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Abstract

This paper considers maximum likelihood (ML) estimation in a large class of mod-

els with hidden Markov regimes. We investigate consistency and local asymptotic

normality of the ML estimator under general conditions which allow for autore-

gressive dynamics in the observable process, time-inhomogeneous Markov regime

sequences, and possible model misspecification. A Monte Carlo study examines

the finite-sample properties of the ML estimator. An empirical application is also

discussed.

Key words and phrases: Autoregressive model; consistency; hidden Markov model;

Markov regimes; maximum likelihood; local asymptotic normality; misspecified

models; time-inhomogenous Markov chain.
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1 Introduction

Following the influential work by Hamilton [1989], dynamic models with parameters that

are subject to changes driven by an unobservable Markov chain (the regime or state

sequence) have attracted considerable attention in many different fields. An important

subclass of such models, also used widely in a variety of disciplines, are so-called hidden

Markov models, in which the observations are conditionally independent given the regime

sequence (see, e.g., the review paper by Ephraim and Merhav [2002] and the references

therein). The hidden Markov chain is commonly taken to be time-homogeneous.

In this paper we focus on a larger class of models in which the hidden regime process

and the observation process (conditional on the regimes) are both time-inhomogeneous

Markov chains. This is a useful generalization of models with a time-invariant transition

mechanism, which has found numerous applications, especially in economics and econo-

metrics (e.g., Diebold et al. [1994]; Filardo [1994]). Inference in such models is typically

likelihood based, but very little is currently known about the asymptotic properties of

the associated maximum likelihood (ML) estimator.

The contribution of this paper is to provide consistency and asymptotic normality

results for a large class of models that are relevant in applications. Our approach allows

for autoregressive dynamics in the observable process, temporal heterogeneity in the

transitions of the hidden Markov process, and model misspecification. To the best of

our knowledge, the only asymptotic results available on ML estimation in models with

time-inhomogeneous Markov regimes are those in Ailliot and Pène [2013], which establish

consistency of the ML estimator in a correctly specified model. By contrast, we allow for

possible model misspecification and establish local asymptotic normality (LAN) (e.g.,

Le Cam [1986]) for our model, from which asymptotic normality of the ML estimator

can be inferred. Unlike Ailliot and Pène [2013], however, who allow for a general hidden

state space, we require the latter to be finite.

Our results on the convergence of the ML estimator under possible model misspecific-

ation extend some results of White [1982] for independent, identically distributed (i.i.d.)

data to the case of dependent observations and for classes of parametric distributions

associated with dynamic models with hidden Markov regimes. Such stochastic specific-

ations are typically highly parametric and frequently based on conditional Gaussianity

assumptions. It is, therefore, important to understand the properties of likelihood-based
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inference procedures in situations where the true probability structure of the data does

not necessarily lie within the parametric family of distributions specified by the model.

An example of potential misspecification that is of particular relevance in models with

time-inhomogeneous Markov regimes involves the use of an incomplete approximation

to the likelihood function which ignores the joint dependence of the observation variable

and of the variables upon which the transition function of the regime sequence depends

(see also Filardo [1998]). This will be discussed in some detail in the context of our

analysis of simulated and real-world data. In related work, Mevel and Finesso [2004]

consider consistency and asymptotic normality of the ML estimator in the case of po-

tentially misspecified hidden Markov models (conditionally independent observations)

with a finite state space, while Douc and Moulines [2012] investigate consistency (but

not asymptotic normality) in the case of general state spaces; in both papers, the regime

sequence is assumed to be time-homogeneous.

In other related work, Francq and Roussignol [1998] and Krishnamurthy and Rydén

[1998] investigate consistency of the ML estimator in correctly specified autoregressive

models with Markov regimes defined on a finite state space. Douc et al. [2004] examine

consistency and asymptotic normality in a similar setup but allow the hidden Markov

chain to take values in a space that is not necessarily finite or countable. In the context of

hidden Markov models, Bickel and Ritov [1996], Bickel et al. [1998], Jensen and Petersen

[1999], Douc and Matias [2001], and Douc et al. [2011] investigate asymptotic normality

and/or consistency under correct specification and regime sequences defined on either a

finite or general state space. In all the papers mentioned in this paragraph, the regime

sequence is assumed to be a time-homogeneous Markov chain.

In the sequel we follow Bickel et al. [1998] and Douc et al. [2004] fairly closely in

terms of the technical tools and the arguments used in the proofs, but our setup is more

general in certain respects. Like Bickel et al. [1998], we consider models with a finite

hidden state space, but allow for autoregressive dynamics in the observation sequence,

temporal heterogeneity in the regime sequence, and model misspecification. In Douc

et al. [2004], the hidden Markov chain is allowed to take values in a compact topological

space but is restricted to be time-homogeneous, and the model is assumed to be correctly

specified. We show that the ML estimator in our setup converges to the true parameter

value if the model is correctly specified and to a pseudo-true parameter set if the model

is misspecified. We also show that the sample log-likelihood satisfies the LAN property,
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and establish an asymptotic linear representation for the ML estimator.

The cornerstone of the methods used by Bickel et al. [1998] and Douc et al. [2004]

for establishing the asymptotic properties of the ML estimator are mixing-type results

for the unobservable regime sequence conditional on the observation sequence (see also

Bickel and Ritov [1996]). This is also true for our approach, but unfortunately we

cannot invoke their results directly because they are established under the assumption

of time-homogeneity of the hidden Markov chain. We extend these results to allow for

time-inhomogeneous Markov regimes; in particular we establish mixing-type results for

the unobservable regime sequence given the observed data, allowing for time-varying

Markov transition matrices. This last result may be of interest in its own right.

The remainder of the paper is organized as follows. Section 2 defines the class of

models under consideration and gives sufficient conditions for stationarity and ergodicity.

Section 3 describes the estimation problem of interest. Section 4 investigates consistency

of the ML estimator in a general setting. Section 5 contains results on the LAN property

of the model. Section 6 presents simulation results on the finite-sample properties of

estimators based on well-specified and misspecified likelihoods. Section 7 presents an

illustration using real-world data. Section 8 summarizes and concludes. All proofs are

gathered in an Appendix.

The following notation is used throughout the paper: for any infinite sequence () ,

 
 = (     ) for any  ≤ ; P(V) denotes the set of Borel probability measures on a
Polish space V; for any probability measure  ,  (·) denotes expectation with respect
to  , and  (·) and  (·) indicate order in probability under  ; ∇ and ∇2 are the
gradient and Hessian operators with respect to a parameter , respectively; k·k denotes
the Euclidean norm of a vector or matrix; 1{·} denotes the indicator function; N denotes
the set of positive integers. Unless stated otherwise, limits are taken as  →∞, where
 is the sample size.

2 Statistical Model

Let ( )
∞
=0 be a discrete-time stochastic process such that: ()

∞
=0 is an unobserv-

able, time-inhomogeneous Markov chain on a finite state space S = {1     |S|} ⊂ R;
conditionally on ()

∞
=0, ()

∞
=0 is an observable, time-inhomogeneous Markov chain

on a general state space X that is a closed subset of R. It is assumed that, for each

4



 ∈ N, the conditional distribution of , given −1
0 and 

0, depends only on −1 and

, and the conditional distribution of , given −1
0 and −1

0 , depends only on −1
and −1, so that

 | (−1
0  

0) ∼ (· | −1 ) (1)

 | (−1
0  −1

0 ) ∼ (· | −1−1) (2)

The probability distributions in (1)—(2) are indexed by an (unknown) parameter  taking

values in a parameter space Θ ⊆ R. The true value of  is denoted by ∗ and need not

be in Θ. It is further assumed that, for each  ∈ Θ and ( ) ∈ X×S, (· |  ) admits
a density (· |  ) with respect to some -finite measure on X.

This set-up encompasses a rich family of models, some examples of which are given

below. Models with autoregressive dynamics and time-homogeneous Markov regimes

arise in the case where  does not depend on −1. If, in addition,  does not depend

on −1, hidden Markov models are obtained. In the sequel, we put Ω =
∙
1 

 1

¸
for

some fixed ||  1.
Example 1 (Gaussian Mixture). Let  = ( ) ∈ X = R2 and  ∈ S = {0 1}. Let 
be determined by the equations

 = 0 + 1 + 11

 = −1 + 22

with (1 2) being i.i.d. N (0Ω) random vectors independent of {},  be given

by Pr( = 1 | −1 =  −1) = Pr( = 1 | −1) = [1 + exp(−−1)]−1, and

 = (0 1   1 2 ). In this model,  is generated by a finite mixture of Gaussian

distributions (with time-varying mixing weights). A Gaussian mixture with Markov

dependence is obtained when
P

∈S Pr( =  | −1 =  −1)  1. 4
Example 2 (Switching Autoregressive Model). Let  = ( ) ∈ X = R2 and  ∈ S =
{0 1}. Let  be determined by the equations

 = 0 + 1 + −1 + (0 + 1)1

 = −1 + 22

with (1 2) being i.i.d. N (0Ω) random vectors independent of {},  be given

by Pr( =  | −1 =  −1) = [1+exp(−−−1)]−1, and  = (0 1  0 1  2 0 0 1 1).
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This is an example of the type of Markov-switching autoregressive model considered

by Diebold et al. [1994] and Filardo [1994], among many others. A Markov-switching

autoregressive model with a time-invariant transition mechanism is a special case with

0 = 1 = 0. 4
Example 3 (Panel Data Model with Heterogeneous Marginal Effects). The following

model is a parametric version of a Random Coefficient Model (Chamberlain [1992])

studied by Chernozhukov et al. [2015] and Graham and Powell [2012]. For each  ∈ N
and  ∈ {1 2     }, let

 = ( )

where () are zero-mean, i.i.d., real-valued random variables with density .
1 Here,

 is the outcome variable of individual  at time  (e.g., household’s  consumption

at time  of some good) and  ∈ R are observed covariates for individual  at time
;  can contain a “macroeconomic” variable (i.e., affecting all households) or an

“idiosyncratic” variable (e.g., household characteristics, past values of income, etc.),

and it is assumed that  = (1     ) | −1 ∼ (· | −1; ). In this model,

( ) ∈ R measures the effect of the covariates on the outcome variable, and is a
function of , which may be interpreted as representing unobserved macroeconomics

factors (e.g., the state of the economy) and evolves according to  | (−1 −1) ∼
(· | −1 −1). Finally,  is an idiosyncratic shock for individual  at time . It is

assumed that  7→ ( ) is strictly increasing for all  and all  ∈ Θ. Thus, in this
case,  = 2,  = ( ) with  = (1  ), and

(( ) | −1 −1 ) =
Y

=1

(
−1
 ( ) |  )( | −1; )

4
Example 4 (Mixture Autoregressive Model). For each  ∈ N, let  | (−1 ) ∼ (· |
−1 ),  | −1 ∼ (· | −1) with  ∈ {0 1}, and  7→ () ≡ (0 | ). If the
conditional density of  given −1 is given by

( | −1) = (−1)( | −1 0) + {1−(−1)}( | −1 1)
1An important difference with the literature on random coefficient models is that our model is suited

to “large- -small-” panels, whereas the typical paper in the literature is for “small- -large-” panels.
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one obtains models which belong to the general class of mixture autoregressive models

(e.g., Dueker et al. [2007]; Tadjuidje et al. [2009]; Dueker et al. [2011]; Kalliovirta et al.

[2015]). 4
Before discussing estimation of  based on a finite segment 

0 ( ∈ N) of ()
∞
=0,

we give a result regarding the mixing and ergodicity properties of ()
∞
=0. To do so,

let ̄
∗ denote the true distribution over ()

∞
=0 when the distribution of (0 0) is

. Under the following assumptions, Lemma 1 below ensures that there exists a Borel

probability measure on X × S, denoted henceforth by , which yields a stationary and

ergodic process ()
∞
=0.

Assumption 1. There exists a continuous function  : X → R++ such that: (i) for

almost all  ∈ X, (
0 |  ) ∈ [() 1] for all 0  ∈ S2 and all  ∈ Θ.

Assumption 2. There exist constants 0 ∈ (0 1),  ∈ (0 1), 0  0 and   20(1−),
a lower semi-continuous function U : X→ [1∞), and a measure  ∈ P(X) such that, for
all  ∈ S: (i) RX U(0)∗(0| ) ≤ U() + 01{ ∈ } with  ≡ { ∈ X : U() ≤ };
(ii)  is bounded; (iii) inf∈ ∗( |  ) ≥ 0() for any Borel set  ⊆ X.

Remark 1 (Discussion of the Assumptions). Assumption 1 is an adaptation of a stand-

ard assumption in the literature to the case where  depends on −1; it could be

somewhat relaxed along the lines of condition (6) in Theorem 2 below.

Assumption 2 is needed for establishing that the implied transition matrix of the

joint process ( )
∞
=0 has a unique invariant distribution and also that it is Harris

recurrent and aperiodic. This fact in turn is used to show that ()
∞
=0 is stationary,

ergodic and -mixing (or absolutely regular) at a geometric rate; see Meyn and Tweedie

[1993] and references therein for a discussion of the assumption. 4
The next lemma establishes stationarity, ergodicity and -mixing of ()

∞
=0. (Under

̄ 
∗ , the -mixing coefficients of ()

∞
=0 are given by  ≡ sup≥0̄ 

∗
[sup{|̄ 

∗(|X 
0)−

̄ 
∗()| :  ∈ X∞+}],  ∈ N, where X 

 denotes the -algebra generated by 

).

Lemma 1. Suppose Assumptions 1 and 2 hold. Then, there exists a  ∈ P(X× S) such
that, under ̄ 

∗, ()
∞
=0 is stationary, ergodic and -mixing with decay  = ().

