
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 1929–1935, April 2017 B DOI:10.1002/qj.3052

On the calibration of multilevel Monte Carlo ensemble forecasts
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The multilevel Monte Carlo method can efficiently compute statistical estimates of
discretized random variables for a given error tolerance. Traditionally, only a certain
statistic is computed from a particular implementation of multilevel Monte Carlo. This
article considers the multilevel case in which one wants to verify and evaluate a single
ensemble that forms an empirical approximation to many different statistics, namely an
ensemble forecast. We propose a simple algorithm that, in the univariate case, allows one
to derive a statistically consistent single ensemble forecast from the hierarchy of ensembles
that are formed during an implementation of multilevel Monte Carlo. This ensemble
forecast then allows the entire multilevel hierarchy of ensembles to be evaluated using
standard ensemble forecast verification techniques. We demonstrate the case of evaluating
the calibration of the forecast.
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1. Introduction

Multilevel Monte Carlo (MLMC: Giles, 2008) is a technique
that has gained significant popularity over the past decade. It is
designed to produce statistical estimators for discretized random
variables at significantly lower computational costs than their
Monte Carlo counterparts for a fixed error. This is done by using
a hierarchy of larger ensembles using lower accuracy models and
smaller ensembles using higher accuracy models. For probabilistic
forecasting, one can use this multilevel technique to estimate
statistics from a forecast probability distribution, given some
distribution of the initial conditions and/or random forcing.

In the multilevel Monte Carlo framework, one usually considers
a particular statistic, such as evaluations of the cumulative
distribution function (CDF: Elfverson et al., 2014; Giles et al.,
2015; Wilson and Baker, 2016), probability density function
(PDF: Bierig and Chernov, 2016) or expected values (Giles, 2008;
Cliffe et al., 2011), selecting the ensemble sizes/finest level of
resolution so that the overall multilevel estimator produces an
efficient and accurate approximation.

In the case of ensemble forecasting, one usually wishes
to compute many statistics from the same ensemble. These
approximations can be assessed using suitable verification
techniques. Verification tools used within ensemble forecasting
usually work alongside observations of the process that one is
interested in forecasting and can help verify properties from
calibration to the sharpness of a forecast (Gneiting et al., 2007).

Given the multilevel hierarchy of ensembles from different
resolutions that form MLMC estimates of statistics, we would
also like to evaluate/verify these ensembles in the same way;
this is the subject of this article. We propose a methodology
to take observables of a univariate random variable, or scalar

observables of a multidimensional random variable (such as a
random field evaluated at a point in space), from a multilevel
hierarchy of ensembles with varying resolutions and generate an
accompanying single ensemble forecast. Most of the standard
techniques in the field of ensemble forecasting are limited to
the univariate case; in the context of large dimensional models in
weather and climate, these are usually applied to scalar observables
such as point values or integral quantities.

This single forecast is statistically consistent with the multilevel
estimate. It can then be used to verify the forecast from the
original ensemble hierarchy using standard methods such as
calibration tests.

An alternative approach to this could be approximating each
verification or scoring measure, such as the calibration or
sharpness, individually and directly from the multilevel hierarchy
of ensembles. For example, one could use a MLMC approximation
for the CDF (Elfverson et al., 2014; Giles et al., 2015) to help
compute a rank histogram to evaluate the forecast calibration.
Each different MLMC approximation typically comes with a
framework to implement it, such as a smoothing scheme in the
former of those two studies.

However, by using the proposed methodology in this article,
one does not need a different multilevel approximation and
framework for each individual scoring measure; instead, any
standard verification technique, such as the calibration or
continuous ranked probability score (CRPS: Gneiting et al.,
2007), can be employed on this standard single ensemble forecast.

To generate this ensemble forecast, inverse-transform sampling
is used. The new single ensemble forecast preserves the
unbiased approximation to the mean of the forecast distribution
from the original multilevel estimator and forms a consistent
approximations to other statistics, such as higher moments.
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This study proceeds as follows; an introduction to MLMC will
be given in section 2, then a simple method to find a consistent
ensemble forecast from a MLMC approximation will be given in
section 3, alongside a corresponding verification technique for
these ensemble forecasts. Finally, a conclusion follows.

