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ABSTRACT 

An international round robin study of the production of fast pyrolysis bio-oil was undertaken. 

Fifteen institutions in six countries contributed. Three biomass samples were distributed to the 

laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were 

transported to a central analytical laboratory for analysis. The round robin was focused on 

validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by 

providing a common feedstock for bio-oil preparation. The round robin included:  

 distribution of 3 feedstock samples from a common source to each participating 

laboratory; 

 preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; 

 return of the 3 bio-oil products (minimum 500 ml) with operational description to a 

central analytical laboratory for bio-oil property determination. 

The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, 

trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-

oil. In addition, an effort was made to compare the bio-oil components to the products of 

analytical pyrolysis through GC/MS analysis. The results showed that clear differences can 

occur in fast pyrolysis bio-oil properties by applying different reactor technologies or 

configurations.  The comparison to analytical pyrolysis method suggested that Py-GC/MS 

could serve as a rapid screening method for bio-oil composition when produced in fluid-bed 

reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil 

product, with respect to water, solids, viscosity, and total acid number. These results can be 

helpful in understanding the variation in bio-oil production methods and their effects on bio-

oil product composition. 

 

KEYWORDS: 

Fast pyrolysis; bio-oil; biomass;  

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/84144478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

INTRODUCTION 

Bio-oils from fast pyrolysis of lignocellulosic biomass have been defined as represented in 

CAS #1207435-39-9: “Liquid condensate recovered by thermal treatment of lignocellulosic 

biomass at short hot vapor residence time (typically less than about 5 seconds) typically at 

between 450-600 °C, at near atmospheric pressure or below, in the absence of oxygen, and 

using small (typically less than 5 mm) dry (typically less than 10% water) biomass particles"1.

 A number of engineered systems have been used to effect high heat transfer into the 

biomass particle and quick quenching of the vapor product, usually after removal of solid by-

product ”char”, to recover a single phase liquid product. 

 Bio-oil is a complex mixture of, for the most part, oxygenated hydrocarbon fragments 

derived from the biopolymer structures. It typically contains 15-30% water. Common organic 

components include acetic acid, methanol, aldehydes and ketones, cyclopentenones, furans, 

alkyl-phenols, alkyl-methoxy-phenols, anhydrosugars, and oligomeric sugars and water-

insoluble lignin-derived compounds. Nitrogen- and sulfur-containing compounds are also 

sometimes found depending on the biomass source.”1 

 A first set of burner fuel specifications has been accepted for fast pyrolysis bio-oil as 

ASTM D7544.2 The first standard method, ASTM D7579, was obtained for determination of 

the insoluble solids content. The ASTM method includes the validation results of a 2-

laboratory test over 10 successive days as represented by the Repeatability measurement.  

 Bio-oils have many important differences from mineral oils.3 The standard analyses 

have been systematically tested for bio-oils 4-8 and modifications as well as new methods have 

been suggested when needed.  

 The first IEA (International Energy Agency) Bioenergy Round Robin was carried out 

by Elliott, McKinley and Overend.9 It was found out that xylene distillation EN 95, which is 

used for mineral oils, cannot be used for the determination of water content of fast pyrolysis 

bio-oils because bio-oils contain a significant amount of volatile water-soluble compounds 

that end up being counted as part of the water fraction by this method. Karl-Fischer titration 

was recommended as a suitable method for fast pyrolysis bio-oils. 

 Two separate Round Robin tests were initiated in 1997: one within EU PyNe 

(Pyrolysis Network)10 and the other within IEA PYRA (Pyrolysis Activity).10 From both of 

them it was concluded that the precision of carbon, hydrogen, density, and water by Karl-

Fischer titration was good. High variations were obtained for nitrogen, viscosity, pH, and 

solids. The conclusion was also that clear instructions for analyses are needed.  

 In 2001 a Round Robin11 was organized within the IEA-EU PyNe (Pyrolysis Network) 

cooperation. Analyses were carried out by 12 laboratories for four different fast pyrolysis bio-

oils (originating from pine, spruce, hardwood mix, and bark) produced by different large-

scale pyrolysis processes. Water, solids content, pH, viscosity, stability test, and CHN 

determinations were included. In general, the accuracy of physical analyses, except the 

stability test, was good.  

