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Abstract

The passage of an electric current, or the application of an electrostatic charge, can be used to 

modify the structure of carbon materials in a variety of ways. The simplest example of these 

involves the use of high current densities to produce electrical breakdown, as a result of Joule 

heating or electromigration. This has been used by a number of groups to create gaps in 

carbon materials in order to fabricate devices such as transistors. More complex structural 

transformations have been observed when electric fields are applied to carbon nanomaterials. 

These involve the formation of carbon structures made up of single-layer or bilayer graphene 

with highly irregular morphologies, displaying many unusual features, including nanotube–

graphene junctions. Although the nature of these transformations is disputed, they may be 

partly a result of electrostatic charging rather than the passage of an electric current. It has  

also been demonstrated that electric fields can be used to induce exfoliation of graphite, both 

on the nano scale and macroscopically. This article is an attempt to provide an overview of 

the different ways in which carbon materials can be engineered using electricity. In addition 

to pure carbons, work on doped and filled nanotubes is covered, and the possibility of using 

electric fields in “graphene origami” is discussed.



ACCEPTED MANUSCRIPT

3

Contents

1. Introduction................................................................................................3

2. Effects due to passage of a current ...........................................................5

2.1 Carbon nanotubes ............................................................................5
2.2 Graphene ...........................................................................................10
2.3 Disordered carbon ...........................................................................11

3. Effects apparently due to electrostatic charging.....................................12

3.1 Structural transformation induced by electric field......................12
3.2 The mechanism of structural transformation................................15
3.3 Electrostatic exfoliation....................................................................17
3.4 Graphene origami.............................................................................17

4. Experiments with doped and filled nanotubes ........................................18

5. Discussion ................................................................................................20

References ................................................................................................22

1. Introduction

Carbon and electricity have a shared history stretching back over 200 years [1]. The first 

electric light, the carbon arc lamp, was demonstrated by Humphry Davy some time around 

1800, while incandescent electric lamps, utilising carbon filaments, were developed by 

Thomas Edison and Joseph Swan in the 1870s. The Hall–Héroult process, which uses carbon 

electrodes to smelt aluminium, was patented in 1889, and a short time later Acheson 

developed his electric furnace process for synthesizing graphite and silicon carbide. Today 

graphite is used as an anode in most batteries, and plays an essential role in power generation 

as a neutron moderator in nuclear reactors. Some of the most important developments in 

carbon science in recent decades have also involved electricity, including the bulk synthesis 

of C60 by arc discharge in 1990 [2] and the production of multiwalled carbon nanotubes in a 

similar way in the following year [3].

The aim of the present article is to review the ways in which carbon nanomaterials can be 

manipulated and modified using electricity. An attempt is made to distinguish between the 
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effect of passing an electric current and the effect of the application of an electrostatic charge. 

The passage of a current can result in Joule heating, i.e. resistive heating, and 

electromigration, i.e. mass transport of carbon atoms due to the momentum transfer from 

conducting electrons to the graphene sheets. Both phenomena can contribute to structural 

breakdown when a sufficiently high current density is applied, as described in Section 2. In 

some cases, the experiments are carried out in the presence of oxygen, which can greatly 

promote breakdown. Electrical breakdown has been widely applied to carbon nanotubes, to 

create gaps in order to create devices such as transistors. Some very skilful studies of the 

mechanism of electrical breakdown of nanotubes, using in situ TEM, have been carried out, 

and these are described.

Another effect which has been observed when a current is passed through a carbon nanotube 

is superplasticity. It has been shown that applying a stress to a single-walled carbon 

nanotubes (SWCNT) through which a current is being passed can result in an elongation of 

up to 280%. This remarkable phenomenon is discussed, together with experiments on the 

current-induced shrinkage of nanotubes. Outstanding work on the “plumbing” together of 

carbon nanotubes using an electric current is also described. The use of electrical breakdown 

to create gaps in graphene is then discussed, and an interesting study of the effect of passing 

an electric current on the structure of disordered carbons is described.

Section 3 describes effects which appear to be due, at least in part, to electrostatic charging. 

