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Abstract 

There are well-documented unimodal sensory differences in migraine compared to control groups 

both during, and between migraine attacks. There is also some evidence of multisensory integration 

differences in migraine groups compared to control groups, however the literature on this topic is 

more limited. There are interesting avenues in the area of visual-vestibular integration, which might 

have practical implications e.g. motion sickness and nausea in migraine. Recent work has been 

investigating the possibility of visual-auditory integration in migraine, and found possible differences 

in the susceptibility to the sound-induced flash illusion in particular, which could give insights into 

relative excitability of different areas of the cortex, and also into mechanisms for the illusions 

themselves. This review updates the most recent literature and also highlights potentially fruitful 

areas of research to understand one of the most common neurological disorders. 
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Introduction 

Migraine is a common neurological disorder (Steiner et al., 2003). Migraine attacks can be very 

debilitating (Stovener et al., 2007), and the overall cost to the individual and to society is large. The 

International Headache Society diagnostic criteria for migraine (Headache Classification 

Subcommittee of the International Headache Society, 2013) require at least two of the following 

four criteria: unilateral location (only one side of the head), pulsating quality to the headache, the 

headache has moderate to severe pain intensity, and the headache is aggravated by physical activity. 
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The headache is to be accompanied be at least one of the following: nausea and/or vomiting; 

photophobia (a heightened sensitivity to light) and phonophobia (a heightened sensitivity to 

sounds). There are large idiosyncratic differences in the manifestation of the disorder (e.g. Sacks, 

1992), and migraine is a cycling disorder, with differences within an individual fluctuating over time 

(e.g. Khalil, 1991). There is no objective way of measuring migraines, for example, by recording brain 

activity directly, and so diagnosis often relies on self-report over a long period of time, which may be 

relatively unreliable. Misdiagnosis between different headache disorders is probable, and there are 

even cases of occipital epilepsy being misdiagnosed as migraine (Panayiotopolos, 1999).  

Migraine is characterised by differences in sensory processing. The International Headache Society 

(Headache Classification Subcommittee of the International Headache Society, 2013) classification 

criteria includes photophobia (aversion to light) and phonophobia (aversion to sound) during the 

attack itself in order to qualify as a migraine. Differences in sensory processing have been found 

between attacks (interictally) as well. Whilst the bulk of the research so far has been unimodal 

(within one sensory system) there is also the possibility that there are multisensory differences in 

migraine. This review explores the literature on multisensory processing in migraine.  

A Brief Consideration of Unimodal Sensory Differences in Migraine 

Migraine aura is one of the most obvious sensory phenomena associated with migraine: a sensory 

hallucination preceding the onset of the headache itself, which can be in any modality, but is most 

commonly visual (Steiner et al., 2003). Other hallucinations reported include vestibular and auditory 

(Cal and Bahmad, 2008), auditory and olfactory (Miller et al., 2015). There is also osmophobia 

(sensitivity to smells) reported during the migraine attack and 84% of individuals reporting olfactory 

hallucinations have migraine (Coleman et al., 2011). 

There are differences in visual processing in migraine groups compared to control groups on 

performance measured in between migraine attacks (interictally). Specifically, there is poorer 

performance on the whole in migraine (interictally measured) compared to control groups for visual 

(for a review, see O’Hare and Hibbard, 2016) and auditory tasks (Agessi et al., 2014). There is also 

evidence of olfactory dysfunction in migraine compared to controls (Hirsch, 1992). 

In summary, there are differences in sensory processing between migraine and control groups. In 

general, although migraine groups appear to be more sensitive to sensory stimulation compared to 

headache-free groups, migraine groups tend to show poorer performance on sensory tasks. Of 

particular interest to multisensory research, there are associations between the senses in migraine 

groups, particularly in the aura stage of the attack. Demarquay et al., (2006) showed that those with 



migraine reporting more olfactory hypersensitivity (based on a questionnaire and rating odours) 

were also those reporting increased visual sensitivity and greater attack frequency, than those 

without odour sensitivity. This could be due to a variety of reasons: one possibility is that migraine is 

more excitable in general compared to controls, another possibility is that excitation in one sensory 

area, (in this case olfactory) increases the overall excitation of other sensory areas, in this case 

visual. There could also be interactions between the senses, in the form of differences in 

multisensory integration in migraine groups. 

Multisensory integration in migraine 

Schwedt (2013a) reviewed the literature looking at audiovisual, pain and auditory, visual and 

vestibular associations in migraine groups, and to date, this remains the only review of multisensory 

integration in migraine. However, studies specifically investigating multimodal integration are 

increasing since Schwedt’s (2013a) review. 

There are multiple possibilities for why multisensory integration might be different in migraine. One 

possibility is differences in midbrain areas, where multisensory neurons are located. The superior 

colliculus is a site of multisensory neurons in the midbrain, which also has connections to the 

trigemineal nerves (Harting et al., 1997). The superior colliculus projects to cortical areas, including 

the parietal, temporal and occipital areas (Selzer et al., 1994), and conversely there is evidence that 

superior colliculus activity is modulated by cortical areas, for example those around the sylvian 

fissure (Jiang et al., 2001). In addition, the superior colliculus is a light-sensitive site (Boehnke and 

Munoz, 2008), and also associated with the control of circadian rhythms (Marchant and Morin, 

1998). As light sensitivity is a feature of migraine, and sleep disturbances are listed as a possible 

trigger (Inamorato et al., 1993), this would imply involvement of the superior colliculus in migraine. 

