
The design and scale-up of spray dried particle delivery systems 
 

 

Ali Al-Khattawi*1, Andrew Bayly2, Andy Phillips3, David Wilson3  

 

1*(Corresponding Author)  

Aston Pharmacy School 

Aston University 

Aston Triangle 

Birmingham, UK B4 7ET 

Phone: +44 (0) 121 204 4735 

Email: a.al-khattawi@aston.ac.uk 

 

2 

School of Chemical and Process Engineering 

University of Leeds 

Leeds, UK LS2 9JT 

 

3 

AstraZeneca 

F53/14 Etherow Building 

Charter Way 

Macclesfield, UK SK10 2NA 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/84144461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

The design and scale-up of spray dried particle delivery systems 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract: 

Introduction:  

The rising demand for pharmaceutical particles with tailored physico-chemical properties has 

opened new markets for the spray drying technology especially for solubility enhancement, 

improvement of inhalation medicines and stabilization of biopharmaceuticals. Despite this, 

the literature on spray drying is scattered and often not addressing the fundamental principles 

underpinning the robust development of pharmaceutical products. It is therefore necessary to 

present a clearer picture of the field and highlight the principles and factors influencing 

particle design and scale-up. 

Areas covered: 

The review firstly presents a systematic analysis of the trends in development of particle 

delivery systems using spray drying. This is followed by exploring the mechanisms 

governing particle formation and the transformations undergone in the various process stages. 

The next section highlights the particle design factors including those of different equipment 

configurations and feed/process attributes. Finally, the review summarises the current 

industrial approaches for scale-up of pharmaceutical spray drying.    

Expert opinion:  

The spray drying process provides the ability to directly design particles of the desired 

functionality. This is of great benefit for the pharmaceutical sector especially as product 

specifications are becoming more encompassing and exacting. One of the biggest barriers to 

the spray dried product translation remains one of scale-up/scale-down. A shift from the trial 

and error approaches of the past to fundamental model-based particle design approaches 

helps to enhance control over product properties. To this end, process innovations and 

advanced manufacturing technologies are also particularly welcomed.  
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1. Introduction 

The drive towards continuous processing and to design quality into products promises to 

streamline pharmaceutical manufacturing in the future [1, 2]. Spray drying is an established 

continuous process that provides unique particle design capabilities. The control of particle 

size, morphology, crystallinity and surface texture/area via spray drying enables the design 

of sophisticated drug delivery systems [3–5]. The process also has regulatory recognition 

and is available in various configurations and manufacturing scales [6].  

The development of particle delivery systems using spray drying requires an understanding 

of the engineering principles underpinning particle formation [7–9]. Complex interactions in 

the feed/process stages greatly influence particles’ properties [10–14]. Furthermore, scale-up 

is a current challenge requiring a closer match between early clinical samples and the 

marketed product to attain bioequivalence [15]. Therefore, discussing the design and scale-

up of pharmaceutical particle systems via spray drying is both timely and necessary to 

facilitate technology adoption. 

It has been suggested that spray drying technology will continue to strengthen its position in 

the pharmaceutical industry and gain a growing share of the market in the coming years [16]. 

The analysis of 5853 spray drying articles produced from 1990-2016 showed that the 

number of research articles mentioning spray drying and drug delivery has seen 11-fold 

increase in 2010-16 compared to the 1990-99 period. This surge in the use of spray drying 

for drug delivery applications could be attributed to the rise of new challenges in the oral and 

pulmonary drug delivery fields as will be seen later in this review.  
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Traditionally, spray drying is used in the pharmaceutical excipient industry to process 

multifunctional excipients e.g. for high-throughput production of microcrystalline cellulose 

or spray dried lactose [17]. Nevertheless, the last few years have seen new adopters of the 

technology especially in the UK pharmaceutical contract development and manufacturing 

organisation (CDMO) industry. The main driving markets are solubility (bioavailability) 

enhancement of poorly soluble active pharmaceutical ingredients (APIs), formulation of 

respirable drug delivery systems and the stabilisation of biopharmaceuticals (section 2). 

The review will commence with a systematic overview of the particle delivery systems 

produced via spray drying. This will inform the following discussions on particle 

transformations and particle design factors. The mechanisms of particle transformations and 

some of the governing equations in each process stage will be discussed. Then, particle 

design factors influencing the product properties, namely: equipment configurations and 

feed/process control will be discussed. Finally, scale-up best industrial approaches will be 

highlighted. The goal of this review is to guide formulation scientists and process engineers 

through the available literature on spray drying whilst highlighting the fundamental 

principles underpinning the use of the technique. Nvivo Pro® 11 software was used to 

classify the literature and filter it per user generated queries. These included keyword 

searches for the analysis of 5853 research article summaries published between 1990 and 

2016. 

2. Particle delivery systems 

Spray drying has been used to design many particle delivery systems for various routes of 

administration (Figure 1). The systematic analysis of literature showed that 90% of all spray 

drying publications on drug delivery were focused on oral and pulmonary drug delivery 

research. The drug delivery systems which successfully reached the market were mostly oral 
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solid dispersions e.g. for etravirine [18], ivacaftor [19], and telaprevir [20], pulmonary dry 

powder inhalers (DPIs) e.g. insulin [21] and tobramycin [22] and biological products e.g. a 

fibrin-sealant formulation comprising fibrinogen and thrombin to control bleeding during 

surgery [23].  

The number of pulmonary drug delivery applications of spray drying surpassed oral drug 

delivery applications during 2000-09. However, this has changed by 2010 with each of oral 

and pulmonary routes having almost equal share (45% each) of the publications on drug 

delivery (Figure 1). On the other hand, the number of publications discussing spray drying 

use for parenteral drug delivery was steady over the last 26 years. It is also interesting to find 

applications of spray drying in emerging areas of drug delivery e.g. nasal, buccal routes. 

For oral drug delivery, the fastest growing application of spray drying was solubility 

enhancement followed by achieving controlled release kinetics (Figure 1 A). For pulmonary 

drug delivery, the fastest growing application was improvement of aerosolization 

(aerodynamic) properties followed by solubility enhancement and achieving controlled 

release kinetics (Figure 1 B). These applications will be discussed in the next few sections. 

2.1.Solubility enhancement 

Spray drying is an effective option for the solubilisation of even practically insoluble APIs 

e.g. Telaprevir which has lower solubility than marble [20]. The rapid nature of the process 

makes it ideal to produce an amorphous form of a crystalline poorly soluble API [24]. The 

amorphous API produced by spray drying has better apparent solubility which helps to 

improve its dissolution and eventually enhance drug bioavailability. Nevertheless, it is 

unusual to find a spray dried amorphous API which is not in combination with other 

excipients e.g. Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) or 

Polyvinylpyrrolidone (PVP) [25]. These are required for further improvement of the 
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solubility and to stabilise the metastable amorphous API against re-crystallisation during 

storage [24]. Figure 2 shows the development of spray drying solubility enhancement 

technologies over the years. 