A number of studies over the past 8 years or so have demonstrated that dramatic structural 

transformations can be produced when carbon nanomaterials are exposed to an electric field 

at high temperatures. These transformations seem to differ from those produced by the 

passage of a current, and produce carbon materials made up of single-layer or bilayer 

graphene with highly irregular morphologies. The transformed carbons display many unusual 

features, including nanotube–graphene junctions and nanoparticles apparently encapsulated 

inside larger structures. Several studies of these transformations have now been reported, but 

the mechanism remains poorly understood. Some authors have suggested that the structural 

changes are a consequence of Joule heating, but it is argued here that electrostatic charging is 

the primary reason for the transformations. Theoretical work showing that the application of 

an electric field can reduce the van der Waals forces between adjacent graphene layers would 

seem to support this idea. The use of electric fields to induce the exfoliation of graphite is 

then discussed, and theoretical work on the ways in which fields could be used to control the 
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folding and unfolding of graphene structures, in what has been called “graphene origami” is 

summarised.

Although this review is mainly focussed on the way in which electric fields can be used to 

modify pure carbons, work on doped carbon nanotubes, and on material encapsulated inside 

carbon nanotubes is also reviewed.

2. Effects due to passage of a current

2.1  Carbon nanotubes 

It is well established that both carbon nanotubes and graphene exhibit exceptionally high 

breakdown current densities. Values as high as 4 x 109 A/cm2 have been reported for 

SWCNTs [4], while a figure of 108 A/cm2 was found for 16 nm wide graphene nanoribbons 

[5]. These numbers are 2-3 orders of magnitude higher than that the values for typical metals, 

and are a result of the strength of the carbon-carbon bonds. When currents in excess of these 

values is applied, however, breakdown does occur, and can be used to modify the structures 

of both nanotubes and graphene in a reasonably controlled way.

Avouris and colleagues were among the first to use electrical breakdown to modify carbon 

nanotubes. They first applied the method to multi-walled nanotubes (MWCNTs) in 2001 [6, 

7]. Breakdown was found to occur in a series of sharp current steps, as shown in Fig.1; this 

was attributed to the sequential destruction of individual nanotube shells. The failure was  

Fig. 1 Plot of current vs. time showing partial electrical breakdown of MWCNT at constant 
voltage, from the work of Avouris and colleagues [7].
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found to occur much more readily in air than in vacuum, apparently as a result of oxidation. 

Thus, a 14 nm diameter MWNT experienced breakdown at a power of approximately 520 

μW in vacuum and at 320 μW in air. It was noted however that breakdown in vacuum 

occurred much more rapidly, once initiated. The same group also used current-induced 

electrical breakdown to selectively remove metallic tubes from “ropes” of single-walled 

carbon nanotubes SWCNTs [7]. By eliminating the metallic tubes, this group were able to 

fabricate nanoscale circuits based solely on semiconducting SWCNTs.

Since this early work, electrical breakdown of carbon nanotubes has been quite widely 

studied. A number of groups have used electrical breakdown to create gaps in nanotubes. For 

example, Dai and colleagues fabricated transistors by depositing organic materials in 

electrically-created gaps in SWCNTs [8]. The size of the cut was found to be controllable by 

varying the lengths of the SWCNTs, and gaps as small as 2nm could be produced. In this 

work the cutting process was carried out under argon. Other groups have created gaps by 

passing a current in air [9, 10]; in such cases the breakdown is presumably due to oxidation.

 

The mechanism of electrical breakdown has been studied by several groups using in situ 

TEM. One of the first such studies was described by Huang et al. in 2005 [11]. In this work, 

current was passed through MWCNTs while they were being imaged inside a TEM. 

Breakdown behaviour was similar to that observed by Avouris et al. in that it occurred wall-

by-wall, sometimes from the outermost wall inward, and sometimes from the innermost wall 

outward. In other cases, breakdown of outer and inner walls in turn was observed. Figure 2 

shows an example of the breakdown of an initially 6-wall nanotube from the outermost wall 

inward. The current passed through the tube was initially 240 μA, and sequential drops in 

current were observed as the walls were removed.