However, although this provides evidence that it is possible for multisensory information to be 

shared between these locations, it is not evidence that the information from different sensory 

modalities is actually shared at these sites (Meredith, 2002).  

It has been suggested that migraine attacks might damage cortical structures, for example the visual 

cortex (Chronicle and Mulleners, 1994). A thicker cortex might be due to damage (Messina et al., 

2013), and increased thickness in the temporal pole in migraine has been reported (Schwedt et al., 

2015). There is evidence to suggest that migraine with aura is associated with increased white 

matter lesions (Kurth et al., 2011), which supports the suggestion that migraine might be a 

progressive disorder (Lipton and Pan, 2004). If this is indeed the case, then it might be expected that 



symptoms change in severity over time, and also that there are secondary symptoms arising as a 

consequence of the disorder.  

Alternatively, migraine sensory differences could be due to differences in processing in the cerebral 

cortex itself, for example hyperexcitation in the cortex. It might be the case that if an individual with 

migraine is more sensitive in one modality, this might also be the case in another modality. 

Schwedt’s (2013a) review of multisensory integration in migraine identified the temporal pole and 

rostal pons as locations of increased activity in migraine groups that might have significant 

implications for sensory processing. The evidence for each of these possible explanations for 

differences in multisensory integration in migraine will be considered here. 

Somatosensory integration: Pain and the other senses 

Pain is an important feature of migraine (Lipton et al., 2001). Schwedt (2013a) made the point that 

pain and light sensitivity are linked in migraine groups. In the case of migraine, research suggests 

that the response to visual stimulation increased whilst experiencing painful stimuli. This was 

achieved by applying ice to the forehead of individuals with migraine, and measuring the level of 

light at which discomfort was reported. The level of light that was tolerated before discomfort was 

reported was reduced when ice was applied to the forehead (Drummond and Woodhouse 1993). In 

addition, mechanically-induced pain increased the susceptibility to discomfort from light 

(Drummond, 1997). Conversely, migraine patients are less tolerant of painful stimuli after light 

stimulation (Kowasc et al., 2001).  

There is evidence that auditory stimulation increases sensitivity to pain in those with migraine 

(Vanagaite et al., 1998; Martin et al., 2005, Ashkenazi et al., 2010). Contrary to this, there is evidence 

that combining sound and electrophysiological stimulation can increase the tolerance to pain in 

migraine groups (Trinka et al., 2002). This might be due to the warning changing the criterion in this 

study, as pain was measured based on self-report. Expectation and pain have a complex relationship; 

however an individual's tolerance to pain can be increased when there is a reliable predictor, or 

warning of pain (Ploghaus et al., 2003). It is possible that the concurrent sound might have allowed 

patients to prepare themselves, and thus be more resilient to pain.  

Somatosensory heat stimulation to cause pain increases activity to temporal pole (Moulton et al., 

2011), which is an area associated with multisensory integration that shows increased activity in 

migraine groups compared to controls (Schwedt, 2013a). In normal populations, somatosensory 

sensitivity is greater with either concurrent visual, or vestibular stimulation (Ferre et al., 2015), and 

the somatosensory cortex is important in multisensory integration (Petrusic et al., 2015). The 



somatosensory cortex is thicker in migraine compared to control groups (DaSilva et al., 2007; Kim et 

al., 2014), and the functional connectivity of pain pathways different in migraine compared to 

control groups (Schwedt et al., 2014a, Schwedt et al., 2014b, Schwedt et al., 2013b). However, this 

does not show whether the changes in structure and connectivity are due to repeated exposure to 

pain in the form of headache, if the migraine patient is more susceptible to pain, or if the structural 

differences themselves are the causes of the migraine disorder. Petrusic et al., (2014) showed that 

teenagers with migraine commonly report both visual and somatosensory symptoms during 

migraine aura (all reported visual symptoms, 60% reported somatosensory). Teenagers with 

migraine are unlikely to have had the disorder for long enough for them to develop secondary 

problems from the disorder, and so it seems that the visual and somatosensory symptoms might be 

an inherent part of the disorder itself.  

There is also evidence of massage to the occipital areas alleviating a migraine attack (Piovesan et al., 

2007). If migraine can be alleviated by a simple therapy such as massage then this would be 

immensely beneficial to both the patient and the healthcare system. However, as with pain and 

concurrent auditory stimulation, it appears that there might be different ways of stimulation that 

result in different effects in the patient, thus further work is needed in order to develop non-invasive 

therapies, in particular, identifying the mechanism behind any beneficial effects. 

Visual-auditory integration  

Yang et al., (2014) studied visual-audio integration in migraine by varying the inter-stimulus interval 

of visual and auditory stimuli to investigate the length of the integration window. There was 

evidence of greater integration window in migraine compared to control groups when the visual 

stimulus was presented before the auditory signal consistent with the idea that these populations 

are hyperexcitable (Yang et al., 2014). Audiovisual stimuli lead to suppression effects: longer 

intervals (200 - 300ms) between audio and visual stimuli tend to result in suppression of the second 

stimulus, as the two are no longer thought to be linked (Meredith et al., 1987). Yang et al., (2014) 

demonstrated less suppression from audio stimuli on visual stimuli in migraine compared to control 

groups when there was this longer inter-stimulus interval, also consistent with the idea of 

hyperexcitation in migraine.  