2. Multilevel Monte Carlo

Multilevel Monte Carlo (Giles, 2008) is used primarily as a
computationally cheap alternative to an equivalent accuracy
single-level Monte Carlo estimator of statistics with respect
to a probability distribution. Suppose one wishes to compute
estimates to statistics of f (XL,t), such as E[f (XL,t)], where XL,t is
a numerical approximation of our ‘forecast’ random variable X
(with discretization parameter hL ∝ M−L, M > 1) at time t ≥ 0
and f is some scalar observable function. Let Xi

L,t , i = 1, . . . , N,
be N ≥ 1 independent and identically distributed (i.i.d.) samples
of the random variable XL,t . Then an empirical approximation to
the density of XL,t is

πMC
L,t (x) = 1

N

N∑
i=1

δ(x − Xi
L,t), (1)

where δ is the Dirac delta function. One can then estimate statistics
for this empirical distribution via the Monte Carlo method. For
example, the standard estimator for E[f (XL,t)] is given by

f̄ MC
L,t = 1

N

N∑
i=1

f (Xi
L,t). (2)

Now consider the multilevel framework, using L + 1 ensembles

{Xi
l−1,t , Xi

l,t}l=L,i=Nl
l=0,i=1 (with Xi

−1 = 0) of sizes Nl, to derive the
equivalent MLMC approximation to E[f (XL,t)],

f̄L,t = 1

N0

N0∑
i=1

f (Xi
0,t) +

L∑
l=1

( 1

Nl

Nl∑
i=1

[f (Xi
l,t) − f (Xi

l−1,t)]
)
. (3)

Taking the telescoping sum of expectations,

E[f (XL,t)] = E[f (X0,t)] +
L∑

l=1

E[f (Xl,t)] − E[f (Xl−1,t)] (4)

and considering

E[f̂l,t] =
⎧⎨
⎩

E[f (X0,t)], l = 0,

E[f (Xl,t)] − E[f (Xl−1,t)], l > 0,
(5)

where

f̂l,t =

⎧⎪⎨
⎪⎩

∑N0
i=1

1
N0

f (Xi
0,t), l = 0,

∑Nl
i=1

1
Nl

(
f (Xi

l,t) − f (Xi
l−1,t)

)
, l > 0,

(6)

one recovers f̄L,t as an unbiased approximation of E[f (XL,t)]. The
important thing to note here is that the fine (level l) and coarse
(level l − 1) samples in the difference estimators, f̂l,t , must be
positively correlated for each i. This can be achieved by using
the same random system input (e.g. initial conditions/stochastic
forcing) for each i on both levels. On the other hand, the samples
in different ensembles must be uncorrelated. The uses of the
above framework are incredibly varied. One can even condition
these multilevel estimators on observations using processes such
as filtering (Jasra et al., 2015; Gregory et al., 2016; Gregory and
Cotter, 2016). In addition to this, there have been many other

applications of MLMC, some of which are highlighted in the
review of Giles (2015).

Given an optimal choice of L and Nl, one can compute
these estimators with the same accuracy as their standard
Monte Carlo counterparts for significantly less computational
expense. This works by noting that, due to the correlation
between the pairs of samples in each difference estimator,
the sample variance of f (Xl,t) − f (Xl−1,t), denoted Vl, should
decrease asymptotically with l → ∞. If one desires the accuracy
of f̄L,t to be

E

((
f̄L,t − E[fL,t]

)2
)

< ε2, (7)

then one can follow the algorithm in Giles (2008) to compute f̄L,t

by updating, online (as one adds additional samples), the optimal
sample sizes

Nl =
⌈

2ε−2 (Vlhl)

(
L∑

n=0

√
Vn/hn

)⌉
, (8)

whilst increasing L until

|f̂L,t | <
1√
2

(M − 1)ε.

An estimated Vl can be used in the optimal sample size formula.
Computational cost reductions occur because, if Vl decreases
asymptotically with l → ∞, then Nl does also, leading to a
trade-off between estimator variance and bias in each difference
estimator. To conclude, we should have large ensembles for the
lower levels and smaller ensembles on the higher levels, given by
asymptotically decreasing values of Vl.

For the full algorithm and corresponding theory, see Giles
(2008, 2015).

3. Ensemble forecasting

This article now proposes a method to generate a single ensemble
forecast from the hierarchy of ensembles created from the
MLMC method. Put simply, one can generate a large ensemble
(much larger than the finest level ensemble) that represents the
entire MLMC approximation to the forecast distribution. This
is more useful for verification of the hierarchy of ensembles,
rather than simply using standard verification techniques on
the finest ensemble in this hierarchy. As mentioned in the
previous section, the sample sizes, Nl, for pairs of ensembles on
all levels decrease asymptotically and thus the finest ensemble
is the smallest ensemble in the hierarchy. Using the finest
ensemble for verification of the entire MLMC approximation
of the forecast distribution would neglect the majority of
samples, on lower levels, from which the approximation was
composed.