Further in situ studies of the breakdown of MWCNTs by Joule heating were described by Jin 

and colleagues in 2008 [12]. A particularly interesting feature of this work was that the edges 

of adjacent broken shells could bond together in a so-called lip-lip interaction in order to 

eliminate dangling bonds. This is illustrated in Fig. 3. The first stage, shown in Fig. 3 (a) 

involved the formation of open edges in the outer layers, indicated by blue arrows. The upper 

open edge then moved downwards, as shown in (b), and formed a lip-lip connection with the 

other edge, indicated by the red arrows in (c). The lip-lip connections were observed to 
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 Fig. 2 (a) – (e) HRTEM images 
from the work of Huang et 
al. [11] showing breakdown 
of MWCNT as a result of 
passage of an electric 
current. Breakdown occurs 
sequentially from the outer 
to the innermost wall. The 
arrows mark kinks, while 
the arrowheads denote the 
residue of the 4th and the 
3rd walls after breakdown.

 Fig. 3 (a) – (d) HRTEM images showing the formation of lip-lip bonding during breakdown of 
MWCNT as a result of Joule heating, from work by Jin and colleagues [12]. The inset in 
(c) is a schematic illustration of the lip-lip structure.

undergo structural fluctuations, especially when a higher biased voltage was applied, as can 

be seen in Fig. 3 (d). These were believed to be a result of a continuous reorganization of the 

bridging carbon bonds at high temperature. The authors suggested that such lip-lip 

interactions might stabilise the open-ended growth of MWCNTs in the arc discharge process. 
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 Fig. 4 (a) – (d) HRTEM images showing superplastic tensile elongation of individual single-
walled carbon nanotube under a bias of 2.3 V, from the work of Huang et al. [13].

In 2006, Huang and colleagues showed that when a current is passed through a carbon 

nanotube it can display extraordinary plasticity [13]. These workers used a piezo

manipulator to apply a stress to a SWCNT, initially 24 nm long, through which a current was 

being passed. At tensile failure, the SWCNT had stretched to a length of 91 nm long, 

representing a tensile elongation of 280%; its diameter was reduced 15-fold, from

12 to 0.8 nm, as can be seen in Fig. 4. Tensile-pulling experiments at room temperature 

without any electric current showed that nanotubes typically failed at a tensile strain of less 

than 15%. In their original paper [13], Huang et al. suggested that the mechanism of 

elongation involved the movement of  5-7 dislocation kinks through a relatively clean lattice. 

In subsequent work [14], Yakobson and colleagues suggested that sublimation of carbon 

atoms was also involved, occurring in the vicinity of 5-7 dislocation cores. Overall it seems 

that superplasticity in carbon nanotubes is still not fully understood, and it is not clear 

whether the process is promoted by the passage of a current or whether it is simply a 

consequence of the high temperature.

In a paper entitled “Shrinking a carbon nanotube”, published a short time after the Huang 

work, Zettl and colleagues showed how a combination of Joule heating and electron 

irradiation could be used to dramatically reduce the diameter of carbon nanotubes [15]. Once 

again, this work involved the use of in situ TEM. Arc-grown nanotubes were positioned 

between electrical contacts and a voltage was applied. At voltages above of 2 V, shrinkage 
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 Fig. 5 In situ TEM images of 
double-walled nanotube as 
it shrinks and eventually 
fractures as a result of 
passage of electric current 
and exposure to electron 
beam, adapted  from 
reference 15.

was observed, and this continued until fracture occurred, as shown in Fig. 5. The precise 

voltages required depended on the intensity of the electron beam. The authors suggested that 

the shrinkage was due to a combination of knock-on damage induced by the 100 keV TEM 

electron beam and Joule heating and electromigration produced by the electric current. The 

phenomenon appears similar to that observed by Huang et al., although in this case the tubes 

were not stressed. 

Another spectacular demonstration of how an electric current can be used to engineer carbon 

nanomaterials was described by Jin et al. in 2008 [16]. Prior to this work, the idea of joining 

carbon nanotubes together to create junctions which might form the basis for nanoelectronic 

devices had been widely discussed from a theoretical standpoint, but few examples of 

“plumbing” of individual tubes had been reported. Jin and colleagues showed that Joule 

heating could be used to connect two nanotubes, with similar diameters, in a controlled way. 

