such inaccuracies may have a significant impact on our choice of actions: if the hypothesised
types are incorrect, then our predictions of future interactions may be incorrect, which in turn
may lead to suboptimal action choices. Therefore, an important question is what relation the
hypothesised types must have to the true types in order for HBA to be able to complete its task?
In particular, what does it mean for the hypothesised types to be optimal?

Given the complexity of behaviours agents may exhibit, this is an extremely difficult question.
In addition, it is not generally sufficient to consider types alone, since actions are planned with
respect to both types and beliefs over types. Rather, we have to consider a stochastic process in
which our actions depend on the correctness of types as well as the evolution of our beliefs.

In this spirit, we describe a formal methodology whereby we compare two interactive processes:
one in which the true types are known, and one in which this knowledge is approximated through
beliefs over hypothesised types. Based on these processes, we use a probabilistic temporal logic
to define a hierarchy of desirable termination guarantees, and analyse the theoretical conditions
under which they are met. The main result of this analysis is a novel characterisation of optimality
which is based on the concept of probabilistic bisimulation (Larsen and Skou, 1991). In addition
to concisely defining what constitutes optimality of hypothesised types, this allows the user to
apply efficient model checking algorithms to verify optimality in practice.

6.1. Task Completion

We are interested in task completion, which we formally capture by the following assumption:

Assumption 2. Let player i be controlled by HBA. Then ui(s, a) = 1 iff. s ∈ S̄ , else 0.

Assumption 2 specifies that we are only interested in reaching a terminal state, since this is
the only way to obtain a none-zero payoff. In our analysis, we consider discount factors γ (cf.
Algorithm 1) with γ = 1 and γ < 1. While all our results hold for both cases, there is an important
distinction: If γ = 1, then the expected payoffs (3) correspond to the actual probability that the
following state can lead to (or is) a terminal state (we call this the success rate), whereas this is
not necessarily the case if γ < 1. This is since γ < 1 tends to prefer shorter paths, which means
that actions with lower success rates may be preferred if they lead to faster termination. Therefore,
if γ = 1 then HBA is solely interested in termination, and if γ < 1 then it is interested in fast
termination, where lower γ prefers faster termination.

6.2. Methodology of Analysis

Given a SBG Γ, we define the ideal process, X, as the process induced by Γ in which player i is
controlled by HBA and in which HBA always knows the current and all future types of all players.
Then, given a posterior formulation Pr and hypothesised type spaces Θ∗j for all j , i, we define
the user process, Y , as the process induced by Γ in which player i is controlled by HBA (same
as in X) and in which HBA uses Pr and Θ∗j in the usual way. Thus, the only difference between
X and Y is that X can always predict the player types whereas Y approximates this knowledge
through Pr and Θ∗j . We write Eai

st (Ht |C) to denote the expected payoff (as defined by (3)) of action
ai in state st after history Ht, in process C ∈ {X,Y}.

23

The idea is that X constitutes the ideal solution in the sense that Eai
st (Ht |X) corresponds to the

actual expected payoff, which means that HBA chooses the truly best-possible actions in X. This
is opposed to Eai

st (Ht |Y), which is merely the estimated expected payoff based on Pr and Θ∗j , so
that HBA may choose suboptimal actions in Y . The methodology of our analysis is to specify
what relation Y must have to X to satisfy certain guarantees for termination.

We specify such guarantees in PCTL (Hansson and Jonsson, 1994), a probabilistic modal logic
which also allows for the specification of time constraints. PCTL expressions are interpreted over
infinite histories in labelled transition systems with atomic propositions (i.e. Kripke structures). In
order to interpret PCTL expressions over X and Y , we make the following modifications without
loss of generality: Firstly, any terminal state s̄ ∈ S̄ is an absorbing state, meaning that if a process
is in s̄, then the next state will be s̄ with probability 1 and all players receive a zero payoff.
Secondly, we introduce the atomic proposition term and label each terminal state with it, so that
term is true in s if and only if s ∈ S̄ .

We will use the following two PCTL expressions:

F≤t
�pterm, F<∞

�p term (17)

where t ∈ N, p ∈ [0, 1], and �∈ {>,≥}.
F≤t
�pterm specifies that, given a state s, with a probability of �p a state s′ will be reached from

s within t time steps such that s′ satisfies term. The semantics of F<∞
�p term is similar except that

s′ will be reached in arbitrary but finite time. We write s |=C φ to say that a state s satisfies the
PCTL expression φ in process C ∈ {X,Y}.

6.3. Critical Type Spaces

In our analysis, we will sometimes assume that the hypothesised type spaces Θ∗j are uncritical:

Definition 9. The hypothesised type spaces Θ∗j are critical if there is a set S c ⊆ S \ S̄ which
satisfies all of the following:

1. For each Ht ∈ H with st ∈ S c, there is ai ∈ Ai such that Eai
st (Ht |Y) > 0 and Eai

st (Ht |X) > 0.

2. There is a positive probability that Y may eventually get into a state sc ∈ S c from s0.

3. If Y is in a state in S c, then with probability 1 it will always be in a state in S c.

We say Θ∗j are uncritical if they are not critical.

Intuitively, critical type spaces have the potential to lead HBA into a state space in which it
believes it chooses the right actions to complete the task, while other actions are actually required
to complete the task. The only effect that its actions have is to induce an infinite cycle, due to
a critical inconsistency between the hypothesised and true type spaces. The following example
demonstrates this:

Example 7. Recall Example 6 and let the task be to choose the same action as player j. Then, Θ∗j
is uncritical because HBA will always complete the task at t = 1, regardless of its posterior beliefs
and despite the fact that Θ∗j is inaccurate. Now, assume that Θ∗j =

{
θ∗RL

}
where θ∗RL chooses actions

R,L,R,L etc. Then, Θ∗j is critical since HBA will always choose the opposite action of player j,
thinking that it would complete the task, when a different action would actually complete it.

A practical way to ensure that the type spaces Θ∗j are (eventually) uncritical is to include
methods for opponent modelling in each Θ∗j . If the opponent models are guaranteed to learn the

24

correct behaviours, then the type spaces Θ∗j are guaranteed to become uncritical. In Example 7,
any standard modelling method would eventually learn that the true strategy of player j is θLR. As
the model becomes more accurate, the posterior beliefs gradually shift towards it and eventually
allow HBA to take the right action.

6.4. Termination Guarantees

Our first termination guarantee states that if X has a positive probability of solving the task,
then so does Y:

Property 1. s0 |=X F<∞
>0 term ⇒ s0 |=Y F<∞

>0 term

We can show that Property 1 holds if the hypothesised type spaces Θ∗j are uncritical and if Y
only chooses actions for player i with positive expected payoff in X.

Let A(Ht |C) denote the set of actions that process C may choose from in state st after history
Ht, i.e. A(Ht |C) = arg maxai Eai

st (Ht |C) (cf. step 3 in Algorithm 1).

Theorem 4. Property 1 holds if Θ∗j are uncritical and

∀Ht∈ H ∀ai ∈ A(Ht |Y) : Eai
st (Ht |X) > 0 (18)

Proof. Assume s0 |=X F<∞
>0 term. Then, we know that X chooses actions ai which may lead into

a state s′ such that s′ |=X F<∞
>0 term, and the same holds for all such states s′. Now, given (18) it

is tempting to infer the same result for Y , since Y only chooses actions ai which have positive
expected payoff in X and, therefore, could truly lead into a terminal state. However, (18) alone is
not sufficient to infer s′ |=Y F<∞

>0 term because of the special case in which Y chooses actions ai

such that Eai
st (Ht |X) > 0 but without ever reaching a terminal state. This is why we require that the

hypothesised type spaces Θ∗j are uncritical, which prevents this special case. Thus, we can infer
that s′ |=Y F<∞

>0 term, and, hence, Property 1 holds.

The second guarantee states that if X always completes the task, then so does Y:

Property 2. s0 |=X F<∞
≥1 term ⇒ s0 |=Y F<∞

≥1 term

We can show that Property 2 holds if the type spaces Θ∗j are uncritical and if Y only chooses
actions for player i which lead to states into which X may get as well.

Let µ(Ht, s|C) be the probability that process C transitions into state s from state st after
history Ht, i.e.

µ(Ht, s|C) =
1
|A|

∑

ai∈A

∑

a−i∈A−i

T (st, 〈ai, a−i〉, s)
∏

j,i

π j(Ht, a j, θ
t
j) (19)

with A ≡ A(Ht |C), and let µ(Ht, S ′|C) =
∑

s∈S ′ µ(Ht, s|C) for S ′ ⊂ S .

Theorem 5. Property 2 holds if Θ∗j are uncritical and

∀Ht∈ H ∀s ∈ S : µ(Ht, s|Y) > 0⇒ µ(Ht, s|X) > 0 (20)

Proof. The fact that s0 |=X F<∞
≥1 term means that, throughout the process, X only transitions into

states s with s |=X F<∞
≥1 term. As before, it is tempting to infer the same result for Y based on (20),

since it only transitions into states which have maximum success rate in X. However, (20) alone
is not sufficient since Y may choose actions such that (20) holds true but Y will never reach a

25

terminal state. Nevertheless, since the hypothesised type spaces Θ∗j are uncritical, we know that
this special case will not occur, and, thus, Property 2 holds.