Proof. See Appendix A.
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In view Lemma 1, under , we can extend the process ()
∞
=0 to a two-sided sequence

()
∞
=−∞. With a slight abuse of notation we still use ̄ 

∗ to denote the true probability

distribution over ()
∞
=−∞.

3 Parameter Estimation

Let  : X+1 ×Θ→ R be the sample criterion function given by

 (

0  ) = −1

X
=1

log  ( | −1
0  ) (3)

where  ( | −1
0  ) denotes the conditional density of  given −1

0 for any  ∈ Θ,
and is defined recursively as follows: for any  ≥ 1

 ( | −1
0  ) =

X
0∈S

X
∈S

( | −1 0)(
0 | −1) ()

and  7→ 

 () ≡ Pr( =  | −1

0 ). For each  ≥ 2,  7→ 

 () satisfies the recursion:

for any  ∈ S,



 () =

X
̃∈S

Pr( | ̃ −1
0 ) Pr(̃ | −1

0 )

=
X
̃∈S

Pr( | ̃ −1
0 ) Pr(̃−1−2

0 )P
0∈S (−1 | −2 0)−1(0)

=
X
̃∈S

( | ̃ −1)(−1 | −2 ̃)−1(̃)P
0∈S (−1 | −2 0)−1(0)

 (4)

with  7→ 

1 () =

P
̃∈S Pr(|̃ 0)(̃|0), where (·|·) is the conditional density

corresponding to . The function  is a specified conditional density for  given −1
and . In our setup, we allow  to be potentially misspecified in the sense that ∗

(the true density) does not necessarily belong to the family specified by { :  ∈ Θ}.
A special case of interest is when  = ( ) and we have the “triangular” relationship

( | −1 ) = ( | −1 )( | −1)

In this case, a possible type of misspecification involves specifying  incompletely by

ignoring  (the conditional density of  given −1) and specifying a model for

 (the conditional density of  given −1 and ) instead of a model for  (the
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conditional density of  given , −1, and ). The density  coincides with 

only when  is independent of  (and −1) conditionally on −1 and . As a result,

any parametric form of  is misspecified for  unless  is conditionally independent

of  and −1. This is an interesting type of misspecification which we illustrate in the

simple Gaussian mixture example and will consider further in Sections 6 and 7.

Example 5 (Gaussian Mixture (Cont.)). In this case,

( | −1 ) =
1

1
p
2(1− 2)

exp

½
− [ − 0 − 1− (12)( − −1)]2

221(1− 2)

¾


( | −1) =
1

2
√
2
exp

½
−( − −1)2

222

¾


whereas

( | −1 ) = 1

1
√
2
exp

½
−( − 0 − 1)

2

221

¾


Since the states () are i.i.d. (conditionally on the observed data), 

 (1) = [1 +

exp(−−1)]−1. Moreover,

 ( | −1
0  ) =

X
0∈S

( | −1 0)(
0 | −1)

X
∈S



 ()

=
X
0∈S

( | −1 0)(
0 | −1)

An analogous expression holds for the correctly specified case. 4

For a given initial distribution , we define our estimator as ̂ , where

 (

0  ̂ ) ≥ sup

∈Θ
 (


0  )−   (5)

for some  ≥ 0 and  = (1).

4 Consistency

For any set  ⊆ Θ, let Θ() ≡ inf0∈ || − 0||. Let ∗ : Θ→ R+ ∪ {∞}, with

∗() = ̄ 
∗

"
log

(0 | −1
−∞ 

∗)
(0 | −1

−∞ )

#
  ∈ Θ

where (0 | −1
−∞ ) denotes the conditional density of 0 given −1

−∞ for any  ∈
Θ ∪ {∗}.
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Assumption 3. (i) Θ is compact; (ii) ∗ exists and is lower semi-continuous.

Let

Θ0 = argmin
∈Θ

∗()

be the pseudo-true parameter (set) minimizing the Kullback—Leibler information cri-

terion ∗(). The next lemma shows that the set is non-empty.

Lemma 2. Suppose Assumption 3 holds. Then Θ0 is non-empty and compact.

Proof. See Appendix C.

Assumption 4.
P∞

=0̄ 
∗
[
Q

=0(1− ())] ∞.

Assumption 5. (i) For any   0, there exists a   0 such that

max
0∈Θ

̄ 
∗

"
sup

∈||0−||

(0 | −1
−∞ 

0)
(0 | −1

−∞ )

#
≤ 1 + ;

(ii) there exists an a.s.-̄ 
∗ finite  such that sup∈Θ

max∈S (|−1)
min∈S (|−1) ≤ .

Remark 2 (Discussion of the Assumptions). Assumption 3(i) is standard. Assump-

tion 3(ii) is a high level one and can be obtained from lower level conditions (cf. Pro-

position 1 in Douc and Moulines [2012]). Assumption 4 essentially requires that  is not

“too close” to zero. For instance, if () ≥  for some   0 then part (ii) is automatic-

ally satisfied. Under stationarity of ()
∞
=0 and the fact that  | (−1

0  
0) ∼ ∗(· |

−1 −1), a (weaker) sufficient condition is given by inf[() |  ]  0, since



"
−1Y
=0

(1− ())[(1− ()) |  −1
0  

0]

#
≤
µ
sup


[(1− ()) |  ]
¶


"
−1Y
=0

(1− ())

#

≤
µ
sup


[(1− ()) |  ]
¶+1



which is summable. If ()
∞
=0 is i.i.d., this condition boils down to [()]  0.

Assumption 5(i) is a high level condition used for establishing uniform law of large

numbers results (see Lemma 6 in the Appendix C). Assumption 5(ii) is akin to Assump-

tion A4 in Bickel et al. [1998]; it basically restricts the support of  for different values

of the state variable. 4

10



We now establish consistency of the estimator defined by (5). This result is ana-

logous to Theorem 2 in Douc and Moulines [2012] but for a somewhat different setup;

in particular, we allow for autoregressive dynamics as well as time-varying transition

probabilities, but restrict the state space S to be discrete.

Theorem 1. Suppose Assumptions 1-5 hold. Then

Θ(̂ Θ0) = ̄ 
∗
(1)

Proof. See Appendix C.

Clearly, if the model is well-specified, i.e., ∗ ∈ { :  ∈ Θ}, then Θ0 = {∗}
and our estimator converges to this point. If the model is misspecified, however, our

estimator converges to a pseudo-true parameter (set), which is the set of parameters

that is closest to the true set when closeness is measured using the Kullback—Leibler

information criterion (cf. White [1982]; Douc and Moulines [2012]).

The proof of Theorem 1 is standard and relies on “mixing” results for the process

()
∞
=−∞, given ()

∞
=−∞. These results are, to our knowledge, new since they allow

the transition matrix  to depend on −1. The following theorem, which might be of

independent interest, presents these “mixing” results.

Theorem 2. Take any () ∈ N2 such that − ≤ . Suppose that, for any  ∈
{−     } and  ∈ Θ, there exist a mapping − 7→ (· | −) ∈ P(S) and  : X→
R++ such that, for all  0 ∈ S2,

(
0 | ) ≥ ()(

0 | 
−) − ̄ 

∗  (6)

Then, for any (  ) ∈ S3,¯̄̄
(+1 = |− = 


−)− (+1 = |− = 


−)

¯̄̄
≤

Y
=−

(1− ())

where, for any  ∈ N,

(+1 = |− = 

−) =

X
∈S

(+1 = | = )( = |− = 

−)

and for any (0 ) ∈ S2

( = 0 | − = 

−) =

( |  = 0−1)( = 0 | − = 
−1
− )P

∈S ( |  = −1)( =  | − = 
−1
− )

11



Proof. See Appendix B.

Theorem 2 and Assumptions 4 and 5 imply that −1
P

=1 

 ( | −1

0  ) is well-

approximated (in the sense of Lemma 5 in Appendix C) by −1
P

=1 
( | −1

−∞ ).2

Using ergodicity (Lemma 1) and Assumption 5, we establish in Lemma 6 in Appendix

C a uniform law of large numbers for −1
P

=1 
( | −1

−∞ ·); with these results at
hand, we are able to show consistency following the standard Wald approach.

5 Asymptotic Linear Representation

In this section we establish a LAN property ([Ibragimov and Has’minskii, 1981, Ch. II];

Le Cam [1986]) for our model. Our main result extends results in Bickel and Ritov [1996]

and Bickel et al. [1998] to the case where the regime process is a time-inhomogeneous

Markov chain and the observation process exhibits autoregressive dynamics (condition-

ally on the regimes).

Assumption 6. (i) Θ0 = {0} ⊂ int(Θ); (ii)  7→ (1 | 0 ) and  7→ (
0 | )

are twice continuously differentiable − ̄ 
∗ for all ( 

0) ∈ S2.

For any   0, let ( ) ≡ { ∈ Θ : || − ||  }. Also, write  for the -th

element of .

Assumption 7. There exists a   0 such that: (i)max∈S̄ 
∗

h
sup∈(0) ||∇(1 | 0 )||2

i


∞ and max(0)∈S2 ̄ 
∗

h
sup∈() ||∇(

0 | 0)||2
i
∞; (ii) for all 1 ≤   ≤ ,

max∈S̄ 
∗

h
sup∈(0)

¯̄̄
2(1|0)



¯̄̄i
∞ andmax(0)∈S2 ̄ 

∗

h
sup∈(0)

¯̄̄
2(

0|0)


¯̄̄i


∞.

Assumption 8.
P∞

=0

³
̄ 

∗

hQ
=0(1− ())

2
i´2

∞ for some  ∈ (0 23).

Remark 3 (Discussion of the Assumptions). Part (i) of Assumption 6 is standard in

the literature. The restriction that Θ0 is a singleton could be relaxed using the ideas of

Liu and Shao [2003] for non-identified ML estimators. This extension, however, would

present nuances that are beyond the scope of the current paper. Part (ii) of Assumption 6

is standard. Assumption 7 is also standard (see Bickel et al. [1998] for a discussion).

Finally, Assumption 8 is a strengthening of Assumption 1(ii), and is required in order to

2To apply Theorem 2, we note that under Assumption 1, condition (6) holds with  ≡ 1|S|.
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establish the existence of a random sequence (∆(0)) which approximates the “score”

function well (in the sense of Lemma 9 in Appendix D). For instance, it is satisfied if

inf[() |  ]  0. 4
The next theorem establishes a LAN-type property for the log-likelihood criterion

function in (3).

Theorem 3. Suppose Assumptions 1(i), 6, 7 and 8 hold. Then, there exists a stationary

and ergodic sequence (∆(0)), a sequence of negative definite matrices ((0)), and a

compact set  ⊆ Θ, such that

 (

0  0 + )−  (


0  0) =

0
Ã
−1

X
=0

∆(0) + ̄ 
∗
(−12)

!

+ 050
Ã
−1

X
=0

(0) + ̄ 
∗
(1)

!


+ ()

for any  ∈ , where  7→  () ∈ R is such that sup∈ ||||−2 () = ̄ 
∗
(1).

Proof. See Appendix D.

Theorem 3 extends the result in Bickel et al. [1998] (see their remark in p. 1620)

to a more general setup which allows for time-varying transition probabilities, autore-

gressive dynamics, and misspecified models. The proof develops along the same lines as

theirs. The main difference relies on establishing that the “score” ∇

 and the Hessian

∇2 can be approximated by
P

=0∆(0) and
P

=0 (0), respectively (see Lemmas

10 and 11 in Appendix D). As mentioned above, these approximations rely on the con-

ditional mixing process of the hidden time-inhomogeneous Markov chain (see Lemma 9

in Appendix D).

In the next result, Theorem 3 is used to establish an asymptotic linear representation

for our estimator in terms of (∆(0)) and ((0)).

Theorem 4. Suppose Assumptions 1—8 hold and  = (−1). Then

√
 (̂ − 0) = −(̄ 

∗
[1(0)] + ̄ 

∗
(1))−1−12

X
=0

∆(0) + ̄ 
∗
(1)

Proof. See Appendix D.
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This result readily implies that, if −12
P

=0∆(0)⇒ N (0Σ(0)), where Σ(0) =
lim→∞ −1̄ 

∗
[(
P

=0∆(0))(
P

=0∆(0))
0], then

√
 (̂ − 0)⇒ N (0 (̄ 

∗
[1(0)])

−1Σ(0)(̄ 
∗
[1(0)])

−1) (7)

with ‘⇒’ denoting convergence in distribution. In the case of a correctly specified model,
the process (∆(0)) is a martingale difference sequence, and thus the result in (7) is

obtained by invoking a martingale-difference central limit theorem for (∆(0)). In the

possibly misspecified case, (∆(0)) will not, in general, be a martingale difference, so

one should use a different approach. In some situations, a central limit theorem for

-mixing processes could be used instead. Notice that the asymptotic normality in

(7) is akin to results in White [1982], in that the asymptotic covariance matrix has a

“sandwich” form and the information matrix equality does not necessarily hold (see also

[White, 1994, Ch. 6]).

6 Monte Carlo Simulations

In this section we present and discuss simulation evidence regarding the finite-sample

properties of estimators based on well-specified and misspecified likelihoods. The Monte

Carlo experiments are based on artificial data ( = ( )) generated according to

the equations

 = 0(1− ) + 1 + −1 + [0(1− ) + 1]1  ≥ 1 (8)

 = 2 + −1 + 22  ≥ 1 (9)

with 0 = 1, 1 = −1,  = 09, 0 = 1 = 2 = 1, 2 = 02,  = 08, (0 0) = (05 1),

and (1 2) being i.i.d. N (0Ω) random vectors with  ∈ {0 08}. The regimes
() are a Markov chain on {0 1}, independent of (1 2), such that

Pr( =  | −1 =  −1) = [1 + exp(− − −1)]−1  ∈ {0 1} (10)

with 0 = 1 = 2, 0 = −05, and 1 = 05. The model defined by (8), (9) and (10)

is a prototypical Markov-switching autoregressive model with time-varying transition

probabilities, and it has been used extensively in applications.

