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Alzheimer's disease (AD) is the most common neurodegenerative aging disorder affecting millions of

individual worldwide. AD is associated with memory decline as well as impairment in language and executive

function. These symptoms become more severe with disease progression. It is estimated that 25–35% of the

population over the age of 85 years old have Alzheimer disease. The number of patients with AD is expected

to rise in the near future as people are now living longer.

The formation of beta-amyloid plaques and neurofibrillary tangles in the brains of the patients were found to

be related to dementia symptoms (Wilcock & Esiri, 1982). It is not known which factors lead the formation of

plaques and tangles in some individuals and how exactly they relate to different symptoms in AD. In addition,

several neuropsychological and fMRI reports show hippocampal dysfunction in Alzheimer’s disease patients

(Apostolova et al., 2006; de Leon et al., 1989; Jack et al., 2000; Allen et al., 2007; Schuff et al., 2008).

Current studies attempt to develop deep brain stimulation therapy for AD targeting different hippocampal

regions, including the hippocampus, fornix, and entorhinal cortex (Hescham et al., 2013; Suthana et al.,

2012).

It has been found that variations in apolipoprotein E (APOE) genotype are associated with increased risk of

developing AD (Jack et al., 1998). There are three different genetic alleles that encode the APOE gene: ε2, ε3,

and ε4. Approximately 15% of the population carry the APOE ε4 allele, while the rest carry the APOE ε2 or

APOE ε3 allele. Importantly, APOE ε4 has been linked to AD pathology more than the other alleles. Carriers

of the APOE ε4 genotype have been shown to have larger temporal lobe atrophy and poorer memory

functions than non-carriers (Dhikav & Anand, 2011). Similarly, it was found that APOE ε4 allele is associated

with a small hippocampal volume in healthy older subjects. Further, studies have also reported reduced

acetylcholine levels in the hippocampus in AD patients (Kihara & Shimohama, 2004).
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There are many medications approved for AD, including donepezil, galantamine, rivastigmine, and

memantine. Some of these pharmacological agents (donepezil, galantamine, rivastigmine) are cholinesterase

inhibitors and thus increase acetylcholine (ACh) levels in the brain, while memantine is an NMDA antagonist.

However, memantine was shown to increase ACh levels in the hippocampus, although it did not improve

memory performance in rats (Ihalainen et al., 2011). This is in contrast to studies showing that ACh inhibitors

increase ACh levels and also improve memory function in animal models and patients with AD (Bitner et al.,

2009; Chalmers et al., 2009). Howard and colleagues (Howard et al., 2012) have found that donepezil or

memantine are effective for enhancing memory in moderate-to-severe AD patients, although adding both

together does not lead to more improvement. One major problem with currently approved AD drugs (ACh

inhibitors and NMDA antagonists) is that they are symptomatic and work for a short period of time.

Several competing hypotheses have been put forward to explain the causes and symptoms of the disease:

Cholinergic hypothesis: The cholinergic hypothesis proposes that the memory deterioration observed in

AD patients is caused by reduced synthesis of acetylcholine (ACh), choline uptake, and ACh release

(Francis et al., 1999).

Amyloid hypothesis: The amyloid hypothesis (Hardy & Selkoe, 2002) proposes that extracellular

beta-amyloid (Aβ) plaques are the fundamental cause of the disease. Aβ is a fragment of a transmembrane

protein that penetrates through the neuron's membrane, the amyloid precursor protein (APP). In AD, APP

is divided into smaller fragments by proteolytic enzymes. One of these fragments (39-43 amino acids in

length) form dense formations (Aβ plaques) in the extracellular space of neurons.

Tau hypothesis: The tau hypothesis (Boutajangout & Wisniewski, 2014) proposes that

hyperphosphorylated tau proteins form neurofibrillary tangles inside the nerve cell bodies, causing

microtubules to disintegrate, collapsing the neuron's transport system. As Aβ plaques and neurofibrillary

tangles accumulate in the brain, synaptic and neuronal losses occur on a large scale affecting the entire

cerebral cortex, the hippocampus and neighboring brain regions.