There is research on the integration of visual and auditory information in migraine, commonly using 

multisensory illusions, for example the ‘sound-induced flash illusion’, or 'flash-beep illusion'. 

Presenting two beeps with one flash tends to make participants more likely to misperceive a single 

flash as two flashes (fission illusion). Conversely, presenting a single beep with two flashes tends to 



result in participants being more likely to report a single flash (fusion illusion). It is thought that 

susceptibility to the sound-induced flash illusion depends on the relative activity in the auditory and 

visual processing areas (Mishra et al., 2007). The relative excitation can even be manipulated: 

Bologini et al., (2011) demonstrated using anodal (thought to be excitatory) transcranial direct 

current stimulation (tDCS) the susceptibility to fission illusions decreases, concluding that if 

excitatory tDCS is given to the occipital areas then perceptual weighting to these areas increases 

relative to auditory areas. This illusion has been suggested to be a useful tool to explore migraine 

sensory processing (Maccorca et al., 2013), as susceptibility to one or other illusion will show a 

dominance for one modality over another, due to differences in excitation over the different areas.  

Brighina et al., (2014) demonstrated less susceptibility to sound-induced flash illusions in episodic 

migraine in the ictal (headache) phase. Chronic migraine showed less susceptibility to the illusion 

throughout testing sessions. This shows an increased ability to discriminate between the stimuli 

during the ictal phase of a migraine attack (or much of the time, in the case of chronic migraine), 

however in the non-ictal phase temporal integration seems to operate over a longer time interval in 

migraine compared to control groups.  It is possible that the results of the Yang et al., (2014) and 

Brighina et al., (2014) studies could be explained by a dominance for the visual cortex: an increase in 

visual cortex excitability relative to auditory cortex excitability. Alternatively, it could be the case 

that the longer time window for integration in migraine compared to control groups is due to the 

gating of sensory information. This will be discussed in more detail below. 

Di Marco et al., (2015) showed that children with migraine show no difference in sound-induced 

flash illusions compared to controls, however, children tended to report more illusions overall 

compared to adults. This could suggest that multisensory disorders develop as migraine progresses, 

increasing the weighting to vision and thus increasing the susceptibility to the illusion. Alternatively 

this result might be because the test is subjective, and children are more suggestible than adults, 

rather than there being differences with their sensory faculties.  

Visual-vestibular integration 

Migraine is also associated with differences in vestibular information processing - there is a specific 

subtype called vestibular migraine, described most commonly by patients as feelings of 

"unsteadiness" and balance problems, as well as sensations of spinning and rocking (Cohen et al., 

2011). A disturbance of visual-vestibular input can result in an experience of vertigo. Vertigo is 

defined by Brandt (2013) as "spatial disorientation, misperception of motion, and postural 

imbalance induced by unusual visual stimulation or visual dysfunction". Vertigo, also described as 



dizziness, is commonly associated with migraine, in fact there is a specific disorder called migrainous 

vertigo (von Brevem et al., 2004), which is characterised by eye movements called positional 

nystagmus at the acute stage of the disorder (Phillips et al., 2010). Nystagmus is most commonly 

seen in normal observers when the eyes follow a moving target and then quickly saccade back, 

repeatedly, for example gazing out of the window of a moving train. This can occur also in the 

absence of a moving target, and is useful in diagnosing disturbances of the vestibular system, e.g. 

see Dix-Hallpike Manoeuvre (Dix and Hallpike, 1952). The Dix-Hallpike Manoeuvre involves 

positioning the head in such a manner that the fluid in the inner ear canals is moved around, which 

tends to elicit nystagmus from the eyes in the case of a disorder of the vestibular system. Bertholon 

et al., (2006) report a case of migraine being cause of vertigo in one patient, which was 

characterised by aegeotropic (upward) left horizontal nystagmus. Boldingh et al., (2013) tested a 

variety of oculomotor and vestibular responses in two migraine groups: Those with vertigo and 

those without. The migraine-with-vertigo group showed abnormal results compared to migraine-

without-vertigo on both Romberg's test, and the Dix-Hallpike Manoeuvre, both tests of vestibular 

function. Approximately 2/3 migraine-with-vertigo showed sign of vestibular impairment, but in 

addition, approximately 1/3 migraine-without-vertigo also showed signs of vestibular impairment 

(Boldingh et al., 2013), suggesting that vestibular disorder is common in migraine, even in those 

without vertigo. 

Vertigo is due to a mismatch between visual and vestibular information (Brandt, 2013, page 33). 

There appears to be susceptibility to vertigo in migraine groups, which is not limited to those 

diagnosed as suffering from migraine-with-vertigo (Boldingh et al., 2013). Additionally, Tomanovic et 

al., (2010) showed that 13% of those with a vestibular disorder also suffered from migraine. 