In each Monte Carlo replication, 100 +  data points for () are generated with

 ∈ {100 200 400 800 1600 3200}; the first 100 points are then discarded in order to
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attenuate start-up effects and the remaining  points are used to estimate the parameter

 = (0 1  0 1 0 0 1 1). We compute two ML-type estimates of : the first

is obtained by maximizing the joint log-likelihood based on the conditional distribution

of  given −1
0 , while the second is the maximizer of the partial log-likelihood based

on the conditional distribution of  given −1
0 ; for brevity, we shall refer to these

estimates as “joint” and “partial”, respectively. We note that, in empirical applications,

inference in the context of a model like (8)—(10) is typically based on the partial log-

likelihood (see, e.g., Diebold et al. [1994] and Filardo [1994]). In the experiments, the

maximizer of the relevant sample criterion function is found by means of a quasi-Newton

algorithm that approximates the Hessian according to the Broyden—Fletcher—Goldfarb—

Shanno (BFGS) update with numerically computed derivatives. A grid of seven initial

values for each element of  (including the true value) is used to initialize the BFGS

iterations; those initial values which result in the highest value of the objective function

are then selected.3 The number of Monte Carlo replications per experiment is 1000.

In Tables 1 and 2, we report some of the characteristics of the finite-sample dis-

tributions of the partial and joint ML estimators of the elements of  when  = 08.

Specifically, we report the deviation of the mean from the true parameter value (bias),

as well as conventional measures of skewness and kurtosis based on the standardized

third and fourth empirical central moments. We also report the ratio of the sampling

standard deviation of the ML estimators to the estimated standard errors averaged across

Monte Carlo replications for each design point. To reflect what is common practice in

applied research, estimated standard errors are computed using the familiar empirical

Hessian estimator (which relies on the assumption of correct specification) instead of a

“sandwich” estimator (which allows for the possibility of misspecification).

The most noteworthy finding is that, for most of the parameters, the partial ML

estimator is considerably more biased than the joint ML estimator. The differences

between the two estimators are more pronounced for the parameters associated with the

Markov transition probabilities (0, 0, 1, 1), the partial ML estimates of which are

significantly biased even for the largest sample size considered in the simulations. This

suggests that the bias of the partial ML estimator when  6= 0 is not a phenomenon asso-
ciated only with small samples, a finding which is consistent with our asymptotic results.

Also note that the distributions of the partial and joint ML estimators of many para-

3Estimation results were found to be fairly robust with respect to the choice of initial values.
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meters tend to deviate substantially from the symmetric and mesokurtic distributions

predicted by large-sample theory when  ≤ 200. This is especially true for the para-
meters associated with the transition probabilities, although the quality of the Gaussian

approximation improves as the sample size increases.

Regarding the accuracy of the estimated standard errors, the latter are downwards

biased in most cases, the bias being somewhat smaller in the case of joint ML estimates.

However, unless the sample size is small, the bias is not generally substantial and de-

creases as the sample size increases. This is also true in the case of partial ML estimates

in spite of the fact that the estimated standard errors are obtained from the empirical

Hessian.

Next, we examine the sampling distributions of conventional studentized statistics

associated with the elements of the partial and joint ML estimators of . These stat-

istics are computed as the ratio of the estimation error to the corresponding estimated

standard error, and are typically treated as having an approximate N (0 1) distribution
(which is true under the assumption of a well-specified likelihood function). In Tables 3

and 4, we report the mean and standard deviation of the finite-sample distributions

of the studentized statistics, as well as the outcome of a Kolmogorov—Smirnov test for

Gaussianity, when  = 08. In addition, we report the empirical rejection frequencies

of: (i) a -type test of H0 :  = ∗ versus H1 :  6= ∗ , where  is the -th element

of  and ∗ is its true value; (ii) a -type test of H0 :  = 0 versus H1 :  6= 0.

In both cases, rejection frequencies are computed using a 5% standard-normal critical

value. We note that results should be interpreted with caution in the case of H0 :  = 0,
 ∈ {0 1}, because the null value of  is on the boundary of the maintained hypothesis.
Our asymptotic theory does not allow for parameters that may lie on the boundary of

the parameter space.

Not surprisingly perhaps, in light of the results in Tables 1 and 2, the mean of the

distribution of the studentized statistics associated with partial ML estimates differs

substantially from zero, something which is especially true, even in large samples, for

statistics associated with 0, 0, 1, and 1. Gaussianity is rejected by the Kolmogorov—

Smirnov test in every case reported in Table 3. By contrast, studentized statistics

associated with joint ML estimates tend to have distributions with mean and variance

that do not differ substantially from their expected values in most cases, and Gaussianity

is never rejected for  ≥ 800. The statistics associated with , 0 and 1 appear to
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fare somewhat worse than others when the sample size is small. A similar finding for

Markov-switching autoregressive models with a time-invariant transition mechanism is

reported in Psaradakis and Sola [1998].

Turning to hypothesis testing, -type tests of H0 :  = ∗ based on joint ML

estimates tend to have an empirical Type I error probability which is generally close

to the nominal level of the test, especially for   200. Tests based on partial ML

estimates, on the other hand, tend to be oversized when  = 08. In the case of the

parameters associated with the transition probabilities, tests tend to be either excessively

conservative or excessively liberal even for the largest sample size under consideration.

When testing the significance of individual parameters, we find that tests based on joint

ML estimates lack power to reject the hypothesis that 0 = 0 or 1 = 0 when  ≤ 200.4
Tests based on partial ML estimates have higher nominal power in such cases, although

this is to a large extent due to the size distortion that these tests exhibit.

It is perhaps worth pointing out again that the experiments are designed so as to

highlight the likely results when inference is carried out in a way that is common in

applied work, and that care must be taken in interpreting the results for tests based on

partial ML estimates since the associated test statistics do not have the usual asymptotic

null distributions when  6= 0. Using a consistent estimator of the asymptotic covariance
matrix that appears in (7) would ensure that tests are asymptotically correct. However,

as Freedman [2006] also observes, results obtained by using such an estimator are unlikely

to be any less misleading since the problem of bias of the parameter estimator remains

under misspecification of the likelihood function. It is clear from the simulations that,

in our setting, the bias of the partial ML estimator of  indeed presents a much more

serious problem than the inaccuracy of conventionally estimated standard errors.

In Tables 5 and 6 we report simulation results relating to the partial ML estimator

of  when  = 0. Comparing the results with those in Tables 1 and 2, it is immediately

obvious that the there is considerable improvement in the properties of the partial ML

estimator and related studentized statistics. This is not, of course, surprising since,

like the joint ML estimator, the partial ML estimator is efficient and consistent when

 = 0. (Note that all sample information concerning  can be obtained from the partial

likelihood when  = 0 since  is strongly exogenous for  in the sense of Engle et al.

4Psaradakis et al. [2013] provide further simulation evidence and analysis of this phenomenon in the

context of models like (8)—(10) with  = 0.
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[1983]). Results for joint ML estimates when  = 0 are very similar to those obtained

with  = 08 and are omitted in order to conserve space.

To sum up, the Monte Carlo experiments suggest that the joint ML estimator has

good statistical properties regardless of whether or not there is contemporaneous correla-

tion between the variable of interest () and the information variable driving the hidden

Markov transition mechanism (), especially when the sample size is not too small. By

contrast, the partial ML estimator is severely biased in the presence of substantial con-

temporaneous correlation between  and  even for what are very large sample sizes by

the standards of empirical applications. Hypothesis tests based on partial ML estimates

also have unsatisfactory properties in the latter case.

7 Empirical Example

In this section we consider an application based on real-world data. Specifically, we

investigate the potential nonlinear contribution of the interest rate spread and the growth

in tax revenues in predicting regime changes in U.S. real output growth.

The model we consider is a variant of the specification used in the simulations, and

is given by

 = 0(1− ) + 1 +
4X

=1

− + 11 (11)

 = 2 +
4X

=1

− + 22 (12)

with the hidden, two-state Markov chain () being governed by the transition probab-

ilities

Pr( =  | −1 =  −1) = [1 + exp(− − −1)]−1  ∈ {0 1}

and (1 2) postulated to be i.i.d. N (0Ω) random vectors independent of ().

In these equations,  is the growth rate of real gross domestic product (GDP) and 

is either the spread between the 10-year Treasury note rate and the 3-month Treasury

bill rate or the growth rate of real government receipts of direct and indirect taxes (net

of transfers to businesses and individuals). The data used are quarterly and span the

period 1954:1 to 2009:4.5 It is worth pointing out that the model could be generalized to

5The GDP and tax data are taken from Auerbach and Gorodnichenko [2012].
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allow for Markov changes in the autoregressive coefficients in (11) as well as for changes

in the parameters of (12). However, since the spread is thought of here as a potential

leading indicator for a change in the mean output growth it does not seem reasonable

to allow the parameters in both (11) and (12) to be state-dependent. Modelling changes

in () and () as driven by independent Markov processes is more attractive but we

choose to abstract from this since it is not directly related to the main problem under

study.

Since, in addition to investigating the potential ability of the interest rate spread and

tax revenues to predict switching in the intercept of output growth, we are also inter-

ested in assessing whether treating these variables as exogenous yields results which are

different from those obtained from a joint model, we compute two sets of ML estimates:

partial ML estimates based on (11) alone and joint ML estimates based on the system

(11)—(12). In both cases, estimated standard errors are computed from the empirical

Hessian. The results are presented in Tables 7 and 8.

Joint ML parameter estimates reveal an asymmetric role for the spread as a predictor

of shifts between the low-intercept state (associated with  = 1) and the high-intercept

state (associated with  = 0). Specifically, 0 is significantly different from zero while 1

is not, suggesting that the spread has significant information only about the probability

of remaining in a high-intercept state. Although partial ML estimates would appear

to imply a similar result, inference based on the latter should be viewed with caution

since the covariance estimator used is inconsistent when  6= 0. With regard to the main
issue of interest in this paper, it can be seen that the differences between partial and

joint ML parameter estimates are not very substantial. This is not entirely unexpected

given that the conditional correlation  has a relatively low estimated value of 0.193 in

the data. One would expect to find more pronounced differences between partial and

joint estimates the higher the conditional correlation is. Of course, even relatively small

differences in the parameters could potentially lead to substantial differences in various

quantities associated with the dynamics of the model, such as, for example, impulse

responses.

When the growth in tax revenues is used as the variable driving the transition prob-

abilities, 0 is again significantly different from zero while 1 is not, on the basis of

conventional -type tests based on joint ML estimates of the parameters. Unlike the

model with the interest rate spread, however, there are significant differences between
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some of the partial and joint ML estimates. This is especially true for the autoregressive

coefficients and the parameters associated with the transition probabilities. The likely

reason for this result lies with the fact that the estimated conditional correlation  now

has the relatively high value of 0.610, and so the lack of exogeneity of the variable de-

termining the behavior of the transition probabilities has more pronounced implications.

The large estimated value of  also implies that inference based on the partial ML es-

timates is potentially misleading because of the likely bias of the parameter estimator

and the inconsistency of the empirical Hessian covariance estimator. It is worth pointing

out that such findings are in line with both the asymptotic results and the simulation

evidence presented in earlier sections of the paper.

8 Summary

In this paper we have considered ML estimation in a large class of models which includes,

among others, hidden Markov models and autoregressive models with Markov regimes.

Our results extend earlier work by allowing for: (i) autoregressive dynamics in the

observable process; (ii) time heterogeneity in the hidden Markov transition mechanism;

(iii) possible model misspecification. None of the existing papers in the literature allow

for more than two of these features simultaneously. We have established asymptotic

results related to consistency and LAN behavior of the ML estimator. In a Monte Carlo

study, we have investigated the finite-sample properties of the ML estimator in a Markov-

switching autoregressive model in which the variables that determine the evolution of

the time-varying transition probabilities may not be exogenous. We have also discussed

an application involving real-world data.
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A Ergodicity and Stationarity

Let () be a Markov chain with transition kernel P and  ∈ Z ⊆ R for some   0.

Also, for any probability measure  over Z and any  : Z→ R, let  [ ] ≡ R () ()
(if it exists).

Assumption 9. There exist constants  ∈ (0 1),  ∈ (0 1),   0 and   2(1− ),

a function V : Z → [1∞), and a probability measure  such that: (i) P[V]() ≤
V()+ 1{ ∈ C} for all  ∈ Z with C ≡ { ∈ Z : V() ≤ }; (ii) inf∈C P(·|) ≥ (·),
with (C)  0.

Let  7→ ||||V ≡ sup |()|
1+V() . Also, for any  ⊆ Z, let  = inf{ ≥ 0:  ∈ }.

The next result is needed for the proof of Lemma 1.

Lemma 3. If Assumption 9 holds, then:

(i) P admits a unique invariant measure ∗, and there exist constants  ∈ (0 1) and
  0 such that

||P[]− ∗[]||V ≤ || − ∗[]||V
for every measurable function  such that ||||V ∞, where ∗[] ≡ R ()∗().

(ii) P(C ∞ | ) = 1 for all  ∈ Z, and P(1 ∈ C | 0 ∈ C)  0.

The first part is a re-statement of Theorem 1.2 in Hairer and Mattingly [2011]. The

second part of Lemma 3 and Assumption 9(ii) imply that P is Harris recurrent (see
Athreya and Lahiri [2006, Ch. 14]) and aperiodic (see Thierney [1996, p. 65]). The

proof follows from standard arguments.