In addition to this verification, given the statistical consistency
of this ensemble forecast with the multilevel ensemble
hierarchy, many statistics can be easily estimated via this
ensemble.

3.1. Multilevel Monte Carlo ensemble forecasts

Now, assume Xl,t ∈ R and so, if Xl,t was multivariate in the
section before, Xl,t now represents f (Xl,t), the scalar observable,
e,g, Xl,t evaluated at a point in space. Here we describe how
to generate the single ensemble forecast of a scalar observable
Xi

F,t ∈ R, i = 1, . . . , N from the MLMC hierarchy of ensembles
through inverse-transform sampling. It is important to note that
this ensemble does not contain i.i.d. samples from the forecast
distribution; instead they will simply be approximations to these
samples. However, this single ensemble has the properties to form
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a consistent empirical estimate to the forecast distribution and
associated distribution functions.

From here onwards, we will assume that values of Nl

and L have been either set or found and that the hierarchy

of ensembles {Xi
l−1,t , Xi

l,t}l=L,i=Nl
l=0,i=1 , with X−1,t = 0, has been

generated. Predominantly, this is because the framework that
this article presents is designed for evaluating any given MLMC
approximation. Each approximation has a hierarchy of ensembles
that use values of Nl and L that have been optimized around
minimizing the cost of that particular approximation. Each
approximation typically comes with its own algorithm to set
up these values. Thus, by making the aforementioned assumption
we can keep this framework general to all approximations. In
addition to this, it is likely that in real forecasting practice one
would pick the desired maximum level L and then set fixed
values of Nl based on the maximum computational expense one
can use on a particular level. This way of choosing Nl and L is
implemented in the numerical example later in the article.

Inverse transform sampling is the process of evaluating an
(approximation to the) inverse CDF, F−1(u), u ∈ [0, 1], also
known as the quantile function. In the case where the CDF, F, of a
random variable is strictly increasing and absolutely continuous,
there exists a unique value x ≡ F−1(u) for which F(x) = u. This
distribution must usually be estimated empirically. If the true CDF
of the forecast distribution is known to be absolutely continuous
and the samples are sorted to form order statistics, then some of
these estimates have been shown to be consistent approximations
to F−1(u) (Ma et al., 2011). A very simple consistent estimate for
an evaluation to the quantile function of the distribution with
CDF, F, using the (ascending) sorted samples

{
Xi

}
i=1,...,N

∼ F,

X1 < X2 < .... < XN is

F̂−1(u) = X�N×u�. (9)

Here, the estimate is a consistent one in the sense that
it converges in probability to F−1(u) as N → ∞. One can
use linear interpolation and extrapolation to smooth this
consistent estimate. Other inconsistent techniques include fitting
a parametric distribution to the ensemble, such as a Gaussian,
and sampling from a closed-form quantile function (e.g. �

for a Gaussian distribution) for that distribution. In all cases,
when the empirical quantile function is evaluated with i.i.d.
uniform samples u ∈ [0, 1], approximations to samples of X can
be generated.

The use of inverse-transform sampling alongside MLMC was
first suggested in Giles (2013), who proposed to use it to
minimize the discrete Wasserstein distance between the two
paired ensembles in each difference estimator within (3) and
thus positively couple them. Instead, here we will use inverse-
transform sampling in the context of a MLMC approximation to
the quantile function of the forecast distribution,

F̄−1
L,t (u) = R(X)�N0×u�

0,t +
L∑

l=1

(
R(X)

�Nl×u�
l,t − R(X)

�Nl×u�
l−1,t

)
, (10)

where R(X)i
l is the ith order statistic of Xl, so that R(X)1

l <

R(X)2
l < ... < R(X)

Nl
l . Note that there is not an exact cancellation

in expected values of the above estimator terms, as in the
telescoping sum of expectations in (4), as the individual
approximations on each level are not unbiased, only consistent
in the limit of Nl → ∞. The algorithm in Table 1 demonstrates
how to generate an ensemble

{
Xi

F,t

}
i=1,... ,N

of arbitrary size N,
approximating samples of XL,t .