We note that, in both Properties 1 and 2, the reverse direction holds true regardless of Theorems
4 and 5. Furthermore, we can combine the requirements of Theorems 4 and 5 to ensure that both
properties hold.

The third guarantee subsumes the previous guarantees by stating that X and Y have the same
minimum probability of solving the task:

Property 3. s0 |=X F<∞
≥p term ⇒ s0 |=Y F<∞

≥p term

We can show that Property 3 holds if the hypothesised type spaces Θ∗j are uncritical and if Y
only chooses actions for player i which X might have chosen as well.

Let R(ai,Ht |C) be the success rate of action ai, formally R(ai,Ht |C) = Eai
st (Ht |C) with γ = 1

(so that it corresponds to the actual probability with which ai may lead to termination in the future).
Define Xmin and Xmax to be the processes which for each Ht choose actions ai ∈ A(Ht |X) with,
respectively, minimal and maximal success rate R(ai,Ht |X).

Theorem 6. If Θ∗j are uncritical and

∀Ht∈ H : A(Ht |Y) ⊆ A(Ht |X) (21)
then
(i) for γ = 1: Proposition 3 holds in both directions
(ii) for γ < 1: s0 |=X F<∞

≥p term ⇒ s0 |=Y F<∞
≥p′term

with pmin ≤ q ≤ pmax for q ∈ {p, p′}, where pmin and pmax are the highest probabilities such
that s0 |=Xmin F<∞

≥pmin
term and s0 |=Xmax F<∞

≥pmax
term.

Proof. (i): Since γ = 1, all actions ai ∈ A(Ht |X) have the same success rate for a given Ht, and
given (21) we know that Y’s actions always have the same success rate as X’s actions. Provided
that the type spaces Θ∗j are uncritical, we can conclude that Property 3 must hold, and for the same
reasons the reverse direction must hold as well.

(ii): Since γ < 1, the actions ai ∈ A(Ht |X) may have different success rates. The lowest and
highest chances that X completes the task are precisely modelled by Xmin and Xmax, and given
(21) and the fact that Θ∗j are uncritical, the same holds for Y . Therefore, we can infer the common
bound pmin ≤ {p, p′} ≤ pmax as defined in Theorem 6.

Properties 1 to 3 are indefinite in the sense that they make no restrictions on time requirements.
Our fourth and final guarantee subsumes all previous guarantees and states that if there is a
probability p such that X terminates within t time steps, then so does Y for the same p and t:

Property 4. s0 |=X F≤t
≥pterm ⇒ s0 |=Y F≤t

≥pterm

We believe that Property 4 is an adequate criterion of optimality for hypothesised type spaces
Θ∗j since, if it holds, Θ∗j must approximate the true type spaces Θ+

j in a way which allows HBA
to plan (almost) as accurately — in terms of solving the task — as the “ideal” HBA in X which
always knows the true types.

What relation must Y have to X in order to satisfy Property 4? The fact that Y and X are
processes over state transition systems means that we can draw on methods from the model
checking literature to answer this question. Specifically, we will use the concept of probabilistic
bisimulation (Larsen and Skou, 1991), which we here define within the context of our work:

26

Definition 10. A probabilistic bisimulation between X and Y , denoted X ∼ Y , is an equivalence
relation B ⊆ S × S such that

(i) (s0, s0) ∈ B
(ii) sX |=X term⇔ sY |=Y term for all (sX , sY) ∈ B
(iii) µ(Ht

X , Ŝ |X) = µ(Ht
Y , Ŝ |Y) for any histories Ht

X ,H
t
Y with (st

X , s
t
Y) ∈ B and all equivalence

classes Ŝ under B.

Intuitively, a probabilistic bisimulation states that X and Y do (on average) match each other’s
transitions. Our definition of probabilistic bisimulation is most general in that it does not require
that transitions are matched by the same action or that related states satisfy the same atomic
propositions other than termination. However, we do note that other definitions exist which make
such additional requirements, and our results hold for each of these refinements.

The main contribution in this section is to show that the optimality criterion expressed by
Property 4 holds in both directions if there exists a probabilistic bisimulation between X and
Y . Thus, we offer an alternative formal characterisation of optimality for the hypothesised type
spaces Θ∗j:

Theorem 7. Property 4 holds in both directions if there exists a probabilistic bisimulation X ∼ Y .

Proof. First of all, we note that, strictly speaking, the standard definitions of bisimulation (e.g.
Baier, 1996; Larsen and Skou, 1991) assume the Markov property, which means that the next
state of a process depends only on its current state. In contrast, we consider the more general case
in which the next state may depend on the history Ht of previous states and joint actions (since
the player strategies π j depend on Ht). However, one can always enforce the Markov property
by design, i.e. by augmenting the state space S to account for the relevant factors of the past. In
fact, we could postulate that the histories as a whole constitute the states of the system, i.e. S = H.
Therefore, to simplify the exposition, we assume the Markov property and we write µ(s, Ŝ |C) to
denote the cumulative probability that C transitions from state s into any state in Ŝ .

Given the Markov property, the fact that B is an equivalence relation, and µ(sX , Ŝ |X) =

µ(sY , Ŝ |Y) for (sX , sY) ∈ B, we can represent the dynamics of X and Y in a common graph, such
as the following one:

Ŝ 0s0 ∈ Ŝ 1

Ŝ 2

Ŝ 3

Ŝ 4

Ŝ 5

Ŝ 6 ≡ S̄

µ01

µ02 µ14

µ13

µ24

µ35

µ41 µ36

µ46

The nodes correspond to the equivalence classes under B. A directed edge from Ŝ a to Ŝ b

specifies that there is a positive probability µab = µ(sX , Ŝ b|X) = µ(sY , Ŝ b|Y) that X and Y transition
from states sX , sY ∈ Ŝ a to states s′X , s

′
Y ∈ Ŝ b, respectively. Note that sX , sY and s′X , s

′
Y need

not be equal but merely equivalent, i.e. (sX , sY) ∈ B and (s′X , s
′
Y) ∈ B. There is one node (Ŝ 0)

that contains the initial state s0 and one node (Ŝ 6) that contains all terminal states S̄ and no
other states. This is because once X and Y reach a terminal state they will always stay in it (i.e.
µ(s, S̄ |X) = µ(s, S̄ |Y) = 1 for s ∈ S̄) and since they are the only states that satisfy term. Thus, the
graph starts in Ŝ 0 and terminates (if at all) in Ŝ 6.

27

Since the graph represents the dynamics of both X and Y , it is easy to see that Property 4 must
hold in both directions. In particular, the probabilities that X and Y are in node Ŝ at time t are
identical. One simply needs to add the probabilities of all directed paths of length t which end in
Ŝ (provided that such paths exist), where the probability of a path is the product of the µab along
the path. Therefore, X and Y terminate with equal probability, and on average within the same
number of time steps.

Some remarks to clarify the usefulness of this result: First of all, in contrast to Theorems 4
to 6, Theorem 7 does not explicitly require Θ∗j to be uncritical. In fact, this is implicit in the
definition of probabilistic bisimulation. Moreover, while the other theorems relate Y and X for
identical histories Ht, Theorem 7 relates Y and X for related histories Ht

Y and Ht
X , making it

more generally applicable. Finally, Theorem 7 has an important practical implication: it tells us
that we can use efficient methods for model checking (e.g. Baier, 1996; Larsen and Skou, 1991)
to verify optimality of Θ∗j . In fact, it can be shown that for Property 4 to hold (albeit not in the
other direction) it suffices that Y be a probabilistic simulation (Baier, 1996) of X, which is a
coarser preorder than probabilistic bisimulation. However, algorithms for checking probabilistic
simulation (e.g. Baier, 1996) are computationally much more expensive (and fewer) than those
for probabilistic bisimulation, hence their practical use is currently limited.

7. Behavioural Hypothesis Testing

In the previous section, we considered the possibility of incorrect hypothesised types and
analysed the conditions under which HBA is nevertheless able to complete its task. While the
analysis is rigorous and complete, it is performed before any interaction and with respect to the
true types of other agents. How can we decide during the interaction and with no knowledge of
the true types whether our hypothesised types are correct?

There are several ways in which an answer to this question could be used. For example, if we
persistently reject our hypothesised types, we may hypothesise an alternative set of types or resort
to some default plan of action, such as a “maximin” strategy. Unfortunately, posterior beliefs
do not provide an answer to this question because they quantify the relative likelihood of types
(relative to a set of alternative types), but they are no measure of truth. That is, even if our beliefs
point to one type, this does not tell us that the observed agent is indeed of that type. Instead, it
only tells us that all other types have been discarded after the current interaction history.