Glucose synthase kinase 3 (GSK3) hypothesis: According to GSK3 hypothesis over-activity of GSK3, a

proline-directed serine/threonine kinase, accounts for memory impairment, tau hyper-phosphorylation,

increased Aβ production, reduction of ACh synthesis, cell apoptosis, and local plaque-associated

microglial-mediated inflammatory responses, all of which are principal characteristics of AD (Hooper et

al., 2008).

Other hypotheses: Oxidative stress (Christen, 2000), reduced hippocampal volume (Dhikav and Anand,

2011), cerebrovascular disease and inflammation (Spangenberg and Green, 2016) may be significant in the

formation of the pathology.

Each of these cascades produce secondary effects to the nerve cells which may result in cell death (Kosik et al.,

1991), synapse loss (Hamos et al., 1989; Terry et al., 2000; Knobloch & Mansuy, 2008), alterations of ionic

and synaptic channels (Kuchibhotla et al., 2009; Snyder et al., 2005; Sato et al., 2008; Texido et al., 2011),

impairments in synaptic transmission and plasticity (Hsia et al., 1999; Chapman et al., 1999; Walsh et al.,

2002), destabilization of neural network activity (Palop et al., 2007; Palop & Mucke, 2010), inhibitory

interneuron dysfunction (Ramos et al., 2006; Verret et al., 2012; Palop and Mucke, 2016) and aberrant

network synchronization (Busche et al., 2008; Palop and Mucke, 2010), alterations in microglia response

(Brown & Neher, 2010; Mandrekar-Colucci & Landreth, 2010; Cameron & Landreth, 2010), or CREB

down-regulation throughout the cerebral cortex and hippocampus (Barco & Marie, 2011).

It is experimentally very difficult to understand how the interactions of all these mechanisms lead to the

pathogenesis of the disease. This is mainly because experimental studies are usually carried out to isolate the
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effects of a single mechanism and not to investigate the interactions of many mechanisms. This leads to a set

of results that are conflicting or very difficult to interpret.

Mathematical and computational models are invaluable tools in resolving such conflicts, because they can tie

together in a single framework advances from various levels of detail. In the next section we will describe a

number of computational modelling attempts ranging from the biochemical level to the systems-level in order

to understand the pathogenesis and symptoms of AD.

There have been a few attempts to design computational models of AD. Some of these models focus on

hippocampus function and failed to simulate the exact effects of amyloid plaques and neurofibrillary tangles

due to their sheer interaction complexity. See Duch (2007) for a review of some AD models. Below, we discuss

biochemical, single cell, biophysical spiking, and systems-level and abstract models of AD.

Biochemical models

Models of amyloid cascade hypothesis

Early mathematical and computational biochemical modelling of AD focused on the Aβ hypothesis.

Deposition of Aβ as insoluble fibrillar aggregates is known to be one of the defining pathological features of

Alzheimer’s disease. The pathway, kinetics and factors of Aβ fibrillogenesis have been the subject of intense

experimental (Murphy & Pallitto, 2000; McLaurin et al. (2000)) and theoretical (Tomski & Murphy, 1992;

Jarrett et al., 1993; Lomakin et al., 1996; Naiki & Nakakuki, 1996; Harper & Lansbury, 1997; Lomakin et al.,

1997; Walsh et al., 1997; Inouye & Kirschner, 2000; Kim et al., 2004) investigation. Tomski and Murphy

(1992) were the first to derive a computational model of the kinetics of fibril elongation. Jarrett and

colleagues (1993) proposed a three phase (a lag phase, a rapid growth phase, and a plateau phase) kinetic

model for Aβ self-association. Naiki and Nakakuki (1996) proposed that elongation of fibrils is due to

reversible addition of monomer to preexisting fibrils. Lomakin et al. (1996, 1997) computationally

investigated how monomers were rapidly and reversibly formed micelles from which nuclei slowly but

irreversibly emerged and how fibrils elongated by addition of monomer to nuclei or other fibrils. Their model

accounted for the presence of both monomer and fibrillar forms, and predicted both the mass concentration

of fibrils and fibril length as a function of time. The experiments upon which these models were based were

conducted at nonphysiological conditions (pH~1). Also, none of these kinetic models distinguish between

filaments and fibrils, or accounted for conversion between these two states (Harper et al., 1999).

