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Abstract

Many natural, complex systems are remarkably stable thanks to an
absence of feedback acting on their elements. When described as net-
works, these exhibit few or no cycles, and associated matrices have small
leading eigenvalues. It has been suggested that this architecture can con-
fer advantages to the system as a whole, such as ‘qualitative stability’,
but this observation does not in itself explain how a loopless structure
might arise. We show here that the number of feedback loops in a net-
work, as well as the eigenvalues of associated matrices, are determined by
a structural property called trophic coherence, a measure of how neatly
nodes fall into distinct levels. Our theory correctly classifies a variety of
networks – including those derived from genes, metabolites, species, neu-
rons, words, computers and trading nations – into two distinct regimes
of high and low feedback, and provides a null model to gauge the signifi-
cance of related magnitudes. Since trophic coherence suppresses feedback,
whereas an absence of feedback alone does not lead to coherence, our work
suggests that the reasons for ‘looplessness’ in nature should be sought in
coherence-inducing mechanisms.
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Significance Statement

Complex systems such as cells, brains or ecosystems are made up of many
interconnected elements, each one acting on its neighbours, and sometimes in-
fluencing its own state via feedback loops. Certain biological networks have
surprisingly few such loops. While this may be advantageous in various ways,
it is not known how feedback is suppressed. We show that trophic coherence,
a structural property of ecosystems, is key to the extent of feedback in these
as well as in many other systems, including networks related to genes, neurons,
metabolites, words, computers and trading nations. We derive mathematical ex-
pressions which provide a benchmark against which to examine empirical data,
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and conclude that ‘looplessness’ in nature is probably a consequence of trophic
coherence.

Introduction

Feedback is a fundamental process in dynamical systems which occurs when the
output of an element is coupled to its input. In complex systems, this coupling
can happen via feedback loops (or cycles) involving many elements, and hence
the number and structure of such loops often determine important properties
of the system as a whole [1]. In systems which can be represented as graphs, or
networks, the combined effects of feedback loops are described by the spectrum
of eigenvalues of the adjacency matrix (the matrix of ones and zeros representing
the existence or absence of edges between nodes) [2, 3]. These eigenvalues
can be related to fundamental questions regarding both structure [4, 5] and
dynamical processes – including percolation [6], stability of dynamical elements
[7], diffusion [8], or synchronization of coupled oscillators [2]. Feedback loops
also play a role in the behaviour of many specific systems, such as robustness
in gene regulatory networks [9], short-term memory in neural networks [10], or
systemic risk in financial networks [11].

It has been observed that many biologically derived networks, such as food
webs [12, 13] and gene transcription networks [14], have far fewer feedback loops
than would be randomly expected, or even none at all. Given that acyclicity
is the main requirement for being ‘qualitatively stable’, or stable regardless of
the details of dynamics [1], one might suppose that this ‘loopless’ architecture
is an adaptation for stability or some other functional advantage. However,
in some cases it is not clear what the optimisation mechanism behind loop
suppression might be. In an ecosystem, for instance, how would a feedback
cycle be eliminated if it happened to benefit the particular organisms involved?

It has recently been shown that the high linear stability of food webs is de-
termined mainly by a structural feature called ‘trophic coherence’, a measure of
how neatly nodes fall into distinct levels [15]. Trophic coherence, moreover, has
been found to play an important role in other structural and dynamical proper-
ties of networks [16, 17]. In order to investigate the relationship between trophic
coherence and feedback, we here define the ‘coherence ensemble’ of graphs, and
obtain expressions for various magnitudes relating to the cycle structure and
spectrum of eigenvalues of coherent but otherwise random networks. We find
that the number of cycles of length ν in a network can either grow or decay
exponentially with ν, according to a ‘loop exponent’, τ , which is a function of
trophic coherence. A corollary is that the expectation for the leading eigenvalue
is λ1 = eτ . Thus, depending on the sign of τ and hence on trophic coherence, a
network can belong either to a ‘loopful’ regime characterised by many cycles and
high leading eigenvalues; or a ‘loopless’ one in which cycles become scarcer with
length, and all eigenvalues have real parts close to zero. In the loopless regime,
the probability of drawing a directed acyclic graph tends to one with decreasing
τ . We analyse a collection of empirically derived networks of several kinds, and
find that they conform to our theoretical predictions, with those networks with
negative loop exponents displaying very few or no cycles. The observation of
scarcity of feedback in certain natural systems is therefore unsurprising, given
their trophic coherence.
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Our work also suggests the question: what mechanisms explain trophic co-
herence? In the case of food webs, there are probably evolutionary pressures
leading predators to specialise on prey on a narrow range of trophic levels [15].
However, further research is needed to reveal other coherence-inducing mecha-
nisms.

Results

The results we present here are for graph ensembles; that is, we make statements
about expected values or probability distributions over the sets of all possible
graphs which meet certain constraints. As we shall see, these results can shed
light on the relationships between the structural features of many real-world
networks, to the extent that they can be regarded as random draws from a par-
ticular ensemble. Paul Erdős and Alfred Rényi pioneered this approach to graph
theory with their analysis of the ensemble of all graphs with a given number of
nodes N and edges L [18]. The Erdős-Rényi ensemble has two regimes, one for
L > N in which almost all graphs will include a giant connected component,
and another at L < N in which no component will have more than O(lnN)
nodes. Sometimes other characteristics are important. For example, while node
degrees (i.e. numbers of neighbours) in the Erdős-Rényi ensemble are Poisson
distributed, real networks often have heavy-tailed degree distributions – a prop-
erty which affects many other topological features [19]. Such systems might thus
be better studied by means of the configuration ensemble, the set of all graphs
with not only given N and L, but also a given degree sequence [20].

In the same spirit, we here define the coherence ensemble as the set of directed
graphs with a given number of nodes and degree sequence, plus a specified
trophic coherence. We go on to show that in this ensemble there are also two
regimes, depending on a single parameter, τ , called the loop-exponent:

τ = lnα+
1

2q̃2
− 1

2q2
, (1)

where the branching factor α depends on the degree sequence, and q and q̃
capture the trophic coherence of a given network and that of its random expec-
tation, respectively. The coherence ensemble expectations for magnitudes such
as the number of cycles of given length, or the leading eigenvalue, depend on τ
exponentially. Therefore, as we shall go on to show, the sign of τ determines
whether a network belongs to the “loopless” (τ < 0) or the “loopful” (τ > 0)
regimes.