A piezo-driven stage was used to manipulate the nanotubes inside a TEM, and this enabled 

the tubes to be brought into close proximity. A current was then passed to produce the 

junction, as shown in Fig. 6. The authors suggested that the mechanism of the joining process 

involved a series of Stone–Thrower–Wales transformations and other bond rearrangements, 

the activation energy for which is of the order of a few eVs. They concluded that Joule 
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 Fig. 6 Micrographs showing “plumbing” together of two DCWNTs to produce a single 
nanotube, from work by Jin et al. [16]. In (a) the two tubes can be seen being brought 
together. In (b) a current of ~ 20 µA, at 1.7 V, is passed and a junction begins to form 
as illustrated in the sketch. (c) Shows the final, continuous tube. Scale bar 5 nm. 

heating alone was not sufficient to produce the transformations and that electromigration 

must also have played a role.

Since the work by Jin and colleagues, a few other groups have demonstrated the joining of 

carbon nanotubes by the passage of a current [e.g. ref. 17] but the technique has not been 

widely used, owing to its experimental difficulty. 

2.2  Graphene

Electrical breakdown has not yet been extensively used to engineer the structure of graphene, 

but several studies of the breakdown of graphene ribbons have been reported. One of the first 

of these was published by Murali and colleagues in 2009 [5]. These workers created graphene 

nanoribbons with widths down to 16 nm using electron beam lithography, and current was 

passed through these until breakdown occurred. Breakdown current densities of 

approximately 108 A/cm2 were found, as mentioned above. Scanning electron microscope 

(SEM) images showed that breakdown occurred in the centre of the ribbons, which the 

authors believed pointed to Joule heating as the most likely mechanism of breakdown.

Bockrath and colleagues used pulsed electrical breakdown to create narrow gaps in 

suspended single- and few-layer graphene devices [18]. They then demonstrated that the 

junction resistance could be controlled by the application of voltage pulses, with 4 V 
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corresponding to an ON pulse that decreased the device resistance and 8 V corresponding to 

an OFF pulse that increased the resistance. Scanning electron microscopy imaging of the 

device showed that the gap in the ON and state was smaller than in the OFF state. It was 

suggested that the switching mechanism involved atomic movement and/or chemical 

rearrangements. 

The two studies mentioned so far were carried out in a vacuum. Nanometer-sized gaps in 

graphene can also be produced by passing a current in air, or under a small pressure of 

oxygen, in which case the term “electroburning” is sometimes used. One of the first 

demonstrations of this was reported by Prins et al. in 2011 [19]. These workers created gaps 1 

– 2 nm wide in few-layer graphene ribbons using a feedback controlled electroburning 

technique. Feedback control over the process was necessary to control the gap size: in the 

absence of feedback the process is self-accelerating and results in relatively large gaps. In 

later work, Nef and colleagues described the fabrication of sub-5 nm gaps in single-layer 

graphene by carrying out electroburning under a small oxygen pressure under a vacuum of 

≈10−5 mbar [20]. They found that using these conditions gave them more control than 

carrying out the process in ambient air. An interesting study of electroburning of graphene 

was described by Sadeghi et al. [21]. They found that the conductance of electroburnt 

junctions showed a surprising increase just before breaking. They attributed this to the 

formation of a picoscale current path formed from a single sp2 bond.

There is growing interest in the use of electroburning to engineer graphene structures, 

although achieving the delicate degree of control required is clearly a challenge.

2.3  Disordered carbon 

Relatively little work has been carried out on the effect of passing an electric current on the 

structure of disordered carbons. One of the few such studies was described by Huang et al. in 

2006 [22]. In this work, a current was passed through disordered carbon nanowires inside a 

TEM, resulting in the formation of graphitized structures, some of which were tubular in 

form (see Fig. 7). However, it is not clear whether the electric field was responsible for the 

formation of tubular structures, or whether this was simply a consequence of the extended 

shapes of the original amorphous carbon precursors. Marks et al. carried out a theoretical 

analysis of the evolution of amorphous precursors into carbon nanostructures and showed that 

for a one-dimensional amorphous precursor the final structure was tubular [23]. This was 
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 Fig. 7 Micrographs illustrating effect of 
Joule heating on structure of 
amorphous carbon, from work by 
Huang et al. [22]. (a) Amorphous 
carbon nanowire produced by 
electron-beam deposition, (b) 
structure after Joule heating at 
power of 180 μW, (c) after 
further Joule heating at 320 μW.

confirmed in subsequent work by the same group [24]. Since there is little evidence that 

amorphous “nanorods” are preferentially formed in the arc, Huang’s work may not provide a 

realistic model of the formation of nanotubes by arc-discharge. However, the synthesis of 

nanotubes from amorphous carbon deposited onto InAs nanowires has been demonstrated 

[25].