Significant improvement over previous mathematical models was the Pallitto and Murphy (2001) model of

the kinetics of Aβ aggregation. Their model featured 1) experimental data collected at physiological pH, 2)

initiation and growth mechanisms, 3) monomer addition and fibril-fibril association as growth mechanisms,

4) both filaments and fibrils, and 5) mass fractions and filament/fibril lengths. Key feature of their model was

that unfolded Aβ, upon dilution into a folding buffer, rapidly and irreversibly partitioned between two

pathways: (1) one pathway producing monomers and dimers of stable (but undefined) structure, and (2)

another pathway generating an unstable intermediate, likely b-sheet-containing oligomers (Barrow et al.,

1992) that aggregated further. Conversion of the unstable intermediate to larger aggregates proceeded via

four steps (Fig. 1): initiation via cooperative association of intermediate, elongation by addition of monomer

to filament, lateral aggregation of filament to fibril, and elongation by end-to-end association of shorter fibrils

or filaments. These four steps were consistent with the group’s and others’ experimental evidence (Harper et

al., 1999). Both the initial size of aggregates and the rate of growth were shown to be highly concentration-

dependent. At lower concentrations, elongation is relatively more important and a few long filaments are

produced, whereas at higher concentrations, initiation and lateral aggregation become more dominant
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features.

Kim and colleagues (2004) further examined how Aβ oligomers, the intermediates in the fibrillogenic

pathway, could be controlled, by investigating the effect of urea on secondary structure, size distribution,

aggregation kinetics, and aggregate morphology. Increased urea concentration led to β-sheet content and the

fraction of aggregated peptide decrease, reduced average size of aggregates, and changes in the morphology of

aggregates. The model results were consistent with the hypothesis that the globular aggregates were

intermediates in the amyloidogenesis pathway rather than alternatively aggregated species.

Other modelling attempts have focused on plaque formation (Cruz et al., 1997; Urbanc et al., 1999), the

kinetics of APP processing (Schmidt et al., 2011; Ortega et al., 2013) and the interactions of intracellular Ca2+

and Aβ (De Caluwe & Dupont, 2013) in the Alzheimer’s brain. Consecutive cleavage of amyloid precursor

protein (APP) by α-, β- and γ-secretases produce Aβ plaques in the brain. It is hypothesized that secretase

inhibitors can reduce the production of Aβ in the brain and thus may slow the progression of Alzheimer

disease. Paradoxically, it has been shown that low to moderate inhibitor concentrations cause a rise in Aβ

production in different cell lines, in different animal models, and also in humans. Ortega et al. (2013)

developed a minimal mechanistic understanding of Aβ dynamics in cell lines that exhibit the rise as well as in

cell lines that do not. The model showed that the cross-talk between the amyloidogenic and the non

amyloidogenic pathways accounts for the increase in Aβ production in response to inhibitor, i.e. an increase

in C99 will inhibit the non-amyloidogenic pathway, redirecting APP to be cleaved by β-secretase, leading to

an additional increase in C99 that overcomes the loss in γ-secretase activity. De Caluwe and Dupont (2013)

developed a minimal model that qualitatively described the interactions between intracellular Ca2+ and Aβ.

The model accounted for known characteristics of the disease, such as its irreversibility, the threshold-like

transition to a severe pathology after the rather slow accumulation of symptoms, the so-called ‘prion-like’

autocatalytic behaviour, and the inherent random character of the apparition of the disease that is

well-known for the sporadic form of AD.

Models of other cascade hypotheses and their interactions

Recently, as our knowledge of the AD pathology grew, there have been more complex models of AD

development. A comprehensive model of AD development based on the amyloid hypothesis was advanced by

Anastasio (2011). The model’s Aβ regulation pathways were specified with sets of interrelated equations and

rules written in the Maude environment. The resulting Maude specifications were then converted to Petri net

models, which are then executed and analyzed using innate to Maude Petri net tools. The molecules and

conditions represented in the model are assigned arbitrary integer values and the equations and rules specify

how changes in the levels of some model elements change the levels of other elements. The model

demonstrated how Aβ regulation can be disrupted through the interaction of pathological processes such as

cerebrovascular disease (CVD), inflammation and oxidative stress (OS). Particularly it showed how incipient

CVD can trigger AD. It also showed how treatments directed at multiple targets can be more effective than

single target therapies.

