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Abstract

We demonstrate localization of electronic wave packets in the coupled channels of rotating and
vibrating H, molecules using phase-shaped excitation pulses. The dynamics of Rydberg wave
packets and their controlled preparation has been studied in detail in hydrogenic systems. We
report here on a more general situation, where the strong channel couplings require full
shaping of the optical phase, rather than a linear or quadratic chirp which is often sufficient in
hydrogenic systems, or sequences of pulses which can be applied to uncoupled Rydberg series.
The complex excitation functions for the shaped pulses are calculated and illustrate the longer
duration and the complicated transients of the excitation process compared to excitation by an

unshaped reference pulse.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wave packets have become ubiquitous. They have been
studied in atoms [1], small molecules [2], proteins [3], optical
lattices [4], ion traps [5] and semiconductor quantum wells
[6]. Despite the wide range of physical systems, wave
packet evolution displays quite universal features, including
dephasing, collapses [7] and fractional and full revivals [8].
The controlled preparation and measurement of wave packets
has emerged as an active field of research.

Wave packets in hydrogenic Rydberg atomic systems
have been studied experimentally and theoretically over the
past two decades. Typically, a coherent superposition of
Rydberg states is excited by a short optical pulse. Initial
work concerned the preparation of the wave packets and
their subsequent evolution, with particular attention to the
classical and quantum-mechanical features typically displayed
by the wave packet [7-11]. Soon the focus moved to the
creation of exotic wave packets, such as electronic gratings
[12], Schrodinger’s cat states [13] and sculpting of hydrogenic
wave packets by feedback optimization [1]. An important
role in this progress was played by ever-improving methods
of characterization of the wave packets. Quantum holography
enables measurement of both the amplitude and the phase
of the wave packets [14-18], while methods such as state

0953-4075/08/074022+06$30.00

selective field ionization (SSFI) [19] and the optical Ramsey
method [20] enable measurement of the amplitude, but not the
phase, of the wave packet components.

The relatively simple single-mode dynamics of
hydrogenic systems even allows for analytic design of wave
packets under certain conditions, e.g. [21-25]. In this
paper we extend the focus to the more general case of
multimode dynamics, in our case in coupled Rydberg channels
corresponding to different rotational states of the Hj core
states of the highly excited H, molecule. By shaping the
phase profile of the excitation pulse we can shift particular
features in the wave packet evolution to any chosen time. One
context where such control is interesting is in time-domain
(pump-dump) coherent control [26], where for instance the
localization of a wave packet in a particular Franck—Condon
region of a potential energy surface could be desirable. We
also investigate the excitation dynamics for the phase-shaped
optical pulses and draw some general conclusions about the
sculpting of wave packets.

2. Theory

A time-dependent wave packet is a coherent superposition of
several eigenstates that can be expressed as

© 2008 IOP Publishing Ltd  Printed in the UK
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(W (r, 1) =) ealt) exp(—t E )W, (1)), ey

where each state n is characterized by an energy E, and
a wavefunction |W,(r)). In this paper, the wavefunction
coordinate r corresponds to the radial coordinate of the
Rydberg electron and ¢ denotes the time. We use natural
units (nu), in this case Rydberg units, where the Rydberg
constant Ry = 1 = e = 1 (e is the charge of an electron).
The conversion between Rydberg and atomic units (au) of
energy is simply E(nu) = 2E(au). For general conversion
purposes the Rydberg energy is given in units of #*/2mag
and Rydberg time in units of 2maZ /i, where m is the electron
mass and ap the Bohr radius. The dimensionless expansion
coefficients ¢, (#) change during the excitation process, but
remain constant afterwards. In the weak field regime, where
first order perturbation theory can be used, the coefficients are
given by

cn(t) = 1Dycef(E,, t). 2)

D, are the dipole transition moments connecting the state n
and the initial state s, and cef(E,,, t) is the complex excitation
function [27-29], defined by

[e'e} t
cef(E,, 1) = / dEe(E) dt’ e En= B’ 3)
—00 T=—00

where €(FE) is the Fourier transform of the optical excitation
pulse €(¢). The complex excitation function as defined here
has the dimension of an inverse length and is a measure of
the interaction strength of the field at a particular energy and
time. At the end of the excitation pulse it is proportional
to the spectral profile of the pulse (including phase), i.e.
cef(E,,t > o0) = 2me(E,).