Note that these Xi
F,t are not samples from XL,t ; they are only

consistent approximations to the evaluations of F−1
L,t (u) for a

particular u. More specifically, for a random uniform sample
u ∼ U[0, 1], we have

x = F̄−1
L,t (u) (11)

Table 1. Algorithm demonstrating how to generate an ensemble
{

Xi
F,t

}
i=1,... ,N

of
arbitrary size N, approximating samples of XL,t .

and, as Nl → ∞ for all l,

x
p−→ F−1

L,t (u), (12)

where Nl are the number of samples used in each differ-
ence estimator in (10). Then, in this limit, x converges in
probability to a sample from the forecast distribution on
the finest level, i.e. x ∼ XL,t . Therefore any statistical esti-
mate using these samples is a consistent one within this
limit.

The single ensemble {Xi
F,t}i=1,... ,N can form valid and consistent

approximations to statistics of the forecast distribution. For
example, the empirical, consistent, CDF of this ensemble
forecast found from the MLMC approximation to the forecast
distribution is

F̂XF,t (x) = 1

N

N∑
i=1

IXi
F,t≤x, (13)

where I is the indicator function. Clearly this is non-decreasing
for continuous XF,t and has the support of [0, 1].

One assumes that, in practice, the computational effort of
evaluating the above function a large number of times to generate
the ensemble

{
Xi

F,t

}
i=1,... ,N

is negligible in comparison with the
expense of generating the original samples on all of the different
levels. Thus, the method seems likely to be admissible even when
N is much larger than N0. Having said this, it makes sense
here to set N ∝ N0, so that both aspects of the approximation
(inverse CDF estimator and the ensemble forecast) converge in
probability simultaneously. We take N = αN0 with α ∈ Z, α ≥ 1
for simplicity.

The proposed ensemble forecast also preserves the unbi-
asedness of the approximation to the first moment of the
forecast distribution from the original MLMC approximation.
To show this, let X̄F,t = 1

αN0

∑αN0
i=1 Xi

F,t be the sample mean
of the ensemble forecast from the multilevel hierarchy of
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ensembles. Then

X̄F,t = 1

αN0

αN0∑
i=1

Xi
F,t

=
( 1

αN0

αN0∑
i=1

F̂−1
0,t (ui)

)

+
L∑

l=1

(( 1

αN0

αN0∑
i=1

F̂−1
l,t (ui)

)
−

( 1

αN0

αN0∑
i=1

F̂−1
l−1,t(ui)

))
,

=
( 1

αN0

αN0∑
i=1

X�N0×ui�
0,t

)

+
L∑

l=1

(
1

αN0

αN0∑
i=1

(
X

�Nl×ui�
l,t − X

�Nl×ui�
l−1,t

))
(14)

and, given that ui are i.i.d. draws of the uniform distribution
Unif [0, 1], i = 1, . . . , αN0, then

E[X̄F,t] =
( 1

αN0

αN0∑
i=1

E[X0,t]
)

+
L∑

l=1

(
1

αN0

αN0∑
i=1

(
E[Xl,t] − E[Xl−1,t]

))

=E[X0,t] +
L∑

l=1

E[Xl,t − Xl−1,t] = E[XL,t].

(15)

3.2. Assessing the calibration of multilevel Monte Carlo ensemble
forecasts

Evaluating the ensembles used in ensemble forecasts is very
important in checking the predictive value of the forecast. The
remainder of this article concentrates on a method of evaluating
the calibration of forecasts from the MLMC approximations to
the forecast distribution directly, via the single ensemble forecast
found in the previous section: the Probability Integral Transform
Histogram. This technique uses observations from the target
distribution to evaluate ensemble forecasts. Calibration is the
measure of whether the observations are indistinguisable from
the samples of the ensemble forecast distribution (Carney and
Cunningham, 2006). This is a quality of the empirical forecast
distribution that is possibly disregarded if one were simply to
study errors of point statistical estimators.

Consider the target distribution, Yobs,tk , behind the observed
process, where partial observations yobs,tk , are taken from a single
realization of this process at times tk, k ∈ [0, Ny], t0 = 0, tNy = T.
Clearly, our aim would be to use a forecast distribution associated
with the random variable Xtk = Yobs,tk , however in many
real-world scenarios Yobs,tk is unknown. Therefore verification
techniques are used to rank forecasts on their similarity to the
observed process, with the aim of finding the best forecast/model
that derived them. The case of Xtk = Yobs,tk is known as the
random variable with associated forecast distribution from the
perfect model.