Anastasio (2013) extended its previous model to account for the many factors including estrogen that

participate in the regulation of Aβ, and to explore ways in which estrogen therapy might be used more

effectively in AD treatment, perhaps by administering estrogen in conjunction with other agents. The main

finding of this model was that, under conditions of very low estrogen and incipient CVD, the level of Aβ could

be reduced, possibly to normative levels, with a combination of a non-steriodal anti-inflammatory drug

(NSAID) that promotes peroxisome proliferator-activated receptor (PPAR) expression, a compound that

blocks hypoxia inducible factor (HIF), and estrogen itself. The model suggested that estrogen would provide

the main benefit, reducing Aβ directly (e.g., by enhancing neprilysin (NEP) expression) and indirectly by

reducing inflammation and OS (e.g., by enhancing superoxide dismutase (SOD) expression), thereby
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disrupting pathological processes that contribute to Aβ accumulation. With estrogen itself providing the main

benefit, an NSAID and a HIF-blocker can each provide a small additional benefit, and these two benefits are

additive in combination.

Using a similar modelling approach Anastasio (2014) attempted to understand the dysregulation of synaptic

plasticity by Aβ. In the normal synapse where Aβ is absent the model suggests that PKA is responsible for

keeping striatal-enriched protein tyrosine phosphatase (STEP) (and other key LTD drivers) inactive when

Ca2+ is high enough to elicit LTP. In the diseased synapse where Aβ is present, the model suggests that the

action of PKA is instrumental in preventing LTD from occurring at all non-zero levels of presynaptic activity

including that which would evoke LTP in the normal synapse. In the model PKA is the mediator that keeps

the diseased synapse at least at baseline at high levels of presynaptic activity. The model provides an initial

framework for understanding how various drugs and drug combinations might operate in the diseased

synapse. The model suggests that normalization of nicotinic acetylcholine receptors (nAChR) function may be

the most effective way to counteract the adverse effects of Aβ on synaptic plasticity, lending some modelling

support to the suggestion that disordered nAChR function is the main route by which Aβ dysregulates

synaptic plasticity (Wang et al., 2000; Snyder et al., 2005; Shankar et al., 2008).

In line with the Anastasio (2014) study, Craft and colleagues (2002) used a mathematical model to assess the

effect of AD treatment on Aβ levels in various compartments of the body. Using an infinite set of nonlinear

differential equations they studied the dynamics of Aβ levels in the brain, CSF and plasma, both before and

after treatment. Their mathematical analysis revealed two possible regimes, depending on the value of a

polymerization ratio, r, in the brain, which was the product of the effective production rate and elongation

rate divided by the product of the effective loss rate and the fragmentation rate. When the polymerization

ratio was less than 1, steady-state Aβ levels were achieved throughout the body. When the polymerization

ratio was greater than 1, then the Aβ accumulation grew indefinitely, whereas the Aβ levels in the CSF and

plasma remained in a steady state.

Other modelling attempts investigated the relationship between GSK3b, p53, Aβ and tau (Proctor & Gray,

2010). The Proctor and Gray (2010) model was a multi-modular one that included regulatory components for

DNA damage, p53 regulation, GSK3 activity, Aβ turnover, tau dynamics and the aggregation of Aβ and tau.

The model showed that a sudden increase in DNA damage leads to oscillations of p53 and Mdm2. Disruption

of the Mdm2/p53 complex, allows the formation of GSK3b/p53 complexes which results in increased

transcriptional activity of p53 and increased kinase activity of GSK3b. This led to an increase in Aβ

production, an increase in Mdm2 mRNA and an increase in tau phosphorylation. Under normal conditions,

the model predicted that Aβ is cleared from cells and so it does not accumulate, and tau is dephosphorylated

to maintain the correct balance of phosphorylated and un-phosphorylated tau. However, after a stress event,

the DNA damage response leads to increased activity of p53 and GSK3b which results in increased production

of Aβ and increased phosphorylation of tau. If the parameter for DNA repair was set so that most DNA

damage is repaired in 24 hours, then Aβ is cleared and tau is de-phosphorylated, so that aggregates do not

accumulate. In the aging brain Proctor and Gray hypothesized that DNA damage may persist for longer

periods of time either due to a decline in repair mechanisms or an increase in reactive oxygen species (ROS)

production. Then aggregates are much more likely to accumulate which in turn lead to increased ROS

production and further DNA damage which leads to further activation of p53 and GSK3b and even more

aggregation. Their model also predicted that the formation of plaques and tangles are independent events,

but that they share a common cause, namely GSK3b overactivity.