3. Effects apparently due to electrostatic charging

3.1  Structural transformation induced by electric field

Three studies published in 2009 described dramatic structural transformations induced by the 

application of an electric field to graphite [26 - 28]. These transformations appeared to be of a 

different kind to those previously observed. Two of these studies involved the in situ heating 

of few-layer graphite ‘‘nanoribbons’’ inside a TEM. In both cases it was found that the 

graphite ribbons evolved into complex structures which largely seemed to be 

made up of single-layer graphene. Examples of the transformed structures, taken from both  

papers, are shown in Fig. 8. The third study, by the present author, involved a TEM 
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 Fig. 8 (a) Structure produced by in situ Joule heating of graphitic nanoribbon inside a TEM, 
from the work of Jia et al. [26]. (b) Structure produced in a similar way by Huang et al. 
[27]. The numbers 4 and 5 in this figure indicate regions which the authors believe to 
contain 4 and 5 bilayers, respectively. The hexagon marks the orientation of the 6 
equivalent {1100} planes.

 Fig. 9 Micrographs showing 
carbon material produced by 
exposing graphite to an 
electric field at high 
temperature. (a) Moderate 
magnification image, (b) high 
magnification image showing 
bilayer structure.



ACCEPTED MANUSCRIPT

14

investigation of bulk graphite following exposure to an electric field. In this case the 

transformed carbon mainly consisted of bilayer graphene structures. Examples of the kind of 

structures observed are shown in Fig. 9. Following this initial work, several further studies of 

the phenomenon have been published [29 - 36]. There is disagreement about the nature of the 

transformation. One view is that the phenomenon involves sublimation and edge 

reconstruction of essentially flat graphitic structures [26, 27, 33 - 36]. Thus, Huang and 

colleagues [27, 33, 34] proposed that the morphologies observed in the transformed material 

could be understood in terms of a fractal-like structure produced by sublimation and 

reconstruction, while Jia et al. [26, 36] highlighted the importance of zig-zag or armchair 

edges in stabilizing the transformed structures. A quite different hypothesis has been put 

forward by the present author and colleagues [29 - 32], namely that the transformation 

actually involves a change from a flat to a three-dimensional structure.

There are a number of reasons for believing that the transformed structures are three-

dimensional and hollow rather than flat. These include the observation that small 

nanoparticles or nanotubes are sometimes seen encapsulated inside larger structures, as 

shown in Fig. 10 (a) and that nanotubes are often found to be seamlessly joined to the thin 

shells, as in Fig. 10 (b). Direct evidence for the idea that the structures are three-dimensional 

has been obtained by using a combination of high-angle annular dark-field imaging and 

electron energy loss spectroscopy in the scanning transmission electron microscope [31]. A 

discussion of the possible mechanism of the transformation of flat graphite into a three-

dimensional structure is given in the next section.

 Fig. 10 Structures in graphite transformed by exposure to an electric field. (a) Bilayer 
graphene structure, apparently hollow with bilayer nanoparticle inside, (b) bilayer 
nanotube joined to larger graphene structure [32].
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Recently, an interesting study of the effect of an electric field on the structure of carbon 

nanofibers has been published by Wang et al. [37]. The nanofibres were synthesized using 

chemical vapor growth, a process that tends to produce fibres with a relatively low degree of 

graphitization. Their work was primarily concerned with improving the graphitization of the 

fibres by the passage of a current, and it was shown that the conductivity could be increased 

by 3 orders of magnitude by employing current densities up to 106 A/cm2. Higher current 

densities led to the exfoliation of mostly bilayer graphene flakes from the skin of the 

graphitic nanofibers, as shown in Fig. 11. The formation of bilayer graphene structures is 

reminiscent of the work on the transformation of bulk graphite described above. Wang and 

colleagues suggested a mechanism in which individual layers in the fibres accumulated 

electrostatic charge, and this charge accumulation led to the exfoliation of the surface layers. 