Proof. Part (i) is Theorem 1.2 in Hairer and Mattingly [2011]. Assumption 9(i) implies

their Assumption 1 with  =  and Assumption 9(ii) implies their Assumption 2.

For part (ii), we first establish that P(1 ∈ C | 0 ∈ C)  0. For this, note that

P(1 ∈ C | 0 ∈ C) =
R

P(1 ∈ C | )()

(C) ≥ inf
∈C

P(1 ∈ C | )

and, by Assumption 9(ii), it follows that P(1 ∈ C | 0 ∈ C) ≥ ()  0.

We now show that P(C  ∞ | ) = 1 for all  ∈ Z. It suffices to show that

P[C]() ∞ for all  ∈ C. Under Assumption 9(i), V ≥ 1, so

P[C]() ≤ P[
C−1X
=0

V()]() =
∞X
=0

X
=0

P[V() | C =  + 1 ] Pr(C =  + 1 | )
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for any  ∈ Z\C. To establish the desired result, it is sufficient to show that sup
P

=0P[V() |
C =  + 1 ] ∞.

Take any  ≥ 0 and any  ≤  , and note that

P
£
P[V]() |   ∈ C ∀ ≤  + 1

¤
=P

∙Z
 ∈C

P[V]()P( | −1) |   ∈ C ∀ ≤  − 1
¸

≤P
∙Z

 ∈C
V()P( | −1) |   ∈ C ∀ ≤  − 1

¸
≤P

£
P[V](−1) |   ∈ C ∀ ≤  − 1¤

≤V(0)

where the second line follows from Assumption 9(i) and the fact that  ∈ C, the third
line follows from the fact that V  0, and the last line follows from repeated iteration

of the first lines. Note that C =  + 1 is equivalent to  ∈ C ∀ ≤  and +1 ∈ C.
Thus, the previous display implies that

P
£
V() | C =  + 1

¤ ≤ V(0)

for any  ≥ 0 and any  ≤  . Consequently,
P

=0P[V() | C =  + 1 ] ≤
V()

P
=0 

 ≤ V()
1− , and thus the result follows.

Proof of Lemma 1. Let () be the stochastic process given by  ≡ ( ). This

process is a Markov chain with transition kernel X × S 3  7→ P(·|) ∈ P(X × S) given
by

P(+1 ∈ 1 ×2| = ( )) =
X
0∈2

∗(
0| )∗(1 |  0)

for any Borel sets 1 ⊆ X and 2 ⊆ S. We write P[ ]() for
R
 ( 0)P( 0|). By

Lemma 3, there exists a unique invariant measure , provided that the conditions of

Assumption 9 are met.

In order to verify the first part of Assumption 9, considerV() = U(), and C ≡ C1×S
with C1 ≡ { ∈ X : U() ≤ }. By Assumption 2(i),

P[V]() =
Z
X
U(0)

(X
0∈S

∗(
0| )∗(0| 0)

)
≤ U() + 201{ ∈ C1}

Thus,  ≡ 20.
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Regarding Assumption 9(ii), observe that, by Assumption 1(i), for  and any  ∈ S,

P( × {}|) ≥ ()
X
0∈S

∗(| 0)

and, by Assumption 2(iii), ∗(| 0) ≥ 0() and 0 ∈ (0 1). Also note that,

by Assumption 1,  is continuous and ()  0 for all  ∈ X. Furthermore, by

Assumption 2(ii), U is lower semi-compact, because { ∈ X : U() ≤ } is closed
( 7→ U() is lower semi-continuous), and is also bounded. Therefore, inf:U()≤ () =

min:U()≤ () ≥   0 (because it is a minimization of a continuous function on

compact set). Therefore,

P( × {}|) ≥ 0() ≥ 0
()

|S| 

and, by putting  = 
|S| and  ≡ 0, Assumption 9(ii) follows since (C1)  0.

Since  is unique, it is trivially ergodic. Therefore, the process with initial probability

measure  is stationary. Ergodicity of () follows from Theorem 14.2.11 in Athreya and

Lahiri [2006] (recall that P is Harris recurrent and aperiodic). Since  is a deterministic

function of , 
∞
0 is also stationary and ergodic.

Finally, observe thatZ
sup
0≤≤1

|P[ ]()− [ ]| () - 
Z
|1 + U()| ()

where - signifies inequality up to an omitted multiplicative constant. Since U satisfies
Assumption 9(i), it follows that

R
P[U ]()() ≤ [U ] +. Since  is the invariant

measure of P and  ∈ (0 1), this implies that () ≤ (1− ). Therefore,Z
sup
0≤≤1

|P[ ]()− [ ]| () - 

thereby implying that () is -mixing with rate  = () (see Davydov [1973]).

Since  is a deterministic function of , the same holds for 
∞
0 .

B Mixing

Proof of Theorem 2. The proof is based on the coupling technique; see Lindvall [1992]

and Meyn and Tweedie [1993]. We omit the subscripts  and  on  and , respectively,

to ease notation.
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Step 1. Let υ ≡ ()=− be an i.i.d. sequence, given 

−, such that, for any

 ∈ {−  },  ∈ {0 1}, Pr(+1 = 1
−) = (), and − = 0.

For each  ≥ −, let (

−) = {− :  = 1 and − = · · · = −1 = 0}. Also,

observe that for any  ∈ {−     }, (

−) ≡ ∪=−(


−) = {− : inf{ |

 = 1} ≤ } is such that

Pr({− ∈ (

−)} | 

−) =Pr({− : − = · · · =  = 0} | 
−)

=
Y

=−+1
()

Step 2. For any υ defined in Step 1, let ()

=− be a random process defined as

follows: for each  ≥ −,  = (1 2) ∈ S2 and − = ( ). For any  ≥ −:
if +1 = 0, the variables 1+1 and 2+1 evolve independently of each other (given



−) and according to

̄(+1 = 0 |  = 

−) =

1

1− ()
((

0
 | )− ()(

0
 | 

−));

if +1 = 1, the variables 1+1 and 2+1 are “coupled”, i.e., for any 0 ∈ S2 and
 ∈ S2,

Pr(+1 = (
0
1 

0
2) |  = ) =

½
0  01 6= 02

(0 | −)  0 ≡ 01 = 02

We now check that ̄(· | ·−) is a transition matrix. By our condition on , for

any (0 ) ∈ S2 and any ,

(
0|)− ()(

0;
−) ≥ ()(

0;
−)− ()(

0;
−) = 0

and, for any  ∈ S, since (· | −) ∈ P(S),X
0∈S

̄(
0
 | 

−) =
1

1− ()

X
0∈S

n
(

0
 | )− ()(

0
 | 

−)
o

=
1

1− ()
(1− ()) = 1

Step 3. We now show that, conditional on 

−, the “marginal” transition prob-

abilities of the process ()

=− are identical and, moreover, they coincide with that of

()

=−. To be precise, we show that for any   ∈ S2 and any  ∈ {−     },

Pr
³
+1 =  | − = 

−
´
= Pr

³
+1 =  | − = 

−
´
  = 1 2
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We have

Pr
³
+1 =  | − = 

−
´
=
X
̃∈S

Pr
³
+1 =  |  = ̃ 

−
´
Pr
³
 = ̃ | − = 


−
´

=
X
̃∈S

 ( | ̃ ) Pr
³
 = ̃ | − = 

−
´


and similarly for Pr
¡
+1 =  | − = −

¢
.

Note that by Step 2, for any  = 1 2

Pr
³
+1 =  |  = ̃ 

−
´
=(1− ())̄

³
+1 =  |  = ̃

−
´

+ ()( | 
−)

=( | ̃)

Thus, Pr
¡
+1 =  |  = ̃ −

¢
= ( | ̃ ), so it remains to show that

Pr
³
 = ̃ | − = 

−
´
= Pr

³
 = ̃ | − = 

−
´


Observe that,

Pr
³
 =  | −1 = ̃ 

−
´
=

 ( | −1  = )( | ̃ −1)P
∈S  ( | −1  = )( | ̃−1)

and

Pr
³
 =  | −1 = ̃ 

−
´
=


¡
 | −1  = 

¢
Pr( =  | −1 = ̃  −1

− )P
∈S 

¡
 | −1  = 

¢
Pr( =  | −1 = ̃ −1

− )


Note that 
¡
 | −1  = 

¢
=  ( | −1  = ) = ( | −1 ).

Thus, it suffices to show that, for any ( ̃) ∈ S2,

( | ̃ −1) = Pr( =  | −1 = ̃ −1)

but this follows from Step 2 and our calculations above in this step.

Step 4. By the calculations in Step 3, for any  ∈ {−     } and (  ) ∈ S3,

Pr(+1 = |− = 
−) = Pr(+11 = |−1 = 

−)

and

Pr(+1 = |− = 
−) = Pr(+12 = |−2 = 

−)
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Therefore, for (

−) as defined in Step 1,

Pr(+1 = |− = 

−)− Pr(+1 = |− = 


−)

=Pr(+11 = |−1 = 

−)− Pr(2 = |−2 = 


−)

=Pr(+11 = (

−)|−1 = 


−) + Pr(+11 = (


−)

 |−1 = 

−)

− Pr(+12 = (

−)|−2 = 


−)− Pr(+12 = (


−)

 |−2 = 

−)

=Pr(+11 = (

−)

 |−1 = 

−)− Pr(+12 = (


−)

 |−2 = 

−)

The last line follows from the following fact. As shown in Step 1, the event (

−)

can be cast as ∪=−(

−), with (


−) defined as in Step 1; note that these

are disjoint sets. Hence, {+11 =  ∩ (

−)} can be cast as ∪=−{+11 =

 ∩(

−)}, and thus

Pr(+11 = (

−)|−1 = 


−)− Pr(2 = (


−)|−2 = 


−)

=

X
=−

{Pr(+11 =  ∩ (

−)|−2 = 


−)− Pr(+12 =  ∩ (


−)|−2 = 


−)}

It follows from the fact that (

−) is independent of −1, that

Pr(+11 =  ∩ (

−)|−1 = 


−)

=Pr(+11 = |−1 =  (

−)


−) Pr((


−) | 

−)

=
X
∈S

Pr(+11 = |1 =   = 1

−)

× Pr(1 = |−1 =  (

−)


−) Pr((


−) | 

−)

(and similarly for Pr(+12 =  ∩ (

−)|−2 = 


−)). It follows that, due

to the conditional on  = 1, Pr(1|−1 = (

−)


−) does not depend on

−1 and by construction 1 = 2, so Pr(1 = |−1 =  (

−)


−) =

Pr(2 = |−2 =  (

−)


−). We also claim that Pr(+11 = |1 =

  = 1

−) = Pr(2 = |2 =   = 1


−). This follows from the facts that

(a) both, 1 and 2 start from the same value, ; (b) either +1 = · · · =  = 0 and

in this case both chains are independent and with transitions identical to ; or (c) for

some  = { + 1     },  = 1, which in this case we can repeat the same reasoning

as here, replacing  by . This shows that
P

=−{Pr(+11 =  ∩ (

−)|−1 =

 −) − Pr(+12 =  ∩ (

−)|−2 =  −)} = 0 and thus the desired result

follows.
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Hence,

|Pr(+1 = |− = 

−)− Pr(+1 = |− = 


−)|

≤ |Pr(+11 = (

−)

 |−1 = 

−)− Pr(+12 = (


−)

 |−2 = 

−)|

≤ Pr((

−)

 | 
−) (by iid of υ)

≤ Pr(− =  =  = 0 | 
−)

=

Y
=−

(1− ()) (by iid of υ)

Lemma 4. Suppose Assumption 1 holds. Then, for − ≤ ,

max
∈S3

|(+1 = |− = 

−)− (+1 = |− = 


−)|

≤
Y

=−
(1− ())

a.s.-̄ 
∗ , where for any ( ) ∈ S2,

(+1 = |− = 

−) =

X
∈S

(+1 =  |  = )( = |− = 

−)

and, (0 ) ∈ S2

( = 0 | − = 

−) =

( |  = 0−1)( = 0 | − = 
−1
− )P

∈S ( |  = −1)( =  | − = 
−1
− )

Proof of Lemma 4. The proof follows from Theorem 2 with (· | −) ≡ 1|S| for all
 ∈ {−     }.

C Consistency

Proof of Lemma 2. By Assumption 3, Θ is compact and ∗ is lower semi-continuous,

so the result follows from the Weierstrass theorem.

In order to prove Theorem 1, we need the following lemmas (the proofs of which are

relegated to the end of this section).
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Lemma 5. Suppose Assumptions 1, 4 and 5(ii) hold. Then, for any   0, there exists

a  () such that

̄ 
∗

Ã
sup
∈Θ

¯̄̄̄
¯−1

X
=1

©
 ( | −1

0  )− ( | −1
−∞ )

ª¯̄̄̄¯  

!
 

for all  ≥  ().

Lemma 6. Suppose Assumptions 1, 2, 3 and 5(i) hold. Then: (i) For any compact

 ⊆ Θ and any   0, there exists a  () such that

̄ 
∗

Ã
sup
∈

−1
X
=1

³
− log ( | −1

−∞ ) +̄ 
∗

£
log ( | −1

−∞ )
¤´

 

!
≤  (13)

for all  ≥  ().

(ii) For any   0 and 0 ∈ Θ0, there exists a  ( 0) such that

̄ 
∗

Ã¯̄̄̄
¯−1

X
=1

³
− log ( | −1

−∞ 0) +̄ 
∗

£
log ( | −1

−∞ 0)
¤´¯̄̄̄¯  

!
≤ 

for all  ≥  ( 0).