The energies, wavefunctions and dipole transition
moments for H, are obtained using multichannel quantum
defect theory (MQDT) [30]. A detailed description of
MQDT in the context of time-dependent perturbation theory
can be found in [31]°. Here, we present the most
important equations required for the calculation of discrete
states. The wavefunctions and the bound energies are
obtained by enforcing the correct boundary conditions for
the wavefunction at large r. The wavefunction outside the
immediate vicinity of the H} core (in the volume of space
occupied by the Rydberg electron) is given by

N N

1
a0y = = 3 10 D AanUjal S5 (. En) cos g
j=1 a=1
— 8j(r, Ey) sin 7 uq], )

where N is the total number of channels, each channel defined
by a particular vibrational, rotational and electronic state |j)
of the H} core and the corresponding angular momentum and
spin state of the Rydberg electron. The matrix Uj, is the
frame transformation, A, are the channel-mixing coefficients
and o the short-range quantum defects. Finally f;(r, E,)
and g;(r, E,) are the single-electron radial wavefunctions.
The scattering of the excited electron from the core mixes
the different channels, leading to complicated multimode

3 In this reference all MQDT derivations are in Rydberg units.

dynamics. The probability density of the wave packet in
channel j according to equation (1) is given by the square
modulus of the projection on |j), i.e. |[{j|W(r, . Finally,
the dipole transition moment D, is calculated as

N
D, = Z DysAgn, (5)
a=1

where D, is the transition amplitude connecting the initial
discrete state |\y) to each short-range channel «.

2.1. Localization

The evolution of the wave packet in equation (1) is, at each
time #, a sum of complex vectors that rotate in the complex
plane with angular frequency E, (in Rydberg and atomic units
E, = w,), much like the dials of an imaginary ‘quantum
clock’. The simple idea pursued here is to use the phase profile
®(E) of the excitation pulse €(E) = |e(E)|exp(P(E)), to
set this clock, or equivalently, to determine the shape of the
wave packet at a chosen target time f.

During a period Ty, corresponding to the revival time
required for the wave packet to return to its original state
exactly, the wave packet explores all the phase space available
to it. A specific feature (e.g. a well-localized or multiply
peaked wave packet) which occurs at a particular time f
can be shifted to a target time f; by the phase profile
®(E) in the excitation pulse. The phase profile enters
equation (1) as exp(1 ® (E)) through the expansion coefficients
¢y (), as follows from equations (1)—(3). Hence, the phase
profile is defined at each discrete energy E, by

®(E,) = mod(E,(t; —t,), 2m). 6)

This phase profile will, in general, have some arbitrary shape,
but can be fitted to a smooth polynomial, which is important
to yield the shortest possible excitation pulse. The observation
that phase determines the trajectory of the wave packet through
the available phase space, suggests a straightforward method of
optimizing pulses in the weak field regime, with a linear search
in time (¢ € [0, Tqy]) in the phase space volume determined
by the excitation amplitudes. The excitation phases then allow
the localization of a particular feature, normally occurring at
some time f,, to a chosen target time #.

We connect briefly to single mode dynamics of a wave
packet, which has been the focus of previous work [1, 14, 21,
22, 32]. This could, for instance, be a Rydberg electron in
a hydrogenic atom or vibrations on a single potential energy
curve in a diatomic molecule. We assume that the pulse is
centred at the mean principal quantum number 7 and that
states are approximately equidistant in energy (i.e. there is an
absence of interloper states from coupled channels) so that we
can make a short Taylor expansion in n around 71 (An = n—n),

1 1
E,=E;+E"An+ 5E?An2 + 815,5,3)An3,

O"E )
onk ’

truncated at third order. This expansion defines three time
scales for the revivals in equation (1), namely 7 = 27 / E,S,I),

with

(k)
EY =



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 074022

A Kirrander et al

Tev = 2 / Eéz) and Typ = 27 / E,-(,3) , such that Ty, >
Tiev > Ta. Note that some authors define Ty, =
4 / E;z) [33]. Furthermore, fractional revivals will occur,
corresponding to subgroups of vectors coming into phase
[8, 33] and creating multipeaked structures such as the
electronic grating in [12]. By inserting the expansion of
energies in equation (7) in the phase evolution in equation (1),
we see immediately how the phase evolution can be controlled
analytically by appropriate linear, quadratic and cubic chirps
in the excitation pulse [21, 32].