 The Round Robin conducted in 201212-13 was focused on testing viscosity and the 

stability method as an accelerated aging test and subsequent long term storage stability 

testing. It was concluded that kinematic viscosity is more accurate than dynamic viscosity. 

This paper is focused on validating the production of consistent quality bio-oil at the 

collection of R&D laboratories involved in development of this new product. The importance 

in understanding the variation in bio-oil products increases as new researchers enter the field 

as has been experienced over the past 5 years. 
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MATERIALS AND METHODS 

The research was carried out within the IEA Bioenergy Agreement Pyrolysis Task 34. This 

paper summarizes results from the tests performed in the participating laboratories. 

 Fifteen institutions from the six participating countries in Task 34 agreed to contribute 

to this Round Robin and each was supplied with samples of three biomass feedstocks for fast 

pyrolysis processing. The participants included: 

USA 

 Pacific Northwest National Laboratory, USA - Daniel T. Howe and Daniel M. Santosa 

 National Renewable Energy Laboratory, USA - Kristiina Iisa 

 Michigan State University, USA - Chris Saffron/Rachael Sak 

 Iowa State University, USA - Ryan G. Smith 

 University of Maine, USA - William DeSisto 

 

UK 

 Aston University, UK - Daniel Nowakowski 

 Future Blends, Ltd., UK - Zhiheng Wu 

 University of Leeds, UK - Paul Williams 

 

Germany 

 Fraunhofer UMSICHT, Germany - Tim Schulzke 

 Karlsruhe Institute of Technology, Germany - Axel Funke 

 Thünen Institute of Wood Research, Germany - Dietrich Meier 

 

The Netherlands 

 University of Groningen, Netherlands - Erik Heeres 

 ECN - Paul deWild 

 

Finland 

 VTT, Technical Research Centre of Finland, Finland - Ville Paasikallio 

 

Sweden 

 SP-Energy Technology Center, Sweden - Ann-Christine Johansson 

 

 Three biomass feedstocks were provided and distributed by the Idaho National 

Laboratory (Idaho Falls, Idaho, USA) as funded by the Bioenergy Technologies Office of the 

U.S. Department of Energy. They were: 

 Hybrid Poplar wood from Morrow county, Oregon 

 Wheat straw from Jefferson county, Idaho, and 

 Blended feedstock (hybrid poplar (70%), wheat straw (15%) and forest thinnings 

(15%). The forest thinnings consisted of a mixture of hemlock and Douglas fir. 

 All samples were ground to fine particle size, pelletized and then reground in a 

hammer mill using a 1.3 mm screen to produce a fine meal. The nominal particle size was 

approximately 1 mm, with the width of largest particles approaching 2 mm. The maximum 
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particle thickness appeared to be approximately 1 mm. Some instructions for the handling of 

the biomass feedstocks and the bio-oil products were also provided.  

 

Analytical methods. 

Density: Density was measured at 20 °C using a special pycnometer (10 ml) with separate 

side capillary. 

 

Viscosity: Kinematic viscosity was determined with an automatic capillary viscometer model 

AVS 350 and the corresponding water baths CT 1650 from Schott (Mainz, Germany). 

Determination was according to DIN 51562 part 1 and 2. Viscometers were of the Ubbelohde 

type with capillary diameters of 1.13 and 2.01 mm. Viscosities were measured at 20 and 50 

°C. 

 

Ageing: 40 mL of bio-oil were placed in a 100 mL glass bottle from Scott equipped with a 

screw cap. The bottle was closed and put into a preheated oven at 80 °C for 24 hours. 

 

Water content: The water content was determined by Karl-Fischer titration using the Titroline 

alpha apparatus from Schott-Geräte GmbH (Mainz, Gemany). The titrant was Hydranal 

Composite 2 and the solvent "methanol rapid" (a special reagent for accelerated volumetric 

one-component KF titration) both from Fluka/Sigma Aldrich, Germany. The endpoint of the 

titration was potentiometrically determined by dead-stop-indication. All determinations were 

at least made in duplicate. 