The main 3 formulation types used for solubility enhancement via spray drying were solid 

dispersions, complex formation, and emulsified/self-emulsified drug delivery systems. The 

main technologies used since 2000 were solid dispersions and complex formation. In solid 

dispersions, the poorly soluble API and a hydrophilic polymeric carrier are dissolved or made 

miscible within a common solvent (usually organic volatile solvent). This is then spray dried 

to form a ‘solid solution’ where the drug is solubilised within the hydrophilic carrier 

polymeric chains in the solid state [25, 26]. Therefore, the apparent solubility increases due to 

better wettability induced by the hydrophilic polymer and the amorphous form of the API 

after the process. Paudel et al. [25] reviewed the development of spray dried solid dispersions 

thoroughly. These formulations showed 5-3600 fold enhancement in solubility for various 

molecules e.g. phenytoin, curcumin etc. [27, 28]. 

Complex formation involves the molecular association of a poorly soluble API to water 

soluble molecules such as Cyclodextrins, or formation of a soluble salt using counter-ions. 

Spray drying usually helps in turning these complexes into flowable powders ready for filling 

or further processing. Cyclodextrin can impart better solubility by entrapping the poorly 

soluble API within its hydrophobic core while exposing hydrophilic moieties to the aqueous 

environment [29, 30]. Salt formation improves the dissolution rate of the poorly soluble API 

via improving the apparent solubility in the diffusion layer/microenvironment surrounding 

the solid [31].  

Emulsified/self-emulsified drug delivery systems developed by spray drying increased in 

popularity since 2010. These formulations involve the emulsification of a poorly soluble API 
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in a cocktail of oil and surfactants followed by spray drying to form a powder that can be 

administered in an oral solid dosage form e.g. tablets or capsules. Upon administration, the 

formulation self-emulsifies i.e. reconstitutes back as a liquid emulsion containing the 

solubilised API in the aqueous gut environment. Different types of these systems were 

reported in literature including solid self-microemulsifying and self-nanoemulsifying drug 

delivery systems (S-SMEDDS and S-SNEDDS) [32, 33]. 

Other less common solubilisation technologies developed using spray drying were surface 

modification of the API with a hydrophilic material and surfactants such as 

hydroxypropylmethyl cellulose (HPMC) and D-alpha-tocopheryl polyethylene glycol 1000 

succinate (TPGS) to increase wettability [34], micronization to increase surface area available 

for dissolution [35] and co-crystal formation [36]. 

2.2.Optimising aerosolization performance 

Spray drying is a key processing technique mainly for DPIs and occasionally for pressurised 

metered dose inhalers (pMDIs) [3]. For inhalation, it is desirable that particles have low 

density <0.4 g/cm3 and simultaneously small aerodynamic diameter, da , of approx. 2 - 4 µm 

to allow deep lung deposition [37] (See section 4.2.2 for the relation of da to particle 

geometric diameter dg). Particles with da > 10 µm predominantly deposit in the mouth and 

throat whereas particles with da < 1 remain suspended in the air flow and are eventually 

exhaled [37, 38]. At the same time, the particles should be dispersed easily upon patient 

inhalation of the dose which is a big challenge. Optimisation of these aerosolization 

properties via constructively designing particles with the required size, density and surface 

properties represents the fastest growing application of spray drying in pulmonary drug 

delivery (Figure 1 B above).  
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Scientists devised two main spray drying strategies to create drug particles with da of 2-4 µm 

whilst retaining good dispersion/flowability. The first is a Carrier strategy in which a fine 

API particle is attached onto the surface of a coarse carrier particle such as lactose or 

mannitol. This helps to improve the flowability and de-agglomeration of the API during 

filling/dispersion, while allowing the API to detach from the carrier and continue its journey 

to the deep lungs [39]. An alternative carrier approach is to fabricate nanoparticles of the API 

which are aggregated into a micron sized inhalable microsphere dubbed nano-micro 

composites. These aggregates of nanoparticles retain sufficient porosity (i.e. small da) 

allowing them to travel deeply in the lungs, whilst also showing good dispersion properties 

due to their combined micron size in the carrier [40].  

The second strategy is a Carrier-Free one, where a relatively large API particle (> 5 µm) e.g. 

10-20 µm in dg is produced via spray drying [41]. This is with the condition that da is 

between 2-4 µm through generating hollowness and/or porosity in the produced particle [42]. 

The larger dg gave the added advantage of diminished engulfing of inhaled particles by 

macrophages [43]. Spray drying can be used to create low density hollow or porous particles 

depending on feed and process factors [3, 5, 12, 44] as will be discussed later in section 4.2. 

2.3.Controlled release 

Spray drying was traditionally used to develop various microencapsulated or matrix based 

controlled release particle systems [45]. The literature showed that most spray dried 

controlled release systems were designed to achieve sustained or delayed drug release. The 

number of sustained release applications was significantly higher than delayed release 

applications (39 publications compared to 9), because of the wider spectrum of benefits the 

former brings to parenteral, pulmonary, and oral drug delivery. 
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Various polymeric and film forming materials were used to encapsulate APIs and achieve a 

sustained release profile such as Poly(lactide-co-glycolide) (PLGA), Poly(vinyl alcohol) 

(PVA) [46], Chitosan [47] and  Bovine serum albumin (BSA) [48]. The developed 

microspheres showed different release kinetics ranging from e.g. bi-phasic immediate 

followed by sustained release to Higuchi type long term sustained release [49–52]. The main 

applications of these systems were to achieve sustained drug release for pulmonary delivery 

e.g. for insulin [41] and to maximize therapeutic effect from surgical implants e.g. 

intracranial implant releasing paclitaxel over 28 days [53]. Few oral drug delivery 

applications were also found e.g. multi-particulates using methacrylic acid matrix polymer to 

sustain the release of Ferulic acid [54]. In recent years, combinations of polymeric sustained 

release systems e.g. chitosan-coated PLGA microspheres, were investigated to avoid 

macrophage uptake, and enhance the efficacy of anticancer drugs for local lung delivery [55]. 

Most delayed release drug delivery systems developed by spray drying used a pH-triggering 

release mechanism. In general, the principle behind these systems is to create an insoluble 

matrix concealing the API until the delivery system reaches the ionisation pH of the polymer 

where it dissolves to release the API e.g. polymethacrylate delayed release polymer for 

intracellular delivery into the phagosome [56].   

2.4.Stabilisation of biopharmaceuticals 

Spray drying performance is often compared to freeze drying when used for the drying and 

stabilisation of biopharmaceuticals. Freeze drying is a lengthy batch process where the final 

product is presented as a powder cake [57]. On the other hand, spray drying is a rapid 

continuous process with the capability to engineer particle properties. The process is also 4-7 

times cheaper than freeze drying considering the capital and operational costs [58]. The 

spraying (atomisation) element of the spray drying process is essential for its advantageous 
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particle engineering capability (See sections 3.2 and 4.1). For this reason, recent efforts have 

re-evaluated the use of spraying as a particle engineering step prior to traditional freeze 

drying in a process dubbed ‘spray freeze drying’ [59].  

The process of spray drying is sometimes viewed as a harsher method than freeze drying for 

drying heat-sensitive compounds such as biopharmaceuticals [15, 60, 61]. However, the 

overwhelming literature evidence confirms suitability of the technique for drying heat-

sensitive compounds [7, 10, 45, 62–67]. Evaporative cooling during the initial rapid drying 

process, short residence times and the use of co-current process layout minimize temperature 

exposure and create milder drying conditions [7, 65]. The inclusion of stabilising excipients 

such as trehalose, lactose, polyols, inulin, polysorbate-80 etc. further reduces potential 

denaturation. These excipients stabilise proteins via a number of mechanisms discussed in 

literature [61, 68, 69], most notably through their ability to substitute for the sudden loss of 

hydrogen bonding between the protein and its hydration shell, therefore providing structural 

stability [70]. Furthermore, careful optimization of the drying conditions such as temperature 

and residence time [71, 72] helps to reduce the temperature ‘felt’ by the drying material. 