To illustrate the source of difficulty, consider an interaction process between two agents which
can choose from three actions. The table below shows the first 5 time steps of the interaction. The
columns show, respectively, the current time t of the interaction, the actions chosen by the agents
at time t, and agent 1’s hypothesised probabilities with which agent 2 will choose its actions at
time t, based on the prior interaction history.

t (at
1, a

t
2) θ∗2

1 (1, 2) 〈.3, .1, .6〉
2 (3, 1) 〈.2, .3, .5〉
3 (2, 3) 〈.7, .1, .2〉
4 (2, 3) 〈.0, .4, .6〉
5 (1, 2) 〈.4, .2, .4〉

Assuming the process continues in this fashion, and without any restrictions on the behaviour
of agent 2, how should agent 1 decide whether or not to reject its hypothesis about the behaviour

28

of agent 2? Note that agent 1 cannot outright reject its hypothesis because all observed actions of
agent 2 were supported by agent 1’s hypothesis (i.e. had positive probability).

There exists a large body of literature on what is often referred to as model criticism (e.g.
Bayarri and Berger, 2000; Meng, 1994; Rubin, 1984; Box, 1980). Model criticism attempts
to answer the analogous question of whether a given data set could have been generated by a
given model. However, in contrast to our work, model criticism usually assumes that the data
are independent and identically distributed, which is not the case in the interactive setting we
consider. A related problem, sometimes referred to as identity testing, is to test if a given sequence
of data was generated by some given stochastic process (Ryabko and Ryabko, 2008; Basawa and
Scott, 1977). Instead of independent and identical distributions, this line of work assumes other
properties such as stationarity and ergodicity. Unfortunately, these assumptions are also unlikely
in interaction processes, and the proposed solutions are very costly.

A perhaps more natural way to address this question is to compute some kind of score from
the information given in the above table, and to compare this score with some manually chosen
rejecting threshold. A prominent example of such a score is the empirical frequency distribution
(e.g. Conitzer and Sandholm, 2007; Foster and Young, 2003). However, while the simplicity of
this method is appealing, there are two significant problems: (a) it is far from trivial to devise a
scoring scheme that reliably quantifies “correctness” of hypotheses (for instance, an empirical
frequency distribution taken over all past actions would be insufficient in the above example since
the hypothesised action distributions are changing), and (b) it is unclear how one should choose
the threshold parameter for any given scoring scheme.

In this section, we show how a particular form of model criticism, namely frequentist hypothe-
sis testing, can be combined with the concept of scores to decide whether to reject a behavioural
hypothesis. Our proposed algorithm addresses (a) by allowing for multiple scoring criteria in
the construction of the test statistic, with the intent of obtaining an overall more reliable scoring
scheme. The distribution of the test statistic is learned during the interaction process, and we show
that the learning is asymptotically correct. Analogous to standard frequentist testing, the hypothe-
sis is rejected at a given point in time if the resulting p-value is below some “significance level”.
This eliminates (b) by providing a uniform semantics for rejection that is invariant to the employed
scoring scheme. We present results from a comprehensive set of experiments, demonstrating that
the algorithm achieves high accuracy and scalability at low computational costs.

Of course, there is a long-standing debate on the role of statistical hypothesis tests and
quantities such as p-values (e.g. Gelman and Shalizi, 2013; Berger and Sellke, 1987; Cox, 1977).
The usual consensus is that p-values should be combined with other forms of evidence to reach a
final conclusion (Fisher, 1935), and this is the view we adopt as well. In this sense, our method
may be used as part of a larger machinery to decide the truth of a hypothesis.

7.1. Individual Hypotheses and Beliefs

As noted in Section 6, it does not generally suffice to consider the correctness of individual
types, since we plan our actions with respect to both types and our beliefs regarding the relative
likelihood of types (cf. (3)). In this regard, we note that any combination of beliefs Pr and types
Θ∗j can be described as a single type θ̂∗j of the form

π j(Ht, a j, θ̂
∗
j) =

∑

θ∗j∈Θ∗j
Pr(θ∗j |Ht) π j(Ht, a j, θ

∗
j). (22)

29

This combination is equivalent to sampling a single type θ∗j ∈ Θ∗j using probabilities Pr(θ∗j |Ht),
and then using θ∗j to choose actions a j ∈ A j via π j(Ht, a j, θ

∗
j) (Kuhn, 1953). Analogously, we may

combine the true types Θ+
j ⊂ Θ j of player j, using the type distribution Υ, into a single type θ̂+

j
such that

π j(Ht, a j, θ̂
+
j) =

∑

θ+
j ∈Θ+

j

Υ(t, θ+
j) π j(Ht, a j, θ

+
j). (23)

Therefore, to simplify the notation in this section, we will generally assume a single hypothe-
sised type θ∗j ∈ Θ j and a single true type θ+

j ∈ Θ j. Note that this means that our method can be
applied to the combination of beliefs and hypothesised types, as well as to individual types in Θ∗j .
Furthermore, we will write π j(Ht, θ j) to denote the probability distribution over actions A j (rather
than probabilities of individual actions).

7.2. A Method for Behavioural Hypothesis Testing
Let i denote our agent and let j denote another agent. Moreover, let θ∗j ∈ Θ j denote our

hypothesis for j’s behaviour and let θ+
j ∈ Θ j denote j’s true behaviour. The central question we

ask is if θ∗j = θ+
j ?

Unfortunately, since we do not know θ+
j , we cannot directly answer this question. However, at

each time t, we know j’s past actions at
j = (a0

j , ..., a
t−1
j) which were generated by θ+

j . If we use
θ∗j to generate a vector ât

j = (â0
j , ..., â

t−1
j), where âτj is sampled using π j(Hτ, θ∗j), we can formulate

the related two-sample problem of whether at
j and ât

j were generated from the same behaviour,
namely θ∗j .

In this section, we propose a general and efficient algorithm to decide this problem. At its
core, the algorithm computes a frequentist p-value

p = P
(
|T(ãt

j, â
t
j)| ≥ |T(at

j, â
t
j)|

)
(24)

where ãt
j ∼ δt(θ∗j) =

(
π j(H0, θ∗j), ..., π j(Ht−1, θ∗j)

)
. The value of p corresponds to the probability

with which we expect to observe a test statistic at least as extreme as T(at
j, â

t
j), under the null-

hypothesis that θ∗j = θ+
j . Thus, we reject θ∗j if p is below some “significance level” α∗.

In the following subsections, we describe the test statistic T and its asymptotic properties, and
how our algorithm learns the distribution of T(ãt

j, â
t
j). A summary of the algorithm is given in

Algorithm 2.

7.2.1. Test Statistic
We follow the general approach outlined earlier by which we compute a score from a vector

of actions and their hypothesised distributions. Formally, we define a score function as z : (A j)t ×
∆(A j)t → R, where ∆(A j) is the set of all probability distributions over A j. Thus, z(at

j, δ
t(θ∗j)) is the

score for observed actions at
j and hypothesised distributions δt(θ∗j), and we sometimes abbreviate

this to z(at
j, θ
∗
j). We use Z to denote the space of all score functions.

Given a score function z, we define the test statistic T as

T(ãt
j, â

t
j) =

1
t

t∑

τ=1

Tτ(ãτj , â
τ
j) (25)

Tτ(ãτj , â
τ
j) = z(ãτj , θ

∗
j) − z(âτj , θ

∗
j) (26)

30

Algorithm 2 Automatic behavioural hypothesis testing

Input: history Ht (including observed action at−1
j)

Output: p-value (reject θ∗j if p below some threshold α∗)
Parameters: hypothesis θ∗j , score functions z1, ..., zK , N > 0
// Expand action vectors
Set at

j ← 〈at−1
j , at−1

j 〉
Sample ât−1

j ∼ π j(Ht−1, θ∗j); set ât
j ← 〈ât−1

j , ât−1
j 〉

for n = 1, ...,N do
Sample ãt−1

j ∼ π j(Ht−1, θ∗j); set ãt,n
j ← 〈ãt−1,n

j , ãt−1
j 〉

// Fit skew-normal distribution f
if update parameters? then

Compute D←
{
T(ãt,n

j , â
t
j) | n = 1, ...,N

}

Fit ξ, ω, β to D, e.g. using (35)
Find mode µ from ξ, ω, β

// Compute p-value
Compute q← T(at

j, â
t
j) using (25)/(28)

return p← f (q | ξ, ω, β) / f (µ | ξ, ω, β)

where ãτj and âτj denote the τ-prefixes of ãt
j and ât

j, respectively.
In this work, we assume that z is provided by the user. While formally unnecessary (in the

sense that our analysis does not require it), we find it a useful design guideline to interpret a score
as a kind of likelihood, such that higher scores suggest higher likelihood of θ∗j being correct. Under
this interpretation, a minimum requirement for z should be that it is consistent, such that, for any
t > 0 and θ∗j ∈ Θ j,

θ∗j ∈ Πz = arg max
θ′j∈Θ j

Ea′j∼δt(θ∗j)
[
z(a′j, θ

′
j)
]

(27)

where Eη denotes the expectation under η. This ensures that if the null-hypothesis θ∗j = θ+
j is true,

then the score z(at
j, θ
∗
j) is maximised on expectation.