 

Total acid number (TAN): TAN was determined by manual titration. Ca. 3 g bio-oil was used 

and titrated with a solution of KOH in ethanol (0.5 mol/L). A combination electrode model 

BlueLine 12 pH from SI Analytic was used. 

 

Ash: Ash content was determined according to TAPPI standard (T211 om-02). Approximately 

5-6 g of bio-oil were used for ash determination at 775 °C 

 

Elemental composition: Carbon, hydrogen and nitrogen were determined with model Vario 

EL from ELEMENTAR, Hanau, Germany. Oxygen was calculated by difference as follows: 

O% = 100 - [C% + H % + N%].  

 

Pyrolytic Lignin (PL): Pyrolytic lignin was determined following the method of Scholze and 

Meier.14 Ca. 1.0 - 1.4 g of bio-oil were added to kitchen mixer filled with 1 L distilled water 

at room temperature and vigorously stirred. The precipitate (PL) was filtered over a Büchner 

funnel (filter paper MN 615 (Machery & Nagel, Germany), washed several times with water, 

dried under vacuum at 40 °C resulting in a powder-like brownish product, and finally 

weighed. 

 

Solids: Solids were determined according to ASTM D-7579-09. Bio-oil samples was 

dissolved on a 1:1 mixture of methanol and dichloromethane (DCM) and filtered. 

 

Ash composition: Ash composition was determined by ICP/OES (Inductively Coupled 

Plasma-Optical Emission Spectrometry). Measurements were performed on a Thermo iCAP 

6300 Duo spectrometer.  Ca. 350 mg bio-oil were digested in 2.5 mL nitric acid (65%). 

 

Gel permeation chromatography (GPC): Mean molecular weight was determined from bio-

oils and the pyrolytic lignins. GPC was performed on an Agilent 1100 series equipped with 

PolarGel-L Guard 50 mm × 7.5 mm and 2× Varian PolarGel-L; each 300 mm, I.D. 7.5 mm, 
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using dimethyl sulfoxide with 0.1 wt % LiBr as eluent. Also, 100 μL of solutions containing 2 

mg mL−1 of analyte were injected. The system was calibrated using polyethylene glycol 

(PEG) standards (194 to 21,030 g/mol).  A UV detector at 254 nm was used to monitor the 

sample signals. 

 

Gas chromatography/mass spectrometry (GC/MS):  Compositions of bio-oils were analyzed 

using a HP 6890 gas chromatograph from Agilent. Around 60 mg of the sample was dissolved 

in 1 mL acetone, which contained a known amount of fluoranthene as internal standard (IS) 

for quantification. Injection split ratio was 1:15 and injection volume was 1 microliter. 

Separation was carried out on a 60 m 0.25 mm VF-1701ms (Agilent) fused-silica column. The 

oven was hold constant at 45 °C  for 4 min and then heated with 3 °C/min to 280 °C and held 

for 20 min. Helium was used as carrier gas with a constant flow of 2 mL/min. Parallel 

MS/FID detection (mass spectrometry/flame ionization detector) was used for improved 

qualification and quantification. Ionization energy was 70 eV. Electron impact (EI) mass 

spectra were obtained on a HP 5972 MS system. Fluoranthene was used as internal standard 

(IS) for quantification with the FID. Total ion chromatograms (TIC) were analyzed with Mass 

Finder 4 by comparison of both mass spectra from home-developed MS-library and 

commercial NIST library. Most of the compounds were quantified by use of standards. For 

those which were not quantifiable by a suitable standard, and after matching with NIST 

spectral library, a response factor was assigned based on standards with similar chemical 

structure. 

 

Analytical pyrolysis: Prior to pyrolysis, the biomass samples were milled in a cryo-mill. 

Approximately 100 μg of fine-milled sample was weighed in a stainless steel pyrolysis cup 

(Fontier Lab Ltd., Japan) placed into the autosampler of a double-shot Py-2020iD 2020 

microfurnace pyrolyzer (Frontier Laboratories Ltd.) mounted on an Agilent 6890 GC system. 

