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Abstract— The developments of robotics inform research
across a broad range of disciplines. In this paper, we will
study and compare two collision selective neuron models via
a vision-based autonomous micro robot. In the locusts’ visual
brain, two Lobula Giant Movement Detectors (LGMDs), i.e.
LGMD1 and LGMD2, have been identified as looming sensitive
neurons responding to rapidly expanding objects, yet with
different collision selectivity. Both neurons have been modeled
and successfully applied in robotic vision system for perceiving
potential collisions in an efficient and reliable manner. In this
research, we conduct binocular neuronal models, for the first
time combining the functionalities of LGMD1 and LGMD2
neurons, in the visual modality of a ground mobile robot. The
results of systematic on-line experiments demonstrated three
contributions of this research: (1) The arena tests involving
multiple robots verified the effectiveness and robustness of
a reactive motion control strategy via integrating a bilateral
pair of LGMD1 and LGMD2 models for collision detection
in dynamic scenarios. (2) We pinpointed the different collision
selectivity between LGMD1 and LGMD2 neuron models, which
fulfill corresponding biological research. (3) The utilized micro
robot may also benefit researches on other embedded vision
systems as well as swarm robotics.

I. INTRODUCTION

For an autonomous robot, the ability of perceiving immi-
nent collision, in a timely and robust manner, is essential.
However, it is still a pronounced challenge for safe nav-
igations of robots without human interventions, especially
mixed with dynamic objects. There are now many collision-
detecting sensors like the infra-red, laser, radar, ultrasound,
vision, or combination of these sensors. However, those
sensing modalities are restricted heavily to the applications
of small robots, due to their size, reliability and/or energy
consumption. For robotic applications, the neuromorphic
vision sensors [1], in comparison with traditional sensing
modalities using the segmentation and registration based
computer vision techniques [2], can cope with the degree
of complexity in real physical world for collision detection
more efficiently that fulfill the utility in small mobile robots.

As the result of hundreds of millions of years evolution,
the biological visual systems have provided abundant source
of inspirations for modeling artificial vision systems for colli-
sion detection. Especially the insects’ visual neural networks
could be ideal models to design collision free visual systems,
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which have demonstrated amazing ability of interacting with
the dynamic world yet with very limited number of neurons
relative to the vertebrates’ visual systems.

In locusts, a group of Lobula Giant Movement Detectors
(LGMDs) have been discovered by biologists for decades,
and two of them, i.e. LGMD1 and LGMD2, have been
identified as looming sensitive neurons responding rigorously
to approaching objects with high frequency spikes, amongst
other kinds of visual challenges [3]–[6]. Although both
neurons share the same colliding cues that reacting to the ex-
panding edges of an object, the different collision selectivity
between LGMD1 and LGMD2 have been revealed [3], [5],
[6]. More specifically, since compared to LGMD1, LGMD2
matures earlier in juvenile locusts living on the ground
[5], its collision selectivity is tuned to only darker objects
approaching embedded in bright background, i.e a light-
to-dark luminance change [3]; while LGMD1 is sensitive
to both illuminating and darkening caused by brighter and
darker objects looming [3].

Many computational models have been conducted for
LGMD1, e.g. [7]–[9], but very few for LGMD2 [10], [11].
Since LGMDs models have low computational-cost yet high
efficiency, they have been applied in robots for help nav-
igation mixed with obstacles [10], [12]–[15]. In addition,
two related researches also have assessed their distinctive
characteristics, suggesting LGMD2 possesses enhanced col-
lision selectivity for ground vision-based robots [10], [11].
However, LGMD2 has the defect of not responding to light
objects looming against dark backgrounds. Due to their spe-
cific advantages and shortcomings for collision recognition,
we expected to inspect the collaborative performance in
collision-detecting tasks, via combining their functionalities.