Ideally, we would like a score function z which is perfect in that it is consistent and |Πz| = 1.
This means that θ∗j can maximise z(at

j, θ
∗
j) (where at

j ∼ δt(θ+
j)) only if θ∗j = θ+

j . Unfortunately, it
is unclear if such a score function exists for the general case and how it should look. Even if we
restrict the behaviours agents may exhibit, it can still be difficult to find a perfect score function.
On the other hand, it is a relatively simple task to specify a small set of score functions z1, ..., zK

which are consistent but imperfect. (Examples are given in Section 7.3.) Given that these score
functions are consistent, we know that the cardinality | ∩k Πzk | can only monotonically decrease.
Therefore, it seems a reasonable approach to combine multiple imperfect score functions in an
attempt to approximate a perfect score function.

Given score functions z1, ..., zK ∈ Z which are all bounded by the same interval [a, b] ⊂ R, we
redefine Tτ to

Tτ(ãτj , â
τ
j) =

K∑

k=1

wk

(
zk(ãτj , θ

∗
j) − zk(âτj , θ

∗
j)
)

(28)

31

where wk ∈ R is a weight for score function zk. In this work, we set wk = 1
K . (We also experiment

with alternative weighting schemes in Section 7.3.) However, we believe that wk may serve as
an interface for useful modifications of our algorithm. For example, Yue et al. (2010) compute
weights to increase the power of their hypothesis tests.

7.2.2. Asymptotic Properties
The vectors at

j and ât
j are constructed iteratively. That is, at time t, we observe agent j’s past

action at−1
j , which was generated from π j(Ht−1, θ+

j), and set at
j = 〈at−1

j , at−1
j 〉. At the same time, we

sample an action ât−1
j using π j(Ht−1, θ∗j) and set ât

j = 〈ât−1
j , ât−1

j 〉. Assuming the null-hypothesis
θ∗j = θ+

j , will T(at
j, â

t
j) converge in the process?

Unfortunately, T might not converge. This may seem surprising at first glance given that
at−1

j and ât−1
j have the same distribution π j(Ht−1, θ+

j) = π j(Ht−1, θ∗j), since Ex,y∼ψ
[
x − y

]
= 0 for

any distribution ψ. However, there is a subtle but important difference: while at−1
j and ât−1

j have
the same distribution, zk(at

j, θ
∗
j) and zk(ât

j, θ
∗
j) may have arbitrarily different distributions. This is

because these scores may depend on the entire prefix vectors at−1
j and ât−1

j , respectively, which
means that their distributions may be different if at−1

j , ât−1
j . Fortunately, our algorithm does not

require T to converge because it learns the distribution of T during the interaction process, as we
will discuss in Section 7.2.3.

Interestingly, while T may not converge, it can be shown that the fluctuation of T is eventually
normally distributed, for any set of score functions z1, ..., zK with bound [a, b]. Formally, let
E[Tτ(aτj , â

τ
j)] and Var[Tτ(aτj , â

τ
j)] denote the finite expectation and variance of Tτ(aτj , â

τ
j), where it

is irrelevant if aτj , â
τ
j are sampled directly from δτ(θ∗j) or generated iteratively as prescribed above.

Furthermore, let σ2
t =

∑t
τ=1Var[Tτ(aτj , â

τ
j)] denote the cumulative variance. Then, the standardised

stochastic sum
1
σt

t∑

τ=1

Tτ(aτj , â
τ
j) − E[Tτ(aτj , â

τ
j)] (29)

will converge in distribution to the standard normal distribution as t → ∞. Thus, T is normally
distributed as well.

To see this, first recall that the standard central limit theorem requires the random variables Tτ
to be independent and identically distributed. In our case, Tτ are independent in that the random
outcome of Tτ has no effect on the outcome of Tτ′ . However, Tτ and Tτ′ depend on different action
sequences, and may therefore have different distributions. Hence, we have to show an additional
property, commonly known as Lyapunov’s condition (e.g. Fischer, 2010), which states that there
exists a positive integer d such that

lim
t→∞

σ̂2+d
t

σ2+d
t

= 0, with (30)

σ̂2+d
t =

t∑

τ=1

E
[∣∣∣Tτ(aτj , â

τ
j) − E[Tτ(aτj , â

τ
j)]

∣∣∣2+d
]
. (31)

Since zk are bounded, we know that Tτ are bounded. Hence, the summands in (31) are

32

uniformly bounded, say by U for brevity. Setting d = 1, we obtain

lim
t→∞

σ̂3
t

σ3
t
≤ Uσ̂2

t

σ3
t

=
U
σt

(32)

The last part goes to zero if σt → ∞, and hence Lyapunov’s condition holds. If, on the other hand,
σt converges, then this means that the variance of Tτ is zero from some point onward (or that it
has an appropriate convergence to zero). From this point, θ∗j prescribes fully deterministic action
choices for agent j (i.e. ∃a j : π j(Hτ, a j, θ

∗
j) = 1), and a statistical analysis is no longer necessary.

7.2.3. Learning the Test Distribution
Given that T is eventually normal, it may seem reasonable to compute (24) using a normal

distribution whose parameters are fitted during the interaction. However, this fails to recognise
that the distribution of T is shaped gradually over an extended time period, and that the fluctuation
around T can be heavily skewed in either direction until convergence to a normal distribution
emerges. Thus, a normal distribution may be a poor fit during this shaping period.

What is needed is a distribution which can represent any normal distribution, and which is
flexible enough to faithfully represent the gradual shaping. One distribution which has these
properties is the skew-normal distribution (Azzalini, 1985; O’Hagan and Leonard, 1976). Given
the PDF φ and CDF Φ of the standard normal distribution, the skew-normal PDF is defined as

f (x | ξ, ω, β) =
2
ω
φ
(x − ξ
ω

)
Φ

(
β
(x − ξ
ω

))
(33)

where ξ ∈ R is the location parameter, ω ∈ R+ is the scale parameter, and β ∈ R is the shape
parameter. Note that this reduces to the normal PDF for β = 0, in which case ξ and ω correspond
to the mean and standard deviation, respectively. Hence, the normal distribution is a sub-class of
the skew-normal distribution.

Our algorithm learns the shifting parameters of f during the interaction process, using a simple
but effective sampling procedure. Essentially, we use θ∗j to iteratively generate N additional action
vectors ãt,1

j , ..., ã
t,N
j in the exact same way as ât

j. The vectors ãt,n
j are then mapped into data points

D =
{
T(ãt,n

j , â
t
j) | n = 1, ...,N

}
(34)

which are used to estimate the parameters ξ, ω, β by minimising the negative log-likelihood

N log(ω) −
∑

x∈D

log φ
(x − ξ
ω

)
+ log Φ

(
β
(x − ξ
ω

))
(35)

whilst ensuring that ω is positive. An alternative is the method-of-moments estimator, which can
also be used to obtain initial values for (35). Note that it is usually unnecessary to estimate the
parameters at every point in time; it seems reasonable to update the parameters less frequently as
the amount of evidence (i.e. observed actions) grows.

Given the asymmetry of the skew-normal distribution, the semantics of “as extreme as” in
(24) may no longer be obvious (e.g. is this with respect to the mean or mode?). In addition, the
usual tail-area calculation of the p-value requires the CDF, but there is no closed form for the
skew-normal CDF and approximating it is rather cumbersome. To circumvent these issues, we

33

approximate the p-value as

p ≈
f (T(at

j, â
t
j) | ξ, ω, β)

f (µ | ξ, ω, β)
(36)

where µ is the mode of the fitted skew-normal distribution. This avoids the asymmetry issue and
is easier to compute.

7.3. Experiments

We conducted a comprehensive set of experiments to investigate the accuracy (correct and
incorrect rejection), scalability (with number of actions), and sampling complexity of our algorithm.
The following three score functions and their combinations were used:

z1(at
j, θ
∗
j) =

1
t

t−1∑

τ=0

π j(Hτ, aτj , θ
∗
j)

maxa j∈A j π j(Hτ, a j, θ
∗
j)

(37)

z2(at
j, θ
∗
j) =

1
t

t−1∑

τ=0

1 − Ea j∼π j(Hτ,θ∗j)
∣∣∣π j(Hτ, aτj , θ

∗
j) − π j(Hτ, a j, θ

∗
j)
∣∣∣ (38)

z3(at
j, θ
∗
j) =

∑

a j∈A j

min

1
t

t−1∑

τ=0

[aτj = a j]1,
1
t

t−1∑

τ=0

π j(Hτ, a j, θ
∗
j)

 (39)

where [b]1 = 1 if b is true and 0 otherwise. Note that z1, z3 are generally consistent (cf. Sec-
tion 7.2.1), while z2 is consistent for |A j| = 2 but not necessarily for |A j| > 2. Furthermore, z1, z2, z3
are all imperfect. The score function z3 is based on the empirical frequency distribution.

The parameters of the test distribution (cf. Section 7.2.3) were estimated less frequently as
t increased. The first estimation was performed at time t = 1 (i.e. after observing one action).
After estimating the parameters at time t, we waited

⌊√
t
⌋
− 1 time steps until the parameters were

re-fitted. Throughout our experiments, we used a significance level of α∗ = 0.01 (i.e. reject θ∗j if
the p-value is below 0.01).