3.2.1. Probability integral transform histogram

The Probability Integral Transform (PIT) histogram is used to
determine the uniformity of the observations with respect to the
(empirical) CDF of the ensemble and thus the calibration of the
forecast distribution with respect to the target distribution. One
can define a random variable R ∼ FL,tk (Yobs,tk ), the PIT. Then

samples of R are given by

rtk = FL,tk (yobs,tk ). (16)

The forecast distribution is said to be calibrated with respect to
the target distribution if R ∼ Unif [0, 1] and so a histogram of rtk

would be relatively flat. Using the MLMC approximation to the
forecast distribution, define the associated multilevel empirical
PIT samples as

r̂tk = 1

N

N∑
i=1

IXi
F,tk

≤yobs,tk
, (17)

where Xi
F,tk

are an arbitrary N members of the ensemble forecast
from the multilevel hierarchy of ensembles at time tk using
the aforementioned inverse-transform sampling method. This is
simply the empirical cumulative distribution function of the N
ensemble forecast members Xi

F,tk
. Here, given that we set N ∝ N0,

then, in the limit of Nl → ∞, for all l = 0, . . . , L,

XF,tk ∼ F−1
L,tk

(18)

and thus FL,tk (XF,tk ) ∼ U[0, 1]. By considering this, we have a
consistent estimate of the PIT sample rtk , when concentrating
on the limit of N ∝ N0 → ∞. One can find the frequency (Hi,
i = 1, ..., B) of B evenly spaced bins in a histogram of these
samples by the following process:

(1) Set Hi = 0, for i = 1, . . . , B.
(2) For each k = 1, . . . , Ny, find the i = 1, . . . , B in which

i−1
B ≤ r̂tk ≤ i

B and set Hi = Hi + 1.

This histogram will be refered to as the multilevel PIT
histogram (MLPIT) for the remainder of this article. The MLMC
approximation that derives the ensemble forecast {Xi

F,tk
}i=1,... ,N

can then be described as calibrated with respect to the target
distribution if Hi ≈ Ny/B for each i = 1, . . . , B. Thus, this can
be used to test the variance and biasedness of the ensembles
with respect to the target distribution. If the histogram is convex
then the ensembles are said to be overdispersed, whereas if it is
concave then the ensembles are said to be underdispersed and if
it is skewed then there exists a bias in the ensembles (Carney and
Cunningham, 2006). This is therefore a very appropriate way to
clarify whether there is any additional bias from the cancellation
of intermediate estimators in a MLMC approximation, thus
negating the telescoping sum of expectations in (4), although this
is not demonstrated in this article.

Example: The following linear mean reverting OU process,
Xt ∈ R,

dXt = α(μ − Xt)dt + σ 2 dWt , (19)

over time time interval t ∈ [0, T], where Wt is a univariate
Brownian motion, will be used alongside pre-defined scenarios
of calibration for a MLMC approximation to the forecast
distribution to provide a demonstration of the proposed method.
We let the observations come from the above model, discretized
with time step h = 2−5, with α = 0.1, μ = 0 and σ 2 = 0.1.
In this example, an Euler--Maruyama numerical scheme will
be used to discretize the OU process. To frame this problem
in a likely forecasting setting, we first choose the fixed finest
resolution that we desire, L = 4 and so l ∈ [0, 4]. A maximum
computational expense that we are allowed to use on propagating
the entirity of samples in each level of the ensemble hierarchy,
Cmax = 1.536 × 107, is then set. The cost of each sample in the
lth difference estimator is

[
Th−1

l (1 + 1/2)
]

(as all but the first
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(a) (b)

(c) (d)

Figure 1. Multilevel probability integral transform histograms, using the ensemble
{

Xi
F

}
i=1,... ,N

, of the linear OU process for the four different calibration scenarios:
calibrated (a), underdispersed (b), overdispersed (c) and biased (d). The dashed line on the Biased scenario plot shows a smoothed kernel of the PIT histogram
generated from the actual stationary forecast and target distributions.

difference estimators in (3) require coarse and fine time steps of
the discretization), where hl = 2−1−l and so Nl is given by

Nl =
⌊

Cmax

T
(
h−1

l (1 + 1/2)
)⌋

=
⌊(

2

3

)
CmaxT−1hl

⌋
.

(20)

This corresponds to N0 = 27. The arbitrary number of samples
Xi

F to draw from the MLMC approximation to the inverse CDF
is set to N = 8N0 = 210.