In this study, we set up a binocular vision system by inte-
grating LGMD1 and LGMD2 neuron models into the visual
modality of a mobile micro-robot. Compared to previous
arena tests [10], [15] that only a single robot was applied and
mixed with multiple obstacles, we examined its performance
in an arena involving multiple autonomous robots with on-
board binocular neuron models. In addition, a directional
motion control method with a bilateral pair of LGMD1 and
LGMD2 neuronal models was applied for reactive collision
avoidance behaviors in the arena tests.

In the following sections, the LGMDs neuronal models
with algorithms and parameters setting will be presented in
Section II. The utilized autonomous micro robot and the
systematic on-line experiments with results and analysis will
be illustrated in Section III. Finally, we give a conclusion in
Section IV.
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Fig. 1. The schematic illustration of a general LGMDs neuron model with ON and OFF pathways: the notations of neural network components are shown
in the green box. The inputs are gray-scale luminance (L) in a matrix form. For each local pixel, the visual processing in the partial neural network (PNN)
of LGMD1 model (in the blue box) differs from that of LGMD2 model (in the purple box) - a ’bias’ is put forth in each ON-channel of LGMD2 model.
Both neuron models share a same FFI pathway depicted by red arrows. The outputs are spikes towards further motion system.

II. THE EMBEDDED VISION SYSTEM

In this section, we will present the embedded vision
system and the motion control strategy adopted in the arena
tests. With respect to the biological research milestones
in not only the looming sensitive neurons in locusts [3]–
[6], [16], but also the direction selective neurons in flies
and vertebrates [17], we propose a general model (Fig. 1)
for conducting both LGMD1 and LGMD2 neurons, with
separated ON/OFF pathways processing visual information
in parallel: brightness increments and decrements flow into
ON and OFF channels by onset and offset responses re-
spectively. Each polarity pathway is constituted by a cascade
of sub-layers with spatiotemporal lateral connections. Such
a bio-plausible structure is vital to achieve their different
looming selectivity. Essentially, a latest modeling work with
ON and OFF pathways conducted the direction selective
visual neurons for extracting translating motion cues [18]. In
comparison with that, the proposed LGMDs neural networks
possess different methodologies for visual processing in
the dual-pathways detecting objects moving in depth rather
than in four cardinal directions. In addition, we construct a
biophysical mechanism - spike frequency adaptation [19],
shaping its selectivity to approaching over receding and
translation movements. A spiking code is also applied for
potential collision recognition in robotic applications.

It is also worth emphasizing here, compared to other tra-
ditional vision systems for collision detection, the proposed
neuron models only involve low-level image processing
methodologies, detects potential collision by responding to
the expanding edges of an object. Those computationally
expensive algorithms, like target classification, scene analysis
and machine learning methods are not applied at all.

A. The LGMDs Neuronal Models

LGMD1 and LGMD2 neuron models share a general
signal processing pipeline illustrated in Fig. 1. However,
the partial neural networks (PNNs) in LGMD1 differ from
those in LGMD2, i.e. a bias is put forth in all ON channels
of LGMD2 models rigorously sieving onset responses for
achieving its specific looming selectivity to darker objects -
a preference to the light-to-dark luminance change.

1) Photoreceptors: The first layer of the visual neural
network consists of photoreceptors arranged in a 2D matrix
form. The number of them is decided by the amount of pixels
(n) within the retina (P1 to Pn in Fig. 1). Each photoreceptor
retrieves corresponding gray-scale luminance (L) and obtains
the ‘motion’ information by the luminance change at each
local pixel between successive frames:

Px,y(t) = Lx,y(t)− Lx,y(t− 1) (1)

2) Partial Neural Networks: The pre-synaptic area to
LGMD was postulated to be reconciled by the ON and OFF
polarity cells as early in 1970s [16]. As depicted in PNNs,
the luminance changes are fed into the ’half-wave’ rectifiers
leading to onset and offset responses for parallel ON and
OFF channels, represented by:

PON
x,y (t) = (Px,y(t) + |Px,y(t)|)/2,
POFF
x,y (t) = |(Px,y(t)− |Px,y(t)|)|/2

(2)