Definitions. Consider the directed, unweighted graph given by the N × N
adjacency matrix A = (aij), which has L =

∑
ij aij directed edges. The in- and

out-degrees of node i are kini =
∑
j aij and kouti =

∑
j aji, respectively, and the

mean degree is 〈k〉 = L/N (we shall use the notation 〈·〉 to refer to averages
over nodes in a given graph, as opposed to ensemble averages). Note that the
mean degree can be regarded as either the mean in-degree or the mean out-
degree, since these coincide: 〈k〉 = N−1

∑
i k
in
i = N−1

∑
i k
out
i . An important

magnitude which depends only on degrees is the branching factor:

α =
〈kinkout〉
〈k〉 . (2)
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Note that this magnitude, which together with trophic coherence determines
the loop-exponent τ , only depends on the mean degree 〈k〉 and the correlations
between in- and out-degrees, and not on other aspects of the degree distribu-
tions.

The eigenspectrum of A is {λi}. The trace of the n-th power of any square
matrix A can be expressed in terms of its eigenvalues as Tr(An) =

∑
i λ

n
i [21].

Therefore, the distribution of eigenvalues, p(λ), is related to powers of A via its
moments:

〈λν〉 =
1

N
Tr(Aν). (3)

Since A is not, in general, symmetric, its eigenvalues will be complex. The trace
of A is real and invariant with respect to a change of basis, so the eigenvalues
of A will always be distributed symmetrically around the real axis [21]. Of
particular interest is the eigenvalue with largest real part, λ1 – usually referred
to as A’s leading eigenvalue.

A ‘basal node’ is one with in-degree equal to zero. If a graph has at least
one basal node (our assumption throughout), and every node belongs to at least
one directed path which includes a basal node, we can define the trophic level
of each node i as

si = 1 +
1

kini

∑

j

aijsj . (4)

With no loss of generality for subsequent results, we define the trophic level of
basal nodes as si = 1 (∀i such that kini = 0) [22]. This is the convention in
ecology, where the trophic level of a species informs as to its ecological function:
typically, plants have s = 1, herbivores s = 2, and omnivores and carnivores
s > 2.1 Note that Eq. (4) is a system of linear equations which can be solved
whenever every node is on a path which begins at a basal node [15]. Hence,
despite the recurrent nature of this definition of trophic levels, the presence of
cycles does not pose a problem.

In Ref. [15] we defined the ‘trophic difference’ associated to each edge:
xij = si− sj . The distribution of trophic differences over edges, p(x), has mean
L−1

∑
ij aijxij = 1 by definition,2 and we can measure the graph’s ‘trophic

coherence’ with its standard deviation:

q =

√
1

L

∑

ij

aijx2ij − 1. (5)

A graph will be more trophically coherent the closer q is to zero, so we refer
to q as an ‘incoherence parameter’. Maximal coherence, q = 0, corresponds
to a “layered” network in which every node has an integer trophic level, and,

1Eq. (4) is similar to the definition of the PageRank algorithm used by the search engine
Google [23]. The main difference is that the sum in Eq. (4) is normalised by kini , whereas
PageRank divides each term in the sum by koutj . Also, the small “teleportation” additive term
which PageRank includes to avoid problems with cycles is here the “+1” term which induces
the hierarchy of trophic levels. Both measures are related to diffusion processes; but while
PageRank provides the probability of a node being reached by a “random surfer” (a random
walker with some chance of teleportation), Eq. (4) provides a measure of how far the biomass
arriving at a given node has travelled from the basal nodes.

2This can be easily seen by noting that, for any node i, the average difference over its
incoming edges is

∑
ij aij(si − sj)/kini = 1.
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as q increases, the further the system departs from this ordered configuration
[15, 16].

The number of directed paths (henceforth ‘paths’) of length ν in A is nν =∑
ij(A

ν)ij . The number of directed cycles (henceforth ‘cycles’) of length ν is
mν = Tr(Aν), which, according to Eq. (3), can be expressed as mν = N〈λν〉.
(Note that we are not referring here to simple paths and simple cycles, in which
no node can be repeated.) This definition of mν counts every unique cycle ν
times, so the number of unique cycles will be mu

ν = mν/ν.
The ‘directed configuration ensemble’ is the set of all possible graphs with

given in- and out-degree sequences [24]. If the number of basal edges connected
to basal nodes in a graph drawn from this ensemble is LB , then for any node
i the expected proportion of in-neighbours connected to a basal node will be
kini LB/L. In order to obtain several expectations related to trophic coherence
exactly, we define a modified version of this ensemble called the ‘basal ensemble’,
which is the subset of graphs from the directed configuration ensemble which
satisfy the constraint that the proportion of neighbours connected to basal nodes
is exactly kini LB/L for every node i. It is straightforward to determine that in
this ensemble the expectations for the trophic coherence and for the branching
factor are given, respectively, by

q̃ =

√
L

LB
− 1 (6)

and

α̃ =
L− LB
N −B (7)

(where we use the notation E(z) = z̃ to refer to the expectation of magnitude
z in the basal ensemble). The full derivation of these results can be found in
SI Appendix. In the limit N → ∞, with L/N → ∞, expectations in the basal
ensemble and the directed configuration ensemble converge. For finite graphs,
we show numerically in SI Appendix that expectations in the two ensembles
are close. Equations (6) and (7) can therefore be considered reasonable null
expectations for real networks given only N , L, B and LB – i.e. in the absence
of information regarding in-out-degree correlations or trophic coherence.

The coherence ensemble. Let us now consider the ensemble of directed
graphs which not only have given in- and out-degree distributions (as in the
directed configuration ensemble), but also given trophic coherence. We shall
refer to this as the ‘coherence ensemble’, and use the notation E(z) = z for the
expected values of quantities z in this ensemble. For networks in the coherence
ensemble, the probability of a randomly chosen path of length ν being a cycle
can be obtained by considering a random walk along the edges of the graph and
computing the probability that it returns to the initial node after ν hops. This
constraint implies that the sum of the trophic differences xk over the k = 1, ...ν
edges involved, S =

∑
k xk, must be zero. Let us approximate the differences xk

as independent random variables drawn from the trophic difference distribution
p(x). According to the central limit theorem, the distribution p(S) will tend,
with increasing ν, to a Gaussian with mean ν〈x〉 = ν and variance νq2. Since
cycles are paths which satisfy S = 0, the expected proportion of paths of length
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ν that are cycles, cν , will be proportional to p(S = 0). That is,

cν = Bν
1√
νq

exp

(
− ν

2q2

)
. (8)

Not all the paths satisfying S = 0 will return to the initial node, and this effect
is accounted for by the factor Bν . We can obtain Bν by particularising for the
basal ensemble case, for which q is given by Eq. (6), and cν = α̃/L (see SI
Appendix). Inserting these values into Eq. (8), we have

Bν =
α̃

L

√
νq̃ exp

(
ν

2q̃2

)
. (9)

Therefore, an approximate expression for cν is

cν =
α̃

L

q̃

q
exp

[
ν

2

(
1

q̃2
− 1

q2

)]
. (10)

The expected proportion of paths of size ν which are cycles can thus either
decrease or increase exponentially with ν, depending on whether a particular
graph is more or less trophically coherent than the null expectation given its
degree sequence. Eq. (10) was obtained using the central limit theorem, and
so should only be valid for moderately large ν. However, if the distribution of
differences, p(x), is approximately normal, it will be a good approximation also
at low values of ν. We have also assumed the trophic differences of each path to
be independent random variables drawn from p(x), an approximation which will
hold as long as there are no significant correlations between these differences.