Proof of Theorem 1. For simplicity we set  = 0 throughout the proof. Formally, we

want to establish that for all   0, there exists a  () ∈ N such that

̄ 
∗
³
Θ(̂ Θ0) ≥ 

´
 

for all  ≥  (). For this, it suffices to establish that there exists a 0 ∈ Θ0 such that

̄ 
∗

Ã
sup

∈Θ\Θ
0

 (

0  ) ≥  (


0  0)

!
 

for all  sufficiently large, where Θ
0 = { ∈ Θ : Θ(Θ0)  }.

By Lemma 5,  (

0  ·) is well approximated by  (

−∞ ·) ≡ −1
P

=1 log 
( |

−1
−∞ ·), so it suffices to work with the latter function.
Let () =

n
∞−∞ : sup∈Θ\Θ

0
−1

P
=1

³
− log ( | −1

−∞ ) +̄ 
∗

£
log ( | −1

−∞ )
¤´ ≤ 

o
and () =

n
∞−∞ :

¯̄̄
−1

P
=1

³
− log ( | −1

−∞ 0) +̄ 
∗

£
log ( | −1

−∞ 0)
¤´¯̄̄ ≤ 

o
.
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Observe that

̄ 
∗

Ã
sup

∈Θ\Θ
0

 (

−∞ ) ≥  (


−∞ 0)

!

≤̄ 
∗

Ã
sup

∈Θ\Θ
0

 (

−∞ ) ≥  (


−∞ 0) ∩ () ∩ ()

!
+ ̄ 

∗
¡
 ()


¢
+ ̄ 

∗
¡
 ()


¢

≤̄ 
∗

Ã
sup

∈Θ\Θ
0

−1
X
=1

Ã
̄ 

∗

"
log

( | −1
−∞ 

∗)
( | −1

−∞ )

#!
≤ −1

X
=1

Ã
̄ 

∗

"
log

( | −1
−∞ 

∗)
( | −1

−∞ 0)

#!
− 2

!
+ ̄ 

∗
¡
 ()


¢
+ ̄ 

∗
¡
 ()


¢


By Assumption 3(i), Θ \Θ
0 is compact; thus by Lemma 6, there exists a 

0 (which

may depend on  and 0) such that ̄

∗
¡
 ()


¢
+ ̄ 

∗
¡
 ()


¢ ≤ 05 for  = 025

and all  ≥  0.

Take any  ∈ Θ \ Θ
0 (clearly ∗()  ∗(0), otherwise,  would belong to Θ0)

and let ∆ ≡ ∗() −∗(0). Also, let ∗
 () = −1

P
=1

µ
̄ 

∗

∙
log

(|−1
−∞∗)

(|−1
−∞)

¸¶
.

Moreover, by Assumption 3(ii), there exists a  00 =  ( 0) such that |∗
 ()−∗()| ≤

025∆ and |∗
 (0)−∗(0)| ≤ 025∆. Hence

∗
 (0)− sup

0∈Θ\Θ
0

∗
 (

0) ≤ ∗
 (0)−∗

 () ≤ −05∆

for any  ≥  00. But this implies that the set(
sup

∈Θ\Θ
0

−1
X
=1

Ã
̄ 

∗

"
log

( | −1
−∞ 

∗)
( | −1

−∞ )

#!
≤ −1

X
=1

Ã
̄ 

∗

"
log

( | −1
−∞ 

∗)
( | −1

−∞ 0)

#!
− 2

)

=

(
2 ≤ ∗

 (0)− sup
0∈Θ\Θ

0

∗
 (

0)

)

is empty.

We thus showed that for any   0, ̄ 
∗
³
sup∈Θ\Θ

0
 (

−∞ ) ≥  (
−∞ 0)

´
 

for all  ≥ max{ 0  00}. The desired result follows from the fact that ∞−∞ is stationary

(Lemma 1) and −1
P

=1̄ 
∗

∙
log

(|−1
−∞∗)

(|−1
−∞)

¸
= ̄ 

∗

∙
log

(0|−1−∞∗)
(0|−1−∞)

¸
.

C.1 Proof of Supplementary Lemmas

The proof of the Lemmas uses the following result.
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Lemma 7. Suppose Assumptions 1 and 5(ii) hold. There exists an  − ̄ 
∗ finite

constant   0 such that, for all  ∈ N and − ≤ − ≤ − 1,

sup
∈Θ

¯̄
log  ( | −1

−  )− log  ( | −1
−  )

¯̄ ≤ 

−1Y
=−

(1− ())

a.s.-̄ 
∗ .

Proof of Lemma 7. Observe that, for any  ∈ N,

log  ( | −1
−  ) = log

X
∈S

( | −1 ) Pr( | −1
−  )

and since log − log  ≤  − 1, it suffices to studyP
∈S ( | −1 ) Pr( | −1

−  )−P∈S ( | −1 ) Pr( | −1
−  )P

∈S ( | −1 ) Pr( | −1
−−1 )

=

P
∈S ( | −1 )

¡
Pr( | −1

−  )− Pr( | −1
−  )

¢P
∈S ( | −1 ) Pr( | −1

−  )


This expression can be bounded above by

max∈S (|−1 )
min∈S (|−1 )

|S|max
∈S

¯̄
Pr( =  | −1

−  )− Pr( =  | −1
−  )

¯̄


By Assumption 5(ii), there exists a  0 such that sup∈Θ
max∈S (|−1)
min∈S (|−1) ≤  0 and

 0 is finite a.s.-̄ 
∗ . So it suffices to bound max∈S

¯̄
Pr( | −1

−  )− Pr( | −1
−  )

¯̄
.

Observe that for any − ≤ − ≤  and any  ∈ S (we omit the dependence on  to

simplify the notation)

¯̄
Pr(+1 =  | 

−)− Pr(+1 =  | 
−)

¯̄
=

¯̄̄̄
¯X
∈S
{Pr(+1 =  | − = 

−) Pr(− =  | 
−)− Pr(+1 =  | − = 

−) Pr(− =  | 
−)}

¯̄̄̄
¯

≤
¯̄̄̄
max
0

{Pr(+1 =  | − = 
−)− Pr(+1 =  | − = 0

−)}
¯̄̄̄

=

¯̄̄̄
max
0

{Pr(+1 =  | − = 
−)− Pr(+1 =  | − = 0

−)}
¯̄̄̄


where the last line follows from the fact that, given −, it is the same to condition on

− and on −. Hence,

sup
∈Θ

¯̄
log  ( | −1

−  )− log  ( | −1
−−1 )

¯̄
≤ 0|S| max

0∈S

¯̄̄
Pr(+1 =  | − = 

−)− Pr(+1 =  | − = 0
−)
¯̄̄
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By Lemma 4, it follows that, for any (  0) ∈ S3,¯̄̄
Pr(+1 =  | − = 

−)− Pr(+1 =  | − = 0
−)
¯̄̄
≤

+1Y
=−

(1− ())

Thus, applying this calculations to  = − 1, it follows that

sup
∈Θ

¯̄
log  ( | −1

−  )− log  ( | −1
−−1 )

¯̄ ≤  0|S|
Y

=−
(1− ())

a.s.-̄ 
∗ . Letting  = 0|S| the result follows.

C.1.1 Proof of Lemmas 5 and 6

Proof of Lemma 5. Fix any   0. Lemma 7 with  =  and  =  + 1, implies that

there exists an a.s.-finite constant   0 such that, uniformly in  ∈ Θ,¯̄
log  ( | −1

0  )− log ( | −1
−∞ )

¯̄ ≤ ∞X
=0

¯̄̄
log  ( | −1

−  )− log  ( | −1
−(+1) )

¯̄̄

≤
∞X
=0

vuut −1Y
=−

(1− ())2 = 

∞X
=0

−1Y
=−

(1− ())

a.s.-̄ 
∗ .

Observe that, for any   0,

X
=0

−1Y
=−

(1− ()) =
−1Y
=0

(1− ()) +
−1Y
=−1

(1− ()) + · · ·+
−1Y

=−
(1− ())

=
−1Y
=0

(1− ())

Ã
1 +

0Y
=−1

(1− ()) + · · ·+
0Y

=−
(1− ())

!

=
−1Y
=0

(1− ())

Ã
1 +

X
=1

0Y
=−

(1− ())

!


Therefore, to obtain the desired result it suffices to show that, for any   0, there

exists a  () such that, for all  ≥  (),

̄ 
∗

Ã
−1

X
=1

−1Y
=0

(1− ())

Ã
1 +

∞X
=1

0Y
=−

(1− ())

!
 

!
 

By assumption 4 and Fatou’s lemma,



"
lim

→∞

X
=0

Y
=0

(1− ())

#
≤

∞X
=0



"
Y

=0

(1− ())

#
∞
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Thus,
P∞

=1

Q0
=−(1−()) is finite a.s.-̄


∗ . The result above and a simple application

of Markov’s inequality also shows that −1
P

=0

Q−1
=0(1− ()) = ̄ 

∗
(1). Therefore,

−1
P

=1

Q−1
=0(1− ())

³
1 +

P∞
=1

Q0
=−(1− ())

´
= ̄ 

∗
(1).

Proof of Lemma 6. Recall that, by Lemma 1, ()
∞
=−∞ is ergodic and stationary. Write

( ), 1 ≤  ∞, for the class of measurable functions integrable to order  with respect
to a measure  .

Part (i). Consider a   0 and an open cover {( ) :  ∈ Θ} where ( ) is
an open ball centered around  with radius   0. Since Θ is compact (Assumption 3),

there exists a finite sub-cover  ≡ (  ) with  = 1      . Also note that pointwise

in  ∈ Θ,  (−∞ )− ̄ 
∗
[ (

−∞ )] → 0 a.s.-̄ 
∗ by the ergodic theorem and the

fact that ∞−∞ 7→  (
−∞ ) ∈ 1(̄ 

∗). Thus, it suffices to show that there exists a

 ( ) such that, for all  ≥  ( ),

̄ 
∗

Ã
sup
∈

−1
X
=1

³
(


−∞ )−̄ 

∗
[(


−∞ )]

´
 

!
≤ 

where (
−∞ ) ≡ log (|−1

−∞)

(|−1
−∞)

. Observe that

sup
∈

X
=1

³
(


−∞ )−̄ 

∗
[(


−∞ )]

´
≤

X
=1

sup
∈

³
(


−∞ )−̄ 

∗
[(


−∞ )]

´
≡

X
=1

̄(

−∞)

Moreover, observe that

sup
∈

log
( | −1

−∞ )
( | −1

−∞ )
≤ sup

∈

( | −1
−∞ )

( | −1
−∞ )

− 1

By Assumption 5(i), for any   0 there exists a   0 such that

∙
sup∈

(0|−1−∞)

(0|−1−∞)

¸
≤

1 +  for any  ∈ {1     } and any . Therefore, we can choose a   0 such that

̄ 
∗

"
sup
∈

log
(0 | −1

−∞ )
(0 | −1

−∞ )

#
≤ 4

This in turn implies that ̄ 
∗
[̄(

−∞)] ≤ 2. This result and the ergodic theorem

establish that lim→∞ −1
P

=1 ̄(
−∞) ≤ 2 a.s.-̄ 

∗ . This implies the result in (13).

Part (ii). Follows directly from the ergodic theorem and the fact that ∞−∞ 7→
log ( | −1

−∞ 0) is in 1(̄ 
∗).
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D Asymptotic Linear Representation

The next three lemmas provide a representation and asymptotic characterization for the

score function. Lemma 8 below is analogous to the results in Douc et al. [2004] and

Bickel et al. [1998], and uses ideas of missing data models. Lemma 9 characterizes the

asymptotic behavior of the score functions; in particular, it shows that they are well-

approximated by (∆−∞(0)), which is to be defined below, but at this stage is worth to

point out that it is stationary and ergodic. This last fact is shown in Lemma 10. Finally,

the Lemma 11 establishes the asymptotic behavior of the second-order derivatives.

Throughout this section, unless stated otherwise, all expectations are taken with

respect to ̄ 
∗ and we omit it from the notation. We write k·k( ) for the usual -norm

in ( ). For any   and 
− and any , let

∆− () ≡ 


⎡⎣ −1X
=−

Γ( |−1  ; ) | 
−

⎤⎦+ 


"
−1X

=−−1
Λ(|−1−1; ) | 

−

#

− 


⎡⎣ −1X
=−

Γ( |−1  ; ) | −1
−

⎤⎦− 


"
−1X

=−−1
Λ(|−1−1; ) | −1

−

#

+ 


h
Γ(|−1 ; ) | 

−
i
+ 



h
Λ(|−1−1; ) | 

−
i

=
−1X

=−
 



h
Γ( |−1  ; ) | 

−
i
− 



h
Γ( |−1  ; ) | −1

−
i

+
−1X

=−
 



h
Λ(|−1−1; ) | 

−
i
− 



h
Λ(|−1−1; ) | −1

−
i

+ 


h
Γ(|−1 ; ) | 

−
i
+ 



h
Λ(|−1−1; ) | 

−
i


(14)

where (0  ) 7→ Γ(0| ; ) ≡ ∇ log (
0| ) and (  ) 7→ Λ(0| ; ) ≡ ∇ log(

0| ).
Lemma 8. Suppose Assumption 6 holds. Then, for any   and for any  ∈ Θ,

∇ log 

(|−1

− ; ) = ∆− ()

a.s.-̄ 
∗

For the next lemma, for any  ≥ , let

() ≡
vuut̄ 

∗

"
Y

=

(1− ())2

#
(15)

37



Lemma 9. Suppose Assumptions 1, 6, 7(i) and 8 hold. Then:

(i) For any  and  ,

||∆− (0)−∆−∞(0)||2(̄ 
∗)
= 

⎛⎝max{ −1X
=[−2]

(  −  )

[−2]−1X
=−

( − 1 )}
⎞⎠ ;

(ii)

lim
→∞

°°°°°−12
X
=0

{∆−∞(0)−∇ log 

 (|−1

0 ; 0)}
°°°°°
2(̄ 

∗)

= 0

Lemma 10. Suppose Assumption 1 and 4 hold. Then, (∆−∞(0)) is a stationary and

ergodic sequence (under ̄ 
∗).