After that, the signals relayed by ON and OFF cells are
processed with spatiotemporal lateral connections within
each pathway. First, in the ON pathway, ON cells elicit
onset responses by brightness increments, i.e. the excitation
is conveyed directly to its counterpart cell in the next layer,
whilst the inhibition is delayed relative to the excitation,
formed by convolving surrounding delayed-excitations:

EON
x,y (t) = PON

x,y (t),

ION
x,y (t) =

r∑
i=−r

r∑
j=−r

DON
x+i,y+j(t) ·W (i, j)

(3)

where r denotes the size of inhibited area. W indicates
the convolution matrix. Compared to previous state-of-the-
art LGMDs neuron models, e.g [7], [10], that the delayed
information only spreads out to their neighboring cells rather
than to their direct counterparts, we allow the self-inhibition
mechanism, which has been proposed recently [6]. In addi-
tion, DON

x,y is the low-pass filtered excitation with τ1 denoting
a time constant in millisecond:

dDON
x,y (t)

dt
=

1

τ1
(EON

x,y (t)−DON
x,y (t)) (4)



Similarity for the visual processing in the OFF pathway,
OFF cells relay information to two flows for excitations
and inhibitions. However, compared to signals processing in
ON pathway, excitations are delayed relative to inhibitions,
caused by offset responses of brightness decrements:

IOFF
x,y (t) = POFF

x,y (t),

EOFF
x,y (t) =

r∑
i=−r

r∑
j=−r

DOFF
x+i,y+j(t) ·W (i, j)

(5)

wherein the delay function conforms to Eq. 4. Then, in either
pathway, the excitations and inhibitions depict a purely linear
competition in polarity summation layers. We put forward a
local bias (w) for suppressing each inhibitory flow:

SON
x,y (t) = EON

x,y (t)− w · ION
x,y (t),

SOFF
x,y (t) = EOFF

x,y (t)− w · IOFF
x,y (t)

(6)

After polarity summations, there are interactions between
parallel ON and OFF channels at the summation layer. We
apply a supralinear computation between polarity excitations
as suggested in [20]:

Sx,y = θ1 · SON
x,y + θ2 · SOFF

x,y + θ3 · SON
x,y · SOFF

x,y (7)

where {θ1, θ2, θ3} denotes the combinations of term coef-
ficients, allow us to represent either purely-linear or non-
linear relationship between ON and OFF channels. Such a
computational form plays a crucial role of achieving the
different collision selectivity between LGMD1 and LGMD2
neurons - an extra bias is put forth in ON pathway for
LGMD2; the coefficients are balanced for LGMD1.

In the proposed neuron models, the expanded edges repre-
sented by clustered excitations are enhanced to extract collid-
ing objects from complex backgrounds through a simplified
grouping layer (G) before the pooling stage. Essentially, it
is a convolution process with an equal-weighted kernel Wg:

Gx,y(t) =

r∑
i=−r

r∑
j=−r

Sx+i,y+j(t) ·Wg(i, j) (8)

3) LGMDs Cells: Both LGMDs cells pool all the pre-
synaptic local excitations from the dual-pathways in a linear
manner to form the membrane potential (K), which is
exponentially transformed via a sigmoid function mimics the
activation of artificial neurons:

Kt =

row∑
x=1

col∑
y=1

Gx,y(t), K
′

t = (1 + e−|Kt|·(n·k)−1

)−1 (9)

where row and col are the rows and columns of the G layer.
K
′

indicates the sigmoid membrane potential (SMP). The
coefficient k shapes the function curve. As illustrated in Fig.
1, there is another separated pathway from the photoreceptors
layer - the feed forward inhibition (FFI), which can directly
suppress LGMDs neurons if a large number of photorecep-
tors are activated simultaneously:

Ft =

row∑
x=1

col∑
y=1

|Px,y(t)| · n−1,
d
−
Ft

dt
=

1

τ2
(Ft −

−
Ft) (10)