Moreover, solvent evaporation during the initial stages of drying leads to cooling of the 

droplets and their surrounding gas environment. The latter is very useful in preventing 

particle degradation near the harsh inlet conditions. For more information on the spray 

drying stages see section 3. It is noteworthy that a considerable number of proteins and other 

heat-sensitive compounds were successfully spray dried during the last decade e.g. probiotic 

cells, nitrogen-fixing bacteria [73], insulin, bovine serum albumin [74], plasma coagulation 

proteins fibrinogen and thrombin [23] and influenza antigen vaccine [69].  

In recent years, the technique of aseptic spray drying has re-emerged for the drying of 

biopharmaceuticals [23, 75]. The main advantage offered by spray drying under aseptic 
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conditions is avoiding the terminal sterilization conditions that potentially denature 

biopharmaceuticals.  

3. Particle transformations during spray drying 

Spray drying is one of few techniques that can be used for rational design of particles for 

drug delivery applications. Particle design can be accelerated through better understanding of 

the key particle transformations taking place during the different stages of spray drying.  

A typical co-current spray dryer operation in the pharmaceutical industry includes 4 main 

stages 1) feed, 2) atomisation, 3) drying and 4) product recovery stages (Figure 3). The figure 

highlights the main particle transformations expected in each stage. 

3.1.Feed stage  

Although the feed stage is a preparatory phase to the process, it has a significant impact on 

the final particle properties and care must be taken to understand any, desired or undesired, 

chemical or physical transformations that might occur. For example, the feed materials may 

undergo phase changes such as premature crystallization from solution due to high 

concentration or low temperature conditions outside the dryer [36]. They may also suffer 

from chemical incompatibility and degradation if solutions are left standing for a long time. 

Furthermore, one of the most important interactions in the feed is that of the solute and 

solvent. Solvent selection not only affects solubilisation of the API or excipients but also the 

final particle size, morphology, and phase structure through its effect on the evaporation rate 

[3, 11, 25, 76–79]. The solvent effect could be better understood after discussing the Péclet 

number concept in the drying stage (section 3.3). 

The solute diffusion rate within a drying droplet is related to the rheological properties of the 

feed. The diffusivity of the solute can be estimated via Stokes-Einstein equation (Equation 1) 
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which shows that the viscosity,	ߤ, and hydrodynamic diameter, ݀ு, are inversely related to 

solute diffusivity, D.  

ܦ ൌ	
௞	்

଺	గ	ఓ	ௗಹ
………………..Equation 1 

(Where ݇ is Boltzmann’s constant (1.38 x 10-23 J/K) and ܶ is temperature).  

The diffusivity (i.e. diffusion rate of feed components) could influence the formation of 

hollow or dense particles as will be explained later in the drying stage (section 3.3) using the 

Péclet number. Furthermore, the visosity and molecular weight of feed components could 

impact the pumping and atomisation process e.g. a highly viscous grade of HPMC potentially 

dries into filament-like particles instead of spherical particles because of the difficulty to 

break the highly viscous polymeric sheets into droplets. The sprayability of feed using two-

fluid atomisers can be explored by comparing the relative magnitude of viscous, surface 

tension and inertial forces which are captured by the Weber, We, Ohnesorge, Oh, and 

Reynolds, Re, numbers [80]. These are dimensionless groups that help to characterise droplet 

breakup and the regions within atomisation e.g. dripping, jet, full atomisation, based on feed 

viscosity and velocity during atomisation [80]. 

3.2.Atomisation stage 

Atomisation involves disintegration of the feed into droplets creating a high surface area for 

rapid drying. The liquid feed is atomised into droplets via different mechanisms e.g. 

pneumatic, mechanical, electrical, or sonic. In most atomisers, the liquid jet leaving the 

nozzle orifice firstly forms into a sheet which is broken down by shear forces and instabilities 

into ligaments and subsequently forms into droplets [80]. The latter phenomena are often 

described as the ‘Wave Mechanism’ in atomisation literature [81]. The turbulent nature of 

atomisation and instabilities occasionally lead to unconventional droplet/particle 
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morphologies such as filament-like, pear-shaped or even mushroom-like particles  [65, 82]. 

Some of the larger drops may undergo additional instability forming smaller droplets. In fact, 

the opposite could also occur as the smaller drops tend to coalesce or agglomerate [83]. Due 

to the complexity of droplet formation, droplet size is difficult to predict but can be measured 

experimentally using different methods discussed in Lefebvre [80]. Some of these methods 

such as laser diffraction or phase doppler measurements could be integrated into the process 

as process analytical technology (PAT) tools to monitor droplet evolution. Nevertheless, if 

droplet size, ݀ௗ, calculation is necessary, it can be estimated from dried particle size, ݀௉, 

using a simple theoretical mass balance (Equation 2).   

ࢊࢊ ൌ
࢖ࢊ

൬
૙࡯ࢊ࣋
࢓࡯ࡼ࣋

൰
૚
૜ൗ

...........................Equation 2 

 

The above equation requires the prior knowledge of the dried particle size, droplet density ߩௗ 

(equivalent to feed density), feed solids concentration, ܥ଴, dried particle density, ߩ௣ and dried 

particle solids concentration, ܥ௠. The assumptions attached to this equation are that particles 

are spherical and each particle is formed from a single droplet. In practice, the formation of 

shrivelled or buckled particles may underestimate the calculated droplet size and give 

inaccurate results due to loss of sphericity. 

3.3.Drying stage 

In the drying stage, typically, the atomised droplet temperature rapidly changes from its 

initial temperature to an equilibrium temperature, its wet bulb temperature, due to evaporative 

cooling. Once at this temperature the droplet dries steadily. This period is often called the 

constant rate period as the surface of the droplet remains saturated with solvent and the 

evaporative flux remains constant. As the droplet dries further the transport of solvent to the 
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droplet surface is hindered via decreasing solvent diffusivity and/or solids formation, 

consequently the evaporative cooling decreases and the temperature increases continuously. 

The dried solids formed are either crystalline or an amorphous precipitate.  

The formation of crystalline or amorphous solids is difficult to ascertain without experimental 

effort, however, simple empirical rules such as those of Mahlin and Bergström  [84] could be 

used in a strictly indicative manner. The latter found that the glass forming ability of 

materials could be correctly predicted based on the molecular weight for 90% of the 

evaluated APIs in their study. Their conclusions showed that as a ‘rule of thumb’, drugs with 

a molecular weight more than 300 g/mol are expected to be converted to the amorphous state 

using standard process technology (including spray drying). 