Migrainous vertigo is difficult to discriminate from labyrinthine disorders, such as Menière's disease 

(Shepard, 2006). Brantberg et al., (2011) suggested that the only real difference to discriminate the 

two is the hearing loss that is present in Menière's disease but not associated with migrainous 

vertigo. Lechner et al., (2014) reported that it is possible to discriminate the type of vertigo disorder 

based on the time course of positional horizontal nystagmus, whether the origin is migraine, or a 

problem with the ear canal (canalolithiasis). Migraine groups show the symptoms of Menière's 

disease, without the obvious cause canalolithiasis. This would suggest that there is some trouble 

with integrating correct sensory signals in the migraine group, rather than a problem with the 

sensory signals themselves, as is the case in Menière's disease.  

In addition to the sensation of vertigo being associated with migraine, visual stimulation can induce 

motion sickness more in migraine than control groups (Drummond and Granston, 2004). 



Additionally, it has been demonstrated that visual input can create differences in postural sway in 

migraine and control groups (Imaizumi et al., 2014). The stimulus used was the snake illusion, a 

static pattern that creates a strong illusory motion signal. This was a subtle effect, and only seen 

after the eyes were closed, not when they remained open, and differences were seen after viewing 

the pattern, not during the presentation. The increased motion after effect has been reported 

previously in migraine compared to control groups (Shepherd, 2006). Imaizumi et al. (2014) 

suggested that the increased susceptibility to postural sway in migraine groups after viewing this 

pattern was due to difficulty integrating visual and vestibular information, but the authors did not 

elaborate on a possible mechanism for this. It is possible that a dominance for vision would increase 

postural sway, if stationary vestibular signals are being 'overruled' by the visual inputs signalling 

motion. 

One potential mechanism has been suggested under different circumstances, by Dell’Osso et al., 

(2002). This was a report of a case study of a migraine patient, who reported seeing typical scotoma 

and fortification spectra, before his attack, the difference being these illusions started oscillating 

sideways. On a separate occasion he reported diplopia (double vision) as well. Dell’Osso et al., (2002) 

suggested that this was due to a failure to suppress oculomotor efferent copies: When the eyes 

move, a copy of the motor information from the ocular muscles is relayed back to the brain, so that 

the eye movement can be discounted from the movement of the retinal image, and if this signal is 

not adequately suppressed this would lead to substantial distortions in the perception. It could be a 

failure of efferent copy suppression that might cause the increased illusory motion reported by 

Imiazumi et al., (2014) on viewing the rotating snakes. Additionally, as the efferent copy is important 

to the vestibular system, this might be the cause of increased postural sway in migraine. It must be 

highlighted that this is purely speculation at this point, however if there were a problem with the 

efferent copy of motor signals from the eye muscles then it should be the case that there are other 

motor problems in migraine compared to control groups. Migraine is indeed associated with 

disorders of the motor system: Those with Tourette's syndrome are four times more likely than the 

general population to experience migraine (d'Onofrio et al., 2012). Migraine and restless leg 

syndrome, and migraine and hemichorea (involuntary movements) also co-occur more frequently 

than would be expected by chance (d'Onofrio et al., 2012). These authors suggested the involvement 

of the extrapyramidal system in migraine, as the onset of Parkinson's disease tends to stop migraine. 

Therefore, it might be the case not only that the different sensory modalities are active together 

more in migraine than control groups, but the disorder might also link activity between the sensory 

and motor systems. 



A mechanism for multisensory disorders in migraine: integration over time in migraine groups 

Sensory integration involves combining signals over time, and there is some indirect evidence to 

suggest greater integration of sensory signals in those with migraine compared to control groups  

(DaSilva et al., 2007; Kim et al., 2014; Schwedt et al., 2014a, Schwedt et al., 2014b, Schwedt et al., 

2013b). Motion discrimination involves integration of a stimulus over time, and migraine groups are 

poorer at global motion tasks compared to controls (Antal et al., 2005; McKendrick et al., 2006; 

Ditchfield et al., 2006; Shepherd et al., 2012; Braunitzer et al., 2012; Tibber et al., 2014). There is 

evidence to suggest audio-visual integration operates over a longer time window in migraine 

compared to control groups (Yang et al., 2014).  This is of interest as susceptibility to the sound-

induced flash illusion is influenced by applying tDCS to modulate the length of the integration 

window (Cecere et al., 2015), which is thought to be controlled by alpha band oscillations in the 

cortex. A mechanism for a longer integration window might be related to the frequency and power 

of the alpha band oscillations, which is thought to control the flow of visual information processing 

(e.g. Jensen et al., 2014). Alternatively the apparently longer integration window could be due to an 

imbalance between sensory modalities, for example a dominant visual modality. It is possible that 

the hyperexcitation found in migraine is due to the alpha band oscillations being slower in migraine 

compared to headache-free individuals - this would lead to a greater window of time in which 

stimuli could be integrated together.  

Palinopsia is the preservation of images, after the original has disappeared. These hallucinations are 

not the same as after-images in normal subjects, as they can consist of entire objects, and be much 

later than the original was seen (Bender et al., 1968). Patients with epilepsy and also those with 

certain cancers of the brain can report palinopsia (Bender et al., 1968). Neurological patients such as 

those with migraine also report more cases of palinopsia compared to the general population, and 

this is especially the case for those with migraine with aura (Belcastro et al., 2011). Although 

palinopsia itself appears unimodal, it is the time-course of this phenomenon that is of interest. 