TABLE I
THE PARAMETERS SETTING OF LGMDS NEURON MODELS

Parameter: Name, Value

Name Value Name Value Name Value

col 55 Tsf 0.001 τ1, τ2 5 ∼ 100
row 72 W 0.25 Tsp 0.66
Ksp 4 Wg 1/9 τ3 400 ∼ 1000
r 1 k 0.3 τi 20 ∼ 50 Hz
w 0.5 Nts 4 θ1, θ2, θ3 0 ∼ 6
Nsp 6 Tffi 16 n col · row

where
−
Ft denotes the postponed FFI with a time constant τ2

in millisecond to be conveyed to the LGMDs cell. Once the
FFI output exceeds its threshold level Tffi, the LGMD1 or
LGMD2 neuron will be immediately inhibited.

4) Spike Frequency Adaptation: To further enhance the
looming selectivity of LGMD1 and LGMD2 neuron models
to approaching versus receding and translation movements,
we conduct a biophysical mechanism of spike frequency
adaptation (SFA). It is computationally modeled as a se-
lective high-pass filter, which only allows the membrane
potential with positive-derivative profile to overcome its
sieving:

−
Kt =

σ1 · (
−
Kt−1 +K

′

t −K
′

t−1), if K
′

t −K
′

t−1 ≤ Tsf
σ1 ·K

′

t , else
(11)

where Tsf is a very small positive real number. σ1 denotes
a coefficient calculated by σ1 = τ3/(τ3 + τi), wherein
τ3 indicates a time constant in millisecond and τi is the
sampling frequency of visual streams.

5) Spiking Mechanism: The sieved potential is going
to invoke different amounts of spikes towards the motion
system, in an exponential manner. Compared to previous
LGMD1 modeling works, e.g. [7], the proposed neuron
models may represent higher spike frequency, since more
than one spikes could be elicited at each frame:

Sspike
t =

⌊
e[Ksp·(

−
Kt−Tsp)]

⌋
(12)

Such a function returns the largest integer less than or equal
to the inside real number. Ksp and Tsp denote a coefficient
and the spiking threshold respectively. Finally, a potential
collision recognition is decided by:

COL =


True, if

t∑
i=t−Nts

Sspike
i ≥ Nsp

False, otherwise

(13)

where Nsp denotes the number of continuous elicited spikes
and Nts indicates the number of successive frames which is
normally set to be less than Nsp in our case.

6) Vision System Parameters Setting: The parameters of
the binocular neuron models are decided empirically with
consideration of functionality for implementations in the
micro robot, as suggested in Table I. Both neuron models



TABLE II
THE ROBOTIC MOTION BEHAVIORS IN THE ARENA TESTS

F: go forward, R/L: turn right/left, S/SSS: stop/long stop
BR/BL: go backward then turn right/left

Condition Motion Condition Motion

DIR = Right R DIR = Left L
S1
t = S2

t S Default F

DIR = Right & S2
t ≥ Nsp BR

−
F t ≥ Tffi SSS

DIR = Left & S1
t ≥ Nsp BL

share vast majority of parameters; however, the ‘bias’ in ON
pathway of LGMD2 model is achieved by setting θ1 to 0,
whilst θ1 = θ2 & θ1 > 0 for LGMD1. In addition, the
time parameter τ3 in calculating the coefficient σ1 in SFA
mechanism could vary within a wide range so as to adjust
the adaptation rate of neural potential. No parameter training
or feedback learning algorithms are currently involved in the
embedded vision system.

B. The Motion Control System

In this research, we integrated a bilateral pair of LGMD1
and LGMD2 neuron models that are in competition for
reactive directional motion control. Although the biologists
found that LGMD1 and LGMD2 elicit different collision
avoidance behaviors for locusts [5], in this study, we assume
that they reproduce the escape directions in a comparable
way, since the micro robot can only run on the 2D surface.
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Fig. 2. The illustration of image processing in the visual modality of the
micro robot and the directional motion control strategy with a bilateral pair
of LGMDs neuron models: each gray-scaled frame (in full resolution of
99 · 72) is divided into two regions (55 · 72) with a small overlapping area.
By default, the left/right region of view is handled by LGMD1/LGMD2
neuron respectively. The generated spikes go through a ’winner-take-all’
competition: the winner - LGMD1 or LGMD2 neuron motivates the right
or left wheel to reverse for turning response of the micro robot.