Pairs of samples from coarse and fine ensembles in each
difference estimator in (3) are positively coupled by using the
same underlying Brownian motion, as in Giles (2008). The
models are run over times t ∈ [0, 40 000] (the long run time is
to give the stationary distributions a chance to be simulated)
and observations are collected at tk = k, k ∈ [1, 40 000]. At each
of these times, a single ensemble forecast is generated from the
hierarchy of ensembles that build up the MLMC approximation to
the forecast distribution and is used to verify the calibration of the

approximation. Model parameters for four experimental set ups
are given as follows: α = 0.1, σ 2 = 0.1, μ = 0 for the calibrated
scenario, α = 0.1, σ 2 = 0.02, μ = 0 for the underdispersed
scenario, α = 0.1, σ 2 = 0.5, μ = 0 for the overdispersed scenario
and α = 0.4, σ 2 = 0.1, μ = 0.2 for the biased scenario.

This set up allows us to establish that the correct calibration
behaviour is being shown by the MLPIT histogram for each
of the scenarios; however, we will also compare this with the
PIT histogram using just the finest ensemble, although this is
not the primary goal of the section. Figures 1 and 2 show the
MLPIT and PIT histograms, respectively, for the four scenarios of
calibration listed above. Due to the small number of samples in
the finest ensemble, the PIT histogram can only represent a very
small number of bins of probability. Both show similar general
behaviour for the cases above.

We can derive the stationary distribution to both the
forecast distribution and the target distribution from the
model specifications above using the Fokker--Planck equation
corresponding to (19). One notes that the stationary forecast
distribution using the Biased scenario model above is given
by f ∼ N

(
0.2, 1

8

)
and the stationary target distribution is given
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(a) (b)

(c) (d)

Figure 2. Probability integral transform histograms, using just the finest ensemble
{

Xi
L

}
i=1,... ,NL

, of the linear OU process for the four different calibration scenarios:

calibrated (a), underdispersed (b), overdispersed (c) and biased (d). The dashed line on the Biased scenario plot shows a smoothed kernel of the PIT histogram
generated from the actual stationary forecast and target distributions.

by y ∼ N
(
0, 1

2

)
(as the general form is ∼ N

(
μ, σ 2

2α

)
). Thus the

actual PIT histogram can be generated by taking an arbitrarily
large number of samples of F(y), where F is the CDF of f .
A smoothed density kernel of this histogram is superimposed
on the corresponding empirical PIT histograms for the single-
level and multilevel approximations. The empirical histograms
approximately match this; however, due to the lack of samples
in the finest ensembles, the single-level histogram is not as
clear regarding the type or magnitude of bias as shown by the
MLPIT histogram. This is due to the lack of probability bins
in a small, single finest ensemble (NL + 1) and one would still
suffer from similar problems if using interpolation techniques
in between the limited number of samples of this ensemble.
The MLMC approximations of the forecast distributions and
associated histograms are numerically biased (proportional to
the finest time step) from this exact PIT histogram, due to
the use of a numerical discretization, and so are expected
to be slightly different. Despite this, one can clearly interpret
the calibration and identify the extent and type of such bias
in the MLMC approximations to forecast distributions with
more clarity using the MLPIT histogram technique proposed
here than using standard methods with the small finest
ensemble.

4. Conclusion and outlook

This work has discussed the benefits of generating an ensemble
forecast from Multilevel Monte Carlo (MLMC) approxima-
tions to statistics of random variables representing forecast
distributions. The proposed procedure to do this is simple and
easily implemented. The calibration of this ensemble forecast
has also been examined. Ensemble forecasts provide a simple
methodology of deriving empirical estimates to associated
distribution functions. The ensemble hierarchy that forms the
computationally efficient MLMC approximations to an arbitrary
statistic of the forecast distribution is assumed already to have
been generated, in preparation for forecasting. It is anticipated
that, in real forecasting practice, this hierarchy of ensembles
would simply be generated by using the maximum ensemble
sizes affordable at each level of resolution. The ensemble forecast
calibration verification technique takes the entire multilevel
hierarchy into account when using the proposed methodology.

Calibration of this ensemble forecast is assessed using the
PIT histogram after this single ensemble is generated from
the ensemble hierarchy. Thus we have stated what it means
for a MLMC approximation to be calibrated with respect
to a target distribution. This can be used to evaluate many
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properties of a MLMC approximation to a forecast distribution,
including biases (and their type) from intermediate terms in
the MLMC telescoping sum of estimators, variances of the
approximation and potentially even distribution multimodal
feature detection.
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