Spray dried particles exhibit a huge variety of morphologies. These morphologies depend on 

both the material characteristics during drying, i.e. thermodynamic and material properties in 

solution, semi-dried and dried state, and on the drying conditions, initial solvent 

concentration and droplet size. A critical factor in the determination of many of these 

morphologies is when, and whether, the surface dries to form a shell. The formation of a shell 

(crust or film) is possible if the solids/solute concentration at the surface is high compared to 

the bulk. The dimensionless number, the Péclet number, Pe, is a useful guide to whether this 

surface enrichment is possible. The Peclet number is generally defined as a ratio between 

mass transfer due to convection/advection, represented by a characteristic velocity, u, to that 

due to diffusion represented by the diffusivity divided by a characteristic length, D/L. In the 

case of a drying droplet, it represents the ratio of the velocity of the receding droplet surface, 

|dr/dt|, which is leading to an increase in concentration at the surface, to the diffusive velocity 

of the solute or suspended particles, D/r, which the concentration gradient is driving away 

from the surface (Equation 3). D is the solute diffusion coefficient and r is the droplet radius.  
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Pe ൌ
࢚࢟࢏ࢉ࢕࢒ࢋࢂ		ࢋ࢜࢏࢚ࢉࢋ࢜ࢊ࡭	

࢚࢟࢏ࢉ࢕࢒ࢋࢂ	ࢋ࢜࢏࢙࢛ࢌࢌ࢏ࡰ
ൌ

࢛ࡸ

ࡰ
ൌ

࢘	ቚܚ܌
ܜ܌
ቚ

ࡰ
 ...................Equation 3 

This equation is often written in terms of an evaporation rate, or flux, ߢ, which can be defined 

when rdr/dt is constant and the surface area of the droplet linearly decreases with time [13]. 

݀ଶሺݐሻ ൌ ݀௢ଶ െ and  ߬ௗ  ݐߢ ൌ
ௗబ
మ

఑
 ...................Equation 4 

Where  τd is a theoretical droplet drying time, d is the droplet diameter and do the initial 

droplet diameter and 

݀ሺ݀ଶሻ

ݐ݀
ൌ െߢ ൌ ݎ8

ݎ݀
ݐ݀

 

Consequently 

Pe ൌ
఑

଼஽
...................Equation 5 

 
As shown schematically in Figure 4, if the conditions inside the dryer allow rapid solvent 

evaporation rate ↑ߢ , the velocity of the receding surface is faster than the solute/solvent can 

diffuse away from it, i.e. Pe>1, resulting in accumulation of solids/solute at the surface and 

the potential for shell formation. Conversely, if the conditions result in a lower evaporation 

rate ↓ߢ, the solute which is accumulating at the surface is redispersed by diffusion towards 

the centre of the droplet ↑D i.e. Pe<1, and shell formation will not occur (Figure 4). 

It is noteworthy that Pe is not the sole criterion for shell or dense particle formation and other 

factors (depending on the system under consideration) such as initial feed concentration, 

surface activity and solubility level for dissolved systems or the solids concentration, size and 

inter-particle forces for suspended systems may also determine the particle structure. Some of 

these factors are discussed below in section 4.2. 
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Shell formation represents a strong barrier to solvent evaporation leading to increased local 

temperature in the droplet, occasionally above the boiling temperature Tb of the solvent which 

causes build-up of internal pressure. Bubble nucleation also occurs if entrained gas is present 

in the droplet e.g. from atomisation stage [83]. Depending on the permeability and 

mechanical properties of the shell, the particle may relieve the pressure by inflation-deflation 

cycles (shrivelled or buckled particles), cracking (open hole or cracked particles), or even 

explosion (shattered particles). At the end, all liquid is evaporated and the particle reaches the 

outlet temperature Tout. A more detailed analysis of temperature history of single droplets 

during drying can be found in Nešić and Vodnik [85], and Handscomb et al. [86]. 

3.4.Product recovery stage 

The formation of deposits on the dryer walls represent one of the major factors affecting 

product recovery from spray drying. The unsteady gas flows experienced in the process are 

largely responsible for driving the particles towards the walls, particularly near the outlet 

pipes [87, 88]. In many systems, the formation of deposits is initiated when the local 

temperature conditions i.e. outlet temperature, Tout, cause the droplet/particle surface 

temperature, Tsurface, to exceed the glass transition temperature, Tg, of the materials by about 

20ºC. When this happens, the materials transition from the highly viscous (1012 Pa.s) less 

sticky glassy state to the less viscous (106-108 Pa.s) highly sticky rubbery state [89, 90]. 

This is exacerbated if the combined Tg of the materials in the droplet is naturally low due to 

their high molecular mobility or hygroscopicity. The combined Tg for two component 

mixtures could be found using the modified Gordon-Taylor equation (Equation 6, could be 

derived for > 2 components) [24]:  

௚ܶ	௠௜௫ ൌ
௪భ ೒்భା௄	௪మ ೒்మ

௪భା௄	௪మ
 ..............................Equation 6 
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Where ݓଵ and ݓଶ are the weight fractions of components 1 and 2, Tg1 and Tg2 are glass 

transition temperatures of components 1 and 2, and K is a constant that could be calculated 

from the density ߩ and Tg of components using Equation 7: 

ܭ ൌ ೒்భఘభ

೒்భఘమ
..............................Equation 7 

Therefore, it was suggested that when the viscosity of the droplet surface goes below a 

critical level of 107 Pa.s, the material may remain as a syrup which has the tendency to stick 

even at low moisture contents [91]. On the other hand, a particle may bounce off the wall 

(rebound) if the conditions and material properties are well optimised, leading to minimal 

deposits.  

Cyclones are ideal powder collection systems for pharmaceuticals [92] because they are 

efficient, easy to clean and widely available on both small and commercial scales. A cyclone 

is a conical shaped apparatus which separates particles by their inertia. Particles entering the 

cyclone with the gas stream follow its downward spiral path which throws them outward to 

the cyclone wall by their inertia. As a result, the particles may collide with the wall, lose 

momentum and become disengaged from the flow [93]. The solids continue to descend by 

sliding on the conical wall and are received in the collection bin. This main gas stream which 

carries the particles in a downward spiral is usually termed ‘the main vortex’. However, at 

some point near the bottom of the cyclone cone ‘the vortex end position’ [94], the flow 

reverses itself travelling in an upwards spiral this time termed the ‘inner’ or ‘core’ vortex. 

This revered inner flow leads to the exit of the cyclone ‘the vortex finder region’ and carries 

lighter smaller particles out towards filters. That is why cyclones are generally not 

sufficiently effective at separating/collecting particles which are smaller than 5 µm [95]. 

Powders of this size are required for pulmonary drug delivery applications (see section 2.2), 
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hence, careful optimisation of the cyclone yield is sometimes necessary especially for 

amorphous or highly hygroscopic substances which already suffer from a stickiness issue as 

described earlier. Other collectors such as electrostatic precipitators may become more 

suitable for collecting much smaller particles in the nano-size range [95]. 

Cyclone performance is described by its collection efficiency and pressure drop which in turn 

depend on the velocity, solids concentration and pressure fields within the cyclone [93]. Each 

cyclone has a specific particle size range to collect above its cut-off diameter, D50.  E.g. a 

cyclone with D50 of 2 µm is unable to capture 50% of particles < 2 µm in size [10]. Pressure 

drop describes the resistance to gas flow in a cyclone [95, 96]. Pressure losses mostly 

dominate in the vortex finder and exit duct regions. Factors which decrease the strength of the 

vortex (indicated by a decrease in its tangential velocity) can cause a decrease in the cyclone 

pressure drop and vice versa [93]. Experiments have shown that increasing wall friction 

coefficient, concentration of solids, or length of the cyclone decrease pressure drop [93]. The 

use of narrow high-efficient cyclones was also reported to increase vortex strength (higher 

tangential velocity) thereby increasing pressure drop [96].  