The GC is equipped with a VF-1701 (Agilent) fused-silica capillary column (60 m 0.25 mm 

i.d., 0.25 μm film thickness) and an Agilent 5973 mass selective detector (EI at 70 eV, ion 

source temp 280 °C). Pyrolysis was carried out at 500 °C. For separation with GC, the oven 

temperature was held at 45 °C (4 min) and raised to 255 at 3 °C min-1 (70 min) using He as 

carrier gas (1 mL/min). The compounds were identified using Mass Finder 4 by comparing 

their mass spectra in NIST and home-developed libraries.  

 

 

RESULTS AND DISCUSSION 

 Feedstock analysis, feedback and pyrolysis conditions 

The three biomass samples included poplar wood, wheat straw, and a blended feed. The 

feedstock analyses are in Table 1. 

 

Table 1.  Analysis (dry basis) of the three biomass feedstocks distributed in the Round Robin 

 

 Poplar wood Wheat straw Blend 

Volatiles, % 84.9 72.4 76.8 

Ash, % 0.9 12.8 5.0 

Fixed C, % 14.2 14.7 15.1 

Carbon, wt% 49.9 43.8 49.0 

Hydrogen, wt% 5.8 5.3 5.8 

Nitrogen, wt% 0.2 0.6 0.3 
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 Although the three feedstocks were originally distributed to 20 laboratories, the fast 

pyrolysis tests were only successfully completed in the 16 reported here. (One institution had 

2 laboratories to perform the tests with two different reactor types). The 16 laboratories were 

able to provide representative bio-oil samples from 2 or 3 of the feedstocks. 

 The wheat straw has a noticeably high ash content. It is somewhat higher than is 

typically reported in the literature. With such a feedstock the fast pyrolysis products are 

affected in that there is typically a reduced bio-oil yield15-16 with higher water and gas 

production. The bio-oil samples produced from the wheat straw feedstock consisted of two 

phases for all laboratories. This type of phase separation, into a more aqueous lighter phase 

and a less aqueous heavy phase is often seen when processing agricultural residue feedstocks. 

It is usually attributed to the higher mineral content in the biomass which catalyzes reactions 

leading to more water and char formation. The higher yield of water leads to the phase 

separation which can be spontaneously generated by water addition to bio-oil.15 The poplar 

bio-oils were the most consistently produced product and were received from all participants. 

Some participants did not provide bio-oil samples from either the wheat straw or the blended 

feedstock (see Table 2). 

 

Table 2.  Bio-oil samples received from the participants 

laboratory poplar wheat straw blend 

1 x x x 

2 x x x 

3 x x x 

4 x x x 

5 x x x 

6 x x x 

7 x x x 

8 x x x 

9 x x x 

10 x x  

11 x  x 

12 x x x 

13 x x x 

14 x x x 

15 x x x 

16 x  x 

 

 

Table 3.  Pyrolysis reactor systems and operating conditions as provided by the participants 

lab. 

no. 

reactor type operating 

temperature* 

[°C] 

time at 

temperature** 

[s] 

condensation 

temperature 

[°C] 

feed rate 

 

[kg/h] 

1 bubbling fluid bed 475 <2 -5 0.18-0.39 

4 bubbling fluid bed 480-500  22 0.4-1.7 

5 bubbling fluid bed 480-500  22 1.0 

9 bubbling fluid bed 480 0.8 22 0.8 

13 bubbling fluid bed 525 1.5 15 0.85 
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 w/HVF: with hot vapor filtration; ND = Not Determined. * the control point in the 

reactor is not exactly known; **vapor residence time in the hot zone 

 

In the following discussion the four categories "BFB" (bubbling fluid bed), "BFB/EF-HVF" 

(bubbling fluid bed/entrained flow-hot vapor filtration), "screw", and "ablative" will be used 

according to the subdivisions in Table 3. 

 The bio-oil products were all received and analyzed at the Thünen Institute of Wood 

Research in Hamburg, Germany. The results of these analyses are presented and discussed 

below. 

 

Water content 

Water content of bio-oil is a crucial quality criterion and its importance has been discussed in 

many papers. 17-23 It is a sum of biomass moisture and so-called pyrolysis/reaction water. 