Let us now assume that the total number of paths in the coherence ensemble
is given approximately by nν ' Lαν−1, as in the basal and the directed configu-
ration ensembles – i.e. irrespective of q (see SI Appendix). This is a reasonable
assumption, at least for low ν, since α is the key element determining the num-
ber of ways a set of edges can be concatenated. (For finite N , the approximation
may break down at high ν and low q, because the maximum path length will be
shorter in highly coherent graphs than in random ones.) Combining this with
Eq. (10) we obtain the expected number of cycles of length ν:

mν =
α̃q̃

αq
eτν , (11)

where the ‘loop exponent’ τ has already been supplied in Eq. (1). The term
1/q̃2 − 1/q2 in Eq. (1) will be negative for networks which are more coherent
than the random expectation (q < q̃), and positive for those which are less so;
while the sign of lnα depends on whether α is greater or less than 1. Eq. (11)
implies that the expected number of cycles of length ν in a graph can either
grow exponentially with ν, when τ > 0; or decrease exponentially, if τ < 0.
Thus, which of these two regimes a given graph finds itself in is determined by
the correlation between in- and out-degrees, α = 〈kinkout〉/〈k〉; the proportion
of edges which connect to basal nodes, LB/L (via q̃ =

√
L/LB − 1); and the

trophic coherence, given by q. Note that, as mentioned above, the definition of
mν counts each cycle ν times, so the expected number of unique cycles is

mu
ν =

α̃q̃

αq

eτν

ν
. (12)
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The number of cycles is related to the eigenspectrum of the adjacency matrix
through Eq. (3). Therefore, from Eq. (11) we have that the expected value of
the ν-th moment of the distribution of eigenvalues is

〈λν〉 =
1

N

∑

i

λi
ν

=
1

N

α̃q̃

αq
eτν . (13)

We can use this relation to obtain, for the coherence ensemble, the expected
value of the leading eigenvalue by considering the limit of large ν:

lim
ν→+∞

(∑

i

λi
ν

) 1
ν

= λ1 = eτ . (14)

The expressions for the configuration ensemble can be recovered by taking
q = q̃, which, according to Eq. (1), implies τ = lnα. Thus, the leading eigen-
value in the directed configuration ensemble is λ̃1 = α = 〈kinkout〉/〈k〉. If the

graph were symmetric (kini = kouti = ki, ∀i), we would have λ̃Sym1 = 〈k2〉/〈k〉;
while for the Erdős-Rényi ensemble we obtain λ̃ER1 = 1 + 〈k〉. These particu-
lar cases are in agreement with previous mean-field results for these ensembles
[25, 26]. The expected distribution of eigenvalues is entirely defined by its full
set of moments, as given by Eq. (13). For instance, the moment-generating
function for graphs with given τ is

Mλ(t) =
∞∑

ν=0

tν

ν!
〈λν〉 =

(
1− 1

N

α̃q̃

αq

)
+

1

N

α̃q̃

αq
exp (teτ ) . (15)

Empirical networks. We have obtained the adjacency matrices of 62 directed
networks from various sources. Several details of each, including references, are
listed in Tables S1–S4 of SI Appendix. There are three broad classes of bio-
logically derived network in our data set: food webs, gene regulatory networks,
and metabolic networks. We also include a neural network, and several man-
made networks: two of international trade, a P2P file-sharing network, and a
network of concatenated English words. In all cases we have removed self-edges
if present, mainly because these are not reported for many of the networks,
and the nature of self-interaction is often different from that occurring between
elements. However, in SI Appendix we also analyse the same networks while
conserving self-edges when reported, and the results do not differ significantly.
Figure 1 displays the leading eigenvalues, λ1, against τ for the 62 networks,
with different classes of network identified by the symbols, as indicated. The
coherence ensemble expected value given by Eq. (1), shown with a line, pro-
vides a good estimate of almost all the empirical values. The inset shows the
positive quadrant on a semi-log scale. Of the 62 networks in our data set, 36
have τ < 0 and 26 have τ > 0. The mean values of λ1 for these are, respectively,
λ1(τ < 0) = 0.22 ± 0.54 and λ1(τ > 0) = 6.1 ± 7.4. In other words, the two
regimes are separated by an order of magnitude in the leading eigenvalue.

Table 1 shows the mean and standard deviation of several magnitudes for the
three main classes of biologically-derived network in our data set. The first three
rows are for the ratios of measured values to the basal ensemble expectations.
The graphs corresponding to food webs are significantly coherent (q/q̃ < 1) and
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Figure 1. Loop exponents τ are informative of leading eigenvalues for a
variety of empirical networks. Here we plot leading eigenvalues λ1 of several
directed networks, against τ as given by Eq. (1); symbols indicate graph data
derived from food webs (green down-pointing triangles), gene regulatory
networks (dark blue diamonds), metabolic networks (burgundy circles), a
neural network (purple square), and other miscellaneous networks (light blue
up-pointing triangles). Line: Expected leading eigenvalue λ1 in the coherence
ensemble, as given by Eq. (14). Inset: Semi-log version of the positive
quadrant of the main panel (Pearson’s correlation coefficient: r2 = 0.87). For
these results, self-edges were removed from the networks; a similar figure in
which self-edges are included can be found in SI. Details for each network,
including references, are listed in the tables of SI Appendix.
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Table 1. Mean values and standard deviation of the ratios q/q̃, 〈s〉/s̃ and
α/α̃, and of the leading eigenvalue λ1, for three classes of biologically-derived
network; and fractions of these networks to have τ < 0, and to be acyclic, of
the total in our data set.