Specifically, in a hydrogenic Rydberg system energies are
given by E, = —1/n?. This leads to Ty = 77, Trey =
nit*/3 and Ty, = 7i°/12 in Rydberg units (in atomic units
E, = —1/2n% and hence T, = 27#°, T,y = 27ii*/3 and
Top = 7% /6). Accounting for the quantum defect, energy
levels are shifted by approximately AE = 2u/ii°, which
leads to an additional linear phase evolution of 2mut/ T
[23-25, 34, 35]. This illustrates elegantly how the quantum
defect shifts both energies and equivalently phases, and
fits nicely with the semiclassical picture of core-electron
recollisions occurring with a period 7.

3. Calculation

The present calculations concern one-photon excitation from
the rotationless ground level J” = 0, which leads to N =
J = 1 angular momentum negative parity singlet states
with a Rydberg electron with predominantly / = 1 angular
momentum. Thus only ion rotation levels with N* = 0 and 2
can be reached. We concentrate on a region of the H, spectrum
dominated by two channels corresponding to the H} core states
lj=1)=|v*=0,N*=0) and |j =2) = [v" =0, N*=2)
[36], where v* and N* are the vibration and rotation quantum
numbers respectively and the electronic state of H} is lso,
for both channels. The short-range interactions are given by
quantum defects py—; = 0.203 and py—, = —0.082 in the
eigenchannel picture. For further details on the MQDT model,
see [31, 37].

We use a Gaussian optical excitation pulse, which can be
written in the frequency domain as

€(E) = € ewﬁ(lzulso)2 ! ®(E) (8)

where @ (FE) defines the phase profile and we use the rotating
wave approximation. We discuss the pulse envelope first:
€o is the pulse amplitude, E, the central optical frequency,
o = 17,/+/8In2 and t; is the full width at half maximum
(FWHM) pulse duration, defined for the intensity profile of
the transform-limited pulse. The corresponding width in
the frequency domain is 7z = 4In2/t,. The values used
throughout are ¢g = 1, Ey = 1242347 cm™! and 7, =
0.5204 ps (tz =28 cm™}).

The phases ®(E,) of the excitation pulse are determined
by a linear search in time ¢ € [0, Tqy] against pre-defined
target wave packets. The wave packet is evolved in time
over the period Ty, while its overlap with the target wave
packets is checked. In the present calculation, T, = 894.4 ps.
The phases which generate maximum overlap with the target
are then shifted from their original time f, to the target time

—TeE) 1
— ®(E)/2n

Envelope/phase

NSl s

L 1 L 1 L 1 L 1 L
124160 124200 124240 124280
Energy (cm™)

Figure 1. The pulse profile, including the envelope |e(E)| and the
phase profile ®(E), as a function of energy (cm™!) for the excitation
pulses. The Gaussian envelope has the width 7z = 28 cm™', which
corresponds to a duration 7, = 0.5204 ps (FWHM)), and is centred at
energy Eo = 124234.7 cm™! for all pulses. (A) The phase profile
for the reference pulse A, ®(E) = 0. Energy levels are indicated.
Note that although we assign each energy level to a particular
channel, the channel couplings lead to wavefunctions with
substantial amplitude in both channels at each energy. (B) The
phase profile for pulse B localizes the wave packet at the outer
turning point in both channels. (C) Phase profile C maximizes the
probability of the electronic wave packet in channel j = 2, while
minimizing the probability in channel j = 1. (D) Phase profile D
maximizes the probability of the electronic wave packet in channel
j =1, while minimizing the probability in channel j = 2.

ty = 10.0 ps by equation (6). Finally, the resulting phases
®(E,) are fitted by a smooth spline function ®(E), defined
at all energies. The smoothness of the phase profile function
@ (E) is important to minimize the broadening of the pulse.

Four pulses with the same pulse envelope, but different
phase profiles are used in the calculations. Pulse A is a
reference pulse with unshaped phase profile, ®(E) = 0. The
shaped pulses B, C and D are shown in figure 1. Pulse B
corresponds to the wave packet being localized at the outer
turning point in both channels, and pulses C and D localize the
wave packet in channel j = 2 or j = 1 respectively, so that
the probability of detecting the wave packet in that particular
channel is maximal.