Proctor and colleagues (2013) extended their model to investigate the effects of passive and active

immunization against Aβ and this intervention effects on soluble Aβ, plaques, phosphorylated tau and

tangles. Aβ clearance proceeded into steps where administration of antibodies were modelled by adding a

species named "anti Aβ" to represent the addition of antibodies (i.e. passive immunization) and another
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species named "Glia" to represent microglia. The addition of antibodies and microglia were done at

predetermined time points during the simulation. The aggregation process started with the formation of Aβ

dimmers from two monomers, but this reaction was reversible. Under normal conditions, model Aβ levels

started at very low values and Aβ was continually produced and degraded. The model predicted that

immunization leads to clearance of plaques, but has small effect on soluble Aβ, tau and tangles. The model

suggested that immunotherapy against Aβ is more effective when it is applied to in the early stages of the

disease.

Kyrtsos and Baras network interaction model of Aβ, neuro-inflammation, mitochondrial dysfunction, and

lipid metabolism dysregulation to study the varying effects of variations in the ApoE allele present, as well as

the effects of short term and periodic inflammation at low to moderate levels. Red nodes represent molecules

involved in the inflammatory process; green nodes represent proteins; orange nodes represent an interaction

with ApoE; blue nodes represent molecules involved in energy metabolism; light blue nodes represent

protein–lipid complexes; and purple nodes represent lipid metabolism. Conservation of mass allows

molecules to interact in more than one set of interactions. The associated equations are indicated by the red

numbers near the nodes (adapted with permission from Kyrtsos & Baras, 2013).]]Kyrtsos and Baras (2013)

advanced a network interaction model of Aβ, neuro-inflammation, mitochondrial dysfunction, and lipid

metabolism dysregulation to study the varying effects of variations in the ApoE allele present, as well as the

effects of short term and periodic inflammation at low to moderate levels. Their model was a two level

(cellular and molecular) hierarchy model, where at the cellular level four main cell types (neurons, astrocytes,

microglia, and brain endothelial cells) were allowed to interact with each other and at the molecular level,

each of these cell types had their own metabolic network that generated molecules related to their specific

cellular function (Fig 2). The cellular products were then allowed to interact with the molecular products of

other cellular networks. The chemical species of each cell type was modeled by the average distribution and

adjusted based on the number of cells of that type present. Simulations demonstrated that having even one

ApoE4 allele eventually lead to a significant local increase in Aβ that leads to the collapse of ATP levels,

subsequent elevation of glutamate and loss of all neurons in a local region over the course of an equivalent

1-1.5 years. Simulations on the effect of short-term inflammation showed that the level of neuronal

cholesterol increased nearly immediately in response to the inflammatory response, regardless of the ApoE

genotype, before returning to baseline levels. The elevated cholesterol levels suppressed cleavage of APP into

Aβ during this period, which subsequently eliminated the variability of neuronal ATP levels. Suppression of

ATP variability allowed the ATP levels to decrease slowly, which eventually led to a slow increase in Aβ and

the eventual neuronal cell death. ApoE4 homozygotes appeared to benefit from this short inflammatory pulse

by delaying the neuronal cell loss, while ApoE2 and 3 homozygotes appeared to be harmed in the long-term

by the inflammatory pulse. Periodic and chronic inflammation via different pathways had similar effects as

short-term inflammation. The model showed that inflammation may play a role in the AD process, but that

the duration of the inflammation, as well as the strength of the inflammation, are important in determining

whether the pro-inflammatory state will contribute, lessen or not even affect Aβ generation and AD

progression.