Food webs Genetic Metabolic

q/q̃ 0.44± 0.17 0.99± 0.05 1.81± 0.11
〈s〉/s̃ 0.88± 0.18 1.00± 0.001 2.05± 0.01
α/α̃ 1.02± 0.23 1.19± 0.34 3.98± 1.04
λ1 1.54± 4.09 1.36± 0.75 7.36± 1.20
τ < 0 31/42 5/8 0/7
Acyclic 31/42 1/8 0/7

have slightly lower mean trophic levels than the expectation (〈s〉/s̃ . 1). The
networks derived from gene regulation have coherence and mean trophic levels
which are very close to their expected values. Meanwhile, the networks linked to
metabolism are significantly incoherent (q/q̃ > 1) and have mean trophic levels
which are higher than expected (〈s〉/s̃ > 1). The measured values of α are in all
three classes slightly higher than the expectation, but in the cases of food webs
and gene regulatory networks, the difference is within one standard deviation.
However, the metabolism-related networks display marked positive correlations
between in- and out-degrees (α/α̃ > 1). The fifth row shows the proportion
of networks in each class which have negative τ . For the food web and gene
regulatory network data, it is 74% and 63%, respectively, while the metabolism-
related networks are all in the positive τ regime. This leads to average leading
eigenvalues, shown in the fourth row, which are much greater for metabolic
network data than for food webs or gene regulatory-related networks. The sixth
row gives the proportion of networks in each class which are acyclic, a feature
we discuss in the next section. In SI Appendix we show an example of each
kind of network to illustrate the wide variety of trophic structures found among
natural systems.

Directed acyclic graphs. Let us consider the probability that a graph ran-
domly chosen from the coherence ensemble will have exactly mν cycles of length
ν. We shall assume that each path is an independent random event with two
possible outcomes: with probability cν it is a cycle, while with 1− cν it is not.
The number of cycles mν will therefore be binomially distributed:

p(mν) =

(
ñν
mν

)
cmν
ν (1− cν)ñν−mν . (16)

We can use this distribution to obtain the probability that a network from the
coherence ensemble would have no directed cycles of length greater or equal to
n:

Pn =
∞∏

ν=n

p(mν = 0). (17)
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For instance, the probability that a network drawn randomly from this ensemble
would be acyclic is

Pacyclic =

∞∏

ν=2

p(mν = 0) = (18)

∞∏

ν=2

{
1− α̃

L

q̃

q
exp

[
ν

2

(
1

q̃2
− 1

q2

)]}Lαν−1

.

Taking logarithms and considering graphs with sufficiently negative τ that
we can use the approximation ln(1− x) ' −x, we have

lnPacyclic ' −
α̃q̃

αq

∞∑

ν=1

eτν ; (19)

and, after performing the sum and some algebra,

Pacyclic ' exp

[
− α̃q̃
αq

1

(e−τ − 1)

]
. (20)

Therefore, as τ → −∞, networks are almost always acyclic. We note that these
sums include small values of ν for which results are only approximate unless the
distribution of trophic differences, p(x), is Gaussian.

Figure 2 is a scatter plot of our set of empirical networks according to the
terms in Eq. (1): 1/q2− 1/q̃2 and lnα. Each network is represented with either
a triangle or a circle depending on whether it has cycles or not, respectively.
The curve τ = 0 separates the two regimes, and it is clear that while almost
all the networks in the positive τ regime have cycles (the exceptions being two
food webs), as one moves into the negative τ regime most of the examples are
acyclic. The inset shows the probability of a network randomly drawn from the
coherence ensemble being acyclic, as given by Eq. (20) and indicated in the
caption. One can compute, for each empirical network, the probability that it
is acyclic according to Eq. (20). Thus, given only a network’s degree sequence
and trophic coherence, we would expect it to be acyclic if Pacyclic > 0.5 (note
that a network might be in the τ < 0 regime yet still be predicted to have cycles
by this decision rule). We find that, out of the 62 networks, eight are incorrectly
classified: seven food webs are acyclic despite being predicted to have cycles,
and one gene regulatory network would be expected (by a small margin) to be
acyclic but is not. The prediction is therefore accurate in 87% of instances.

Discussion

We have shown that a directed network can belong to either of two regimes
characterised by fundamentally different cycle structures, depending on the sign
of a single parameter, τ , which is a function of the trophic coherence and the
branching factor, as given by Eq. (1). Since the expected number of cycles
of length ν is proportional to eτν , positive τ implies an exponentially growing
number of cycles with length, while for negative τ the probability of finding
cycles is vanishing. This, in turn, has a crucial effect on the spectral properties
of graphs: in particular, the expected value of the leading eigenvalue of the
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Figure 2. The components of the loop exponent τ , coherence vs
in-degree-out-degree correlations, are predictive of whether empirical networks
will have cycles. Here we show a scatter plot of several networks according to
1/q2 − 1/q̃2 and lnα, the two terms in Eq. (1). Blue circles: networks with no
cycles. Burgundy triangles: networks with at least one cycle. The τ = 0 line is
shown with a dashed line (the negative τ regime falls above the line). Details
for each network, including references, are listed in the tables of SI Appendix.
Inset: Probabilities of networks in the coherence ensemble being acyclic,
according to Eq. (20), as a function of 1/q2 − 1/q̃2. Solid line: L/LB = 10 and
α = 1; dashed line: L/LB = 100 and α = 1; dotted line: L/LB = 100 and
α = 2.

adjacency matrix is λ1 = eτ . A corollary is that graphs drawn randomly from
the negative τ regime have a high probability of being directed acyclic graphs,
the main requisite for qualitative stability [1].

Our results provide expected values for what we have called the coherence
ensemble – the set of directed graphs with a given degree sequence and trophic
coherence – and do not, therefore, place bounds on the possible values a given
network can exhibit. However, analysis of a set of empirically-derived networks
of various kinds shows that in most cases these expected values are very good
approximations to the ones measured, suggesting that the coherence ensemble
may be an appropriate null model to use in many cases. We should note also
that we have focused on binary networks (those with adjacency matrices of
only ones and zeros). While some of the results could be extended to weighted
networks in a straightforward way, it is not so obvious how concepts such as
trophic coherence should be understood when a distinction between excitatory
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and inhibitory interactions is made. We leave such questions for future work.
The fact that many biologically-derived networks have surprisingly few feed-

back loops has recently been attributed to considerations of robustness [14],
stability [13], and to an “inherent directionality” [27]. Our results are com-
patible with the latter, since network directionality would ensue from trophic
coherence (that is, since the distribution of differences p(x) is centred at 1 and