7.3.1. Random Behaviours
In the first set of experiments, the behaviour (type) spaces Θi and Θ j were restricted to “random”

behaviours. Each random behaviour is defined by a sequence of random probability distributions
over A j. The distributions are created by drawing uniform random numbers from (0, 1) for each
action a j ∈ A j, and subsequent normalisation so that the values sum up to 1.

Random behaviours are a good baseline for our experiments because they are usually hard to
distinguish. This is due to the fact that the entire set A j is always in the support of the behaviours,
and since they do not react to any past actions. These properties mean that there is little structure
in the interaction that can be used to distinguish behaviours.

We simulated 1000 interaction processes, each lasting 10000 time steps. In each process, we
randomly sampled behaviours θi ∈ Θi, θ

+
j ∈ Θ j to control agents i and j, respectively. In half of

these processes, we used a correct hypothesis θ∗j = θ+
j . In the other half, we sampled a random

hypothesis θ∗j ∈ Θ j with θ∗j , θ
+
j . We repeated each set of simulations for |A j| = 2, 10, 20 (with

|Ai| = |A j|) and N = 10, 50, 100 (cf. Section 7.2.3).
Figure 6 shows the average accuracy of our algorithm (for N = 50), by which we mean the

average percentage of time steps in which the algorithm made correct decisions (i.e. no reject if
34

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

θj
* = θj

+

θj
* ≠ θj

+

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 6: Average accuracy with random behaviours, for N = 50 and |A j | = 2, 10, 20. Results averaged over 500 processes
with 10000 time steps, for θ∗j = θ+

j and θ∗j , θ
+
j each. X-axis shows score functions zk used in test statistic.

100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time

p−
va
lu
e

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

p−
va

lu
e

1
2
3
[1 2]
[2 3]
[1 3]
[1 2 3]

(a) |A j | = 2

0.5 1 1.5 2
x 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time

p−
va

lu
e

(b) |A j | = 10

1 2 3 4 5
x 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time

p−
va

lu
e

(c) |A j | = 20

Figure 7: Average p-values with random behaviours, for N = 50 and θ∗j , θ
+
j (i.e. hypothesis wrong). Results averaged

over 500 processes. Legend shows the score functions zk used in test statistic.

θ∗j = θ+
j ; reject if θ∗j , θ

+
j). The x-axis shows the combination of score functions used to compute

the test statistic (e.g. [1 2] means that we combined z1, z2).
The results show that our algorithm achieved excellent accuracy, often bordering the 100%

mark. They also show that the algorithm scaled well with the number of actions, with no degrada-
tion in accuracy. However, there were two exceptions to these observations: using z3 resulted in
very poor accuracy for θ∗j , θ

+
j , and the combination of z2, z3 scaled badly for θ∗j , θ

+
j .

The reason for both of these exceptions is that z3 is not a good scoring scheme for random
behaviours. The function z3 quantifies a similarity between the empirical frequency distribution
and the averaged hypothesised distributions. For random behaviours (as defined in this work), both
of these distributions will converge to the uniform distribution. Thus, under z3, any two random
behaviours will eventually be the same, which explains the low accuracy for θ∗j , θ

+
j .

As can be seen in Figure 6, the inadequacy of z3 is solved when adding any of the other
score functions z1, z2. These functions add discriminative information to the test statistic, which
technically means that the cardinality |Πz| in (27) is reduced. However, in the case of [z2, z3], the
converge is substantially slower for higher |A j|, meaning that more evidence is needed until θ∗j can
be rejected. Figure 7 shows how a higher number of actions affects the average convergence rate
of p-values computed with z2, z3.

In addition to the score functions zk, a central aspect for the convergence of p-values are the
corresponding weights wk (cf. (28)). As mentioned in Section 7.2.1, we use uniform weights wk =
1
K . However, to show that the weighting is no trivial matter, we repeated our experiments with four
alternative weighting schemes: Let zτk = zk(ãτj , θ

∗
j) − zk(âτj , θ∗j) denote the summands in (28). The

weighting schemes truemax / truemin assign wk = 1 for the first k that maximises / minimises
|zτk |, and 0 otherwise. Similarly, the weighting schemes max / min assign wk = 1 for the first k that
maximises / minimises zτk, and 0 otherwise.

35

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

θj
* = θj

+

θj
* ≠ θj

+

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 8: Average accuracy with random behaviours, for N = 50 and |A j | = 2, 10, 20. Weights wk computed using truemax
weighting. X-axis shows score functions zk used in test statistic.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

θj
* = θj

+

θj
* ≠ θj

+

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 9: Average accuracy with random behaviours, for N = 50 and |A j | = 2, 10, 20. Weights wk computed using truemin
weighting. X-axis shows score functions zk used in test statistic.

Figures 8 and 9 show the results for truemax and truemin. As can be seen in the figures,
truemax is very similar to uniform weights while truemin improves the convergence for [z2, z3]
but compromises elsewhere. The results for max and min are very similar to those of truemin
and truemax, respectively, hence we omit them.

Finally, we recomputed all accuracies using a more lenient significance level of α∗ = 0.05. As
could be expected, this marginally decreased and increased (i.e. by a few percentage points) the
accuracy for θ∗j = θ+

j and θ∗j , θ
+
j , respectively. This was primarily observed in the early stages of

the interaction. Overall, however, the results were very similar to those obtained with α∗ = 0.01.
Recall that N specifies the number of sampled action vectors ãt,n

j used to learn the distribution
of the test statistic (cf. Section 7.2.3). In the previous section, we reported results for N = 50. In
this section, we investigate differences in accuracy for N = 10, 50, 100.

Figures 10 and 11 show the differences for |A j| = 2, 20, respectively. (The figure for |A j| = 10
was virtually the same as the one for |A j| = 20, except with minor improvements in accuracy for
the [z2, z3] cluster. Hence, we omit it here.) As can be seen, there were improvements of up to
10% from N = 10 to N = 50, and no (or very marginal) improvements from N = 50 to N = 100.
This was observed for all |A j| = 2, 10, 20, and all constellations of score functions. The fact that
N = 50 was sufficient even for |A j| = 20 is remarkable, since, under random behaviours, there are
20t possible action vectors to sample at any time t.

We also compared the learned skew-normal distributions and found that they fitted the data
very well. Figures 12 and 13 show the histograms and fitted skew-normal distributions for two
example processes after 1000 time steps. In Figure 13, we deliberately chose an example in which
the learned distribution was maximally skewed for N = 10, which is a sign that N was too small.
Nonetheless, in the majority of the processes, the learned distribution was only moderately skewed
and our algorithm achieved an average accuracy of 90% even for N = 10. Moreover, if one wants
to avoid maximally skewed distributions, one can simply restrict the parameter space when fitting
the skew-normal (specifically, the shape parameter β; cf. Section 7.2.3).

The flexibility of the skew-normal distribution was particularly useful in the early stages
of the interaction, in which the test statistic typically does not follow a normal distribution.

36

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

θj
* = θj

+

θj
* ≠ θj

+

N = 10

N = 50

N = 100

Figure 10: Average accuracy with random behaviours, for |A j | = 2 and N = 10, 50, 100. Results averaged over 500
processes with 10000 time steps, for θ∗j = θ+

j and θ∗j , θ
+
j each. X-axis shows score functions zk used in test statistic.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

θj
* = θj

+

θj
* ≠ θj

+

N = 10

N = 50

N = 100

Figure 11: Average accuracy with random behaviours, for |A j | = 20 and N = 10, 50, 100. Results averaged over 500
processes with 10000 time steps, for θ∗j = θ+

j and θ∗j , θ
+
j each. X-axis shows score functions zk used in test statistic.

Figure 14 shows the test distribution for an example process after 10 time steps, using z2 for the
test statistic and N = 100 (the histogram was created using N = 10000). The learned skew-normal
approximated the true test distribution very closely. Note that, in such examples, the normal and
Student distributions do not produce good fits.

Our implementation of the algorithm performed all calculations as iterative updates (except for
the skew-normal fitting). Hence, it used little (fixed) memory and had very low computation times.
For example, using all three score functions and |A j| = 20,N = 100, one cycle in the algorithm (cf.
Algorithm 2) took on average less than 1 millisecond without fitting the skew-normal parameters,
and less than 10 milliseconds when fitting the skew-normal parameters (using an off-the-shelf
Simplex-optimiser with default parameters). The times were measured using Matlab R2014a on a
Unix machine with a 2.6 GHz Intel Core i5 processor.

7.3.2. Adaptive Behaviours
We complemented the “structure-free” interaction of random behaviours by conducting analo-

gous experiments with three additional classes of behaviours. Specifically, we used the benchmark
framework specified in Section 5, which consists of 78 distinct 2× 2 matrix games and three meth-
ods to automatically generate sets of behaviours for any given game. The three behaviour classes
are Leader-Follower-Trigger Agents (LFT), Co-Evolved Decision Trees (CDT), and Co-Evolved
Neural Networks (CNN). These classes cover a broad spectrum of possible behaviours, including
fully deterministic (CDT), fully stochastic (CNN), and hybrid (LFT) behaviours. Furthermore, all
generated behaviours are adaptive to varying degrees (i.e. they adapt their action choices based on
the other player’s choices). Detailed descriptions of the games and behaviour classes can be found
in the appendix of (Albrecht, 2015).