Palinopsia operates over a very long time (in terms of the timescales involved in sensory processing) 

- the hallucinations can consist of stimuli the patient is currently viewing, or has seen minutes or 

even hours previously. Why, and how, a stimulus from minutes before should be integrated into the 

current visual experience remains unexplained, but would require an explanation involving sensory 

memory processes. However, this phenomenon provides some suggestion that the hyperexcitation 

thought to be a characteristic in migraine can result in the integration of visual information over a 

very long time period, considering the timescales usually involved in sensory processing.  

Conclusion 



There are clear sensory processing differences in migraine compared to control groups both during 

and in between migraine events. During an attack, migraine groups have an increased sensitivity to 

sensory stimuli, indeed this is part of the classification criteria for the disorder (Headache 

Classification Subcommittee of the International Headache Society, 2013). Despite increased 

sensitivity, there appears to be paradoxically poorer performance in migraine compared to control 

groups on a range of sensory tasks, e.g. vision (O'Hare and Hibbard, 2016), auditory (Agessi et al., 

2014) and olfactory tasks (e.g. Hirsch 1992; Synder and Drummond, 1997). In light of the unimodal 

differences in sensory performance, it seems logical that there might be differences in multisensory 

performance in migraine groups.  Recent work has demonstrated integration of visual and auditory 

information in migraine over a longer time window. Vestibular differences are not usually 

considered in the context of multisensory integration, however, there is an association between 

vertigo and migraine. As vertigo arises from a mismatch between visual and vestibular information, 

this is important to consider when investigating multisensory integration in migraine. It might be 

worth knowing if this information is also integrated in similar brain areas as the other sensory 

modalities.  

Candidate locations have been suggested for the integration of multisensory information in 

migraine, however, it is important to know what these suggested locations for multisensory 

integration in the brain are doing with the incoming information. For example, although the 

temporal pole has been implicated in multisensory information processing, particularly integrating 

the pain of migraine with other sensory experiences, it is unclear whether this is a point at which 

information simply converges, or if this location is responsible for the weighting of information from 

different senses.  

There is some evidence for a longer multisensory integration window in migraine groups compared 

to control groups (e.g. Yang et al., 2014). One possibility for this is alpha band oscillations, 

alternatively this might be due to dominance of the visual modality over others, for example due to 

hyperexcitation in the visual cortex. There is evidence that the window of integration of sensory 

information can be affected by neurostimulatory techniques (Cecere et al., 2015), and tRNS 

(transcranial random noise stimulation) shows evidence of lasting improvement in sensory 

performance (Camilleri et al., 2014), this is a possibly fruitful area of research for the development of 

therapy.   

Multisensory integration in migraine is an underexplored area on the whole, given the unimodal 

differences between migraine and control groups. However, there is evidence of a new interest in 

this area, suggesting possible differences in multisensory integration in migraine groups compared 



to controls. More research is needed to find out the extent of multisensory integration differences, 

both to develop basic understanding and also new therapies.  

 

References 

Agessi, L. M., Villa, T. R., Dias, K. Z., de Souza Cavalho, D., and Pereria, L. D., (2014). Central auditory 

processing and migraine: a controlled study. The Journal of Headache and Pain, 15(1), 72. 

Antal, A., Temme, J., Nitsche, M. A., Varga, E. T., Lang, N., and Paulus, W., (2005). Altered motion 

perception in migraineurs: Evidence for interictal cortical hyperexcitibility. 25(10), 788-794. 

Ashkenazi A, Yang I, Mushtaq A, Oshinsky ML. (2010). Is phonophobia associated with cutaneous 

allodynia in migraine? J Neurol Neurosurg Psychiatry. 81, 1256–1260. 

Belcastro, V., Cupini, L. M., Corbelli, I., Pieroni, A., D’Amore, C., Caprioni, S., Gorgnone, G., Ferlazzo, 

E., Di Palma, F., Sarchielli, P., Calabresi, P., (2011). Palinopsia in patients with migraine: Case control 

study. Cephalalgia, 2011, 31(9), 999-1004. 

Bender, M. B., Feldman, M. and Sobin, A.J. (1968). Palinopsia. Brain, 91, 321-338. 

Bertholon, P., Tringali, S., Faye, M. B., Antoine, J. C., Martin, C., (2006). Prospective study of 

positional nystagmus in 100 consecutive patients. Annals of Otology, Rhinology and Laryngology, 

115(8), 587-594. 

Boehnke, S. E., and Munoz, D. P., (2008). On the importance of the transient visual response in the 

superior colliculus. Current Opinion in Neurobiology, 18(6), 544-551. 

Boldingh, M., Ljøstad, U., Mygland, Å., Monstad, P., (2013). Comparison of interictal vestibular 

function in vestibular migraine vs migraine without vertigo. Headache, 53, 1123-1133. 

Bologini, N., Rossetti, A., Casati, C., Mancini, F., Vallar, G., (2011). Neuromodulation of multisensory 

perception: A tDCS study of the sound-induced flash illusion. Neuropsychologia, 49(2), 231-237. 