Inevitably, reaction water is formed mainly due to cleavage of glucosidic bonds of cellulose 

and hemicelluloses. On the other hand, feedstock properties (ash content) and pyrolysis 

conditions (temperature, hot vapor residence time, char particles) are responsible for 

secondary cracking reaction leading to water formation. The influence of the feedstock can be 

seen in Figure 1Error! Reference source not found.. 

 There is a general trend of a higher water content obtained from pyrolysis of the 

blended feedstock which has an ash content of 5 % (see Table 1). The water content in poplar 

oils covers a very wide range from 9.4 to 51.4. Typically, the water content of a bio-oil made 

from hardwood is in the range of 25 %. Hence, the extreme values can only be explained 

through different reactor configurations, abnormal condenser systems, long residence time of 

hot vapors, poor mass balance, or phase separation. 

 

15 bubbling fluid bed 500 1 20 0.5 

16 bubbling fluid bed 500 ND 20 8 

      

2 
bubbling fluid bed 

w/HVF 

500 1.2+10.8 1 0.09-0.12 

12 
bubbling fluid bed 

w/HVF 

500 0.9+1.0 -78 0.42 

10 
entrained flow 

w/HVF 

530 2-3 -30 2-5 

      

6 auger 483-500 1.1-2.2 -5 0.24-0.86 

7 twin-screw 500 15 for solids 30 10 

8 screw kiln 550 40 for solids 0 0.24 

14 screw conveyor 400  -7 0.68-0.36 

      

3 ablative plate 542 wall  2 10 

11 ablative cyclone 750 wall  18 to 27 20 
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Figure 1.  Water contents (wt%) of bio-oils from poplar and blended feedstock 

 

 Density 

 Density distribution is presented in Error! Reference source not found.. The 

densities of the poplar bio-oil samples were fairly consistent throughout, with the exception of 

#8 and #14, whose products appear to be not representative of fast pyrolysis bio-oil. Both of 

these laboratories are operating screw reactors. The density of poplar bio-oils varies from 1.12 

to 1.21 kg/dm3. Because of the phase separation, the densities of wheat straw bio-oil were 

difficult to measure in many cases and varied from 1.03-1.13 kg/dm3 for those recorded. The 

blended feedstock samples were more consistently measured and varied from 1.12-1.19 

kg/dm3. 
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Figure 2.  Density distribution of bio-oils from poplar, blend and wheat straw 

 The density is a function of water content and the variation in water contents is seen in 

Figure 1.  Error! Reference source not found. illustrates this correlation and shows that 

screw reactors produce bio-oils with a higher water content and, consequently, of lower 

density. All other technologies, with one exception (#16) produce oils with reasonable water 

and density values. 

 

Figure 3.  Density/water correlation vs. technology 

 

 Viscosity 

 In contrast to the relatively even distribution of densities, viscosities show an 

inconsistent pattern ranging from 6 to 140 cSt (Figure 4). 
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Figure 4.  Viscosity distribution of poplar bio-oils 

Moisture and viscosity of the bio-oil samples appear to be related, not unexpectedly, in an 

inverse relationship as also described earlier. 5-8  The bio-oils from #4 are distinctly different 

with extraordinarily low moisture contents that could not be measured with the Ubbelohde 

viscometer. Oils from #6, #8, #14, and #16 had water contents > 35 % which is not typical for 

fast pyrolysis oils and hence are not considered in the viscosity distribution. However, they fit 

into the correlation curves of Figure 5 and Figure 6. Clearly, the amount of water embedded 

in bio-oil has an easily discerned effect in that the higher amount of water decreases the 

viscosity, at both 20 °C and 50 °C. 

 

 

Figure 5.  Water/viscosity @ 20 °C correlation vs. poplar and blend 

 

 

 

Figure 6.  Water/viscosity @ 50 °C correlation vs. poplar and blend 

 

The ratio of viscosity (viscosity 20°C/viscosity 50°C) at the two temperatures also 

changes over the range of dissolved water as shown in Figure 7 and gives a linear negative 
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correlation with a degree of determination of 0.86. It means that the temperature dependency 

of the fast pyrolysis bio-oil viscosity is also a function of the water content. 