The following experiments were performed for each behaviour class, using identical randomi-
sation: For each of the 78 games, we simulated 10 interaction processes, each lasting 10000 time
steps. For each process, we randomly sampled behaviours θi ∈ Θi, θ

+
j ∈ Θ j to control agents i

and j, respectively, where Θi, Θ j were restricted to the same behaviour class. In half of these
processes, we used a correct hypothesis θ∗j = θ+

j , and in the other half, we sampled a random hy-
37

0.02 0.025 0.03 0.035 0.04 0.045
0

1

2

Test statistic

Fr
eq

ue
nc

y

0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

D
en

si
ty

(a) N = 10

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

1

2

3

Test statistic
Fr

eq
ue

nc
y

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

D
en

si
ty

(b) N = 50

−0.02−0.015−0.01−0.005 0 0.005 0.01 0.015 0.02 0.025
0

5

Test statistic

Fr
eq

ue
nc

y

−0.02−0.015−0.01−0.005 0 0.005 0.01 0.015 0.02 0.025
0

50

D
en

si
ty

(c) N = 100

Figure 12: Example histograms and fitted skew-normal distributions (shown in red curve) after 1000 time steps, for random
behaviours with |A j | = 10 and N = 10, 50, 100. Using score function z1 in test statistic.

0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

Test statistic

Fr
eq

ue
nc

y

0.012 0.014 0.016 0.018 0.02
0

50

100

150

200

D
en

si
ty

(a) N = 10

−5 0 5 10 15
x 10−3

0

1

2

Test statistic

Fr
eq

ue
nc

y

−5 0 5 10 15
x 10−3

0

50

100

D
en

si
ty

(b) N = 50

−5 0 5 10 15
x 10−3

0

1

2

3

4

5

Test statistic

Fr
eq

ue
nc

y

−5 0 5 10 15
x 10−3

0

20

40

60

80

100

D
en

si
ty

(c) N = 100

Figure 13: Example histograms and fitted skew-normal distributions (shown in red curve) after 1000 time steps, for random
behaviours with |A j | = 10 and N = 10, 50, 100. Using score functions z1, z2, z3 in test statistic.

pothesis θ∗j ∈ Θ j with θ∗j , θ
+
j . As before, we repeated each simulation for N = 10, 50, 100 and all

constellations of score functions, but found that there were virtually no differences. Hence, in the
following, we report results for N = 50 and the [z1, z2, z3] cluster.

Figure 15a shows the average accuracy achieved by our algorithm for all three behaviour
classes. While the accuracy for θ∗j = θ+

j was generally good, the accuracy for θ∗j , θ+
j was

mixed. Note that this was not merely due to the fact that the score functions were imperfect (cf.
Section 7.2.1), since we obtained the same results for all combinations. Rather, this reveals an
inherent limitation of our approach, which is that we do not actively probe aspects of the hypothesis
θ∗j . In other words, our algorithm performs statistical hypothesis tests based only on evidence that
was generated by θi.

To illustrate this, it is useful to consider the tree structure of behaviours in the CDT class.
Each node in a tree θ+

j corresponds to a past action taken by θi. Depending on how θi chooses
actions, we may only ever see a subset of the entire tree that defines θ+

j . However, if our hypothesis
θ∗j differs from θ+

j only in the unseen aspects of θ+
j , then there is no way for our algorithm to

differentiate the two. Hence the asymmetry in accuracy for θ∗j = θ+
j and θ∗j , θ

+
j . Note that this

problem did not occur in random behaviours because, there, all aspects are eventually visible.
Following this observation, we repeated the same experiments but restricted Θi to random be-

haviours (cf. Section 7.3.1), with the goal of exploring θ∗j more thoroughly. As shown in Figure 15b,
this led to significant improvements in accuracy, especially for the CDT class. Nonetheless, choos-
ing actions purely randomly may not be a sufficient probing strategy, hence the accuracy for CNN
was still relatively low. For CNN, this was further complicated by the fact that two neural net-

38

−0.035−0.03−0.025−0.02−0.015−0.01−0.005 0 0.005 0.01
0

200

400

Test statistic
Fr

eq
ue

nc
y

−0.035−0.03−0.025−0.02−0.015−0.01−0.005 0 0.005 0.01
0

50

100

D
en

si
ty

Figure 14: Example of true test distribution for z2 and learned skew-normal distribution (shown in red curve) after 10 time
steps, with |A j | = 10 and N = 100.

[1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

(a) Θi,Θ j same class

[1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

(b) Θi random behaviours

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

θj
* = θj

+

θj
* ≠ θj

+

LFT

CDT

CNN

Figure 15: Average accuracy with behaviour classes LFT, CDT, CNN, for N = 50. Results averaged over 500 processes
with 10000 time steps, for θ∗j = θ+

j and θ∗j , θ
+
j each. Bars shown for [z1, z2, z3] test statistic.

works θ j, θ
′
j may formally be different (θ j , θ′j) but have essentially the same action probabilities

(with extremely small differences). Hence, in such cases, we would require much more evidence
to distinguish the behaviours.

8. Conclusion

Much work in artificial intelligence is focused on innovative applications such as adaptive user
interfaces, robotic elderly care, and automated trading agents. A key technological challenge in
these applications is to design an intelligent agent which can quickly learn to interact effectively
with other agents whose behaviours are initially unknown. Learning from scratch in such problems
is not a viable solution, since time is a crucial factor and exploration via trial-and-error may not
be feasible or desirable. Instead, it is likely that any solution to this problem will have to draw
heavily on prior experience and intuition, such as in the form of hypothesised behaviours. Indeed,
if we have a strong intuition regarding the behaviour of other agents, e.g. based on past experience
or structural constraints of the task to be completed, then this intuition should be utilised in the
interaction. This is the motivation behind the type-based method studied in this work.

The idea in the type-based method is to hypothesise a set of possible behaviours, or types,
which the other agents might have, and to plan our own actions with respect to those types which
we believe are most likely, given the observed actions of the agents. In this regard, we identified
and addressed a spectrum of important questions, pertaining to properties of beliefs over types
and the possibility of incorrect types. Specifically, we formulated three alternative methods to
incorporate observations into beliefs and studied the conditions under which the resulting beliefs
will be correct or incorrect. We then investigated the impact of prior beliefs on payoff maximisation

39

and methods to automatically compute prior beliefs. For the case in which our hypothesised types
are incorrect, we analysed the conditions under which we are nevertheless able to complete our
task, despite the incorrectness of types. Finally, we described an automatic statistical analysis
which can be used to ascertain the correctness of hypothesised types during the interaction.

In addition to the theoretical insights, the results presented in this article have a number of
practical implications: First of all, our analysis in Section 4 shows that the standard posterior
formulation, in which the likelihood is defined as a product of action probabilities, may not always
be an appropriate choice. Rather, one should also consider alternative formulations for posterior
beliefs, such as the sum or correlated posteriors. Furthermore, our empirical analysis in Section 5
shows that prior beliefs can be crucial to our ability to maximise payoffs in the long-term. Indeed,
we can often do better than a conservative uniform prior belief, by using automatic methods such
as the ones used in this work. Another important practical implication is that we can use efficient
model checking methods to verify optimality of hypothesised types. Specifically, in Section 6, we
show a useful connection to probabilistic bisimulation checking. Moreover, for the case in which
a prior analysis based on bisimulation is not possible, we show that the correctness of types can
still be contemplated during the interaction. Our algorithm in Section 7 is simple to implement,
highly efficient, and achieves high accuracy and scalability.

There are several potential directions for future work: Further formulations of posterior beliefs
could be developed, and it would be interesting to know if the asymptotic correctness analysis in
Section 4 could be complemented by useful finite-time error bounds. Our empirical analysis of
prior beliefs in Section 5 could be refined by a theoretical analysis, and an important question is if
prior beliefs can be computed with useful error bounds (the LP-priors are a step in this direction).
Furthermore, the optimality analysis in Section 6 is focused on task completion and could be
extended by an analysis focusing on payoff maximisation. Finally, it is unclear if the concept of
perfect scores in Section 7 is generally feasible or even necessary, and what impact score weights
have on convergence and decision quality.

Two aspects which we did not address, yet which are crucial to a successful deployment of the
type-based method, are the complexity of the planning step and the size of the hypothesised type
spaces. Regarding the former, it can be seen in Algorithm 1 (specifically (3)/(4)) that the time
complexity of the planning is exponential in factors such as the number of agents, actions, and
states, making it a very costly operation in complex systems. A promising solution are stochastic
sampling procedures such as those used in (Albrecht and Ramamoorthy, 2013a; Barrett et al.,
2011). Regarding the latter, the problem is that the number of types one may wish to hypothesise
can grow dramatically with the size of the interaction problem (e.g. states, actions, agents). This
is problematic because the predictions of each type must be computed at each point in time, hence
it is desirable to minimise the number of hypothesised types. One way to do so is to develop
methods which can produce small sets of reasonable types with good coverage of behaviours, in
the spirit of works such as (Crandall, 2015). Another method would be to introduce learnable
structure in types (i.e. parameters) such that each type covers a spectrum of behaviours. However,
this would require an ability to infer the parameters from the interaction history.