Brandt, T. (2013). Vertigo: its multisensory syndromes. Springer Science & Business Media. 

Brantberg, K., and Baloh, R. W., (2011). Similarity of vertigo attacks due to Meniere's disease and 

benign recurrent vertigo, both with and without migraine. Acta Oto-Laryngologica, 131, 722-727. 

Braunitzer, G., Rokszin, A., Kóbor, J., Benedek, G., Nagy, A., Kincses, Z. T., (2012). Delayed 

development of visual motion processing in childhood migraine. Cephalalgia, 32(6), 492-6.  



Brighina, F., Bolognini, N., Vallar, G., Cosentino, G., Maccora, S., Paladino, P., Indovino, S., Bashi, R., 

Fierro, B., (2014). Cortical excitability changes in chronic migraine vs episodic migraine: Evidence by 

sound-induced flash illusions. The Journal of Headache and Pain, 15(S1), E5. 

Cal, R., and Bahmad,F., Jr., (2008). Migraine associated with auditory-vestibular dysfunction. Rev 

Bras. Otorrinolaringol., 74(4), 606-12. 

Camilleri, R., Pavan, A., Ghin, F., Battaglini, L., and Campana, G., (2014). Improvement of uncorrected 

visual acuity and contrast sensitivity with perceptual learning and transcranial random noise 

stimulation in individuals with mild myopia. Frontiers in Psychology, 5, 01234 DOI: 

10.3389/fpsyg.2014.01234 

Cecere, R., Rees, G., Romei, V., (2015). Individual differences in alpha frequency drive crossmodal 

illusory perception. Current Biology, 25(2), 231-235. 

Chronicle, E., and Mulleners, W., (1994). Might migraine damage the brain? Cephalalgia, 14(6), 415-

8. 

Cohen J. M., Bigal M. E., Newman L. C., (2011). Migraine and vestibular symptoms-identifying clinical 

features that predict “vestibular migraine.” Headache, 51:1393-1397. 

Coleman, E. R., Grosberg, B. M., and Robbins, M. S., (2011). Olfactory hallucinations in primary 

headache disorders: Case series and literature review. Cephalalgia, 31(14), 1477-1489. 

d’Onofrino, F., Barbanti, P., Petretta, V., Casucci, G., Mazzeo, A., Lecce, B., Mundi, C., Cologno, D., 

(2012). Migraine and movement disorders. Neurol. Sci., 33(S1), S55-S59. 

DaSilva, A. F. M., Granziera, C., Snyder, J., Hadjikhani, N., (2007). Thickening in the somatosensory 

cortex of patients with migraine. Neurology, 69, 1990-1995. 

Dell’Osso, L. F., Daroff, R. B., Tomsak, R. L., (2002). Migraine aura and diplopia phenomenology 

associated with congenital nystagmus. Neuro-Opthalmology, 26(2), 79-83. 

Demarquay, G., Royet, J. P., Giraud, P., Chazot, G., Valade, D., Ryvlin, P., (2006). Rating of olfactory 

judgements in migraine patients. Cephalalgia, 26(9), 1123-1130. 

Di Marco, S., Cosentino, G., Pilati, Baschi, R., Maccorca, S., Aprile, M., Brighina, F., Fierro, B., (2015). 

The visual cortical excitability in pediatric migraine as tested by sound-induced flash illusions. The 

Journal of Headache and Pain, 16(S1), A75. 

Ditchfield, J. A., McKendrick, A. M., and Badcock, D. R., (2006). Vision Research, 46(1-2), 141-8. 



Dix, M. R., and Hallpike, C. S., (1952). The pathology, symptomology and diagnosis of certain 

common disorders of the visual system. Proc. R. Soc. Med., 45(6), 341-54. 

Drummond, P. D., (1997). Photophobia and autonomic responses to facial pain in migraine. Brain, 

120(10), 1857-1864. 

Drummond, P. D., and Woodhouse, A., (1993). Painful stimulation of the forehead increases 

photophobia in migraine sufferers. Cephalalgia, 13(5), 321-324. 

Drummond, P. D., and Granston, A., (2004). Facial pain increases nausea and headache during 

motion sickness in migraine sufferers. Brain, 127(3), 526-534. 

Ferre, E. R., Walther, L. E., Haggard, P., (2015). Multisensory interactions between vestibular, visual 

and somatosensory signals. PLoS ONE, 10(4), e0124573, doi:10.1371/journal.pone.0124573 

Harting, J. K., Feig, S., van Lieshout, D. P., (1997). Cortical somatosensory and trigeminal inputs to the 

cat superior colliculus: light and electron microscopic analyses. Journal of Computational Neurology, 

388, 313-326. 

Headache Classification Committee of the International Headache Society (IHS). Classification and 

diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia 2013; 33: 

629–808. 

Hirsch, A. R., (1992). Olfaction in migraineurs. Headache: The Journal of Head and Face Pain, 32(5), 

233-236. 

Imaizumi, S., Honma, M., Hibino, H., and Koyama, S., (2014). Illusory visual motion stimulus elicits 

postural sway in migraine patients. Frontiers in Psychology, 6, 542. 

Inamorato, E., Hannuch, S. N., Zukerman, E., (1993). The role of sleep in migraine attacks. Arq. 