4. Results

The complex excitation functions (CEFs) for the four
excitation pulses A, B, C and D described in section 3 are
shown in figure 2. The CEFs give the amplitude and phase of
the excitation throughout the excitation process as a function
of time (ps) and energy (cm™'). At large times, the amplitudes
of all four CEFs are identical and proportional to the spectral
profile of the pulse. On the other hand, the overall pulse
duration and the complexity of the transients increases as the
phase profile becomes more complicated. The CEF for the
unshaped reference pulse in figure 2(a) reaches its limiting
value in only 1 ps and has the fewest transient features
(essentially a broadening around time ¢ = 0 ps), while pulses
B, C and D give rise to considerably more complicated CEFs
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Figure 2. The amplitude of the complex excitation function, |cef(E, t)|, as a function of time (ps) and energy (cm™") for the four excitation
pulses with the same Gaussian envelope in the energy domain, but different phase profiles (A-D in figure 1, where A is the reference pulse).

500 1000
r (au)

-500 0 500 1000

r (au)

-500 O

Figure 3. Comparison of the excitation process with the unshaped
reference pulse A (left panel) and the phase-shaped pulse B (right
panel). The contour plot shows the wave packet probability density
[(jIW(r, 1)) |2 as a function of radial distance r (au) and time ¢ (ps)-
Negative radial distances r correspond to the dynamics in channel
Jj = 2, while positive radial distances correspond to channel j = 1.
In both channels, the wave packet oscillates between the core

(r ~ 0) and the outer turning point. For pulse A (left panel), the
excitation at time ¢ ~ 0 ps is almost instant and is quickly followed
by free evolution of the wave packet. For pulse B (right panel), the
excitation process with the shaped pulse begins already at times

t < —5 ps, becomes discernible in the contour plot at times ¢ &
—3 ps and does not evolve freely until for times ¢ > 5 ps.

and require 6 ps to 12 ps to reach their limiting values. Note
also that the excitation with the shaped pulses is not uniform
in time across the different energies and that some transient
features, for instance in the CEF for pulse C in figure 2(c),
have amplitudes that surpass the final excitation amplitude
quite substantially.

The excitation dynamics for the reference pulse A and
for pulse B is compared in figure 3. The almost instant
excitation with the reference pulse is followed by free evolution
of the wave packet. The overall dynamics follows the typical
Rydberg pattern of oscillations between the core r ~ 0 and
the outer turning point. Note that the wave packet in channel
Jj = 1 has its outer turning point at larger distances. The
outer turning point is given by r, = 2%, where 7 is the mean
principal quantum number. This is 7i; = 24.5 in channel 1
(r§’ = 1200 au) and /1, = 17.5 in channel 2 (r” = 615 au).

The effect of the coupling between the channels can be
seen clearly in the oscillation period Tg. This is, strictly
speaking, only defined for a single (or uncoupled) channel
that can be described by equation (7). In a system of two
uncoupled channels, the different mean princi?al quantum
number would give two separate time scales, Tc(l1 =2.2psin
channel j = 1 and TC(IZ) = 0.8 ps in channel j = 2. Here,
due to the coupling between the channels, both time scales
are present in both channels. The shorter time scale Tc(ll)
is immediately visible, while the longer period Tc(lz) gives a
modulation of the probability density, discernible in the free
evolution of the pulse A wave packet for ¢ > 0.8 ps.

The general features of the dynamics for pulse B in
figure 3 are similar to pulse A, but the excitation of the
wave packet with pulse B takes substantially longer. It begins
already at times t < —5 ps, with the wave packet becoming
visible in the contour plot at times ¢ &~ —3 ps and free evolution
of the wave packet does not ensue until times ¢ > 5 ps. The
dynamics during the excitation is not simply a muted version of
the free wave packet dynamics, due to the transient structures
visible in figure 2(b).