More specifically, as illustrated in Fig. 2, the image view of
each frame is split into two regions that handled by LGMD1
(left) and LGMD2 (right) neuron models respectively, which
also correspond to the right and left wheels reversing-control
for turning response. The elicited spikes are fed into a simple
‘winner-take-all’ strategy similar to [13], [21], for deciding
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Fig. 3. The schematic diagram of the arena and micro robot in on-line
tests. (1) The arena: two cameras form the top-down views for recording the
overtime performances of robots and running the multi-robots localization
systems. Four lights are used for illumination. The arena is with 170 · 160
cm2 in area and the edges are with 15 cm in height. (2) The micro robot
prototype: the bottom board is the motion actuator with two assembled
wheels and a battery. The upper board executes the vision systems via
an embedded camera; the LED lights can indicate real time events. The
extension board can have varied functionality, like the bluetooth device for
data transmission, and the wireless camera for the capture of frontal views.

the escape direction in avoidance behaviors:

DIRt =


Right, if S1

t > S2
t &

t∑
i=t−Nts

S1
i ≥ Nsp

Left, if S2
t > S1

t &

t∑
i=t−Nts

S2
i ≥ Nsp

(14)

where S1 and S2 are the elicited spikes by LGMD1 and
LGMD2 respectively. Occasionally, the left and right neuron
models produce the same number of spikes. This would be
rare for a locust, since its post-synaptic neuron to LGMD
spikes at very high frequency, much higher than our modeled
counterpart. However, when implemented in robots, either
model works at approximately 30 Hz, its left and right
LGMD models may sometimes elicit the same number of
spikes at the time of escape. In addition, the FFI also affects
the performance of robot, thus we initiated extra escape
behaviors in the arena tests as listed fully in Table II.

III. EXPERIMENTAL EVALUATION

In this section, we will illustrate the systematic robot
experiments. All the trials can be sorted into two parts: the
arena tests and the angular approach tests. It is important
to note that in both kinds of experiments, we set up the
dark and bright environments respectively, for inspecting the
performance of integrating a bilateral pair of LGMD1 and
LGMD2 models. First, we will give a concise introduction
to the utilized micro robot.

A. The Mobile Robot Description

In this study, the binocular LGMD1 and LGMD2 neuron
models were mounted in a low-cost micro robot named
‘Colias’ (Fig. 3). It is used for swarm robotics [22]–[24], and
bio-inspired embedded vision systems research [10], [11],
[15]. It is important to state here although the Colias robot
has auxiliary sensing modalities for collision detection - the



TABLE III
THE COLIAS ROBOT CONFIGURATION

Dimensions φ 40 x h 32 mm
SRAM 256 Kbyte
Embedded Camera 99 x 72 YUV422 at 30 fps
Battery 320 mAh, 3.7 V
Default Linear Speed approximately 55 mm/s
Turning Angular Speed approximately 2π rad/s
Autonomy 1 ∼ 2 hours

bumper infrared sensors [15], [22], [24], we only applied its
embedded visual module in this research.

As illustrated in Fig. 3 and Table III, the bottom board
provides power for corresponding motion behaviors as shown
in Table II. The upper vision board implements the proposed
neuronal models with an OV7670 camera from Omni-vision,
which could reach to approximately 70 degrees of view arc.
The motion and vision boards are two fundamental modules
for the Colias robot. Interestingly, we can also extend it with
multiple modules due to specific requirements in real time
experiments, like the data communication with the hosts, the
capture of first views and etc.