Neuropsiquiatr., 51(4), 429-32. 

Jensen, O., Gips, B., Bergmann, T. O., Bonneford, M., (2014). Temporal coding organized by coupled 

alpha and gamma oscillations prioritize visual processing. Trends in Neurosciences, 37(7), 357-369. 

Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W., Stein, B. E., (2001). Two cortical areas mediate 

multisensory integration in superior colliculus. Journal of Neurophysiology, 85, 506-522. 

Khalil, N., (1991). Investigations of visual function in migraine using visual evoked potentials and 

psychophysical tests. PhD thesis, University of London. 



Kim, J. H., Kim, J. B., Suh, S. I., Seo, W. K., Oh, K., Koh, S. B., (2014) Thickening of the somatosensory 

cortex in migraine without aura. Cephalalgia, 34(14), 1125-33. 

Kowasc, P. A., Piovesan, E. J., Werneck, L. C., Tatsui, C. E., Lange, M. C., Ribas, L. C., da Silva, H. P., 

(2001). Influence of intense light stimulation on trigeminal and cervical pain perception thresholds. 

Cephalalgia, 21(3), 184-8. 

Kurth, T., Mohamed, S., Maillard, P., Zhu, Y-C., Chabriat, H., Mazoyer, B., Bousser, M. G., Dufoil, C., 

Tzourio, C., (2011). Headache, migraine, and structural brain lesions and function: population based 

Epidemiology of Vascular Ageing-MRI study. BMJ, 342, c7357. 

Lechner, C., Taylor, R. L., Todd, C., MacDougall, H., Yavor, R., Halmagyi, M., Welgampola, M. S., 

(2014). Causes and characteristics of horizontal positional nystagmus. Journal of Neurology, 261, 

1009-1017. 

Lipton, R. B., Diamond, S., Reed, M., Diamond, M. L., Stweart, W. F., (2001). Migraine diagnosis and 

treatment: Results from the American Migraine Study II. Headache: The Journal of Headache and 

Face Pain, 41(7), 638-645. 

Lipton, R. B., and Pan, J., (2004). Is migraine a progressive brain disease? The Journal of the American 

Medical Associatio, 291(4), 493. 

McKendrick, A. M., Badcock, D. R., Badcock, J. C., Gurgone, M., (2006). Motion perception in 

migraineurs: Abnormalities are not related to attention. Cephalalgia, 26(9), 1131-1136. 

Maccorca, S., Indovino, S., Baschi, R., Paladino, P., Talamanca, S., Cosentino, G., Giglia, G., Brighina, 

F., (2013). Sound-induced flash illusions as a paradigm of multisensory integration: A review article. 

Acta Medica Mediterranea, 29, 129. 

Marchant, E. G., and Morin, L. P., Superior colliculus mediates trizolam-induced phase shifts of 

hamster circadian rhythms. Society for Neuroscience, 24, 1919. 

Martin, P. R., Todd, J., Reece J., (2005). Effects of noise and a stressor on head pain. Headache, 45, 

1353–1364. 

Meredith, M. A., Nemitz, J. W., and Stein, B. E., (1987). Determinants of multisensory integration in 

superior colliculus neurons. 1. Temporal factors. The Journal of Neuroscience, 7(10), 3215-3229. 

Meredith, M. A., (2002). On the neuronal basis for multisensory convergence: a brief overview. 

Cognitive Brain Research, 14(1), 31-40. 



Messina, R., Rocca, M. A., Colombo, B., Valsasina, P., Horsfield, M. A., Copetti, M., Falini, A., Comi, G., 

Fillippi, M., (2013). Cortical abnormalities in patients with migraine: a surface-based analysis. 

Neurordiology, 268(1). 

Miller, E. E., Grosberg, B. M., Crystal, S. C., and Robbins, M. S., (2015). Audtiory hallucinations 

associated with migraine: Case series and literature review. Cephalalgia, 35(10), 923-930. 

Mishra, J., Martinez, A., Sejnowski, T. S., Hillyard, S. A., (2007). Early cross-modal interactions in 

auditory and visual cortex underlie a sound-induced visual illusion. Journal of Neuroscience, 27(15), 

4120-4131.  

Moulton, E. A., Becerra, L., Maleki, N., Pendse, G., Tully, S., Hargreaves, R., Burstein, R., Borsook, D., 

(2011). Painful heat reveals hyperexcitabiliity of the temporal pole in the interictal and ictal migraine 

states. Cerebral Cortex, 21, 435-448. 

O’Hare, L., and Hibbard, P. B., (2016). Visual processing in migraine, Cephalalgia, 36(11), 1057-1076. 

Panayiotopolos, C. P., (1999). Elementary visual hallucinations, blindness, and headache in idiopathic 

occipital epilepsy: differentiation from migraine. Journal of Neurolology, Neurosurgery and 

Psychiatry, 66(4), 536-540. 

Petrusic, I., Pavlovski, V., Vucinic, D., Jancic, J., (2014). Features of migraine aura in teenagers. The 

Journal of Headache and Pain, 15(87) DOI: 10.1186/1129-2377-15-87. 