 

Figure 7.  Viscosity ratio vs. water content 

ratio = viscosity @20°C/viscosity @ 50°C 

 

 

 Total acid number (TAN) 

Total acid number is a crucial parameter in biofuels as it determines the tendency for 

corrosion. Several attempts are described in the literature to decrease TAN24-27. The TAN 

distribution is illustrated in Figure 8 and the technology related graph is presented in Figure 9. 

It is obvious that lab #3 (ablative reactor) produced an oil with the highest TAN and that also 

screw reactors exhibit higher TANs combined with larger water contents. It might be caused 

by longer residence times enabling more severe cracking towards acids. 

 

 

 
Figure 8.  Distribution of total acid number of bio-oils from poplar and blend 
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Figure 9.  TAN/water correlation vs. technologies 

 

 

 Elemental analysis 

Figure 10 shows the distribution of carbon, hydrogen and nitrogen in poplar bio-oils. The 

carbon content ranges from 29.4 to 56.3 wt% on wet basis (w.b.) and from 55.9 to 62.0 wt% 

on dry basis (d.b.). The hydrogen contents on d.b. ranges from 6.15 to 7.69 wt%. The lower 

range is dominated by oils from screw reactors (#6, #8, and #14). Nitrogen values ranged 

from 0.2 to 0.28 wt% on d.b. 
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Figure 10.  Carbon, hydrogen and nitrogen content (on w.b.) of poplar bio-oils 

 

 Solids content and ash composition 

The solids content of poplar and blend oils is presented in Figure 11.  

 

 

Figure 11 Distribution of solids in bio-oils from poplar and blend 

 

The solids content in the bio-oils exhibits also an enormous range from 0.03 to 1.62 for poplar 

oil and from 0.02 to 2.24 for oils from the blended feedstock. The solids and ash loading in 

the bio-oil products is again drastically reduced by the use of the hot vapor filter (#2, #10, 

#12). 
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Figure 12. Ash composition (w.b.) of poplar bio-oil 

 

 

 

Figure 13.  Correlation of solid and alkali content (w.b.) vs. technology 

 

Note that the systems equipped with a hot vapor filter produced bio-oils with significantly 

reduced alkali metal and alkaline earth contamination (Figure 13). Also the BFB reactors have 

the tendency to exhibit a higher amount of solids composed of alkali metals. 
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 Pyrolytic lignin 

Apart from water and water-soluble components fast pyrolysis bio-oils also contain a water-

insoluble fraction (pyrolytic lignin, PL) that can be precipitated as a fine brown powder. It is 

derived from lignin as the product of rearrangements of monomeric and oligomeric phenolics. 

Further it is discussed in the literature that it might be produced through thermal ejection of 

lignin oligomers in the presence of the hot reactor.14, 28-31  The PL distribution is shown in 

Figure 14. The content varies from 3 to 29 wt% on wet basis (6 to 32 wt% on dry basis. 

 
Figure 14.  Content of pyrolytic lignin (wt% on w.b.) in bio-oils from poplar and blend 

 

As pyrolytic lignin corresponds to the water-insoluble part of bio-oil, consequently, oils with 

a larger water content should contain a smaller amount of water insolubles. Figure 15 

illustrates the negative correlation between the water content and pyrolytic lignin content PL 

with a coefficient of determination of 0.89. 
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Figure 15.  Correlation between water content and pyrolytic lignin content (w.b.) of poplar 

bio-oils 

 

 Another relationship is that between the viscosity of the bio-oil and the amount of 

pyrolytic lignin. As pyrolytic lignin resembles the higher molecular weight portion in bio-oils 

its content is positively correlated with the viscosity, as depicted in Figure 16 for poplar oil 

with a coefficient of determination of 0.901. 

 

 

Figure 16. Poplar oil viscosity measured at 50 °C as a function of pyrolytic lignin content 

(wt% w.b.) 