This would seem to be a highly plausible explanation for the phenomenon observed by Wang 

et al., as well as for the other structural transformations described in this section.

3.2  The mechanism of structural transformation 

This section considers in more detail the mechanism of the electric field-induced 

transformations described above. It is assumed that the process involves an evolution from a 

flat to a three-dimensional structure rather than sublimation and edge reconstruction of flat 

graphene. In discussing mechanism it is helpful to consider the edge structure of graphite. It 

is well established that graphite planes often have ‘‘closed’’ edges, so that the layers 

resemble folded sheets [38 - 42], as illustrated in Fig. 12 (a). The transformations reported in 

the previous section may simply begin with an ‘‘opening’’ of the layers, as shown

 Fig. 11 (a) Schematic illustration of electrostatic exfoliation mechanism for surface layers 
of carbon nanofibres, (b) micrograph showing structure of exfoliated carbon. 
From work by Wang et al. [37].
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 Fig. 12 (a) and (b) Schematic illustration showing suggested mechanism for transformation of 
folded graphene sheets into hollow structure, (c) HRTEM image of graphitic region 
edge-on, apparently showing early stages of transformation [31].

schematically in Fig. 12 (b). Supporting evidence for this mechanism, is provided by images 

showing the early stages of the process, as shown in Fig. 12 (c). The question arises, 

therefore, of why the application of an electric field should result in the opening of the 

graphite layers. It was pointed out by the present author that the phenomenon is reminiscent 

of the separation of gold leaves in an electroscope [32], although it was not clear whether this 

was relevant. As noted above, Wang et al. have suggested that an analogous process is indeed 

involved, in which charge accumulates in the graphene layers, leading to repulsion between 

the layers and separation. This idea is supported by theoretical work which shows that an 

external field applied perpendicular to a pair of graphene layers can drive the system to a 

unstable state where the layers are decoupled and can be easily separated [43, 44].

One of the most interesting features of graphite transformed by an electric field is the 

presence of nanotubes joined to graphene shells, as shown in Fig. 10 (b). A detailed analysis 

of these junctions has been carried out and has shown that the junction angles are not random 

but fall close to multiples of 30° [45]. It was demonstrated that connections with these angles 

are the only ones which are consistent with the symmetry of the hexagonal lattice, and 

molecular models showed that a continuous lattice requires the presence of large carbon rings 

at the junction. The possible formation mechanism of the junctions was also discussed, and it 
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was suggested that the process might be initiated at the pentagonal rings which are believed 

to occur where a zigzag edge meets an armchair edge.

3.3  Electrostatic exfoliation

The exfoliation of graphite to produce graphene has been the subject of a huge amount of 

work [46], but there have been relatively few studies on the use of electric fields to induce 

exfoliation. Liang and co-workers were among the first to explore this approach. In 2009 they 

described the use of electrostatic exfoliation to deposit patterned few-layer graphene onto a 

substrate [47]. Their method involved firstly creating patterns on the surface of a highly 

oriented pyrolytic graphite (HOPG) disc using lithographic techniques. A feature of the 

pattern was then brought into contact with an SiO2/Si substrate and a voltage was applied 

between the HOPG template and the substrate. This resulted in exfoliation of graphene flakes 

from the HOPG, and attachment to the substrate. Using this technique the authors 

demonstrated the exfoliation/printing of 18 nm wide graphene “nanolines”, which could be 

used to fabricate nano transistors.

Two recent studies have explored different methods of electric field-induced exfoliation. 

Rubio-Verdú and colleagues showed that a scanning tunneling microscopy (STM) tip could 

be used to locally exfoliate HOPG by applying an electrostatic force at the edge of a terrace, 

forming triangular flakes [48]. Macroscopic exfoliation of graphite was demonstrated by Gao 

et al. [49]. In this work a voltage of around 20 kV was applied to graphite rods held under 

water. This resulted in an explosion which produced a variety of carbon species including 

few-layer and monolayer graphene sheets. These interesting studies suggest that the 

technique of electrostatic exfoliation deserves further research.