We now present results for the Hessian of the log-likelihood function.

Lemma 11. Suppose Assumptions 1, 6, 7 and 8 hold. Then, there exists a continuous

(R×-valued) function  7→ 1() ∈ 1(̄ 
∗) such that

lim
→∞

°°°°° sup
∈(0)

||∇2 log 1(1 | 0 −)− 1()||
°°°°°
1(̄ 

∗ )

= 0

(the   0 is the same as in Assumption 7).

The next lemma offers an intermediate result towards the LAN representation.

Lemma 12. Suppose Assumptions 1, 6, 7 and 8 hold. Then, there exists a stationary

and ergodic sequence (∆(0)) and a sequence of R×-valued continuous functions ( 7→
()) such that

 (

0  0 + )−  (


0  0) =

0
Ã
−1

X
=0

∆(0) + ̄ 
∗
(−12)

!

+ 050
Ã
−1

X
=0

Z 1

0
(0 + )+ ̄ 

∗
(1)

!


for any  such that 0 +  ∈ ( 0).

We now present the proofs of Theorem 3 and 4.
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Proof of Theorem 3. By Lemma 12,

 (

0  0 + )−  (


0  0) =

0
Ã
−1

X
=0

∆(0) + ̄ 
∗
(−12)

!

+ 050
Ã
−1

X
=0

Z 1

0
(0 + )+ ̄ 

∗
(1)

!


for any  such that 0 +  ∈ (0).

Let () ≡ 0
³
−1

P
=0

R 1
0 {(0 + )− (0)}

´
. Observe that ||||−2| ()| ≤R 1

0

°°°−1P
=0{(0 + )− (0)}

°°° . By uniform continuity over compact sets of 

(see Lemma 11), for any   0, there exists a ̄  0 such that

̄ 
∗
¡| ()| ≥ ||||2¢  

for all  ≥ ̄ .

Proof of Theorem 4. Henceforth, let ∆ ≡ −1
P

=0∆(0) + ̄ 
∗
(−12) and  7→

 () ≡ −1
P

=0 ().

Step 1. We first establish that ||̂ − 0|| = ̄ 
∗
(−12). For this, observe that

by Theorem 1,  ≡ (̂ − 0) ∈  with probability approaching one (w.p.a.1). Thus,

by Lemma 12, under the event that  ≡ (̂ − 0) ∈ , it follows that

 (

0  ̂ )−  (


0  0)

=(̂ − 0)
0∆

+ 05(̂ − 0)
0
µZ 1

0
 (̂ + (1− )0)+ ̄ 

∗
(1)

¶
(̂ − 0)

Let  ≡
R 1
0 

 (̂+(1−)0)+̄ 
∗
(1). Since ̂ converges to, a singleton, 0

(by Theorem 1) and  is continuous, 
 is non-singular w.p.a.1 within a neighborhood

of 0 (which, without loss of generality, we assume to be equal to ( 0)). Thus, it

follows that  is non-singular (negative definite) w.p.a.1 in such a neighborhood.

The LHS is larger than − and thus so is the RHS. Therefore,
−2 ≤ 2(̂ − 0)

0∆ − (̂ − 0)
0(− )(̂ − 0)

By simple algebra, it follows that

−2 ≤ −
³
(∆ )0(− )

−1∆ − 2(̂ − 0)
0∆ + (̂ − 0)

0(− )(̂ − 0)
´

+ (∆ )0(− )
−1∆ 
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and

2 ≥
°°°(∆ )0(− )

−12 − (̂ − 0)
0(− )

12
°°°2

+ (∆ )0( )
−1∆ 

By Lemma 10 and the fact that  is non-singular, (∆
 )0(− )

−1∆ = ̄ 
∗
(−1).

Therefore,
°°°(∆ )0(− )

−12 − (̂ − 0)
0(− )

12
°°° = ̄ 

∗
(−12). Lemma 10 and

the fact that  is non-singular, thus imply that
°°°̂ − 0

°°° = ̄ 
∗
(−12).

Step 2. We now show that for any   0,

̄ 
∗
³
 12

°°°(̂ − 0)− (− (0) + ̄ 
∗
(1))−1∆

°°° ≥ 
´
→ 0

By Step 1,
°°°̂ − 0

°°° = ̄ 
∗
(−12), so it suffices to show that

̄ 
∗
³n

 12
°°°(̂ − 0)− (− (0) + ̄ 

∗
(1))−1∆

°°° ≥ 
o
∩ { 12

°°°̂ − 0

°°° ≤}
´
→ 0

(16)

where   0.

By Theorem 3, it follows that

 (

0  0 + )−  (


0  0) = (∆

 )0 − 050(− (0) + ̄ 
∗
(1)) + ()

for any  ∈ . Letting Λ () ≡  (

0  0 + ) −  (


0  0) and  () ≡ (∆ )0 −

050(− (0) + ̄ 
∗
(1)), it follows that

̄ 
∗

Ã
sup

∈{ : ||||≤−12}
|Λ ()− ()| ≥ −12

!

≤ ̄ 
∗

Ã
sup

∈{ : ||||≤−12}
| ()| ≥ −12

!


By the conditions over  and the fact that  ∈ { : |||| ≤ −12}, it follows that
the RHS vanishes as  →∞. Thus,

̄ 
∗

Ã
sup

∈{ : ||||≤−12}
|Λ ()− ()| ≥ −12

!
→ 0
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Since (̂ − 0) ∈ { : |||| ≤ −12} and maximizes Λ (·) (within a  margin),
the previous result implies that

̂ − 0 =arg max
∈{ : ||||≤−12}

 () + ̄
∗
(−12) + 

=(− (0) + ̄ 
∗
(1))−1∆ + ̄ 

∗
(−12)

and thus (16) follows.

To obtain the desired result, we note that ergodicity of () (Lemma 1) implies er-

godicity of ((0)); so Lemma 11 and Birkhoff’s ergodic theorem imply that 
−1 (0) =

[1(0)] + ̄ 
∗
(1).

D.1 Proofs of Supplementary Lemmas

Proof of Lemma 8. Throughout the proof, unless stated otherwise, all expectations are

taken with respect to ̄ 
∗ and we omit it from the notation. By Louis [1982, p. 227],

∇ log 

(|−1

− ; ) =∇ log 

(


− ; )−∇ log 


−1(

−1
− ; )

= 

[∇ log 


(


−  


− ; ) | 

− ]

− 

[∇ log 


−1(

−1
−  

−1
− ; ) | −1

− ]

(Note that the expectation is with respect to 
− , which takes finitely many values;

thus interchanging differentiation and integration is allowed).

Since (

−  


− ; ) = (|−1 )(−1 | −1)× (

−1
−  

−1
− ; )
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(and an analogous result holds for (
−1
−  

−1
− ; )), it follows that

∇ log 

(|−1

− ; )

= 


⎡⎣ X
=−

∇ log ( |−1 ) | 
−

⎤⎦+ 


⎡⎣ X
=−

∇ log( |−1−1) | 
−

⎤⎦
− 



⎡⎣ −1X
=−

∇ log ( |−1 ) | −1
−

⎤⎦− 


⎡⎣ −1X
=−

∇ log( |−1−1) | −1
−

⎤⎦
= 



⎡⎣ −1X
=−

Γ( |−1  ; ) | 
−

⎤⎦+ 


"
−1X

=−−1
Λ(|−1−1; ) | 

−

#

− 


⎡⎣ −1X
=−

Γ( |−1  ; ) | −1
−

⎤⎦− 


"
−1X

=−−1
Λ(|−1−1; ) | −1

−

#

+ 


h
Γ(|−1 ; ) | 

−
i
+ 



h
Λ(|−1−1; ) | 

−
i


The proof of Lemma 9 requires the following lemmas.

Lemma 13. Suppose that Assumptions 1 and 7(i) hold. Then:

(i) for any − ≤ − ≤ −0 ≤  ≤ ,°°°°°° 
0

⎡⎣ X
=−0

Γ( |−1  ; 0) | 
−

⎤⎦− 
0

⎡⎣ X
=−0

Γ( |−1  ; 0) | 
−

⎤⎦°°°°°°
2(̄ 

∗)

=

⎛⎝ X
=−0

(−)
⎞⎠ ;

(ii) for any − ≤ −0   ≤  − 1,°°°°°° 
0

⎡⎣ X
=−0

Γ( |−1  ; 0) | 
−

⎤⎦− 
0

⎡⎣ X
=−0

Γ( |−1  ; 0) | −1
−

⎤⎦°°°°°°
2(̄ 

∗)

=

⎛⎝ X
=−0

( − 1 )
⎞⎠ ;
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(iii) for any − ≤ − ≤ −0   ≤ ,°°°°°° 
0

⎡⎣ X
=−0

Λ( |−1−1; 0) | 
−

⎤⎦− 
0

⎡⎣ X
=−0

Λ( |−1−1; 0) | 
−

⎤⎦°°°°°°
2(̄ 

∗ )

=

⎛⎝ X
=−0

(−)
⎞⎠ ;

(iv) for any − ≤ −0   ≤  − 1,°°°°°° 
0

⎡⎣ X
=−0

Λ( |−1−1; 0) | 
−

⎤⎦− 
0

⎡⎣ X
=−0

Λ( |−1−1; 0) | −1
−

⎤⎦°°°°°°
2(̄ 

∗)

=

⎛⎝ X
=−0

( − 1 )
⎞⎠ 

Lemma 14. Suppose Assumption 1 holds. Then:

(i) For − ≤    and any  ∈ Θ,

max

|( = |

−)− ( = |−1
− )| ≤

−1Y
=

(1− ())

a.s.-̄ 
∗ .

(ii) For − ≤ − ≤    and any  ∈ Θ,

max

|( = |

−)− ( = |−1
− )| ≤

Y
=−

(1− ())

a.s.-̄ 
∗ .

Lemma 15. Suppose Assumption 1 holds. Then, for any − ≤  ≤  and any  ∈ Θ,

max


¯̄̄


³
 = | = 

−
´
− 

³
 = | = 

−
´¯̄̄
≤

Y
=

(1− ())

a.s.-̄ 
∗ .

Proof of Lemma 13. Throughout the proof we omit the dependence of  on  
0
.
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Part (i). Observe that, for any  ≤ ,°°° hΓ( |−1  ; 0) | 
−
i
−

h
Γ( |−1  ; 0) | 

−
i°°°

=

°°°°°X
∈S
Γ( |−1 ; 0){Pr( =  | 

−)− Pr( =  | 
−)}

°°°°°
≤
sX

∈S
||Γ( |−1 ; 0)||2

sX
∈S
{Pr( =  | −)− Pr( =  | −)}2

where the last line follows from an application of the Cauchy—Schwarz inequality. By

Lemma 14(ii), it follows that

³
Pr( =  | 

−)− Pr( =  | 
−)

´2 ≤ Y
=−

(1− ())
2

which in turn implies that


h
Γ( |−1  ; 0) | 

−
i
−

h
Γ( |−1  ; 0) | 

−
i

≤
p
|S|
sX

∈S
||Γ( |−1 ; 0)||2

Y
=−

(1− ())

Therefore, by the Cauchy—Schwarz inequality, it follows that°°° hΓ( |−1  ; 0) | 
−
i
−

h
Γ( |−1  ; 0) | 

−
i°°°

2( 
∗)

≤×
sX

∈S
 

∗
[||Γ( |−1 ; 0)||2]

vuut 
∗

"
Y

=−
(1− ())2

#


for some finite constant   0. Stationarity (Lemma 1), the fact that Γ(1|0 ; 0) =

∇ log (1|0 ; 0), and Assumption 7(i) imply the desired result.

Part (ii). By Lemma 14(i), it follows that

[Pr( =  | 
−)− Pr( =  | −1

− )]
2 ≤

−1Y
=

(1− ())
2

and given this, the rest of the calculations are analogous to those in part (i).

Parts (iii) and (iv). We only work out part (iii) since (iv) is analogous.
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As in part (i),°°° hΛ( |−1−1; 0) | 
−
i
−

h
Λ( |−1−1; 0) | 

−
i°°°

=

°°°°°°
X

()∈S2
Λ(| ; 0){Pr( =  −1 =  | 

−)− Pr( =  −1 =  | 
−)}

°°°°°°
≤
s X
()∈S2

||Λ(| ; 0)||2
sX

∈S
{Pr( =  −1 =  | −)− Pr( =  −1 =  | −)}2

Moreover, observe that

Pr( =  −1 =  | 
−) =Pr( =  | −1 = 

−) Pr(−1 =  | 
−)

=Pr( =  | −1 = 
−1) Pr(−1 =  | 

−)

where the second line follows from the identification of the model and the fact that

− ≤ . Since  ≥ − ≥ −, the result follows from analogous calculations to those in

part (i) and (ii) and Assumption 7(i).

Proof of Lemma 14. Throughout the proof we omit  from the notation.