Petrusic, I., Jancic, J., Zidverc-Trajkovic, J., (2015). Features of migraine aura as "Holy Grail" for 

studying pathophysiology of migraine with aura. Itch and Pain, 2, e974. 

Piovesan , E. L., Di Stani, F., Kowacs, P. A., Mulinari, R. A., Radunz, V. H., Utiumi, M., Murakana, E. B., 

Guiblin, M. L., Werneck, L. C., (2007). Massaging over the greater occipital nerve reduces the 

intensity of migraine attacks: Evidence for inhibitory trigemino-cervical convergence mechanisms. 

Arq. Neuro-Psiquiatr., 65(3), http://dx.doi.org/10.1590/S0004-282X2007000400010 

Phillips, J., Longridge, N., Mallinson, A., Robinson, G., (2010). Migraine and vertigo: A marriage of 

convenience? Headache, 50, 1362-1365. 

Ploghaus, A., Becerra, L., Borras, C., and Borsook, D., (2003). Neural circuitry underlying pain 

modulation: expectation, hypnosis, placebo. Trends in Cognitive Sciences, 7(5), 1-5. 

Sacks, O., (1992) Migraine. Faber and Faber, London. 



Schwedt, T. J., (2013a). Multisensory integration in migraine. Current Opinion in Neurology, 26(3), 

248-253. 

Schwedt T. J., Schlaggar, B. L., Mar, S., Nolan, T., Coalson, R. S., Nardos, B,. Benzinger, T., Larson-

Prior, L. J., (2013b). Atypical resting-state functional connectivity of affective pain regions in chronic 

migraine. Headache, 53, 737-751. 

Schwedt, T. J., Chong, C. D., Chiang, C. C., Baxter, L., Schlaggar, B. L., and Dodick, D. W., (2014a). 

Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic 

migraine. Cephalalgia, 34(12), 947-958. 

Schwedt, T. J., Larson-Prior, L., Coalson, R. S., Nolan, T., Mar, S., Ances, B. M., Benzinger, T., 

Schlagger, B. L., (2014b). Allodynia and descending pain modulation in migraine: A resting-state 

functional connectivity analysis. Pain Medicine, 15, 154-165. 

Schwedt, T. J., Berisha, V., Chong, C. D., (2015). Temporal lobe cortical thickness correlations 

differentiate the migraine brain from the healthy brain. PLoS ONE, 

http://dx.doi.org/10.1371/journal.pone.0116687 

Selzer, B., Pandya, D. N., (1994). Parietal, temporal and occipital projections to cortex of the superior 

temporal sulcus in the rhesus monkey: a retrograde tracer study. Journal of Computational 

Neuroscience, 343, 445-463. 

Shepard, N., (2006). Differentiation of Ménière's disease and migraine-associated dizziness: A 

review. J. Am. Audiol., 17, 69-80. 

Shepherd, A., J., (2006). Local and global motion after-effects are both enhanced in migraine, and 

the underlying mechanisms differ across cortical areas. Brain, 129(7), 1833-43. 

Shepherd, A. J., and Beaumont, H. M., and Hine, T. J., (2012) Motion processing deficits in migraine 

are related to contrast sensitivity. Cephalalgia 32 (7), 554-570. 

Snyder, R. D., and Drummond, P. D., (1997). Olfaction in migraine, Cephalalgia, 17(7), 729-732. 

Steiner, T. J., Scher, A. I., Stewart, W. F., et al. (2003). The prevalence and disability burden of adult 

migraine in England and their relationships to age, gender and ethnicity. Cephalalgia, 23(7): 519-527. 

Stovener, L., Hagen, K., Jensen, R., Katsarava, Z., Lipton, R., Scher, A., Steiner, T., Zwart, J. A., (2007). 

The global burden of headache: a documentation of headache prevalence and disability worldwide. 

Cephalalgia, 27(3), 193-210. 

http://dx.doi.org/10.1371/journal.pone.0116687


Tibber, M. S., Kelly, M. G., Jansari, A., Dakin, S. C., Shepherd, A. J., (2014). An inability to exclude 

visual noise in migraine. Invest. Ophthalmol. Vis. Sci., 55(4), 2539-46. 

Tomanovic, T., and Bergenius, J., (2010). Different types of dizziness in patients with peripheral 

vestibular diseases - their prevalence and relation to migraine. Acta Oto-Laryngologica, 130, 1024-

1030. 

Trinka, E., Unterrainer, J., Luthringshausen, G., Iglseder, B, Ladurner, G., Loew, T., Trzopek, H. G., 

(2002). An auditory electrophysiological intervention in migraine: A randomized placebo controlled 

add-on trial. Journal of Neurotherapy, 6(2), 21-30. 

Vanagaite Vingen J., Pareja J. A., Storen O., White L. R., Stovner L. J. (1998). Phonophobia in 

migraine. Cephalalgia, 18, 243–249. 

von Brevem, M., Radtke, A., Clarke, A. H., Lempert T., (2004). Migrainous vertigo presenting as 

episodic positional vertigo. Neurology, 62, 469-72. 

Yang, W., Chu, B., Yang, J., Yu, Y., Wu, J., and Yu, S., (2014). Elevated audiovisual temporal 

interaction in patients with migraine without aura. The Journal of Headache and Pain, 15, 44. 