B. The Arena Tests

The first kind of experiment is the arena tests. The
periphery of a sub-region in the arena is decorated with dark
patterns densely embedding in a white background, as shown
in Fig. 4d. We set up bright environment with full arena
lights (Fig. 3) and the global illumination, as well as dark
environment with only a single arena light for illumination
respectively, for the purposes of examining the usefulness
and robustness of the binocular neuron models for collision
detection mixed with moving agents, as well as investigating
the different looming selectivity individually.

Firstly, in the bright environment, we examine its per-
formance of collision detection in the arena tests involving
multiple (5) Colias robots running simultaneously. With the
help of top-down real-time tracking systems [25], [26], we
could get the very precise trajectories of each Colias robot
with its specific pattern pointing out the ID. Fig. 4 illustrates
a few frontal first-views recorded from the extended wireless
camera of a Colias robot when it is running in the arena,
representing some particular events1, like quickly avoiding
the moving robot agents (Fig. 4a, 4b), circumventing the
surrounding walls (Fig. 4d), traveling towards the crossing
robots (Fig. 4c). All the avoidance or waiting behaviors
were invoked by the collaboration of the bilateral pair of
LGMD1 and LGMD2 models, as introduced in Table II.
More important, we calculate the statistical success rates for
all the tested Colias robots throughout repeated arena tests.
We define a successful collision detection comprises not only
avoiding a potential proximity (invoked by high frequency
spikes), but also waiting for a near translation movement
(elicited by high level FFI output). Intuitively, Table IV

1A video demo shows the first views in the supplementary attachment.
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Fig. 4. Four illustrative events of the arena tests in bright environment,
represented by the first views from the wireless camera of a Colias robot
agent: (a) the robot-to-robot avoidance (b) two successive avoidances (c)
challenged by translating robots (d) the robot-to-obstacle avoidance.

TABLE IV
THE SUCCESS RATES (SR) FOR MULTIPLE COLIAS ROBOTS

Events: Avoidance(A), Waiting(W), Colliding(C)
SR = (A + W) / (A + W + C) · 100%

ID Avoidance Waiting Colliding SR
1 769 51 21 97.50%
6 867 36 37 96.06%
10 698 80 11 98.61%
11 715 43 33 95.83%
15 743 28 51 93.80%

shows the statistics for these ID specific Colias robots run-
ning together for approximately 2 hours in total. Satisfactory
results demonstrate the effectiveness and robustness of the
proposed integrated and embedded LGMDs neuron models
with reactive directional motion controls for Colias robots in
collision-detecting tasks even against dynamic scenarios.

After that, we estimate its success rates of approaching
a fixed lighter object in the dark environment simulating
the situation of ‘night navigation’. As well, to point out
the different looming selectivity between LGMDs, we let
the Colias robot approach the lighter object from left and
right sides respectively2 (Fig. 5). By default, the LGMD1 and
LGMD2 models handle the left and right region of receptive
field separately (Fig. 2). Fig. 5a and 5b demonstrate the
Colias robot fails to recognize the colliding and hits the target
approaching from the left side, yet succeeds in perceiving the
collision approaching from the right side. Intriguingly, after
switching the processed regions by the LGMD1 and LGMD2
models, Fig. 5c, 5d depict totally reverse reactions of the
Colias robot. Moreover, the informative statistics throughout
repeated tests (Table V) clearly demonstrate when challenged
by lighter objects looming embedded in a dark background,
the proposed binocular neuron model is not as robust as the
performance in the arena tests with fully bright scenes. Even

2The results in Fig. 5 are shown in the video attachment.



(a) (b) (c) (d)

Fig. 5. Four illustrative results of the arena tests in dark scenes - the
Colias robot with the binocular neuron models implemented approaches an
immobile lighter object from left and right sides. (a), (b) The left and right
regions of image view are handled by LGMD1 and LGMD2 respectively.
(c), (d) Conversely, the right and left regions of view are handled by LGMD1
and LGMD2 respectively. The yellow dashed line separates the two sides.
The trajectory of the Colias robot with ID-15 is depicted in green line.