has variance q2, the expected number of edges with x < 0 is L
∫ 0

−∞ p(x)dx, a
monotonically increasing function of q). However, neither a suppression of cy-
cles nor an imposed directionality will in themeselves induce trophic coherence,
as can be easily seen in the case of the “cascade model” [28]. In this network
assembly model, there is a strict hierarchy of nodes; directed edges are placed at
random with the sole constraint that the out-node must be below the in-node in
the hierarchy, thus emulating the situation in many food webs where predators
tend to be larger than their prey. Such networks are by construction acyclic
and directional, yet they do not exhibit significant trophic coherence [15]. On
the other hand, our analysis indicates that any network formation processes
which tended to induce a certain trophic coherence would confer the proper-
ties of a low or negative τ on a system, without necessarily being the result of
an optimization for low feedback. For example, in ecosystems many features
of species, such as body size and metabolic rate, are related to trophic levels.
Since predators often specialise in consuming prey with specific characteristics,
they naturally focus on relatively narrow trophic ranges, a mechanism which
could lead to networks that are more coherent than the random expectation.
This idea is borne out by generative network models which capture this effect –
namely, the ‘preferential preying model’ presented in Ref. [15] (which produces
acyclic graphs with tunable trophic coherence) and an extension of this model
studied in Ref. [16] (which can set the trophic coherence of graphs with cycles).
However, relatively little is yet known about the mechanisms which might lead
to trophic coherence more generally.

While we have argued here that looplessness should be regarded as an ef-
fect of trophic coherence, this naturally moves the challenge to establishing the
origins of trophic coherence. Further research is needed to address this issue,
possibly involving the relation between trophic levels and the functional roles
of nodes. This view has interesting parallels with recent work on node roles in
generic directed networks, based on topological similarity, which when applied
to food webs reveals trophic structure [29, 30]. Functional groups have also
been uncovered in ecosystems using stochastic block models, which can take
non-trophic interactions into account [31, 32].

A relation between node function and trophic level may exist in systems
other than ecological ones. For instance, in the word adjacency network of the
children’s book Green Eggs and Ham, by Dr Seuss, we find that the mean trophic
level of common nouns is snoun = 1.4±1.2, while that of verbs is sverb = 7.0±2.7
(see Fig. S4 in SI Appendix). This shows that in networks where node func-
tion is encoded in trophic levels, any mechanism whereby edges tended to occur
between nodes with specific functions might develop non-trivial coherence (or in-
coherence). More broadly, it also suggests that the trophic structure of directed
networks may provide insights into their function and dynamics. Classifying
nodes by trophic level, as has long been standard in ecology, might also tell us
something about the functions of, say, genes, metabolites, neurons, economic
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agents, or words in unknown languages. In view of these considerations, we
believe that further exploration of the trophic structure of networks, and its re-
lation to function and dynamics, will prove a fruitful avenue for learning about
many complex systems.
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[32] Kéfi S, Miele V, Wieters EA, Navarrete SA, Berlow EL (2016) How struc-
tured is the entangled bank? the surprisingly simple organization of multi-
plex ecological networks leads to increased persistence and resilience. PLoS
Biol 14(8):e1002527.

15



Supporting Information (SI Appendix)

‘Looplessness in networks is linked to

trophic coherence’

Samuel Johnson1∗ and Nick S. Jones2
1Warwick Mathematics Institute, and Centre for Complexity Science,

University of Warwick, Coventry CV4 7AL, United Kingdom.
2Department of Mathematics, Imperial College London,

London SW7 2AZ, United Kingdom.
∗E-mail: S.Johnson.2@warwick.ac.uk

CONTENTS

1 Graph ensembles

1.1 The directed configuration ensemble

1.2 The basal ensemble

1.3 Equivalence of ensembles

2 Networks with self-cycles

3 Network data

3.1 Green Eggs and Ham words network

1

ar
X

iv
:1

50
5.

07
33

2v
3 

 [
ph

ys
ic

s.
so

c-
ph

] 
 3

0 
M

ay
 2

01
7



1 Graph ensembles

1.1 The directed configuration ensemble

This is the set of all graphs with given sequences of in- and out-degrees [1]. Using
this ensemble as a null-model, we can obtain the expected numbers of paths and
cycles by inserting the expected value of the adjacency matrix for large graphs,
âij = kouti kinj /L, in the above definitions (we shall use the notation ẑ to refer
to the expected value of a magnitude z in the directed configuration ensemble).
Thus, the expected number of paths in this ensemble is

n̂ν = Lαν−1, (1)

while the expected number of those paths which are cycles is

m̂ν = αν , (2)

where

α =
〈kinkout〉
〈k〉 . (3)

The branching factor α captures the correlation between the in- and out-degrees
of nodes (i.e. α > 〈k〉 indicates a positive correlation, with high in-degree nodes
also tending to have high out-degree, while α < 〈k〉 means this correlation is
negative).

1.2 The basal ensemble

Let us consider the ensemble of random graphs which satisfy the following con-
straint: for every non-basal node, the proportion of in-coming edges which con-
nect to basal nodes is the same. This is a sufficient condition for all non-basal
nodes to have the same trophic level. More formally, if a network in this ensem-
ble has B basal nodes, N−B non-basal nodes, L edges, and LB edges connecting
to basal nodes, then every non-basal node i with in-degree kini receives kini LB/L
edges from basal nodes and (1−LB/L)kini from non-basal nodes. Note that this
constraint does not affect the expectations obtained above for the more general
directed configuration ensemble, so the expected numbers of paths and cycles
are, respectively,

ñν = Lαν−1 (4)

and
m̃ν = αν (5)

(where we have used the notation z̃ for the expected value of a magnitude z
in the basal ensemble). However, the fixed proportion of basal in-neighbours
allows us also to derive expected values for several magnitudes in this ensemble,
given {N,B,L, LB}, as follows.