Acknowledgements: The authors acknowledge the support of the German National Academic Foundation,
the Masdar Institute-MIT collaborative agreement (Flagship Project 13CAMA1), the UK Engineering
and Physical Sciences Research Council (EP/H012338/1), the European Commission (TOMSY Grant
270436, FP7-ICT-2009.2.1 Call 6), the Royal Academy of Engineering (Ingenious Grant), and the European
Commission through SmartSociety Grant agreement no. 600854 (FOCAS ICT-2011.9.10). The authors wish
to thank anonymous reviewers for their comments and suggestions.

40

Appendix A. Proof of Theorem 1

Proof. Kalai and Lehrer (1993) studied a model which can be equivalently described as a single-
state SBG (i.e. |S | = 1) with a pure type distribution and product posterior. They showed that, if the
player’s assessment of future play is absolutely continuous with respect to the true probabilities of
future play (i.e. any event that has true positive probability is assigned positive probability by the
player), then (6) must hold. In our case, absolute continuity always holds by Assumption 1 and
the fact that the prior probabilities P j are positive as well as the fact that the type distribution is
pure, from which we can infer that the true types always have positive posterior probability.

In this proof, we seek to extend the convergence result of Kalai and Lehrer (1993) (henceforth
KL) to multi-state SBGs with pure type distributions. Our strategy is to translate a SBG Γ into
a modified SBG Γ̂ which is equivalent to Γ in the sense that the players behave identically, and
which is compatible to the model used in KL in the sense that the informational assumptions
therein ignore the differences. We achieve this by introducing a new player nature, denoted ξ,
which emulates the transitions of Γ in Γ̂.

Given a SBG Γ = (S , s0, S̄ ,N, Ai,Θi, ui, πi,T,Υ), we define the modified SBG Γ̂ as follows:
Firstly, Γ̂ has only one state, which can be arbitrary since it has no effect. The players in Γ̂ are
N̂ = N ∪ {ξ} where i ∈ N have the same actions and types as in Γ (i.e. Ai and Θi), and where we
define the actions and types of ξ to be Aξ = Θξ = S (i.e. nature’s actions and types correspond to
the states of Γ). The payoffs of ξ are always zero and the strategy of ξ at time t is defined as

πt
ξ(H

τ, aξ, θξ) =

0 τ = t, aξ . θξ
1 τ = t, aξ ≡ θξ
T (aτ−1

ξ , (aτ−1
i)i∈N , aξ) τ > t

where Hτ is any history of length τ ≥ t. (Hτ allows the players i ∈ N to use πt
ξ for future predictions

about ξ’s actions. This will be necessary to establish equivalence of Γ̂ and Γ.)
The purpose of ξ is to emulate the state transitions of Γ. Therefore, the modified strategies π̂i

and payoffs ûi of i ∈ N are now defined with respect to the actions and types (since the current
type of ξ determines its next action) of ξ. Formally, π̂i(Ht, ai, θi) = πi(H̄t, ai, θi) where

H̄t = (θ0
ξ , (a

0
i)i∈N , θ

1
ξ , (a

1
i)i∈N , ..., θ

t
ξ)

and ûi(s, at, θt
i) = ui(θt

ξ, (a
t
j) j∈N , θ

t
i), where s is the only state of Γ̂ and at ∈ ×i∈N̂ Ai.

Finally, Γ̂ uses two type distributions, Υ and Υξ, where Υ is the type distribution of Γ and Υξ

is defined as Υξ(Ht, θξ) = T (at−1
ξ , (at−1

i)i∈N , θξ). If s0 is the initial state of Γ, then Υξ(H0, θξ) = 1
for θξ ≡ s0.

The modified SBG Γ̂ proceeds as the original SBG Γ, except for the following changes: (a) Υ

is used to sample the types for i ∈ N (as usual) while Υξ is used to sample the types for ξ; (b) each
player is informed about its own type and the type of ξ. This completes the definition of Γ̂.

The modified SBG Γ̂ is equivalent to the original SBG Γ in the sense that the players i ∈ N have
identical behaviour in both SBGs. Since the players always know the type of ξ, they also know
the next action of ξ, which corresponds to knowing the current state of the game. Furthermore,
note that the strategy of ξ uses two time indices, t and τ, which allow it to distinguish between
the current time (τ = t) and a future time (τ > t). This means that πt

ξ can be used to compute
expected payoffs in Γ̂ in the same way as T is used to compute expected payoffs in Γ. In other
words, the formulas (2) and (3) can be modified in a straightforward manner by replacing the

41

original components of Γ with the modified components of Γ̂, yielding the same results. Finally,
since Γ̂ uses the same type distribution as Γ to sample types for i ∈ N, there are no differences in
their payoffs and strategies.

To complete the proof, we note that (a) and (b) are the only procedural differences between the
modified SBG and the model used in KL. However, since we specify that the players always know
the type of ξ, there is no need to learn the type distribution Υξ, hence (a) and (b) have no effect in
KL. The important point is that KL assume a model in which the players only interact with other
players, but not with an environment. Since we eliminated the environment by replacing it with a
player ξ, this is precisely what happens in the modified SBG. Therefore, the convergence result of
KL carries over to multi-state SBGs with pure type distributions.

References

Albrecht, S., 2015. Utilising policy types for effective ad hoc coordination in multiagent systems. Ph.D. thesis, The
University of Edinburgh.

Albrecht, S., Crandall, J., Ramamoorthy, S., 2015. An empirical study on the practical impact of prior beliefs over policy
types. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. pp. 1988–1994.

Albrecht, S., Ramamoorthy, S., 2012. Comparative evaluation of MAL algorithms in a diverse set of ad hoc team problems.
In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. pp. 349–356.

Albrecht, S., Ramamoorthy, S., 2013a. A game-theoretic model and best-response learning method for ad hoc coordination
in multiagent systems. Tech. rep., School of Informatics, The University of Edinburgh.
URL http://arxiv.org/abs/1506.01170

Albrecht, S., Ramamoorthy, S., 2013b. A game-theoretic model and best-response learning method for ad hoc coordination
in multiagent systems (extended abstract). In: Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems. pp. 1155–1156.

Albrecht, S., Ramamoorthy, S., 2014. On convergence and optimality of best-response learning with policy types in
multiagent systems. In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence. pp. 12–21.

Albrecht, S., Ramamoorthy, S., 2015. Are you doing what I think you are doing? Criticising uncertain agent models. In:
Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence. pp. 52–61.

Aumann, R., 1974. Subjectivity and correlation in randomized strategies. Journal of mathematical Economics 1, 67–96.
Azzalini, A., 1985. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12, 171–178.
Baier, C., 1996. Polynomial time algorithms for testing probabilistic bisimulation and simulation. In: Proceedings of the

8th International Conference on Computer Aided Verification, Lecture Notes in Computer Science. Vol. 1102. Springer,
pp. 38–49.

Barrett, S., Stone, P., Kraus, S., 2011. Empirical evaluation of ad hoc teamwork in the pursuit domain. In: Proceedings of
the 10th International Conference on Autonomous Agents and Multiagent Systems. pp. 567–574.

Barrett, S., Stone, P., Kraus, S., Rosenfeld, A., 2013. Teamwork with limited knowledge of teammates. In: Proceedings of
the 27th AAAI Conference on Artificial Intelligence. pp. 102–108.

Basawa, I., Scott, D., 1977. Efficient tests for stochastic processes. Sankhyā: The Indian Journal of Statistics, Series A,
21–31.

Bayarri, M., Berger, J., 2000. P values for composite null models. Journal of the American Statistical Association 95 (452),
1127–1142.

Bellman, R., 1957. Dynamic Programming. Princeton University Press.
Berger, J., Sellke, T., 1987. Testing a point null hypothesis: the irreconcilability of P values and evidence (with discussion).

Journal of the American Statistical Association 82, 112–122.
Bernardo, J., 1979. Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society. Series

B (Methodological) 41 (2), 113–147.
Bernstein, D., Zilberstein, S., Immerman, N., 2000. The complexity of decentralized control of Markov decision processes.

In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. pp. 32–37.
Bowling, M., McCracken, P., 2005. Coordination and adaptation in impromptu teams. In: Proceedings of the 20th National

Conference on Artificial Intelligence. pp. 53–58.
Bowling, M., Veloso, M., 2002. Multiagent learning using a variable learning rate. Artificial Intelligence 136 (2), 215–250.
Box, G., 1980. Sampling and Bayes’ inference in scientific modelling and robustness. Journal of the Royal Statistical

Society. Series A (General), 383–430.
Brafman, R., Tennenholtz, M., 2003. R-max – A general polynomial time algorithm for near-optimal reinforcement

learning. Journal of Machine Learning Research 3, 213–231.
42

Brown, G., 1951. Iterative solution of games by fictitious play. Activity Analysis of Production and Allocation 13 (1),
374–376.