TABLE V
THE SUCCESS RATES FOR APPROACHING LIGHTER OBJECT

Repeat: R, Avoidance: A, SR = A / R · 100%

Left-LGMD1 & Right-LGMD2
Approaching Side R A SR

Right 50 45 90%
Left 50 10 20%

Right-LGMD1 & Left-LGMD2
Approaching Side R A SR

Left 50 41 82%
Right 50 15 30%

though the LGMD1 model still performs convincingly on
detecting light looming stimuli coming from its processed
view region, the LGMD2 model does not - it has the defect
of not responding to the dark-to-light luminance change. The
experimental results perfectly match the related researches
[3], [5], [6] on biological LGMD1 and LGMD2 neurons.

C. The Angular Approach Tests

The second type of experiment includes the systematic
angular approach tests as illustrated in Fig. 6. We aimed to
deeply investigate its collision selectivity via combining a
bilateral pair of LGMD1 and LGMD2 neuron models. We
collected the neural outputs of the monitoring Colias robot,
containing the SMP and the spikes afterwards.

Comparative results in Fig. 7 and 8 allow the following
analysis to be drawn: first, when challenged by dark angular
approaching (Fig. 7), both LGMD1 and LGMD2 models rep-
resent high-level SMP and high frequency spikes, especially
when challenged by direct approaching (Fig. 7c). When the
dark looming stimuli come from the left side, LGMD1 model
responds more vigorously and much earlier than LGMD2
(Fig. 7a, 7b). Conversely, when stimulated by the right-side
angular approaches, LGMD2 contributes more significantly,
spiking at higher frequency (Fig. 7d, 7e). Interestingly,
when challenged against light angular approaching, Fig. 8
clearly demonstrate LGMD2 neuron is inhibited during light-
looming from each angle, whilst LGMD1 is still activated
- its spiking rate peaks at the direct approaching (Fig. 8c).
However, it also remains quiet once the looming comes from
the right side with the largest angle (Fig. 8e) like Fig. 7e.

30° 

0° 

-30° 

45° -45° 

Front

Monitoring

Colias Robot

Fig. 6. The experimental illustration of the systematic angular approach
tests: a motionless Colias robot at a fixed location, with the binocular neuron
models implemented (left-LGMD1 and right-LGMD2), is stimulated by an
approaching Colias robot from different angles repeatedly, in dark and light
environments respectively. In the dark environment, the approaching robot
is with the light source used in Fig. 5.

More intuitively, the statistics in Fig. 7f and 8f demonstrate
the collision selectivity of the proposed binocular neuron
model fully - at least one model could recognize the colliding
of darker objects coming within the view arc, yet only
the LGMD1 model is robust in detecting lighter objects
approaching. In addition, both LGMDs neurons spike at the
highest rate against the direct approaching, representing the
most powerful strike from the predator to locusts.

IV. CONCLUDING REMARKS

In this research, we integrated two locust looming sensitive
neuron models into the visual modality of a ground mobile
robot. Although a few LGMD1 or LGMD2 based models
have been successfully applied in robots, it is the first time to
combine the functionality of both LGMDs neuron models to
form a binocular vision system. The systematic experiments
verify its efficiency and robustness with a reactive directional
motion control strategy in the arena tests mixed with multiple
robots. Moreover, its collision selectivity has been pinpoint-
ed fully, which well match the revealed characteristics of
biological LGMD1 and LGMD2 neurons.

This study opens several directions for future research. We
have shown the LGMD1 model with ON and OFF pathways
is competent for utility in the dark environment for collision
detection, whilst related researches have proved LGMD2
model performs more robustly compared to LGMD1 for
ground robots in daylight navigation. If we could build a
hybrid system with similar structures, the collision selectivity
could be further enhanced. Another interesting question
concerns with using the micro robot for other biological
modeling researches, like the direction selective neurons.
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