 

 Molecular weight Py-lignin (PL) 

Figure 17 shows no obvious correlation between the PL content and its average weight 

molecular weight data. It seems that the processes with hot vapor filtration do not crack lignin 

fragments in the filter, as their values are in the center of all BFB data.  
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Figure 17.  Correlation between PL content and average weight molecular weight 

 

An interesting positive linear correlation is observed between the GPC data from whole bio-

oil vs. the PL fraction (Figure 18). This is an interesting result as tedious PL precipitation 

would be unnecessary to calculate the mean molecular weight of a PL based on GPC data of 

the whole oil, as this is much simpler to obtain, just by injecting the bio-oil sample (after 

filtration) into the GPC system. 

 

 
Figure 18.  Correlation between the average weight molecular weights of bio-oils vs. PL, 

coeff. of determination 0.88 
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 GC/MS 

GC/MS data were generated from all poplar oil samples. Comparison of the nonaromatic vs. 

aromatic portion showed a negative linear correlation with a coefficient of 0.91 (Figure 19). 

This correlation is valid for all pyrolysis systems. 

 

 
Figure 19.  Correlation of nonaromatic fraction vs. aromatic fraction compared with the 

pyrolysis technologies 

 Analytical Pyrolysis-GC/MS 

Analytical pyrolysis with GC detection was performed from all feedstocks in order to find 

correlations between the analytical approach and technical pyrolysis. As can be seen from 

Figure 20 yields determined with analytical pyrolysis (large marks) give a good indication 

about the composition of bio-oils. The graph combines the overall results of all pyrolysis 

systems. Hence, analytical pyrolysis would be a useful tool to predict bio-oil composition. 

Calculation basis was on area % after normalization to 100 µg sample weight. 
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Figure 20.  Yields of main chemical groups as obtained from analytical pyrolysis (large 

marks) and obtained in BFB bio-oils from poplar 

 

 Mass balance 

An attempt was made to establish a mass balance making use of all quantitative results from 

poplar oils. Figure 21 summarizes the results and illustrates that the undetermined portion 

varies between 9.5 and 28.5 wt%. The undetermined portion could be assigned mainly to 

higher molecular weight sugars and other water soluble components which were not detected 

with the methods used in this round robin testing. 

 

Figure 21.  Mass balance of poplar oils from all participants 

CONCLUSIONS 

 It is clear that all laboratory reactor systems for bio-oil production do not produce 

equivalent products. The mechanism of heat transfer used can impact the bio-oil composition 

through the time-temperature relationship. Also, the measurement of reaction temperature 

might be inaccurate. In addition, the product collection method can impact the product 

composition through either filtering out solid byproducts or through vapor separation as a 

result of collection of the liquid product at different temperatures. 
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 The huge data pool and the fact that all samples were analyzed by only one laboratory 

made it possible to determine correlations: 

 the aromatics and non-aromatics in bio-oil correlate as detected by GC/MS, 

 the mean molecular weight of the bio-oils correlates with those from pyrolytic lignin. 

 viscosity correlates with pyrolytic lignin content 

 water content correlates with pyrolytic lignin content 

 viscosity correlates with water content 

Four parameters were able to discriminate the four technologies applied (bubbling bed, 

bubbling bed & entrained flow with hot vapor filtration, screw reactors, and ablative reactors). 

Water, solids, viscosity, and total acid number were related to the applied technology. Most 

negative results were obtained from auger (screw) reactors, whereas bubbling fluidized beds 

with hot vapor filtration showed the most positive bio-oil characteristics, mainly in terms of 

solids and ash content. 

 Another interesting observation was that none of the laboratories was able to produce 

a single phase bio-oil from wheat straw, they were all phase separated into an aqueous and a 

heavy tarry phase. This was due to high ash content of the straw decreasing oil yield and 

enhancing reactions causing water formation. The phase separation of the pyrolysis liquids 

from the blend was less pronounced. All bio-oils from hybrid poplar arrived as a single phase 

liquid and could be analyzed completely.  

 Overall, the use of round robins is useful both for providing insights on differences 

between performance of laboratory and bench-scale pyrolysis units and helps the participants 

by allowing comparison of results with other laboratories. It must be pointed out that fast 

pyrolysis bio-oils are completely different from mineral oils or biodiesels. Special care has to 

be used in the proper handling and sampling of these bio-oils in order to ensure the 

homogeneity of the bio-oil.  
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