3.4  Graphene origami

The concept of graphene origami was first put forward in a 1995 paper by Ebbesen and Hiura 

[50]. In this paper, which anticipated the “discovery” of graphene by 9 years, scanning probe 

microscopy was used to create folds in graphene layers on the surface of highly ordered 

pyrolytic graphite. While this represented a significant technical feat, the resulting structures 

were still essentially two-dimensional. In 2014 Zhu and Li showed how, in theory, an electric 

field could be used to create three-dimensional graphene “nanocages” [51]. Their simulation 

began with a double cross-shaped graphene flake, as shown in Fig. 13 (a). Hydrogen atoms 

were then added around the edges of the flake, and at the junctions between the square 
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sections. They then showed that the structure could be reversibly closed and opened by the 

application of an external electric field, due to the polarization of carbon atoms. The closed 

nanocage is shown in Fig. 13 (b). It was suggested that the cages could be used for high-

density hydrogen storage. 

4.  Experiments with doped and filled nanotubes 

In a study published in 2006 [52], Peng et al. prepared amorphous carbon nanowires using a 

similar method to that of Huang et al. [22], and deposited Fe particles onto the wires. A 

current was then passed through these structures and this caused the Fe particles to move 

along the nanowires, resulting in graphitization. The breakdown current density of the 

original amorphous nanowires was found to be 2.2 x 105 A/cm2, but this increased to 

4.6 x 108 A/cm2 for the graphitized nanowires. This figure is comparable to the values found 

for nanotubes and graphene ribbons (see above), suggesting that the graphitized nanowires 

could be useful in nanoelectronic applications.

Grobert and colleagues have explored the effect of Joule heating on nitrogen and boron-

doped carbon nanotubes and on filled nanotubes [53 - 55]. In the first of these studies [53], 

N-doped carbon nanotubes, grown catalytically, were subjected to Joule heating inside a 

TEM. The initial N-MWCNTs were rather disordered and often had a bamboo-like structure. 

Figure 14 shows the effect of passing a current of 47 μ A at 2000 mV through an individual 

tube. It can be seen that the structure becomes progressively more ordered. There is also 

evidence for the formation of single-layer material which resembles some of the “three-

 Fig. 13 Illustration of folding of hydrogenated graphene structure to form closed 
nanocages, induced by electric field, from the work of Zhu and Li [51].
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dimensional graphene” structures discussed in Section 3.1 above. At sufficiently high current 

densities the nanotubes fractured, often leaving conical tips. The structure of these tips 

appeared to be related to the nature of the “compartments” in the original tubes. 

As well as imaging the N-MWCNTs, Grobert et al. used electron energy loss spectroscopy 

(EELS) to determine the nitrogen content of the tubes before and after Joule heating. The as-

produced tubes were found to contain approximately 3% N, but the N was completely 

removed by the passage of current. The restructuring and loss of N resulted in a significant 

increase in the conductivity of the tubes.

The same group carried out a similar study of boron-doped MWCNTs [54]. Again the 

passage of current resulted in restructuring of the tubes, and in loss of the dopant, although 

some B was retained in the tubes after Joule heating. As in the case of the N-doped tubes, the 

passage of current resulted in changes in the electrical behaviour of the B-MWCNTs, and 

high current densities resulted in fracture of the tubes. Both of these studies show that care 

needs to be taken to limit the maximum current density if doped-MWCNTs are to be used in 

electronic applications.

Some interesting work has been carried out on the passage of a current on filled carbon 

nanotubes. Costa and colleagues used a nanomanipulator inside a TEM to make connections 

between electrodes and filled tubes, and then showed that passing a current could induce the 

transport of the filling along the tube [56], an effect similar to that previously reported by 

 Fig. 14 Images showing nitrogen-doped MWCNT before (a) and during (b), (c), the 
application of current, from work by Grobert and colleagues [53].
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 Fig. 15 Micrographs illustrating electrically induced removal of Zn0.92Ga0.08S from inside of 
MWCNT. Plus and minus signs in (c) refer to temperatures above and below the 
sublimation point of the core. Scale bar 0.5 m. From work by Costa et al. [57].