In figure 4, the wave packet probability density in both
channels is shown for the unshaped reference pulse A and the
three shaped pulses B, C and D in the vicinity of the target



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 074022

A Kirrander et al

QLA 7

0 500

VU U U |

Time (ps)

L

7 ]

. AN NARAA A

0 500 1000
T T N T 2 fP‘-‘\-\{\r‘Jﬂ ;_
HINEIE=
. . VAACAS A S A Wi
-500 0 500 1000
r (au)

Figure 4. The wave packet probability density |(j|W(r, 1))|? in the
two channels j = 1 and j = 2 around the target time ¢, = 10.0 ps
after excitation with reference pulse A and the shaped pulses B, C
and D (see figure 1). The contour plots show the wave packet
dynamics as a function of radial distance r (au) and time ¢ (ps).
Negative radial distances r correspond to the dynamics in channel
Jj = 2, while positive radial distances correspond to channel j = 1.
Pulse A (first panel) gives the unshaped wave packet. Pulse B
(second panel) generates a wave packet localized close to the outer
turning point in both channels. Pulse C (third panel) generates a
wave packet with little probability density in channel j = 1 and
most of the probability density localized at the outer turning point in
channel j = 2. This corresponds to the molecule predominantly
localized in the N* = 2 rotational state. Pulse D (fourth panel)
generates a wave packet with most probability density in channel

j = 1, which corresponds to the molecule predominantly localized
in the N* = 0 rotational state.

time 1, = 10.0 ps. The optimization targets for pulses B,
C and D are attained fairly well. Pulse B localizes the wave
packet close to the outer turning points in both channels with a
(0.60,0.40) distribution between the channels (j = 1, j = 2).
The probability for each channel is obtained by integrating
the channel-specific probability density |(j|W (r, 1)) | over the
radial distance r at the target time. Pulse C gives a wave packet
localized at the outer turning point in channel j = 2 with a
(0.26,0.74) distribution. This corresponds to the molecule
predominantly in the N* = 2 rotational state. Finally, pulse D
localizes the wave packet in channel j = 1 with a (0.82,0.18)
distribution between the two channels, which corresponds to
the molecule being rather strongly localized in the N* = 0
state. In a channel perspective, the effective cancelling of
amplitude in either channel is aided by the interloper states
in each channel. The interlopers are an important aspect of
the coupling between the two channels and one of the reasons
why a simple linear chirp is insufficient to control timing in a
general multimode system.

Itis also interesting to quantify how stable the localization
of the wave packets is. We do this by calculating the average
probability distribution between the two channels averaged
over a 0.6 ps time window, i.e. from# = 9.7 psto ¢ = 10.3 ps.
The distributions thus obtained are (0.59,0.41) for pulse B,
(0.31,0.69) for pulse C and (0.78,0.22) for pulse D. These
distributions are quite similar to the distributions at the target
time ¢+ = 10 ps given above, and indicate that the target

waveforms are relatively stable over such a 0.6 ps time frame.
This stability is entirely due to the natural time scales of the
free wave packet evolution, since the target time is reached
under field-free conditions.

5. Conclusions

This paper discusses the sculpting and optimization of wave
packets. The excitation amplitudes determine the phase space
volume available to the wave packet, while the phase evolution
determines the trajectory of the wave packet through a given
phase space. This suggests a straightforward method for
optimizing pulses in the weak-field regime, with a linear
search in time in the phase space volume determined by
each set of excitation amplitudes. The excitation phases
then allow the localization of a particular feature to a specific
time. With recent advances in shaping of optical pulses [38]
such arbitrary phase profiles are quite feasible. This may be
useful for time-domain (pump-dump) coherent control [26],
where for instance the localization of a wave packet in a
particular Franck—Condon region of a potential energy surface
is desirable. The analysis presented in this paper is based on
the field-free evolution of wave packets and does not directly
depend on the details of the excitation process. It could
therefore be useful for strong field experiments if the excitation
phases could be controlled and the duration of the shaped pulse
kept short enough to allow for field-free evolution of the wave
packet. Finally, the present work is part of our development of
a complete theoretical toolkit to simulate and model coherent
control and ultrafast experiments in Rydberg states of atoms
and diatomic molecules using MQDT.

Acknowledgments

AK acknowledges a research fellowship from the Leverhulme
Trust. Ch] and HHF thank the Royal Society for an
International Joint Project Grant.