4. Particle design factors 

The design of pharmaceutical particles using spray drying is influenced by equipment 

configuration and feed & process factors. 

4.1.Equipment configuration 

A strong link exists between spray dryer equipment configuration and particle design that is 

often overlooked in the literature due to the widespread use of small-scale fixed geometry 

equipment. The main equipment configurations which affect the quality attributes of spray 
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dried product are process layout (co-current, counter current), drying chamber dimensions, 

choice of closed/open cycle mode, atomisation device, and powder collection system. 

4.1.1. Process layout 

Pharmaceutical spray dryers mostly use a co-current process layout i.e. the gas flow and 

droplet atomisation are in the same direction (Figure 3), because of the milder temperature 

conditions experienced in this process layout and the thermal sensitivity of pharmaceutical 

materials [65]. 

4.1.2. Drying chamber dimensions 

Chamber dimensions is an important process configuration which largely dictates the 

aerodynamics of air/gas flow and eventually affects droplet residence time. An average value 

for residence time (disregarding the aerodynamics and droplet size distribution) is roughly 

estimated through dividing the chamber volume V by the inlet gas volumetric flow rate U 

[87]. Hence, a chamber with a bigger volume potentially leads to longer residence time and 

achieves a lower moisture content. However, this may also lead to higher extent of thermal 

degradation. In pharmaceutical spray drying, the level of moisture or residual solvent content 

of a powder is sometimes difficult to control without the use of secondary drying equipment 

such as externally mounted fluid beds [97] or secondary drying chambers [98].  

4.1.3. Choice of closed/open cycle mode 

Open or closed cycle configurations of a spray dryer could affect particle properties e.g. 

residual solvent content (moisture) and porosity [12, 64]. In the closed cycle mode, a higher 

amount of solvent vapour exists in the recycled drying gas [6, 64] which causes the solvent 

evaporation rate to drop, ultimately leading to higher residual solvent content. The latter 

could in turn decrease particle Tg [64] or cause incomplete pore formation and lower particle 
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porosity [12]. To avoid these pitfalls, a small amount of fresh drying gas could be channelled 

into the closed cycle loop to reduce the amount of solvent vapour and improve evaporation 

efficiency [6]. 

4.1.4. Atomisation device    

Two fluid atomisers are mostly used to produce particles which are in the fine range e.g. 1-30 

µm. These are the standard atomisers for preparing DPI formulations requiring small particle 

size (da between 2-4 µm). On the other hand, ultrasonic and pressure atomisers can produce 

larger droplets which dry into large flowable particles e.g. 100-300 µm useful for oral dosage 

forms [6]. Schaefer and Lee [99]  prepared large flowable particles of protein or disaccharide 

using an ultrasonic nozzle on a relatively long chamber small-scale spray dryer [100]. 

Pressure nozzles are mainly used in large scale spray dryers [4]. The use of monodisperse 

droplet generators (MDGs) was also featured for producing powders with narrow particle size 

distribution [101]. Pietiläinen  [102] reported the use of MDGs in the preparation of particles 

for precise dosing of APIs in inhalation applications. Nandiyanto and Okuyama [103] 

described an aerosol-assisted spray method to produce agglomeration-free monodispersed 

particles. 

4.1.5. Powder collection system 

As mentioned earlier, the choice of cyclone should consider its cut-off value and the desired 

particle size to maximize collection efficiency. Cyclones could also affect the dried particle 

morphology by causing weak thin-walled particles to fracture during the powder recovery 

stage [15]. There are other options for collecting particles such as filters, bag houses, or 

electrostatic separators, however, cyclones continue to be the most successful option for 

pharmaceutical applications. 
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4.2.Feed and process factors 

There are few experimental schemes which link feed and process factors to the final particle 

structure. The earliest of these reported important theoretical predictions of droplet drying 

behaviour to help understand morphological transformations in spray dryers [104]. Other 

schemes focused on the solubility of materials [105, 106] and crystallisation within droplets 

[107]. There are comprehensive schemes such as those of [108] showing the general 

conditions required for drying different particle morphologies. Furthermore, Nandiyanto and 

Okuyama [103] reported particle design concepts applicable for inorganic materials based on 

high temperature processing. Vicente et al. [109] highlighted some critical factors for the 

formation of particles in spray drying. The different feed and process primary factors relevant 

to pharmaceuticals were assimilated from the above literature schemes in Table 1. The impact 

of these factors on product attributes (e.g. particle size, phase structure etc.) and process 

smooth operation (e.g. yield, formation of deposits, thermal efficiency) is also highlighted. 

Table 1 also shows different measurable properties or indicators that could be investigated 

during spray drying process development. 

The primary feed factors reported in Table 1 were those of the solute such as thermal, phase 

behaviour, physico-chemical, rheological and surface properties, and of the solvent such as 

its toxicity, flammability, and volatility. The primary process factors were atomisation 

mechanism, feed rate, gas flow rate and drying temperature. 

4.2.1. Thermal/phase properties on product stability 

The thermal properties of API represent a very important parameter especially in the case of 

heat-sensitive compounds e.g. biopharmaceuticals. As mentioned earlier in section 2.4, the 

drying of biopharmaceuticals via spray drying necessitates the use of protective excipients 

and the optimization of temperature conditions (Tin/Tout) to prevent denaturation. Thermal 
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properties are also important for the preparation of stable solid dispersions (section 2.1). An 

indication of resultant material’s Tg helps in selecting a suitable polymer that would drive the 

combined Tg above the storage temperature. Hancock and Zografi [24] provided a ‘rule of 

thumb’ to estimate Tg  from melting point Tm of the counter-part crystalline material prior to 

processing. The basis is an empirical idea that the ratio of Tm/Tg of most 

screened pharmaceutical materials is approximately equal to 1.36. More recently, a 

study [110] confirmed this value through validating it with 71 drug-like compounds. 

4.2.2. Concentration and composition of components on particle size and porosity 

Achieving a specific particle size via controlling the atomised droplet size is vital for both 

oral and pulmonary dosage forms. The solutes concentration in a given feed solvent is 

another critical factor to be considered [10]. Generally, particle size increases with increasing 

the concentration of solids in the drying droplet [81] as could also be inferred from Equation 

2 (section 3.2). Contrarily, some researchers reported a limited influence for concentration 

and dependence of particle size on atomisation [109]. Powders for oral solid dosage forms 

generally require a particle size above 100 µm to provide good flowability [111]. Contrarily, 

powders for inhalation require small particle size (d of ≈ 5 µm) and optimised aerodynamic 

properties (da of 2-4 µm) (Section 2.2). Particle da is a function of its geometric size dg 

(interchangeable with dp) where da = dg  (e /w χ). Where ρe represents the envelope density 

of the particle (interchangeable with ρp), w the density of water and χ the shape factor for 

non-spherical particles (χ is 1 for spherical particles) [112]. The creation of porous or hollow 

particles lowers ρe and consequently da, thus facilitating the travel of particles to the alveolar 

region of the lungs. Different methods were reported in the literature for the creation of 

porous particles via spray drying [113]. The basic principle in most of these is the 

evaporation of a volatile material from a drying particle leaving pores behind. Volatile 

materials such as ammonium carbonate/bicarbonate [5, 12, 98] and fluorocarbons [3] were 
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used previously. On the other hand, the development of porous low density powders 

constitutes a challenge during filling into individual dose units and upon re-dispersion of the 

powder. Therefore, trileucine or leucine are used in a number of DPI formulations due to 

their role in further enhancing the dispersion properties and reducing agglomeration [51, 69, 

114, 115]. 