Peng et al. [52]. In subsequent work [57] the same group showed how experiments with filled 

tubes could be used to determine the temperatures which were generated by the passage of 

current. Multiwalled nanotubes filled with a low vapour pressure material, namely 

Zn0.92Ga0.08S, were used in this work. Two different configurations were used: one with the 

tube connected at both ends, and one with an electrode connected to a side wall. In both cases 

the passage of a current resulted in the expulsion of the filling material. Figure 15 shows the 

effect of Joule heating on a nanotube connected at both ends. Initially, sulphide is removed 

from the area close to the Au cathode. Then a “hotspot” develops further along the tube, 

creating a gap in the filling as sulphide vaporises (Fig. 15 (b)). The two segments are then 

progressively consumed by the expansion of the hotspot (Fig. 15 (c)). The segment fronts 

acted as markers for the sulphide sublimation temperature (928 K). Further 

detailed studies of filled tubes enabled Costa et al. to determine, for the first time, the radial 

heat distribution inside CNTs. 

In more recent work, the Grobert group has shown how the structure of Cr2O3 encapsulated 

inside MWCNTs can be transformed by Joule heating of the filled tubes [55].

5.  Discussion

A very large amount of work has been carried out on the modification of carbon 

nanomaterials using electricity and this article is not intended to be an exhaustive review. 

Instead, an attempt has been made to highlight some of the most significant and striking 
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results in this field, and to distinguish between the effect of passing an electric current and the 

effect of the application of an electrostatic charge. The passage of current has been used to 

create gaps in nanotubes and graphene by inducing breakdown. The opposite process, i.e. the 

plumbing together of nanotubes by passing a current through them, has also been 

demonstrated. While many of these laboratory demonstrations are extremely impressive, 

there is still a long way to go before similar techniques can be used to create useful electronic 

devices containing thousands or millions of connections.

The discovery of “superplastic carbon nanotubes” by Huang et al. [13] created wide interest. 

The demonstration that carbon nanotubes can be stretched by almost 280% when a current is 

passed through them at high temperatures came as a surprise, given that the room temperature 

breaking strains of carbon nanotubes are typically around 10%. It is not clear whether the 

remarkable ductility observed in these experiments was a result of the  high temperature, the 

electric current, or both. More work on this phenomenon would be welcome. 

There has been growing interest recently in the massive restructuring of carbon materials 

which can be induced by the application of an electric field to graphite or to few-layer 

graphene. This phenomenon was discovered independently by three groups in 2009 [26 - 28], 

and involves the formation of a carbon material with a highly irregular edge morphology,

with many re-entrant structures and unusual features including nanotubes seamlessly joined 

to larger graphene regions. The precise mechanism of this restructuring is still a matter of 

debate. It has been argued here, and in previous papers, that the process involves an evolution 

from a flat to a three-dimensional structure rather than sublimation and edge reconstruction of 

flat graphene, as has been suggested by other authors. It has also been argued that this 

transformation is initiated when charge accumulates in the graphene layers, leading to 

repulsion between the layers and separation, a suggestion that was first made explicitly by 

Wang et al. [37]. However, this is far from full explanation of the phenomenon. One of the 

most remarkable aspects of the transformation is the extreme fluidity of the carbon structures 

when exposed to an electric field at high temperatures. This can be seen graphically in the 

videos which accompany reference 27. In some ways this resembles the superplasticity 

observed by Huang and colleagues; neither phenomenon is well understood.

It is clear that the application of an electric field can promote dramatic restructuring of carbon 

materials, but the transformations produced in this way are uncontrolled, creating essentially 
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random structures. This contrasts with the very precise control, on the nm scale, which can be 

achieved by electrical breakdown. Is it possible to envisage a way in which the more 

controlled application of a field could be used to engineer defined, three-dimensional carbon 

structures? The intriguing theoretical work by Zhu and Li on “graphene origami” shows one 

way in which an electric field could be used to create 3D graphene structures with defined 

shapes [51]. While carrying out graphene origami experimentally may be beyond our present 

capabilities, theoretical work of this kind shows that the application of electric fields could 

have great potential for the controlled manipulation of graphene on the nanoscale. 
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