We recall from the main text [Eq. (4)] that the trophic level of each node i
is

si = 1 +
1

kini

∑

j

aijsj (6)

if is non-basal (i.e. kini > 0), and si = 1 if i is basal (kini = 0) [2]. Let s̃nb be
the expected trophic level in the basal ensemble of a node given that it is not
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basal. Since the expected proportion of in-neighbours which are basal, for such
a node, will be LB/L, we have from Eq. (6) that

s̃nb = 1 +
LB + (L− LB)s̃nb

L
, (7)

and so s̃nb = L/LB + 1. The mean trophic level of the network is therefore

s̃ = 1 +

(
1− B

N

)
L

LB
. (8)

In the basal ensemble there will be two types of edges: those which emanate
from basal nodes, with trophic difference x = s̃nb − 1, and those between non-
basal nodes, with x = 0. In other words, the distribution of differences will
be

p(x) =
LB
L
δ

(
x− L

LB

)
+

(
1− LB

L

)
δ(x), (9)

where δ is the Dirac delta function. The trophic coherence associated with this
distribution is

q̃ =

√
L

LB
− 1. (10)

We can also obtain the expected value of α in the basal ensemble. Every
node with kin 6= 0 (i.e. every non-basal node) has in-degree kin = L/(N − B);
and while the out-degree of such a node is not determined, the expected value
is k̃out = (L− LB)/(N −B). Inserting these values into Eq. (3) yields

α̃ =
L− LB
N −B . (11)

Note that this is the mean degree that would result if all basal nodes and
edges emanating from basal nodes were eliminated from the network. As in the
configuration ensemble, the expected proportion of paths of length ν which are
cycles, in the basal ensemble, is

c̃ν =
α̃

L
. (12)

The basal ensemble does not include any structure which might lead to vari-
ance in the trophic levels of non-basal nodes, and so the bimodal p(x) given by
Eq. (9) is exact. For networks in which different non-basal nodes are connected
to differing proportions of basal nodes, this expression will be a valid approxi-
mation only when the separation of the two modes of p(x) is much larger than
the spread about them.

1.3 Equivalence of ensembles

Let κi be the proportion of in-coming edges to node i which emanate from a
basal node. In the directed configuration ensemble, the expectation for κi is
κ̂i = LB/L, ∀i. The basal ensemble is the subset of graphs from the directed
configuration ensemble which satisfy κi = LB/L, ∀i, exactly, not just in expec-
tation. Thanks to this constraint, all non-basal nodes have the same trophic
level, given by Eq. (7), in the basal ensemble. For finite graphs drawn from
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Figure S 1. Values of mean trophic level 〈s〉 (left), and incoherence
parameter q (right), obtained numerically with two random graph models
against the corresponding predictions for the basal ensemble, as given by Eqs.
(8) and (10), respectively. The random graphs are sampled from the
Erdős-Rényi ensemble (circles) with N = 300 and 〈k〉 = L/N = 10; and from
the directed configuration ensemble (triangles) with N = 500, 〈k〉 = L/N = 5
and power-law degree sequences of exponent γ = 3. In both cases, the
proportion of basal nodes, B/N , is varied from 10% (upper right hand
corners) to 50% (lower left hand corners).

the directed configuration ensemble, there will be some variation in the trophic
levels of non-basal nodes, leading to discrepancies with respect to the expecta-
tions of quantities such as q, α and 〈s〉. However, in the limit N → ∞, with
L/N → ∞, expectations in the basal ensemble and the directed configuration
ensemble converge, since κi → κ̂i, ∀i. This suggests that the basal ensemble
might provide a reasonable null model even for finite networks. In order to test
this assumption numerically, we draw networks from the directed configuration
and compare measured quantities with basal ensemble expectations. We note,
however, that the results derived in the main text for the coherence ensemble
do not depend on an equivalence between the basal ensemble and the directed
configuration ensemble.

Figure S1 displays the results of Monte Carlo simulations which support
the conjecture that the basal ensemble provides a good approximation to more
general random graph ensembles as regards trophic structure. We consider a
directed version of the Erdős-Rényi ensemble, in which L directed edges are
distributed randomly among N nodes with the constraint that there must be
B basal nodes. We also take the directed configuration ensemble of networks,
which restricts both the in- and out-degrees of each node to specified values,
and generate heavy-tailed (scale-free) networks by drawing those values from
independent distributions p(k) ∼ k−γ , for k = kin and k = kout. The left panel
of Fig. S1 shows the mean trophic level 〈s〉 obtained numerically from Erdős-
Rényi networks and heavy-tailed networks, as described, for varying proportions
of basal nodes. This is plotted against the corresponding values given by Eq.
(8) in each case. Similarly, the right panel of Fig. S1 shows the incoherence
parameter q against the value given by Eq. (10), for the same networks. In
both cases, the results fall very close to the f(x) = x line, suggesting that the
trophic structure of random graphs, regardless of their degree heterogeneity, is
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well approximated by the basal ensemble we have defined above.

2 Networks with self-cycles

In the main text we ignore self-edges (cycles of length one) in those networks
which exhibit them; this is mainly because self-edges are not reported in all
networks, the nature of self-interaction often being considered fundamentally
different to that of inter-element interaction. However, for completeness we also
compute the values of the leading eigenvalue λ1, and of the loop exponent τ ,
defined as

τ = lnα+
1

2q̃2
− 1

2q2
, (13)

when self-edges are allowed, and display these values in Fig. S2 (compare with
Fig. 1 of the main text). We can observe that the good fit to the expression

λ1 = eτ (14)

– Eq. (14) of the main text, where λ1 is the coherence ensemble expectation
for λ1 – is not significantly affected by the inclusion of self-edges. The main
difference is that several of the food webs which have λ1 = 0 when self-edges
are excluded now have λ1 = 1, as a result of cannibalism.

3 Network data

In the main text we assess the validity of our analytical results through com-
parisons with a set of empirically-derived directed networks. Most of these are
available online, but a few of them were shared with us in private correspon-
dence. Below we list the most relevant details for each of these networks. Table
1 is for 42 food webs, Table S2 lists eight gene regulatory networks, and Table S3
contains information on seven metabolic networks. Table S4 is for six networks
of various other kinds: the neural network of C. elegans, a P2P file sharing net-
work, two networks of trade between nations (one of basic manufactured good
and the other of minerals) and one of concatenated English words in the book
Green Eggs and Ham, by Dr. Seuss; the last of these was obtained from the
original text for this work [3]. The adjacency matrices of these networks are
available at:
http://www2.warwick.ac.uk/fac/sci/maths/people/staff/sjohnson

or upon request from the authors.
For each network, we list the number of nodes N , the number of basal

nodes B, and the mean degree 〈k〉; the incoherence parameter q and its ratio to
the expected value q̃ (low ratios mean more coherent networks than randomly
expected); the mean trophic level 〈s〉 and the kin-kout correlation parameter
α, both normalised by their expected values; the loop exponent τ , whose sign
determines whether a network is in the high or low feedback regimes (see main
text); the leading eigenvalue, λ1, of the adjacency matrix; and, finally, references
to the sources of the data.