4.2.3. Choice of solvent and physico-chemical properties on particle morphology 

As mentioned earlier, the choice of solvent or solvent mixtures can affect particle formation. 

Depending on its evaporative capacity i.e. latent heat of vaporization λ, a solvent could  

influence the movement of solute molecules towards the drying droplet centre. According to 

Péclet, this results in either 8 < ߢD and shell formation if the solvent evaporates quickly or	ߢ 

< 8D and dense particle formation if the surface accumulation is slower than solute diffusion 

towards the droplet centre. More research is required into the effect of solvent or mixture of 

solvents on particle morphology through the effect on solubility of components in multi-

component mixtures [116]. For multicomponent solutions, component segregation inside the 

drying droplet and eventually in the dried particle may also be observed. This potentially 

occurs if the components have significantly different values for diffusion coefficient and 

solubility [117]. On the other hand, for solid nano-/microparticles initially dispersed in the 

evaporating droplet, inter-particle forces may restrict diffusion, therefore the potential for 

such interactions on the final particle structure may be considered. 

Morphology, as well as surface habit, are important for good flowability of powders e.g. 

spherical particles have better flowability than needle shaped particles. Surface roughness 

attained from the habit of primary particles (or crystallites) helps the inter-locking of particles 

[118] during the compression of tablets and also necessary for the design of carrier particles 

for inhalation. The addition of certain excipients to the feed e.g. sucrose or lactose was 

reported to reduce the formation of dents on the surface of particles [119]. Surface activity of 
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some proteins drives them towards the air-liquid interface of droplets during drying and could 

lead to their denaturation [120]. However, the addition of surfactants e.g. polysorbate 80 or 

sodium dodecyl sulfate hindered protein (bovine serum albumin) adsorption at the water/air-

interface during drying and reduced protein inactivation or aggregation [121]. Finally, one of 

the key challenges of the controlled release systems produced via spray drying is managing 

the thickness of the film formed on the surface of particles to allow controlled drug diffusion 

and avoid burst drug release. 

4.2.4. Gas and feed flow rates on particle size and moisture content 

Increasing gas flow rate, U, changes the aerodynamics within the dryer which in turn 

influence particle size and moisture content if the residence time becomes longer or causes 

wall deposits if turbulent flows are created. 

Increasing the feed flow rate, F, decreases Tout and vice versa, which in turn will affect the 

moisture content, Tg and yield as will be explained next. Increasing F also increases the 

droplet size and eventually the particle size (Equation 2). 

4.2.5. Temperature conditions on process yield 

The relationship between temperature conditions (Tin / Tout) and process yield was explored 

by Imtiaz-Ul-Islam and Langrish [122] through a concept termed the ‘stickiness barrier’. 

They found that for sugar rich materials which usually turn amorphous upon rapid drying, 

yield increases with increasing Tin (consequently Tout). This is because the increase in 

temperature leads to a decrease in moisture content and therefore higher materials’ Tg. Thus, 

the materials in the particle would be less susceptible to stickiness due to higher chance of 

staying in the glassy highly viscous state as explained previously (section 3.4). However, 

yield would decrease as Tin increases further, due to no more reduction in the moisture 

content (i.e. Tg is almost constant at this stage). This phase is called the ‘stickiness barrier’ 

period which is characterised by very low yield due to particle temperature close to or 
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exceeding Tg. Further increase in the temperature, however, will cause recrystallization of the 

amorphous form and yet increases yield again. Note that many amorphous materials may not 

recrystallize upon the higher temperature and undergo decomposition instead. 

5. Scale-up approaches 

In most situations, the biggest challenge in scale-up is delivering the same particle size and 

structure, and consequently properties and performance, on the production scale as those 

designed and optimised on the small scale. In dryers, this is more challenging than some 

other unit operations because of the significant interaction between process conditions and 

product structure and properties [123]. The complexities, and number, of the numerous 

interacting mechanisms happening across all length scales in a spray dryer make classical 

process scale-up approaches, using dimensional analysis, of limited use. Similarity cannot be 

maintained for all the important mechanisms and associated dimensionless groups even if 

geometric similarity was preserved (which in reality it never is). 

One of the objectives in dryer scale-up is recognising the scale-independent process 

parameters necessary to achieve the target particle properties [123]. Ideally, one would match 

the following key parameters across scales 1) feed properties and feed moisture content; 2) 

atomised droplet size distribution; 3) the droplet drying history and history distribution; 4) the 

desired particle/droplet collision history to form agglomerates and 5) avoid wall contacts and 

build-up at all scales. Attempts have been made to do this for some systems [124], and 

matching drying history might be possible if the extra drying time at full scale is not having a 

significant effect on drying. However, in most cases it is not possible, and differences are 

seen across scales in particle size, morphology, and product residual solvent/moisture 

content. The differences are attributable to scale-driven limitations and practical differences 

in tower design at different scales.  
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On the small scale, relatively dilute feeds tend to be used to reduce the higher pressure drops 

which occur in scaled down feed lines and limitations in small scale pump capability. The 

particle size is also necessarily small on the small scale due to the very low residence times 

available for drying.  Lab dryers in particular have very low residence times, < 1 s [125], and 

even pilot scale towers have shorter residence times, for example, particle residence times of 

20 s on the pilot scale compared with 40 s on the production scale [124]. Small scale spray 

dryers are typically equipped with two-fluid nozzles producing small particles whereas large 

scale spray dryers use pressure nozzles producing larger particles (see section 4.1) [64]. It is 

possible, from a practical point of view, to adjust the feed composition (e.g. initial 

concentration) to match the residence/drying time of the scaled-up process. However, such 

changes need to be approached carefully to avoid variation in product quality or extra 

regulatory burden. 

It is also important to realise that heat loss from the dryer walls and yield vary between the 

scales [97]. In particular, yields on the small-scale spray dryer are limited to 60-70% due to a 

large fraction of fine particles lost in the filters and formation of wall deposits (see section 

3.4). The latter happens due to incomplete drying and poor thermal efficiency on the small-

scale and can significantly change the product properties. Whereas on the production scale 

chamber deposits must be minimized by optimising the operation to achieve hygienic (or 

even aseptic) conditions (the better thermal efficiency intrinsically helps) [97]. In the next 

sections, the alternative main approaches for scale-up of pharmaceutical spray drying are 

summarised. 

5.1.Basis for scale-up approach 

This is one of the traditional approaches for scale-up which mostly relies on the experience 

and ‘know-how’ of the spray dryer designer [97]. Scale-up via this approach requires 



27 
 

sufficient prior knowledge on heat-mass transfer, the effect of humidity, individual’s practical 

expertise (process and component scale-up) and some information on the properties of 

product from pilot-scale experiments. The basis for this approach is the use of ‘well-proven’ 

techniques from practical experience rather than engaging in a theoretical intensive exercise.  