Part (i). For any −     ≤ , let S: ≡ (   ) and S ≡ (  )

Pr
¡
|

−+1S



¢
=
Pr
¡
S:

−+1
¢

Pr
¡
S 

−+1
¢ = 

¡
 | S:−1

−+1
¢
Pr
¡
S:

−1
−+1

¢

¡
 | S −1

−+1
¢
Pr
¡
S 

−1
−+1

¢ 

by Bayes’ rule. Since 
¡
 | S:−1

−+1
¢
= 

¡
 | S −1

−+1
¢
=  ( | −1 ),

it follows that

Pr
¡
|

−+1S



¢
=
Pr
¡
S:

−1
−+1

¢
Pr
¡
S 

−1
−+1

¢ = Pr
¡
 | S−1: −1

−+1
¢
Pr
¡
S−1: −1

−+1
¢

Pr
¡
 | S−1 −1

−+1
¢
Pr
¡
S−1 −1

−+1
¢ 

Observe that Pr
¡
 | S−1 −1

−+1
¢
= Pr

¡
 | S−1: −1

−+1
¢
= (|−1−1) and

thus Pr
¡
|−+1S

¢
=

Pr(S−1: −1
−+1)

Pr(S−1 −1
−+1)

and, by iterating, it follows that

Pr
¡
|

−+1S



¢
=
Pr
¡
 

−+1
¢

Pr
¡
S

−+1
¢

=Pr
³
| 

−+1
´


That is, the Markov property holds backward in time.
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Using this result with  =  =  − 1, it follows that

Pr
³
|

−+1
´
=
X

−1∈S
Pr
³
|−1

−+1
´
Pr
³
−1|

−+1
´

=
X

−1∈S
Pr
³
|−1−1

−+1
´
Pr
³
−1|

−+1
´


and similarly,

Pr
³
|−1

−+1
´
=

X
−1∈S

Pr
³
|−1−1

−+1
´
Pr
³
−1|−1

−+1
´


Thus, for any  ,

|Pr
³
 |

−+1
´
− Pr

³
 |−1

−+1
´
|

≤max


¯̄̄
Pr
³
 |−1 = −1

−+1
´
− Pr

³
 |−1 = −1

−+1
´¯̄̄

≤
−1Y
=

(1− ())

where the second line follows by Lemma 15. Thus, the desired result follows.

Part (ii). The proof is analogous to that of Lemma 5 (third part) in Bickel et al.

[1998]. Observe that¯̄̄
Pr( =  | 

−)− Pr( =  | 
−)

¯̄̄
=

¯̄̄̄
¯X



{Pr( =  | − = 
−) Pr(− =  | 

−)− Pr( =  | − = 
−) Pr(− =  | 

−)}
¯̄̄̄
¯

≤
¯̄̄̄
max
0
{Pr( =  | − = 

−)− Pr( =  | − = 0
−)}

¯̄̄̄
=

¯̄̄̄
max
0
{Pr( =  | − = 

−)− Pr( =  | − = 0
−)}

¯̄̄̄


where the last line follows from the fact that, given −, it is the same to condition on

− and on −. By following the same steps as the proof of Lemma 4 and Theorem

2, but conditioning on −, the result follows.

Proof of Lemma 15. Throughout the proof we omit  from the notation. Observe that,
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for any    ∈ S3,¯̄̄
Pr
³
 = | = 

−
´
− Pr

³
 = | = 

−
´¯̄̄

=

¯̄̄̄
¯X
∈S

Pr
³
 = |−1 = 

−
´ h
Pr
³
−1 = | = 

−
´
− Pr

³
−1 = | = 

−
´i¯̄̄̄¯

≤max


¯̄̄
Pr
³
−1 = | = 

−
´
− Pr

³
−1 = | = 

−
´¯̄̄



so it suffices to show the results for  =  − 1. For this, we first show that

min
∈S

Pr
³
−1 = | = 

−
´
≥ ()(;

−1
−+1)

where  7→ ( | −1
−+1) ≡

Pr(−1=|−1
−+1)

∈S Pr(−1=|
−+1)

.

By applying Bayes’ theorem repeatedly,

Pr
³
−1 = | = 

−+1
´
=
Pr
¡
−1 = −+1  = 

¢
Pr
¡
−+1  = 

¢
=
( | −1  = ) Pr(−1

−+1 −1 =   = )

Pr
¡
−+1  = 

¢
=

( | −1  = )0( | −1) Pr(−1
−+1 −1 = )P

∈S ( | −1  = )0( | −1) Pr(−1
−+1 −1 = )



Therefore, Pr
¡
−1 = | = −+1

¢
=

0
(|−1)Pr(−1

−+1−1=)
∈S0

(|−1) Pr(−1
−+1−1=)

. By

Assumption 1 and Bayes’ theorem, it then follows that

Pr
³
−1 = | = 

−+1
´
≥ ()

Pr(−1 =  | −1
−+1)P

∈S Pr(−1 =  | −1
−+1)



as desired. Moreover, observe that (· | −+1) ∈ P(S). We can thus follow the steps
in the proof of Theorem 2 with  =  and, using ( 0) 7→ Pr

¡
−1 = | = 0−+1

¢
as the transition matrix, the desired result is obtained.

Proof of Lemma 9. Throughout the proof we denote ||||2(̄ 
∗)
as ||||2 .

Part (i): For all  ≥  and  ≥ , let Φ(  ) ≡  


hP
= Γ( |−1  ; ) |  



i
and Ψ(  ) ≡  



hP
=Λ( |−1−1; ) |  



i
. Observe that Φ( − 1  −

  − ) = Φ(−1 [−2]  − )+Φ([−2]−1 −  − ) and an analog-
ous result holds for Ψ. Therefore, by the definition of ∆− and analogous calculations

47



to those in Bickel et al. [1998, pp. 1624—1626],

||∆− (0)−∆−∞(0)||2
= kΦ( − 1 [ − 2]   −  )−Φ( − 1 [ − 2] −∞)k2
+ kΦ( − 1 [ − 2]  − 1  −  )−Φ( − 1 [ − 2]  − 1−∞)k2
+ kΦ([ − 2]− 1  −    −  )−Φ([ − 2]− 1  −   − 1  −  )k2
+ kΨ( − 1 [ − 2]   −  )−Ψ( − 1 [ − 2] −∞)k2
+ kΨ( − 1 [ − 2]  − 1  −  )−Ψ( − 1 [ − 2]  − 1−∞)k2
+ kΨ([ − 2]− 1  −  − 1   −  )−Ψ([ − 2]− 1  −  − 1  − 1  −  )k2
+ kΦ(    −  )−Φ(  −∞)k2 + kΨ(    −  )−Ψ(  −∞)k2

≡
8X

=1



Terms 1 and 2 are analogous of the form

kΦ( − 1 [ − 2]   −  )−Φ( − 1 [ − 2] −∞)k2

=

°°°°°°
−1X

=[−2]
 

0
[Γ( | −1  ; 0) | 

− ]−
−1X

=[−2]
 

0
[Γ( | −1  ; 0) | 

−∞]

°°°°°°
2

for ∈ { −1}. By Lemma 13(i), for  ∈ {1 2},  = 
³P−1

=[−2] (  −  )
´
;

recall that ( ) ≡
q

£Q

=(1− ())2
¤
for any  ≤ . 7 has the same bound

by analogous calculations.

The 3 is of the form°°°°°°
[−2]−1X
=−

 
0
[Γ( | −1  ; 0) | 

− ]−
[−2]−1X
=−

 
0
[Γ( | −1  ; 0) | −1

− ]

°°°°°°
2



By Lemma 13(ii), 3 = 
³P[−2]−1

=− ( − 1 )
´
. The term 8 has the same

bound by analogous calculations.

The terms 4 and 5 are of the form°°°°°°
−1X

=[−2]
 

0
[Λ( | −1−1; 0) | 

− ]−
−1X

=[−2]
 

0
[Λ( | −1−1; 0) | 

−∞]

°°°°°°
2

and by Lemma 13(iii) is bounded by 
³P−1

=[−2] (  −  )
´
.
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Finally, by analogous calculations to those for 3, 6 is bounded by
³P[−2]−1

=− ( − 1 )
´

by Lemma 13(iv).

Part (ii). By part (i) and Lemma 8,°°°°°−12
X
=1

{∆−∞(0)−∇ log 

 (|−1

0 ; 0)}
°°°°°
2

≤−12
X
=1

k{∆−∞(0)−∆0(0)}k2

-−12
X
=1

−1X
=[2]

( 0) + −12
X
=1

[2]−1X
=0

( )

By Kronecker’s lemma, it suffices to show that

X
=1

−12
−1X

=[2]

( 0) and
X
=1

−12
[2]−1X
=0

( ) (17)

are bounded uniformly in  , where ( ) ≡
r

hQ

=(1− ())2
i
.

Moreover,  7→ ( ) is non-increasing and  7→ ( ) is non-decreasing since 1 −
() ≤ 1. By Assumption 8, (( 0)) is -summable with   23, thus lim→∞ ( 0) =

0 (if not, then ( 0)  1 for some   0 and all  above certain point and this

violates the assumption). Hence,

−1X
=[2]

( 0) 
−1X

=[2]

1

1
≤
Z 

[2]+1
−1 ≤ 

1− 
(2)1−1

for all  ≥  and some   0, and this implies that, for some constant   0,

X
=1

−12
−1X

=[2]

( 0) ≤ () + ×
X

=+1



1− 
1−1−12 ≤  ∞

because 1− 1− 12  −1⇔   23 ( is a finite constant, which may depend on ).
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By stationarity of () (Lemma 1),

[2]−1X
=0

( ) =

vuut

"
Y

=0

(1− ())2

#
+

vuut

"
Y

=1

(1− ())2

#
+ +

vuuut

⎡⎣ Y
=[2]−1

(1− ())2

⎤⎦

=

vuut

"
Y

=0

(1− ())2

#
+

vuut

"
−1Y
=0

(1− ())2

#
+ +

vuuut0

⎡⎣[2]+1Y
=0

(1− ())2

⎤⎦
=

[2]−1X
=0

(−  0)

Thus
P[2]−1

=0 ( −  0) ≤ P[2]−1
=0

1
(−)1 ≤

R 
[2]+1

1
1

 and by our previous

calculation the result follows. Thus, the terms in (17) are uniformly bounded.

Proof of Lemma 10. It is easy to see that ∆−∞(0) is adapted to the filtration associ-

ated with the -algebra generated by −∞. Since ∞−∞ is stationary (by Lemma 1), so

is (∆−∞(0))∞=−∞. Ergodicity of (∆−∞(0))∞=−∞ follows from Lemma 1.

Proof of Lemma 11. Lemma 11 is analogous to Lemma 10 in Bickel et al. [1998]. The

proof follows by their Lemma 9, which in turn holds by analogous steps to theirs and by

invoking Lemma 14 (which is analogous to their Lemma 7).

Proof of Lemma 12. By Assumption 6,
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Table 1: Partial ML,  = 08

0 1 1 1 0 0 0 1 

 Bias

100 0.028 0.125 -0.177 1.491 0.561 1.976 -0.092 -0.068 -0.010

200 0.019 0.046 -0.172 0.898 0.397 1.363 -0.056 -0.039 -0.001

400 0.018 0.019 -0.159 0.565 0.277 1.044 -0.033 -0.031 0.003

800 0.017 0.017 -0.156 0.485 0.216 0.838 -0.025 -0.024 0.002

1600 0.008 0.011 -0.150 0.446 0.211 0.824 -0.018 -0.021 0.003

3200 0.012 0.008 -0.149 0.444 0.196 0.773 -0.020 -0.019 0.003

Skewness

100 0.023 -0.857 1.332 2.149 1.445 -2.192 0.027 -0.590 -0.135

200 -0.302 -0.355 -2.277 5.520 2.482 -2.323 0.052 0.107 -0.084

400 0.015 0.039 -0.221 0.623 1.180 -1.310 0.222 0.012 -0.055

800 -0.049 -0.180 -0.026 0.531 0.567 -0.685 0.051 0.042 -0.172

1600 0.100 -0.089 0.030 0.176 0.379 -0.412 0.110 0.039 0.060

3200 0.092 -0.050 -0.058 0.099 0.058 -0.125 -0.112 -0.012 -0.034

Kurtosis

100 5.392 5.321 14.815 12.858 10.421 14.920 3.769 3.722 4.769

200 4.159 3.873 39.389 64.253 14.120 12.418 3.707 3.227 3.866

400 3.605 3.076 3.675 3.975 6.266 6.943 3.559 3.008 3.691

800 3.237 2.946 3.410 3.722 3.896 4.738 3.170 3.180 3.246

1600 3.025 3.154 3.041 2.907 3.300 3.319 2.878 2.989 3.137

3200 2.962 3.293 3.123 2.934 3.174 3.098 2.952 3.055 2.946

Ratio of sampling standard deviation to estimated standard error

100 1.449 1.363 1.480 1.460 1.286 1.441 1.243 1.214 1.433

200 1.244 1.135 1.395 1.585 1.349 1.406 1.161 1.062 1.250

400 1.072 1.097 1.172 1.140 1.139 1.166 1.063 0.996 1.173

800 1.027 1.041 1.153 1.170 1.067 1.119 0.988 1.020 1.080

1600 0.991 1.014 1.070 1.075 1.072 1.161 1.006 0.959 1.054

3200 1.047 1.027 1.050 1.063 1.034 1.088 1.021 1.004 1.056
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Table 2: Joint ML,  = 08