References

[1] Weinacht T C, Ahn J and Bucksbaum P H 1999 Controlling
the shape of a quantum wavefunction Nature 397 233

[2] Katsuki H, Chiba H, Girard B, Meier C and Ohmori K 2006
Visualizing picometric quantum ripples of ultrafast
wave-packet interference Science 311 1589

[3] Lee H, Cheng Y-C and Fleming G R 2007 Coherence
dynamics in photosynthesis: protein protection of excitonic
coherence Science 316 1462

[4] Raithel G, Birkl G, Phillips W D and Rolston S L 1997
Compression and parametric driving of atoms in optical
lattices Phys. Rev. Lett. 78 2928

[S] Meekhof D M, Monroe C, King B E, Itano W M and
Wineland D J 1996 Generation of nonclassical motional
states of a trapped atom Phys. Rev. Lett. 76 1796

[6] Steininger F, Knorr A, Stroucken T, Thomas P and Koch S W
1996 Dynamic evolution of spatiotemporally localized
electronic wave packets in semiconductor quantum wells
Phys. Rev. Lett. 77 550

[7] Yeazell J A, M Mark and Stroud C R Jr 1990 Observation of
the collapse and revival of a Rydberg electronic wave
packet Phys. Rev. Lett. 64 2007


http://dx.doi.org/10.1038/16654
http://dx.doi.org/10.1126/science.1121240
http://dx.doi.org/10.1126/science.1142188
http://dx.doi.org/10.1103/PhysRevLett.78.2928
http://dx.doi.org/10.1103/PhysRevLett.76.1796
http://dx.doi.org/10.1103/PhysRevLett.77.550
http://dx.doi.org/10.1103/PhysRevLett.64.2007

J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 074022

A Kirrander et al

[8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

(19]

(20]

(21]

[22]

(23]

Yeazell J A and Stroud C R Jr 1991 Observation of fractional
revivals in the evolution of a Rydberg atomic wave packet
Phys. Rev. A 43 5153

Parker J and Stroud C R Jr 1986 Coherence and decay of
Rydberg wave packets Phys. Rev. Lett. 56 716

Alber G, Ritsch H and Zoller P 1986 Generation and detection
of Rydberg wave packets by short laser pulses Phys. Rev.

A 341058

Henle W A, Ritsch H and Zoller P 1987 Rydberg wave packets
in many electron atoms excited by short laser pulses Phys.
Rev. A 36 683

Krause J L, Schafer K J, Ben-Nun M and Wilson K R 1997
Creating and detecting shaped Rydberg wave packets Phys.
Rev. Lett. 79 4978

Noel M W and Stroud C R Jr 1996 Excitation of an atomic
electron to a coherent superposition of macroscopically
distinct states Phys. Rev. Lett. 77 1913

Schumacher D W, Hoogenraad J H, Pinkos Dan and
Bucksbaum P H 1995 Programmable cesium Rydberg wave
packets Phys. Rev. A 52 4719

Chen X and Yeazell J A 1997 Reconstruction of engineered
atomic wave functions via phase-dependent population
measurements Phys. Rev. A 56 2316

Weinacht T C, Ahn J and Bucksbaum P H 1998 Measurement
of the amplitude and phase of a sculpted Rydberg wave
packet Phys. Rev. Lett. 80 5508

Leichtle C, Schleich W P, Averbukh I Sh and Shapiro M 1998
Quantum state holography Phys. Rev. Lett. 80 1418

Averbukh I Sh, Shapiro M, Leichtle C and Schleich W P 1999
Reconstructing wave packets by quantum state holography
Phys. Rev. A 59 2163

Gallagher T F, Humphrey L M, Cooke W E, Hill R M and
Edelstein S A 1977 Field ionization of highly excited states
of sodium Phys. Rev. A 16 1098

Noordam L D, Duncan D I and Gallagher T F 1992 Ramsey
fringes in atomic Rydberg wave packets Phys. Rev.

A 454734

Chen Xin and Yeazell J A 1998 Analytical wave-packet design
scheme: control of dynamics and creation of exotic wave
packets Phys. Rev. A 57 R2274

de Araujo L E E, Walmsley I A and Stroud C R Jr 1998
Analytic solution for strong-field quantum control of atomic
wave packets Phys. Rev. Lett. 81 955

Minns R S, Patel R, Verlet J R R and Fielding H H 2003
Optical control of the rotational angular momentum of a

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]
[36]
[37]

[38]

molecular Rydberg wave packet Phys. Rev. Lett.
91 243601-1

Verlet ] R R, Stavros V G, Minns R S and Fielding H H 2002
Controlling the angular momentum composition of a
Rydberg electron wave packet Phys. Rev. Lett.
89 263004