Single cell models
Experimental studies have reported that Aβ exposure of cells leads to disruptions of intrinsic electrical

properties in dendrites of cells in the hippocampus (Chen, 2005). In particular, one experimental study

reported that application of Aβ blocks A-type K+ channels in pyramidal cell dendrites, causes an increase in

dendritic membrane excitability and Ca2+ influx due to an enhanced back-propagating action potentials

(bAPs) (Chen, 2005). This dendritic hyper-excitability eventually leads to cell excitotoxicity and other

degenerative changes (Good & Murphy, 1996). A similar Aβ block of IA has been observed in dissociated (Xu

et al., 1998) and cultured (Zhang & Yang, 2006) hippocampal CA1 neurons and in cholinergic basal forebrain
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neurons (Jhamandas et al., 2001) and neocortical neurons (Ye et al., 2003). Morse and colleagues (2010)

were the first to computationally investigate in a detailed biophysical model of a CA1 pyramidal cell these

experimental findings in the fine oblique branches of its apical dendritic tree. The effect of Aβ was modelled

as a reduction of the maximal conductance of the transient A-type K+. The simulation results supported the

experimental results (Chen, 2005) that a selective effect of Aβ on K+ current increases the extent of invasion

of bAPs from the cell body into the apical dendritic trunk of CA1 pyramidal neurons, as it has been seen with

pharmacological blockade of the A-type K+ current (Hoffman et al., 1997). The simulation results showed for

the first time that the effect of a disruption of normal dendritic electrical activity by IA blockade appears to

have a much larger difference between the depolarizations in the Aβ and normal cases in the distal oblique

branches compared to the dendritic trunk.

In subsequent studies, some researchers (Culmone & Migliore, 2012; Wilson et al., 2013) investigated how

further modifications of synaptic and membrane properties caused by Aβ accumulation can affect the main

firing properties of a CA1 pyramidal neuron under current and voltage clamp conditions. Both studies made

recommendations which mechanisms could be targeted by drugs to restore the original firing conditions.

Experimental evidence has also demonstrated that an acute enhancement of endogenous Aβ leads to an

increase in the initial release probability (p0) at the CA3-CA1 synapses of the hippocampus, without altering

postsynaptic function or intrinsic neuronal excitability (Abramov et al., 2009). This increase in p0 has also

been associated with an Aβ-induced increase in vesicle depletion (Parodi et al., 2010). Romani and colleagues

(2013) using a realistic model of hippocampal CA1 pyramidal neuron investigated how this enhancement in

p0 influences synaptic short-term plasticity of the synapse and the firing probability of the CA1 output

neuron. They demonstrated that this synaptic modification can significantly alter synaptic integration

properties in a wide range of physiologically relevant input frequencies especially in the theta and gamma

ranges.

Biophysical spiking models
EEG studies in AD patients have shown that beta band power (13–30 Hz) decreased in the early stages of the

disease with a parallel increase in theta band power (4–7 Hz). This abnormal change progresses with the later

stages of the disease but with decreased power spectra in other fast frequency bands plus an increase in delta

band power (1–3 Hz). The mechanisms underlying such changes in brain oscillations are still unclear. Zoo

and colleagues (2011) used a biophysical hippocampal CA1-medial septum network model to investigate how

changes in four ionic channels (L-type Ca2+ channel, delayed rectifying K+ channel, A-type fast-inactivating

K+ channel and large-conductance Ca2+-activated K+ channel) known to be affected by Aβ exposure lead to

the reported theta band power changes and the subsequent toxicity of the hippocampal pyramidal neurons.

Simulation results demonstrated that only the Aβ inhibited A-type fast-inactivating K+ channels induce

increases in hippocampo-septal theta band power due to enhanced synchrony between pyramidal neurons,

while other channels do not affect the theta rhythm.

Abuhassan and colleagues (2012) investigated the causes of abnormal cortical oscillations in AD using two

heterogeneous neuronal network models. They examined the effects of neuronal and synaptic loss and

deregulation of negative feedback to the membrane potential of cortical neurons mainly from Aβ-induced

dysfunctional K+ channels on the oscillatory activity of cortical networks. Simulation results show that,

despite the heterogeneity of the network models, the beta band power is more significantly affected by

excitatory neural and synaptic loss in comparison to other bands.

Other modelling studies focused on the mechanisms causing cell death and synapse dysfunction in AD. As

cells die and synapses lose their drive, the remaining cells in the network suffer an initial decrease in activity.

Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. This

homeostatic mechanism is believed to sense levels of activity-dependent cytosolic calcium within the cell and
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to adjust neuronal firing activity by increasing the density of AMPA synapses at remaining synapses to

achieve balance. The scaling mechanism increases the firing rates of remaining cells in the network to

compensate for decreases in network activity. However, this effect can itself become a pathology, as it

produces increased imbalance between excitatory and inhibitory circuits, leading to greater susceptibility to

further cell loss via calcium-mediated excitotoxicity. Rowan and colleagues (2014) advanced a mechanistic

explanation of how directed brain stimulation might be expected to slow AD progression based on

computational simulations in a 470-neuron biomimetic model of a neocortical column. The simulations

demonstrated that therapeutic low-intensity low-frequency electro-stimulation could act on homeostatic

synaptic scaling mechanisms to reduce the pathological effect of excessive compensatory scaling in AD

disease. The increase in activity within the remaining cells in the column results in lower scaling-driven

AMPAR up regulation, reduced imbalances in excitatory and inhibitory circuits, and lower susceptibility to

ongoing damage.

Menschik and Finkel (1998) advanced a model of hippocampal CA3 network dynamics inspired by the

Buzsaki "two-stage" memory model (Buszaki, 1989; Buzsaki & Chrobak, 1995) and the suggested role for

interneurons, basket and chandelier cells, and the Lisman and colleagues model on embedded gamma cycles

within the theta rhythm (Lisman & Idiart, 1995; Lisman, 2005) in order to study the modulation and control

of storage and recall dynamics in AD by subcortical cholinergic and GABAergic input to the hippocampus.

They showed that synchronization in the gamma frequency range can implement an attractor based

auto-associative memory, where each new input pattern that arrives at the beginning of each theta cycle

comprised of 5-10 embedded gamma cycles drives the network activity to converge over several gamma cycles

to a stable attractor that represents the stored memory. Their results supported the hypothesis that spiking

and bursting in CA3 pyramidal cells mediate separate behavioral functions and that cholinergic input

regulates the transition between behavioral states associated with the online processing and recall of

information. Cholinergic deprivation led to the slowing of gamma frequency, which reduced the number of

"gamma cycles" within the theta rhythm available to reach the desired attractor state (i.e. memory loss and

cognitive slowing seen in AD).

Inspired by the Cutsuridis and colleagues (2010) modeling study, Bianchi et al. (2014) investigated the

conditions under which the properties of hippocampal CA1 pyramidal neurons altered by increasing CREB

activity can contribute to memory storage and recall improvements. The effects of CREB were modelled as

decreases in the peak conductances of mAHP and sAHP currents by 52% and by 64% respectively and an

increase in the peak AMPA conductance by 266%. With a set of patterns already stored in the network, they

found that the pattern recall quality under AD-like conditions (i.e. when the number of synapses involved in

storage is reduced and/or the peak AMPA conductance is reduced) is significantly better when boosting CREB

function. They inferred that the use of CREB-based therapies could provide a new approach to treat AD.

Systems level models
One early connectionist model focused on understanding difficulty in naming objects in AD patients,

especially of low-quality object stimuli as well as less frequent objects (Tippett & Farah, 1994). This

feedforward model was trained using Hebbian learning, and showed how semantic memory deficit can

explain naming difficulty in AD patients. The model consisted of five layers: name input, visual input (and

two hidden layers for each), and semantic representation layer. The model specifically showed that lesioning a

random subset of semantic neurons (presumably mimicking neural dysfunction in AD) leads to impairment

processing inputs and eventually impairments in naming objects (for discussion on this model, see Harley,

1998).

Unlike prior models that focus on simulating AD as involving damage to neurons, one class of models showed

that synaptic abnormalities are related to memory decline in AD (Horn et al., 1993; Ruppin & Reggia, 1995).
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Horn and colleagues provided a model based on the Hopfield network in which memories correspond to

different attractor states. The model showed how deleting random weights (synaptic deletion) impact

attractor dynamics. They also showed that a compensation mechanism (increasing the value of remaining

weight) can bring the network back to normal conditions. Another model used the synaptic deletion

hypothesis to simulate impairment in retrieval of recent, but not remote, memories in AD patients (Ruppin &

Reggia, 1995).

Using the runaway synaptic modification hypothesis (which is exponential growth in synaptic weight values),

Hasselmo provided a two-layer feedforward network to simulate memory impairment in AD. Hasselmo used

this model to explain the effects of hippocampal dysfunction in cortical information processing in AD

(Hasselmo, 1994; Hasselmo, 1997). Hasselemo showed that impaired memory encoding of new information

in the hippocampus (i.e., impaired pattern separation and confusing new and old memory representations)

can explain memory decline in AD. He also argued impaired pattern separation can perhaps explain memory

retrieval impairment in AD patients.