Carberry, S., 2001. Techniques for plan recognition. User Modeling and User-Adapted Interaction 11 (1-2), 31–48.
Carmel, D., Markovitch, S., 1999. Exploration strategies for model-based learning in multi-agent systems: exploration

strategies. Autonomous Agents and Multi-Agent Systems 2 (2), 141–172.
Chalkiadakis, G., Boutilier, C., 2003. Coordination in multiagent reinforcement learning: a Bayesian approach. In:

Proceedings of the 2nd International Conference on Autonomous Agents and Multiagent Systems. pp. 709–716.
Charniak, E., Goldman, R., 1993. A Bayesian model of plan recognition. Artificial Intelligence 64 (1), 53–79.
Conitzer, V., Sandholm, T., 2007. AWESOME: a general multiagent learning algorithm that converges in self-play and

learns a best response against stationary opponents. Machine Learning 67 (1-2), 23–43.
Conitzer, V., Sandholm, T., 2008. New complexity results about Nash equilibria. Games and Economic Behavior 63 (2),

621–641.
Cox, D., 1977. The role of significance tests (with discussion). Scandinavian Journal of Statistics 4, 49–70.
Crandall, J., 2014. Towards minimizing disappointment in repeated games. Journal of Artificial Intelligence Research 49,

111–142.
Crandall, J., 2015. Robust learning in repeated stochastic games using meta-gaming. In: Proceedings of the 24th Interna-

tional Joint Conference on Artificial Intelligence. pp. 3416—3422.
De Finetti, B., 2008. Philosophical Lectures on Probability: Collected, Edited, and Annotated by Alberto Mura. Springer.
Dearden, R., Friedman, N., Andre, D., 1999. Model based Bayesian exploration. In: Proceedings of the 15th Conference

on Uncertainty in Artificial Intelligence. pp. 150–159.
Dekel, E., Fudenberg, D., Levine, D., 2004. Learning to play Bayesian games. Games and Economic Behavior 46 (2),

282–303.
Dibangoye, J., Amato, C., Doniec, A., Charpillet, F., 2013. Producing efficient error-bounded solutions for transition

independent decentralized MDPs. In: Proceedings of the 12th International Conference on Autonomous Agents and
Multiagent Systems. pp. 539–546.

Doshi, P., Gmytrasiewicz, P., 2006. On the difficulty of achieving equilibrium in interactive POMDPs. In: Proceedings of
the 21st National Conference on Artificial Intelligence. pp. 1131–1136.

Doshi, P., Gmytrasiewicz, P., 2009. Monte carlo sampling methods for approximating interactive POMDPs. Journal of
Artificial Intelligence Research, 297–337.

Doshi, P., Perez, D., 2008. Generalized point based value iteration for interactive POMDPs. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence. pp. 63–68.

Doshi, P., Qu, X., Goodie, A., Young, D., 2010. Modeling recursive reasoning by humans using empirically informed
interactive POMDPs. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems. pp. 1223–1230.

Doshi, P., Zeng, Y., Chen, Q., 2009. Graphical models for interactive POMDPs: representations and solutions. Autonomous
Agents and Multi-Agent Systems 18 (3), 376–416.

Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S., 2004. Approximate solutions for partially observable
stochastic games with common payoffs. In: Proceedings of the 3rd International Conference on Autonomous Agents
and Multiagent Systems. pp. 136–143.

Etessami, K., Yannakakis, M., 2010. On the complexity of Nash equilibria and other fixed points. SIAM Journal on
Computing 39 (6), 2531–2597.

Fischer, H., 2010. A History of the Central Limit Theorem: From Classical to Modern Probability Theory. Springer
Science & Business Media.

Fisher, R., 1935. The Design of Experiments. Oliver & Boyd.
Foster, D., Young, H., 2001. On the impossibility of predicting the behavior of rational agents. Proceedings of the National

Academy of Sciences 98 (22), 12848–12853.
Foster, D., Young, H., 2003. Learning, hypothesis testing, and Nash equilibrium. Games and Economic Behavior 45 (1),

73–96.
Fudenberg, D., Levine, D., 1993. Self-confirming equilibrium. Econometrica, 523–545.
Gal, Y., Pfeffer, A., Marzo, F., Grosz, B., 2004. Learning social preferences in games. In: Proceedings of the 19th National

Conference on Artificial Intelligence. pp. 226–231.
Geib, C., Goldman, R., 2009. A probabilistic plan recognition algorithm based on plan tree grammars. Artificial Intelligence

173 (11), 1101–1132.
Gelman, A., Shalizi, C., 2013. Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and

Statistical Psychology 66 (1), 8–38.
Gmytrasiewicz, P., Doshi, P., 2005. A framework for sequential planning in multiagent settings. Journal of Artificial

Intelligence Research 24 (1), 49–79.
Grosz, B., Kraus, S., 1996. Collaborative plans for complex group action. Artificial Intelligence 86 (2), 269–357.
Hansen, E., Bernstein, D., Zilberstein, S., 2004. Dynamic programming for partially observable stochastic games. In:

43

Proceedings of the 19th National Conference on Artificial Intelligence. pp. 709–715.
Hansson, H., Jonsson, B., 1994. A logic for reasoning about time and reliability. Formal Aspects of Computing 6 (5),

512–535.
Harsanyi, J., 1967. Games with incomplete information played by “Bayesian” players. Part I. The basic model. Management

Science 14 (3), 159–182.
Harsanyi, J., 1968a. Games with incomplete information played by “Bayesian” players. Part II. Bayesian equilibrium

points. Management Science 14 (5), 320–334.
Harsanyi, J., 1968b. Games with incomplete information played by “Bayesian” players. Part III. The basic probability

distribution of the game. Management Science 14 (7), 486–502.
Holland, J., 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,

Control, and Artificial Intelligence. The MIT Press.
Howard, R., 1966. Information value theory. IEEE Transactions on Systems Science and Cybernetics 2 (1), 22–26.
Hu, J., Wellman, M., 2003. Nash q-learning for general-sum stochastic games. The Journal of Machine Learning Research

4, 1039–1069.
Jaynes, E., 1968. Prior probabilities. IEEE Transactions on Systems Science and Cybernetics 4 (3), 227–241.
Jordan, J., 1991. Bayesian learning in normal form games. Games and Economic Behavior 3 (1), 60–81.
Kahneman, D., Tversky, A., 1979. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–292.
Kalai, E., Lehrer, E., 1993. Rational learning leads to Nash equilibrium. Econometrica 61 (5), 1019–1045.
Kaminka, G., Frenkel, I., 2007. Integration of coordination mechanisms in the BITE multi-robot architecture. In: Proceed-

ings of the International Conference on Robotics and Automation. pp. 2859–2866.
Koza, J., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press.
Kuhn, H., 1953. Extensive games and the problem of information. Contributions to the Theory of Games 2 (28), 193–216.
Larsen, K., Skou, A., 1991. Bisimulation through probabilistic testing. Information and Computation 94 (1), 1–28.
Littman, M., 1994. Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the 11th

International Conference on Machine Learning. Vol. 157. pp. 157–163.
Meng, X.-L., 1994. Posterior predictive p-values. The Annals of Statistics, 1142–1160.
Nachbar, J., 1997. Prediction, optimization, and learning in repeated games. Econometrica 65 (2), 275–309.
Nachbar, J., 2005. Beliefs in repeated games. Econometrica 73 (2), 459–480.
Nash, J., 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36 (1), 48–49.
Ng, B., Meyers, C., Boakye, K., Nitao, J., 2010. Towards applying interactive POMDPs to real-world adversary modeling.

In: Proceedings of the 22nd Innovative Applications of Artificial Intelligence Conference. pp. 1814–1820.
Nyarko, Y., 1998. Bayesian learning and convergence to Nash equilibria without common priors. Economic Theory 11 (3),

643–655.
O’Hagan, A., Leonard, T., 1976. Bayes estimation subject to uncertainty about parameter constraints. Biometrika 63 (1),

201–203.
Rapoport, A., Guyer, M., 1966. A taxonomy of 2 × 2 games. General Systems: Yearbook of the Society for General

Systems Research 11, 203–214.
Rubin, D., 1984. Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of

Statistics 12 (4), 1151–1172.
Ryabko, D., Ryabko, B., 2008. On hypotheses testing for ergodic processes. In: Proceedings of IEEE Information Theory

Workshop. pp. 281–283.
Shapley, L., 1953. Stochastic games. Proceedings of the National Academy of Sciences of the United States of America

39 (10), 1095.
Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N., Billings, D., Rayner, C., 2005. Bayes’ bluff: opponent

modelling in poker. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence. pp. 550–558.
Stone, P., Kaminka, G., Kraus, S., Rosenschein, J., 2010. Ad hoc autonomous agent teams: collaboration without pre-

coordination. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. pp. 1504–1509.
Sukthankar, G., Goldman, R., Geib, C., Pynadath, D., Bui, H., 2014. Plan, Activity, and Intent Recognition: Theory and

Practice. Morgan Kaufmann.
Sutton, R., Barto, A., 1998. Reinforcement Learning: An Introduction. The MIT Press.
Tambe, M., 1997. Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124.
Yue, Y., Gao, Y., Chapelle, O., Zhang, Y., Joachims, T., 2010. Learning more powerful test statistics for click-based

retrieval evaluation. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. pp. 507–514.

44