Basis for scale-up links the process factors to product properties via the mechanisms 

occurring within the tower. These could be fixed factors such as dryer geometry and feed 

composition or variables such as operating conditions, e.g. atomiser pressure and inlet 

temperature, linked to the possible outputs from the process i.e. desired properties of the 

product [126]. The use of the notion ‘fixed factors’ here refers to the fact that changes to 

geometry of the process or feed composition are not preferable options given the 

consequences of such interventions on other business or regulatory aspects of the product. 

For example, changes to process components may necessitate further design and process 

engineering with all the associated costs. Similarly, changes to the feed composition, while 

sometimes inevitable, are not recommended as first option due to potential requirement of 

new costly bioequivalence studies to establish similarity [127]. After identification of the 

fixed and variable factors of scale-up, different numerical or empirical models and 

experimental tools are used to investigate the effect of each critical factor on the process 

outputs. The outcome of this procedure is identification of the key process parameters that 

may result in a product with similar attributes over the different scales. 

5.2.Thermodynamic space approach 

Scale up via this approach commences with extensive experimental work to establish a stable 

lab-scale process. This is necessary to derive the optimal product and process parameters 

such as temperature, Tin or Tout, condenser temperature, Tcond, as well as drying gas rate, U, 

and feed flow rate, F. Energy and mass balance calculations and liquid vapour equilibrium 



28 
 

models are then used to derive parameters such as Crout which is the concentration of solvent 

in the gas phase relative to its concentration at saturation. The value of Crout obtained from 

small scale measurements relates to the residual solvent within the sample and consequently 

influences materials’ Tg [64]. One of the criteria in this scale-up methodology is to maintain 

the same value of Crout at the large scale via modifying F and Tout. The next step is estimation 

of the droplet size obtained from the atomisation process mainly via empirical droplet size 

correlations. Those correlations are nozzle and product dependent and may not describe the 

complex fluid dynamics of droplet formation. This is followed by experimental 

measurements of particle bulk density and the use of a simple mass balance calculation to 

estimate the dried particle size [64, 128].  

5.3.Iterative mathematical-statistical models 

The use of mathematical and statistical models for process optimization and scale-up have 

risen since design of experiments (DOE) is playing a bigger role in quality by design (QbD) 

pharmaceutical development. The main purpose of these models is to generate a design 

space based on experimental observations from a limited number of experiments [4]. This 

could be cost-effective considering the nature of the scale-up task which requires extensive 

experimental effort. Several studies have considered the effect of process parameters on 

critical quality attributes (CQAs) or established the design space for a lab-scale spray drying 

process [129–131]. However, the design space created on the small scale may not apply at 

larger scales due to the differences mentioned earlier e.g. temperature, initial drop size, 

residence time etc. Therefore, a common practice is to re-validate the design space upon 

scale-up. It is also important to mention that DOE studies performed on the small-scale help 

in defining the critical process parameters (CPPs) which could then be considered during the 

scale-up operation. Additionally, this is a growing area of research where incremental 

advances are made towards more robust and scalable models. 
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5.4.Fundamental models 

The use of computational fluid dynamics (CFD) to solve fluid motion equations enabled the 

prediction of gas flow aerodynamics, droplet-gas contact and droplet trajectories during spray 

drying. This has made CFD a very useful tool for the scale-up of spray drying as the 

theoretical information obtained on fluid dynamics facilitates the decision to build 

commercial scale plant [7]. Furthermore, optimization of spray drying yield and 

understanding the deposition within spray dryers has also been attempted using CFD when 

combined with experimentally obtained droplet drying models of the large scale process [88]. 

However, there are number of challenges with this approach, such as the need for 

computationally expensive unsteady models of the turbulent flow and the challenge in 

obtaining good quality drying data [7]. It has also been highlighted that the models are only 

based on a limited number of representative drops [87]. In reality, thousands of droplets are 

produced in a spray dryer with complex interactions such as coalescence and agglomeration 

unaccounted for using current models. In addition, validation runs are required at least on a 

pilot scale plant to ensure the robustness of the simulation data [7, 132]. Due to the 

complexities of the CFD models, and the experts required to run them, simpler rate base 

models can also be used e.g. [133, 134] and whilst they may be more limited in geometry 

related aspects of optimisation, can still be a useful tool for scale-up [7]. 

5.5.Hybrid approach 

This is in fact a combination of some of the above approaches utilising the best practices 

from each. It starts with initial experimental screening of the best formulations to establish 

feed composition, solvent type etc. and defining process constraints e.g. maximum and 

minimum operational process parameters necessary for smooth process operation. This is 

followed by creating a thermodynamics map for the effect of feed rate and outlet temperature 
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on maximizing drying efficiency on small scale. The next stage is to use CFD to predict 

droplet drying kinetics followed by iterating the CFD model via experimental phase doppler 

measurements of the atomised droplet size. Finally, a verification run is carried out on the 

pilot scale to validate the CFD results and establish scale-up procedure [132]. 

6. Conclusions 

Spray drying has been used to design many particle delivery systems. It represents an 

effective option for the solubilisation of even practically insoluble APIs via solid dispersions 

especially for oral drug delivery. Spray drying is also a major processing technique in the 

pulmonary drug delivery area to constructively design particles with the required size, 

density and surface properties. The technique has also been used to microencapsulate APIs 

and achieve controlled release kinetics for oral, pulmonary and parenteral delivery. The 

overwhelming literature evidence supports the use of spray drying for drying heat-sensitive 

compounds e.g. biopharmaceuticals. However, the conditions of the process and feed 

parameters have to be controlled to avoid denaturation. 

The feed stage of the process significantly impacts the final particle properties and the 

product recovery from the process. The ability to control particle size and density for 

different applications e.g. small size and low density for inhalation or large size and high 

density for oral dosage forms via modifying the atomisation device or drying conditions is 

probably the techniques’ biggest advantage. There has been a number of schemes linking 

process parameters to particle attributes such as size and morphology to eventually enable 

product specification control. However, this is continuing to pose a challenge given the 

complexity and interactions within the process. The formation of crystalline or amorphous 

solids during the drying process is a very difficult product attribute to ascertain without 

experimental effort. Dryer scale-up is also very challenging given the samples produced on 
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the small scale may not represent the large-scale product attributes due to variations in the 

process conditions. 

7. Expert opinion 

The spray drying process is well established in many industrial sectors; however, it is only in 

recent years that the benefits of the process are being seen and realised by the pharmaceutical 

sector, as the needs of new therapeutics drive product developers beyond existing, 

established, manufacturing routes. Many of these benefits come from the ability to directly 

formulate and design particles of the desired functionality. Much of the research reported are 

formulation studies which explore the link between formulation and functionality often using 

lab-scale trial and error approaches. These studies are typically limited in their breadth of 

application beyond the investigated formulation space. 

The complexities of the spray drying process and the phenomena occurring at both particle 

and process scales make both studying and modelling these systems very challenging, 

however, advances in both experimental and modelling approaches have been made. These 

include conceptual models based on the Péclet number [113] and more complex models [106] 

that have helped us understand the mechanisms and predict behaviour. On a single particle 

level the ability to predict the particle ‘structure’ for a given formulation, particle size, 

solvent level and drying condition remains a long standing need and challenge. 