One more recent model by Bhattacharya and colleagues studies the relationship between active synapses and

alpha frequency in healthy populations, individuals with mild cognitive impairment, and AD patients

(Bhattacharya et al., 2011) to replicate experimental data of dysfunctional EEG in AD patients. Each brain

region simulated in this model is composed of different layers of neurons (3 for the thalamus module, and 4

for the cortex module). One limitation of the model, as mentioned by the authors, was not simulating the

relationship between ACh and alpha band frequencies. Future modeling work should also link changes in

alpha band power to dementia symptoms in AD patients.

A different class of models by Meeter and colleagues were used to explain anterograde amnesia in semantic

dementia. Using a two-layer network model that corresponds to cortex and hippocampus (known as

TraceLink model), Meeter and Murre (2005) showed that a simulated lesion to the hippocampus (disabling

hippocampal neurons) can lead to anterograde amnesia. As in Hasselmo models, Meeter and colleagues

argued that the formation and maintenance of declarative memories takes place in the cortex, and thus

damaging the hippocampus leads to anterograde amnesia (ie., recall and formation of recent, but not, remote

memories). Although this model was applied to semantic dementia patients, similar methods and results can

be predicted for AD patients.

Gluck, Myers, Nicolle, and Johnson (2006) provided a computational analysis (though not a simulation

model) of how Alzheimer’s disease might affect hippocampal functioning and behavioral performance,

especially in learning and transfer generalization of learned information to new contexts. Specifically, Gluck

and colleagues argue that cognitive decline in AD was related to inability to generalize prior learning to novel

contexts. Buildong on the Gluck, Myers, Nicolle, and Johnson (2006) modeling framework, Moustafa and

colleagues provided a two-layer neural network of the basal ganglia and hippocampal region interaction that

simulate learning and generalization. The model was trained using both Hebbian learning and temporal

difference algorithms. The model showed that damage to the hippocampus (that is, removal of the simulated

hippocampal region from the model) leads to impaired of generalization of learning performance (Moustafa

et al., 2010), as reported in behavioral studies (Bodi et al., 2009).

McAuley et al. (2009) designed an abstract computational model to explain the relationship between cortisol

and hippocampus function in aging populations and AD patients. The model showed that increase in cortisol

levels inhibits hippocampal function and leads to memory decline, which has been reported in Alzheimer’s

disease patients. The model assumed that by age 90, increase in cortisol leads to a decrease in hippocampal

activity of 30%. One limitation of this model was focusing only on cortisol receptors in the hippocampus, and

not in other brain regions.

One abstract model focued on language production impairment in AD patients (Conley et al., 2001). Unlike
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prior models, Conley and colleagues argued that denser memory representations in AD patients than in older

populations reach saturation levels, and lead to impairment in language production. The model was based on

the authors’ prior model known as the Hyperspace Analogue of Language, which has semantic representation

of millions of words as well as semantic relationship among these words. Based on inputs from interviews

conducted with AD patients and controls, the input the model was 19,000 words (in each group), and the

output was the measure of density of representation (distance between a word and its neighbors in the

Hyperspace Analogue of Language). Conley and colleagues found that AD patients have denser

representations. However, it is not known how these representations relate to AD symptoms.

Although there have been several attempts to model AD, there are many limitations. Most existing models

have not attempted to explain the relationship between neural changes (formation of plaques and tangles,

reduction in ACh levels) to behavioral symptoms (memory decline, semantic memory deficits, executive

dysfunction) in AD. This is in contrast to other brain disorders, such as Parkinson’s disease, where there have

been some successful attempts to simulate neural-behavioral relationship. Further, unlike models of

Parkinson’s disease, existing models of AD did not simulate the effects of medications (donepezil,

galantamine, rivastigmine, and memantine) on neural and behavioral processes. Future models should

explain how increasing ACh levels and NMDA antagonists does relate to memory improvement. Further,

although most (if not all) of the neural and behavioral studies differentiate between mild-to-moderate vs.

severe AD patients, and also whether patients are APOE ε4 carriers or not, computational modelling studies

did not address these subgroups of AD patients.
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