Figure S3 shows three example networks, one from each class: the Ythan
Estuary food web [4], a metabolic network derived for Chlamydia pneumoniae
[5], and a gene regulatory network derived for E. coli [6]. The height of each
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Figure S 2. Leading eigenvalues λ1 of several directed networks when
self-edges are not excluded, against τ as given by Eq. (13); symbols indicate
food webs (green down-pointing triangles), gene regulatory networks (dark
blue diamonds), metabolic networks (burgundy circles), a neural network
(purple square), and other miscellaneous networks (light blue up-pointing
triangles). Line: Expected leading eigenvalue λ1 in the coherence ensemble, as
given by Eq. (14). Inset: Semi-log version of the positive quadrant of the main
panel (Pearson’s correlation coefficient: r2 = 0.80). Compare with Fig. 2 of
the main text, for which self-edges are excluded. Details for each network,
including references, are listed in Tables S1, S2. S3 and S4 (though note that
in these tables self-edges are excluded).

node on the vertical axis is proportional to its trophic level, and this visuali-
sation is enough to show that the trophic structures of these systems can be
highly informative. Note, in particular, that a network can display significant
trophic coherence (the Ythan Estuary food web has q/q̃ = 0.15) without all
its nodes falling into clearly defined trophic levels, while it is also possible to
be almost bipartite, as in the case of E. coli’s gene regulatory network, yet be
less significantly coherent as compared to the random expectation (q/q̃ = 0.88).
These examples show that in order to determine which regime (of high or low
feedback) a given system belongs to, it is insufficient to look only at trophic
coherence: one must compute the loop exponent τ .

Food web N B 〈k〉 q q/q̃ 〈s〉/s̃ α/α̃ τ λ1 Ref.

Benguela Current 29 2 6.76 0.69 0.15 0.17 0.69 0.50 2 [7]
Berwick Stream 77 35 3.12 0.18 0.53 1.05 1.06 -12.21 0 [8, 9, 10]
Blackrock Stream 86 49 4.36 0.19 0.57 1.02 1.27 -9.51 0 [8, 9, 10]
Bridge Brook Lake 25 8 5.08 0.53 0.36 0.68 0.72 -0.53 1 [11]
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Broad Stream 94 53 6.00 0.14 0.49 1.05 1.20 -20.10 0 [8, 9, 10]
Canton Creek 102 54 6.82 0.15 0.57 1.01 1.22 -14.52 0 [12]
Caribbean Reef 50 3 10.70 0.94 0.33 0.36 0.96 1.73 7.80 [13]
Cayman Islands 242 10 15.55 0.77 0.24 0.30 0.51 1.22 0 [14]
Catlins Stream 48 14 2.29 0.20 0.41 0.98 1.00 -10.90 0 [8, 9, 10]
Chesapeake Bay 31 5 2.16 0.45 0.33 0.73 0.90 -1.81 0 [15, 16]
Coachella Valley 29 3 8.38 1.20 0.48 0.47 0.91 1.63 5.48 [17]
Coweeta 1 58 28 2.17 0.30 0.64 1.00 1.08 -3.39 0 [8, 9, 10]
Coweeta 17 71 38 2.08 0.24 0.60 1.00 1.25 -5.94 0 [8, 9, 10]
Dempsters (Au) 83 46 4.99 0.21 0.57 1.08 1.02 -7.42 0 [8, 9, 10]
Dempsters (Sp) 93 50 5.78 0.13 0.38 1.07 1.11 -27.07 0 [8, 9, 10]
Dempsters (Su) 107 50 9.02 0.27 0.57 1.05 1.04 -3.51 0.01 [8, 9, 10]
El Verde Rainforest 155 28 9.72 1.01 0.45 0.49 1.21 2.09 10.12 [18]
German Stream 84 48 4.19 0.20 0.47 1.02 1.10 -9.35 0 [8, 9, 10]
Healy Stream 96 47 6.60 0.22 0.53 1.03 1.12 -6.34 0 [8, 9, 10]
Kyeburn Stream 98 58 6.42 0.18 0.62 1.02 1.18 -9.39 0 [8, 9, 10]
LilKyeburn Stream 78 42 4.81 0.23 0.53 1.01 1.10 -5.97 0 [8, 9, 10]
Little Rock Lake 92 12 10.7 0.67 0.22 0.25 0.77 1.06 5.66 [19]
Lough Hyne 349 49 14.62 0.60 0.37 0.59 0.63 0.85 2.56 [20, 21]
Martins Stream 105 48 3.27 0.32 0.58 0.99 1.26 -2.56 0 [8, 9, 10]
Narrowdale Stream 71 28 2.17 0.23 0.50 0.98 1.17 -7.45 0 [8, 9, 10]
NE Shelf 79 2 17.44 0.73 0.13 0.10 0.71 1.57 4.32 [22]
North Col Stream 78 25 3.09 0.28 0.52 0.98 1.36 -4.52 0 [8, 9, 10]
Powder Stream 78 32 3.44 0.22 0.47 0.99 1.12 -8.32 0 [8, 9, 10]
Scotch Broom 85 1 2.58 0.40 0.14 0.30 1.20 -2.08 0 [23]
Skipwith Pond 25 1 7.56 0.61 0.15 0.16 0.64 0.20 2 [24]
St Marks Estuary 48 6 4.54 0.63 0.37 0.63 1.02 0.26 0 [25]
St Martin Island 42 6 4.88 0.59 0.32 0.54 0.79 -0.05 0.01 [26]
Stony Stream 109 61 7.59 0.15 0.55 1.03 1.16 -14.66 0 [27]
Stony Stream 2 112 63 7.41 0.15 0.55 1.04 1.18 -14.72 0 [8, 9, 10]
Sutton (Au) 80 49 4.19 0.15 0.66 1.08 1.28 -13.27 0 [8, 9, 10]
Sutton (Sp) 74 50 5.28 0.10 0.56 1.11 1.15 -35.01 0 [8, 9, 10]
Sutton (Su) 87 63 4.87 0.28 0.89 1.19 0.52 -1.59 0 [8, 9, 10]
Troy Stream 77 40 2.35 0.19 0.37 1.01 1.14 -12.16 0 [8, 9, 10]
UK Grassland 61 8 1.59 0.40 0.18 0.42 0.63 -3.03 0 [28]
Venlaw Stream 66 30 2.83 0.23 0.54 1.06 1.35 -6.72 0 [8, 9, 10]
Weddel Sea 483 61 31.71 0.72 0.55 0.75 1.17 2.63 22.91 [29]
Ythan Estuary 82 5 4.77 0.42 0.15 0.28 0.93 -1.32 1 [4]