0 1 1 1 0 0 0 1 

 Bias

100 -0.027 0.045 -0.010 0.425 0.109 0.459 -0.019 -0.011 -0.008

200 -0.007 0.023 0.004 0.126 0.043 0.209 -0.011 -0.005 -0.005

400 -0.004 0.012 -0.004 0.044 0.037 0.149 -0.003 -0.001 -0.002

800 -0.002 0.004 -0.002 0.023 0.002 0.026 -0.001 0.000 -0.001

1600 -0.001 0.002 -0.002 0.019 0.007 0.019 0.001 0.000 -0.001

3200 0.001 0.002 0.002 -0.005 0.002 0.011 0.001 0.000 0.000

Skewness

100 -0.665 -0.626 -0.017 2.031 1.793 -2.793 0.304 -0.627 0.171

200 -0.166 -0.031 0.529 0.280 1.096 -1.878 0.020 0.062 -0.370

400 -0.037 -0.080 0.155 0.191 0.281 -0.337 -0.100 -0.001 -0.187

800 0.036 -0.010 0.032 0.193 0.343 -0.426 -0.030 -0.064 -0.102

1600 -0.139 -0.129 0.036 0.131 0.028 -0.087 -0.028 0.041 -0.071

3200 0.029 -0.109 0.067 -0.022 0.026 -0.076 0.057 -0.141 -0.102

Kurtosis

100 7.233 4.911 6.924 11.696 14.673 22.409 3.936 3.168 4.462

200 4.667 3.182 4.721 3.578 8.758 15.882 3.377 2.919 3.368

400 3.095 3.040 3.329 3.370 3.484 3.431 2.965 3.000 2.828

800 3.280 3.039 2.802 3.001 3.745 3.494 3.351 2.951 3.140

1600 2.860 3.247 3.224 3.066 3.045 2.939 3.121 2.722 2.981

3200 3.247 2.999 2.854 2.759 3.119 3.060 2.797 3.170 3.346

Ratio of sampling standard deviation to estimated standard error

100 1.225 1.108 1.191 1.330 1.420 1.475 1.164 1.056 1.156

200 1.085 1.016 1.084 1.078 1.132 1.178 1.066 1.043 1.072

400 1.036 1.001 0.996 1.019 1.032 1.021 1.058 1.007 0.985

800 0.983 0.991 0.980 1.024 1.044 1.018 1.012 1.010 1.045

1600 1.021 1.002 0.964 0.955 1.033 1.042 1.000 0.999 0.997

3200 1.026 0.979 1.010 1.017 0.990 0.955 1.012 1.020 1.020
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Table 3: Studentized Statistics, Partial ML,  = 08

0 1 1 1 0 0 0 1 

 Mean

100 0.138* -0.476* -0.607* 0.455* 0.326* -0.599* -0.828* -0.769* -0.146*

200 0.111* -0.263* -0.754* 0.577* 0.456* -0.786* -0.604* -0.582* 0.022*

400 0.141* -0.154* -0.963* 0.683* 0.667* -1.145* -0.482* -0.615* 0.180*

800 0.193* -0.210* -1.357* 0.955* 0.883* -1.507* -0.482* -0.659* 0.207*

1600 0.116* -0.207* -1.834* 1.350* 1.305* -2.188* -0.476* -0.802* 0.338*

3200 0.249* -0.214* -2.590* 1.973* 1.805* -3.037* -0.713* -1.049* 0.552*

Standard deviation

100 1.535 1.294 1.232 1.008 0.944 0.891 1.539 1.336 1.423

200 1.278 1.129 1.166 1.012 0.923 0.889 1.276 1.111 1.268

400 1.080 1.095 1.162 1.084 0.910 0.829 1.135 1.027 1.178

800 1.030 1.035 1.168 1.132 0.926 0.894 1.015 1.046 1.089

1600 0.997 1.012 1.093 0.988 0.940 0.932 1.030 0.977 1.061

3200 1.049 1.024 1.075 0.984 0.933 0.901 1.041 1.022 1.055

-test, size

100 0.089 0.154 0.195 0.035 0.034 0.083 0.254 0.211 0.142

200 0.081 0.109 0.221 0.033 0.026 0.157 0.183 0.170 0.089

400 0.047 0.077 0.266 0.015 0.012 0.304 0.157 0.169 0.059

800 0.035 0.093 0.401 0.008 0.011 0.460 0.130 0.168 0.046

1600 0.039 0.076 0.569 0.002 0.003 0.739 0.135 0.195 0.027

3200 0.031 0.073 0.803 0.000 0.001 0.929 0.178 0.258 0.014

-test, power

100 0.899 0.992 0.615 0.171 0.509 0.146 1.000 1.000 1.000

200 0.983 1.000 0.885 0.394 0.841 0.408 0.999 1.000 1.000

400 1.000 1.000 0.976 0.646 0.993 0.780 1.000 1.000 1.000

800 1.000 1.000 1.000 0.918 1.000 0.975 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

3200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Studentized Statistics, Joint ML,  = 08

0 1 1 1 0 0 0 1 

 Mean

100 -0.129* -0.245* -0.134* 0.086* -0.057* -0.044* -0.292* -0.219* -0.318*

200 -0.056* -0.210* -0.077 0.030* -0.039 -0.059* -0.213* -0.138* -0.304*

400 -0.052 -0.159* -0.077 0.003 0.074* -0.151* -0.107* -0.070 -0.183*

800 -0.046 -0.069 -0.061 0.013 -0.069 0.012 -0.058 -0.032 -0.148

1600 -0.018 -0.055 -0.056 0.045 0.018 -0.010 0.027 -0.026 -0.120

3200 0.054 -0.066 0.023 -0.047 -0.004 -0.026 0.029 -0.038 -0.046

Standard deviation

100 1.123 1.062 1.035 1.024 1.052 1.005 1.174 1.079 1.102

200 1.053 1.027 1.010 1.101 1.020 1.064 1.081 1.058 1.047

400 1.027 0.994 0.983 1.039 1.004 1.040 1.071 1.015 0.982

800 0.986 0.990 0.975 1.031 1.040 1.043 1.024 1.014 1.037

1600 1.021 1.006 0.962 0.946 1.035 1.186 0.997 1.001 1.001

3200 1.022 0.979 1.006 1.018 0.988 0.953 1.011 1.023 1.016

-test, size

100 0.080 0.102 0.081 0.052 0.082 0.030 0.125 0.101 0.108

200 0.063 0.076 0.069 0.069 0.081 0.043 0.084 0.088 0.108

400 0.069 0.072 0.053 0.046 0.055 0.059 0.087 0.075 0.073

800 0.053 0.063 0.061 0.051 0.074 0.049 0.065 0.065 0.073

1600 0.065 0.061 0.047 0.043 0.060 0.048 0.052 0.047 0.068

3200 0.049 0.058 0.053 0.058 0.054 0.042 0.051 0.061 0.053

-test, power

100 0.982 1.000 0.805 0.129 0.672 0.081 1.000 1.000 1.000

200 0.999 1.000 0.990 0.261 0.934 0.207 1.000 1.000 1.000

400 1.000 1.000 1.000 0.492 0.997 0.480 1.000 1.000 1.000

800 1.000 1.000 1.000 0.812 0.999 0.732 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.988 1.000 0.966 1.000 1.000 1.000

3200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5: Partial ML,  = 0

0 1 1 1 0 0 0 1 

 Mean Proportional bias

100 -0.029 0.139 -0.004 0.672 0.237 0.689 -0.074 -0.052 -0.021

200 -0.008 0.053 0.021 0.287 0.085 0.237 -0.034 -0.022 -0.009

400 -0.003 0.024 0.010 0.097 0.045 0.139 -0.015 -0.013 -0.004

800 -0.002 0.013 -0.005 0.050 0.013 0.066 -0.008 -0.006 -0.002

1600 -0.001 0.008 0.003 0.009 0.008 0.032 -0.003 -0.003 -0.001

3200 0.002 0.002 -0.002 0.016 0.005 0.018 -0.003 -0.002 0.000

Skewness

100 -0.781 -1.294 -0.455 2.735 1.663 -1.255 -0.076 -0.928 0.010

200 -0.164 -0.393 4.714 5.195 1.884 -1.498 0.008 0.153 -0.406

400 -0.128 -0.027 0.502 0.583 0.877 -1.805 0.094 0.263 -0.126

800 0.031 -0.349 0.163 0.316 0.439 -0.390 0.213 0.006 -0.302

1600 -0.120 0.091 0.082 0.315 0.241 -0.281 0.046 -0.051 -0.068

3200 -0.243 -0.068 0.127 0.126 0.182 -0.139 -0.018 -0.033 -0.128

Kurtosis

100 6.551 7.848 18.585 17.978 8.999 9.080 4.659 4.035 5.309

200 4.332 4.213 63.361 77.043 14.344 15.098 4.102 3.646 3.827

400 3.554 3.464 4.858 4.367 6.868 20.045 3.838 3.495 3.495

800 3.750 3.181 3.141 3.142 3.883 3.507 3.113 2.984 3.169

1600 3.323 2.991 3.253 3.198 3.594 3.386 3.110 3.227 3.093

3200 3.344 3.002 3.197 3.008 3.138 3.109 3.068 3.042 3.218

Ratio of sampling standard deviation to estimated standard error

100 1.574 1.366 1.332 1.494 1.325 1.353 1.313 1.216 1.351

200 1.269 1.183 1.336 1.471 1.333 1.361 1.170 1.072 1.165

400 1.044 1.077 1.048 1.134 1.096 1.191 1.076 1.051 1.110

800 1.051 1.054 1.043 1.070 1.038 1.025 1.037 1.039 1.029

1600 1.041 1.013 0.993 1.014 1.046 1.006 1.059 0.986 1.029

3200 0.995 1.002 1.002 1.015 1.035 1.025 0.986 1.017 0.998
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Table 6: Studentized Statistics, Partial ML,  = 0

0 1 1 1 0 0 0 1 

 Mean

100 0.023* -0.484* -0.143* 0.044* -0.058* -0.022* -0.827* -0.625* -0.439*

200 -0.005* -0.272* -0.059 0.016* -0.064 0.036* -0.397* -0.348* -0.277*

400 0.011 -0.199* -0.031 -0.001 0.005 0.020* -0.267* -0.283* -0.201*

800 0.013 -0.157* -0.083 -0.004 -0.033 -0.024 -0.183 -0.193 -0.160*

1600 0.005 -0.133* -0.001 -0.053 -0.015 -0.016 -0.118 -0.137 -0.136

3200 0.048 -0.043 -0.057 0.038 0.005 -0.029 -0.130 -0.098 -0.056

Standard deviation

100 1.769 1.224 1.042 1.050 1.039 1.016 3.229 1.296 1.267

200 1.315 1.173 0.998 1.096 1.090 1.136 1.304 1.097 1.169

400 1.046 1.078 0.995 1.115 1.001 1.254 1.099 1.075 1.127

800 1.047 1.043 1.032 1.183 1.024 1.054 1.050 1.056 1.023

1600 1.046 1.005 0.984 1.468 1.038 1.067 1.072 0.990 1.028

3200 0.996 0.999 0.997 1.005 1.026 1.018 0.994 1.020 0.991

-test, size

100 0.108 0.141 0.087 0.076 0.074 0.020 0.215 0.202 0.156

200 0.090 0.112 0.062 0.089 0.085 0.027 0.146 0.119 0.112

400 0.046 0.083 0.059 0.064 0.054 0.049 0.103 0.104 0.097

800 0.048 0.088 0.084 0.050 0.067 0.053 0.079 0.088 0.082

1600 0.063 0.060 0.049 0.051 0.066 0.050 0.081 0.067 0.068

3200 0.040 0.056 0.058 0.041 0.060 0.058 0.066 0.075 0.053

-test, power

100 0.870 0.994 0.682 0.078 0.489 0.037 0.999 1.000 1.000

200 0.966 1.000 0.901 0.184 0.779 0.135 0.999 1.000 1.000

400 1.000 1.000 0.995 0.326 0.971 0.287 1.000 1.000 1.000

800 1.000 1.000 1.000 0.588 0.999 0.538 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.887 1.000 0.854 1.000 1.000 1.000

3200 1.000 1.000 1.000 0.992 1.000 0.984 1.000 1.000 1.000
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Table 7: ML Estimates (Real GDP, Interest Rate Spread)

Partial

0 0.0078151

(0.00099488)

1 -0.0075251

(0.0021719)

1 0.23417

(0.065351)

2 0.044567

(0.066417)

3 -0.036295

(0.067779)

4 -0.018714

(0.066228)

0 1.2708

(0.71848)

0 10.0524

(2.8267)

1 -1.6894

(1.2383)

1 6.6559

(4.5045)

1 0.0070465

(0.00041216)

Log lik. 736.65265099

Joint

0 0.007904

(0.00098048)

1 -0.0074461

(0.0023668)

1 0.20903

(0.066411)

2 0.041618

(0.065524)

3 -0.029511

(0.066974)

4 -0.013777

(0.065359)

0 1.2112

(0.69414)

0 9.8927

(2.7882)

1 -1.8537

(1.1749)

1 6.9039

(4.7179)

1 0.0070636

(0.00042753)

Log lik. 967.00496577

2 0.024847

(0.0082362)

1 1.1293

(0.066996)

2 -0.24734

(0.10232)

3 0.075495

(0.10247)

4 -0.013777

(0.065359)

2 0.084565

(0.004072)

 -0.19304

(0.074904)
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Table 8: ML Estimates (Real GDP, Growth in Taxes)

Partial

0 0.0071239

(0.0011419)

1 -0.011921

(0.0037298)

1 0.20795

(0.065131)

2 0.073166

(0.068898)

3 -0.052131

(0.066076)

4 -0.029632

(0.066233)

0 3.4617

(0.69959)

0 6.99

(3.0118)

1 0.38223

(1.1577)

1 6.6559

(4.5045)

1 0.0075457

(0.00044698)

Log lik. 727.34266980

Joint

0 0.007466

(0.00098913)

1 -0.01098

(0.0039223)

1 0.079319

(0.060461)

2 0.10965

(0.061443)

3 -0.094541

(0.060581)

4 0.0086632

(0.060019)

0 3.9988

(0.91478)

0 10.4434

(3.3661)

1 -1.97505

(1.6636)

1 2.5567

(4.9465)

1 0.0083372

(0.00047656)

Log lik. 917.836771639

2 0.013736

(0.0087504)

1 0.14728

(0.061398)

2 0.097287

(0.062866)

3 0.058725

(0.061424)

4 0.11169

(0.061262)

2 0.1184

(0.0057111)

 0.61047

(0.047003)
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