Minns R S, Verlet J R R, Watkins L J and Fielding H H 2003
Observation and control of dissociating and autoionizing
Rydberg electron wave packets in NO J. Chem. Phys.
119 5842

Tannor D J and Rice S A 1985 Control of selectivity of
chemical reaction via control of wave packet evolution
J. Chem. Phys. 83 5013

Shapiro M 1990 Fundamental theory of photodissociation with
pulses Half Collision Resonance Phenomena in Molecules
(AIP Conf. Proc. vol 225) ed M Garcia-Sucre, G Raseev
and S Ross (New York: AIP) p 230

Shapiro M and Brumer P 2003 Principles of the Quantum
Control of Molecular Processes 1st edn (New York: Wiley)

Taylor R D and Brumer P 1983 Pulsed laser preparation and
quantum superposition state evolution in regular and
irregular systems Faraday Discuss. Chem. Soc. 75 117

Greene C H and Jungen Ch 1985 Molecular applications of
quantum defect theory Adv. At. Mol. Phys. 21 51

Kirrander A, Fielding H H and Jungen Ch 2007 Excitation,
dynamics and control of rotationally autoionizing Rydberg
states of H, J. Chem. Phys. 127 164301-1

de Araujo L E E and Walmsley I A 2003 Analytic solution for
quantum control of atomic and molecular wave packets
J. Opt. B: Quantum Semiclass. Opt. 5 R27

Averbukh I Sh and Perelman N F 1989 Fractional revivals:
universality in the long-term evolution of quantum wave
packets beyond the correspondence principle dynamics
Phys. Lett. A 139 449

Carley R E, Boleat E D, Minns R S, Patel R and Fielding HH
2005 Interfering Rydberg wave packets in Na J. Phys. B: At.
Mol. Opt. Phys. 38 1907

Fielding H H 2005 Rydberg wave packets in molecules: from
observation to control Annu. Rev. Phys. Chem. 56 91

Herzberg G and Jungen Ch 1972 Rydberg series and ionization
potential of the H, molecule J. Mol. Spectrosc. 41 425

Texier F and Jungen Ch 1999 Wave packets using generalized
multichannel quantum-defect theory Phys. Rev. A 59 412

Weiner A M 2000 Femtosecond pulse shaping using spatial
light modulators Rev. Sci. Instrum. 71 1929


http://dx.doi.org/10.1103/PhysRevA.43.5153
http://dx.doi.org/10.1103/PhysRevLett.56.716
http://dx.doi.org/10.1103/PhysRevA.34.1058
http://dx.doi.org/10.1103/PhysRevA.36.683
http://dx.doi.org/10.1103/PhysRevLett.79.4978
http://dx.doi.org/10.1103/PhysRevLett.77.1913
http://dx.doi.org/10.1103/PhysRevA.52.4719
http://dx.doi.org/10.1103/PhysRevA.56.2316
http://dx.doi.org/10.1103/PhysRevLett.80.5508
http://dx.doi.org/10.1103/PhysRevLett.80.1418
http://dx.doi.org/10.1103/PhysRevA.59.2163
http://dx.doi.org/10.1103/PhysRevA.16.1098
http://dx.doi.org/10.1103/PhysRevA.45.4734
http://dx.doi.org/10.1103/PhysRevA.57.R2274
http://dx.doi.org/10.1103/PhysRevLett.81.955
http://dx.doi.org/10.1103/PhysRevLett.91.243601
http://dx.doi.org/10.1103/PhysRevLett.89.263004
http://dx.doi.org/10.1063/1.1603218
http://dx.doi.org/10.1063/1.449767
http://dx.doi.org/10.1039/dc9837500117
http://dx.doi.org/10.1063/1.2798764
http://dx.doi.org/10.1088/1464-4266/5/1/202
http://dx.doi.org/10.1016/0375-9601(89)90943-2
http://dx.doi.org/10.1088/0953-4075/38/12/007
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094428
http://dx.doi.org/10.1016/0022-2852(72)90064-1
http://dx.doi.org/10.1103/PhysRevA.59.412
http://dx.doi.org/10.1063/1.1150614

	1. Introduction
	2. Theory
	2.1. Localization

	3. Calculation
	4. Results
	5. Conclusions
	Acknowledgments
	References