Table S 1. Details of 42 food webs used in the main text. Columns are for
number of nodes N , number of basal nodes B, mean degree 〈k〉, and
incoherence parameter q; ratios of q, mean trophic level 〈s〉, and correlation
parameter α to their expected values in the basal ensemble; loop exponent τ ,
leading eigenvalue λ1, and references to the data sources. Many of the data
are available online at:
https://www.nceas.ucsb.edu/interactionweb/html/thomps_towns.html
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Figure S 3. Empirical networks display a rich diversity of trophic structures.
Examples of three kinds of network are plotted here in such a way that the
height of each node on the vertical axis is proportional to its trophic level (the
scale used for each network is different because of the disparity in mean
trophic level). Left: Ythan Estuary food web [4], which is significantly more
trophically coherent than the random expectation (q/q̃ = 0.147) and has no
significant kin-kout correlations (α/α̃ = 0.935); it is in the negative τ regime:
τ = −1.319. Centre: A network derived from observations of the Chlamydia
pneumoniae metabolism [5], which is significantly less trophically coherent
than the random expectation (q/q̃ = 1.621), and has positive kin-kout

correlations (α/α̃ = 2.550); it is in the positive τ regime: τ = 1.686. Right: A
network derived from gene regulation in E. coli [6], which is only slightly more
trophically coherent than the random expectation (q/q̃ = 0.878) and has no
significant kin-kout correlations (α/α̃ = 0.938); it is in the negative τ regime:
τ = −2.543. Details for each network, including references, are listed in the
tables of SI.

Gene regulatory network N B 〈k〉 q q/q̃ 〈s〉/s̃ α/α̃ τ λ1 Ref.

Human (healthy) 4071 4004 2.08 0.08 0.99 1.00 0.99 -1.54 1 [30, 31]
Human (cancer) 4049 3967 2.89 0.08 1.00 1.00 1.07 -0.16 2.54 [30, 31]
E. coli (Salgado) 1470 1316 1.98 0.23 1.03 1.00 1.21 0.65 1.62 [32, 31]
E. coli (Thieffry) 418 312 1.24 0.27 0.88 1.01 0.94 -2.54 0 [6, 33]
S. cerevisiae (Harbison) 2933 2764 2.10 0.17 0.98 1.00 1.29 -0.38 1 [34, 31]
S. cerevisiae (Costanzo) 688 557 1.57 0.25 1.04 1.00 0.81 -0.31 1.32 [35, 33]
P. aeruginosa 691 606 1.43 0.30 1.00 1.03 1.94 0.58 1.41 [36, 31]
M. tuberculosis 1624 1542 1.95 0.17 1.02 1.00 1.24 0.99 2.00 [37, 31]

Table S 2. Details of eight gene regulatory networks (GRN) used in the
main text. The E. coli (Salgado) and Yeast (Harbison) are available online at:
http://wws.weizmann.ac.il/mcb/UriAlon/download/

collection-complex-networks. The others were shared with us by Luca
Albergante, and some of them can be obtained from various websites:
http://regulondb.ccg.unam.mx/ (E. coli, Salgado);
http://younglab.wi.mit.edu/regulatory_code (Yeast, Harbison);
http://www.genome.gov/ENCODE/ (Human, both the non-cancer GM12878
cell line and the K562 leukaemia cell line). Columns as in Table S1.
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Metabolic network N B 〈k〉 q q/q̃ 〈s〉/s̃ α/α̃ τ λ1 Ref.

A. fulgidus 1267 36 2.38 13.79 1.88 2.06 4.34 2.35 7.62 [5]
M. thermoautotrophicum 1111 30 2.43 12.17 1.77 1.90 4.08 2.31 7.59 [5]
M. jannaschii 1081 32 2.40 12.47 1.86 1.98 4.00 2.27 7.53 [5]
C. pneumoniae 386 20 2.05 8.98 1.62 1.71 2.55 1.69 5.57 [5]
C. trachomatis 446 19 2.11 11.77 1.95 2.02 2.77 1.79 6.07 [5]
S. cerevisiae (yeast) 1510 43 2.54 14.61 1.73 1.82 5.54 2.66 9.15 [5]
C. elegans 1172 40 2.44 13.29 1.86 2.04 4.60 2.44 8.00 [5]

Table S 3. Details of seven metabolic networks used in the main text,
downloaded from http://www3.nd.edu/~networks/resources.htm. Columns
as in Table S1.

Network (miscellaneous) N B 〈k〉 q q/q̃ 〈s〉/s̃ α/α̃ τ λ1 Ref.

Neural (C. elegans) 297 3 7.90 1.49 0.42 0.39 1.42 2.17 9.15 [38, 39]
P2P (Gnutella 2008) 6301 3836 3.30 0.98 0.98 1.00 1.07 1.49 5.12 [40, 41]
Trade (manufactured goods) 24 2 12.92 4.24 1.14 1.14 1.10 2.68 14.3 [42]
Trade (minerals) 24 3 5.63 4.04 1.02 0.97 1.28 2.05 7.38 [42]
Words 50 16 2.02 2.04 1.01 1.16 1.55 1.31 3.17 [3]

Table S 4. Details of six other networks used in the main text. The network
of words was obtained for this work from Green Eggs and Ham [3], and is
available upon request from s.johnson.2@warwick.ac.uk. The other data can
be found on various websites:
http://www-personal.umich.edu/~mejn/netdata/ (neural network);
https://snap.stanford.edu/data/p2p-Gnutella08.html (P2P network);
and http://vlado.fmf.uni-lj.si/pub/networks/data/esna/metalWT.htm

(trade networks). Columns as in Table S1

3.1 Green Eggs and Ham words network

We obtained the network of concatenated words from Dr Seuss’s masterpiece
Green Eggs and Ham in the following way [3]. Every node in the text was
assigned a node, and a directed edge aij = 1 was placed whenever word i
preceded word j in a sentence. Figure S4 displays this network in such a way
that the height of each node on the y-axis is proportional to its trophic level.
Note that the arrows we have placed between nodes in this visualisation are from
the preceding word to the succeeding one, so that one can obtain sentences (some
of them grammatically correct) by following the arrows. We have used colours
to indicate syntactic function, as described in the caption.
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Figure S 4. Network of concatenated words from Green Eggs and Ham, by Dr
Seuss [3]. The height of each word is proportional to its trophic level. Colours
indicate syntactic function; from lowest to highest mean trophic level: nouns (blue),
prepositions and conjunctions (cyan), determiners (pink), adverbs (yellow), pronouns
(green), verbs (red), and adjectives (purple). When a word has more than one
function, the one most common in the text is used.
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