The link between material physical properties and particle structure remains an open area for 

active research. An increased attention to physical property specification, testing and control 

is a natural evolution of current pharmaceutical trends. Recent innovations in material 

characterisation and data analysis approaches have shown that not only API size but shape 

can play an important role in the manufacturability of pharmaceutical products [135]. 

Regulatory authorities are well aware that API physical properties can have influence beyond 
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dissolution rates governed by surface area. Examples of other influenced properties 

recognized by the regulator include product processability, content uniformity and product 

appearance (See ICH Q6A Specifications Decision Tree 3) [136]. Consequently, it is quite 

probable that API physical specifications will become more encompassing and exacting in 

the future. Improved control over these properties, potentially offered by advanced 

manufacturing technologies, is welcomed.  

Perhaps the biggest barriers to the spray dried product translation remains one of scale-up and 

scale-down i.e. the ability to make particles in the large scale that are of the same properties 

as that made on the small scale.  Developments in CFD are enabling the prediction of 

differences in drying behaviour, though, the challenge remains that of the short residence 

time on the small scale. The ability to robustly and simply measure drying rates is also a key 

need that would enable CFD and modelling approaches to be more widely used in the product 

development cycle. Furthermore, in early phase drug development, material is not available 

for scale-up and the physical limitations of scale-down experiments mean it can be very hard 

to generate samples representative of material that could be obtained long-term at larger scale 

– a particular limitation when you consider that samples may be required that are 

manufactured to Good Manufacturing Practice (GMP) standards. Improved understanding 

and technological developments of small scale manufacture combined with companies and 

labs capable of operating it under suitable conditions is critical to driving the use of spray 

drying and maximising the value it can bring. 

The adoption of spray drying technology for creating drug delivery applications is especially 

evident in the areas of solid dispersions formulation for solubility enhancement and for the 

formulation of aerosolised particles for DPIs. In the future, the introduction of new or 

improved spray drying technologies could help accelerate the design and robust manufacture 

of precision medicines, bio-derived APIs and targeted drug delivery systems. This is 
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strengthened by the current record of spray drying as a continuous and regulatory approved 

process.  

Furthermore, it is expected that more modelling techniques will be used to design spray 

drying processes/systems tailored for the pharmaceutical sector rather than reapplication of 

20th century technology. Product design approaches encompassing model-based ‘digital 

design’ methods and associated experimental techniques will hopefully come together for an 

integrated work modality. There is also an increased interest in a continuous verification 

model that would essentially look to link process parameters to product physical properties 

via PAT tools and ultimately predict product performance of spray dried products. 
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Table 1: Factors affecting product and process attributes to be considered during spray drying process development. 

 Primary factors Properties to be investigated during process development References 

F
ee

d 
 

Temperature stability of feed materials on product 
stability and process yield 

Decomposition temperature, Tdec, melting point, Tm, and glass transition 
temperature, Tg 

[24, 110, 137] 

Crystalline/amorphous character of feed materials on 
product stability and process yield 

Tg or Tg shift of starting materials/product. 
Theoretical link of molecular weight to glass formation 

[25, 26, 76] 

Hygroscopicity of feed materials on final product 
stability and other product specs 

Equilibrium moisture content, DVS profile [24, 91, 138] 

Chemical incompatibility of feed materials on stability 
and product specs 

Spectroscopic properties such as new or absent peaks [6] 

Flammability of materials and any impurities on 
process safety 

Flash point for volatile materials or the auto-ignition temperature (AIT); cloud 
ignition temperature (CIT) and in a solid/semi-solid layer minimum ignition layer 
temperature (MILT) 

[139] 

Physico-chemical and rheological properties on 
product structure (particle size, morphology, and 
phase composition) 

 

Equilibrium solubility, dispersibility, concentration, viscosity and molecular 
weight of components. 
Solubility of the materials at the wet bulb temperature, Twb; Péclet number 
affected by the diffusion coefficient and hydrodynamic diameter of the solutes, dH

[25, 76, 77, 83, 84, 109, 113, 
116, 140–144] 

Rheological properties on process smooth operation Feed viscosity [145] 

Solvent Toxicity on product safety and process 
environmental footprint 

ICH solvent classification [146] 

Solvent(s) flammability on process safety Lower Explosion Limit (LEL) of the solvent system [6, 139] 

Solvent volatility on process evaporation rate (and 
process throughput) and particle formation 

Latent heat of vaporization, λ; Boiling Point Tboil; residual solvent in product, 
moisture content, Tg, particle phase structure, particle apparent density/porosity 

[3, 6, 11, 12, 25, 44, 64, 76–
79, 89, 113, 147] 

Material volatility on particle structure and porosity     Latent heat of vaporization (λ) [6, 41] 

Surface activity of materials in solvent system on 
product particle architecture  

Static/dynamic surface tension and secondary adsorption/diffusion coefficients 
revealing surface mobility/self-organisation of feed materials 

[14, 82, 114, 120] 

Size & morphology of primary particles on size and 
surface morphology of product particles 

Morphology of primary particles and product particles [14, 38, 113] 

Concentration of components in the spray drying feed 
on process throughput 

Process throughput [6] 

Concentration of components in the spray drying feed 
on particle morphology 

Droplet stiffness (i.e. rigidity or resistance to deformation) due to high 
concentration

[82] 

Presence of air bubbles (aeration) within the feed on 
particle porosity 

Porosity or morphological examination [108] 
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ce
ss

  

Atomisation mechanism or nozzle orifice diameter on 
process smooth operation and particle size 

Droplet size (or size distribution) and morphological examination of particles [80] [66] 

Feed flow rate on process throughput and product 
quality attributes (particle size and moisture content) 

Volumetric feed flow rate, F 
Particle size/droplet size 
Moisture content 

[132] [78]  

Air flow rate in a two-fluid atomiser or frequency in 
ultrasonic atomiser on particle size, moisture content 
and process smooth operation 

Droplet size (or size distribution), droplet residence time and particle size [7][103] 

Inlet Temperature, Outlet temperature (resulting from 
Tin and F) on product structure and process smooth 
operation/yield 

Evaporation rate 
Moisture content or residual solvent content 
Tg of materials within droplet (material with higher Tg would be less susceptible 
to stickiness) 
Crystalline/amorphous particle phase structure 
Process yield (formation of deposits or degradation by high temperature) 
Process thermal efficiency (i.e. energy loss) 

[148][149][88] 

Chamber dimensions on particle moisture content, 
particle size and process smooth operation 

Droplet residence time 
Particle moisture content 
Particle size 
Formation of deposits 

[7] 

Temperature (inlet/outlet) on particle morphology Péclet number  [113][150] 
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Figure Legends 

Figure 1: Number of publications on spray dried drug delivery systems classified by route of 
administration (1990-2016). A) & B) specifically show the trend for publications focused on 
oral and pulmonary drug delivery systems respectively.  

 

Figure 2: Spray drying solubility enhancement technologies over the years. 

 

Figure 3: A typical co-current spray dryer layout highlighting the process stages and the 
main particle transformations expected during spray drying. 

 

Figure 4: Droplet evaporation scheme according to Péclet number concept (Pe = k/8D). 
Darker (black) arrows for solvent evaporation rate (k), grey arrows for solute diffusion (D) 
and dashed arrows for droplet receding surface (dr/dt). Arrow size is proportional to rate of 
evaporation, diffusion or surface recession. 
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