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Summary

Paige Randall North

Type theoretic weak factorization systems

This thesis presents a characterization of those categories with weak factoriza-
tion systems that can interpret the theory of intensional dependent type theory
with ¥, II, and identity types.

We use display map categories to serve as models of intensional dependent
type theory. If a display map category (C,D) models > and identity types,
then this structure generates a weak factorization system (£, R). Moreover, we
show that if the underlying category C is Cauchy complete, then (C,R) is also
a display map category modeling ¥ and identity types (as well as II types if
(C, D) models 11 types). Thus, our main result is to characterize display map
categories (C,R) which model ¥ and identity types and where R is part of
a weak factorization system (L£,R) on the category C. We offer three such
characterizations and show that they are all equivalent when C has all finite
limits. The first is that the weak factorization system (£, R) has the properties
that £ is stable under pullback along R and all maps to a terminal object are
in R. We call such weak factorization systems type theoretic. The second is
that the weak factorization system has what we call an Id-presentation: it can
be built from certain categorical structure in the same way that a model of X
and identity types generates a weak factorization system. The third is that the
weak factorization system (£, R) is generated by a Moore relation system. This
is a technical tool used to establish the equivalence between the first and second

characterizations described.

To conclude the thesis, we describe a certain class of convenient categories
of topological spaces (a generalization of compactly generated weak Hausdorff



spaces). We then construct a Moore relation system within these categories
(and also within the topological topos) and thus show that these form display
map categories with 3 and identity types (as well as II types in the topological
topos).
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Introduction.

This thesis is an attempt to better understand the significance of the word
homotopy in the phrase homotopy type theory.

It has long been observed that Id types in type theory resemble the path
spaces of traditional homotopy theory (first recorded in [HS98] and [AWo9]).
In [GGo8], it was shown that models of type theory with Id types generate weak
factorization systems in which the Id types appear as path objects. Conversely,
many particular weak factorization systems have been studied (e.g., by [Waro8]
and [BG12]) which can interpret type theory with Id types. In this thesis, we
aim to solidify this connection between weak factorization systems and models
of type theory with Id types.

To do this, we use display map categories as our medium of interpretation, as
this structure is closest to that of weak factorization systems on categories. We
also consider very weak specifications of . types, Id types, and II types (weaker
than those considered in [GGo8], [Waro8], or [BG12], for example) which are
more readily captured by the language of Quillen model category theory. In
return for these concessions, we obtain a complete characterization of weak fac-
torization systems (on finitely complete categories) that can interpret X types
and Id types (Theorem 3.5.2). Furthermore, in the case that the ambient cat-
egory is locally cartesian closed, such weak factorization systems will interpret
not only X types and Id types but also II types (Theorem 3.5.3).

Outline
In Chapter 1, we review the basic theory of weak factorization systems. We

reformulate the traditional presentation to better suit our purposes. Firstly, we
make a point of distinguishing between those concepts which only require the
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mere existence of some structure and those concepts which explicitly include a
choice of the structure in question (Definitions 1.3.2 and 1.6.1). For example, we
find it useful to consider both weak factorization systems and weak factorization
structures: the former entail only the existence of factorizations while the latter
include particular factorizations as part of their data. Secondly, we will mostly
use one characterization of weak factorization structures in later chapters: a
special kind of factorization which we call weakly algebraic (Definition 1.4.6).

In Chapter 2, we review the theory of display map categories. We consider
them as a special kind of comprehension category, and, following the literature
on comprehension categories, we define what it means for display map categories
to model >, Id, and II types. We then consider the case when the ambient
category is Cauchy complete. This gives us the first substantial result of this
thesis: when C is a Cauchy complete category and (C,D) is a display map
category modelling ¥ and Id types (respectively, II types), then (C,D) is a
display map category modelling > and Id types (respectively, II types) (Theorem
2.5.12). Here D is a special class of morphisms of C, and D is the smallest
class of maps which contains D and is the right class of a weak factorization
system on C. Thus, given a Cauchy complete category C, if there is a display
map category (C, D) modelling ¥ and Id types, then not only does this appear
within a weak factorization system (YD, D) (as [GGo8] showed), but the weak
factorization system itself forms a display map category (C, D) modelling ¥ and
Id types. Thus, in the rest of the thesis, we focus on characterizing those weak
factorization systems (£, R) for which (C, R) is a display map category modeling
Y and Id types. In these cases, we say that the data for the model of Id types
is a Id-presentation of the weak factorization system (£, R). We also call type
theoretic those weak factorization systems (£, R) in which all objects are fibrant
and in which £ is stable under pullback along R. A weak factorization system
(£, R) must be type theoretic if (C, R) were to model II types.

In Chapter 3, we focus on characterizing such weak factorization systems. In
the first section, we describe diagrams of factorizations, relations (the shape of
the data underlying a model of Id types), and a hybrid which we call relational
factorizations. Then using this categorical apparatus, we define categories of
type theoretic weak factorization structures and categories of those relations
which produce Id-presentations of weak factorization systems (Definitions 3.1.48
and 3.1.49). The rest of the chapter is devoted to producing a certain kind of

14



equivalence between these two categories. To establish this equivalence, we
introduce a theory of Moore relation systems in the second section. This is a
certain kind of structure on a relation which ensures that the relation generates
a type theoretic weak factorization system. Moreover, this structure is minimal
in the sense that it is always entailed by a type theoretic weak factorization
system. In the main theorem of this chapter, we show that all of these properties
of weak factorization system are equivalent.

Theorem 3.5.2. Consider a category C with finite limits. The following properties
of any weak factorization system (L, R) on C are equivalent:

1. it has an Id-presentation;

2. it is type theoretic;

3. it is generated by a Moore relation system;

4. (C,R) is a display map category modeling 3. and 14 types.

In Chapter 4, we describe and generalize the construction of certain conve-
nient categories of topological spaces in order to find models of ¥ and Id types
within them. We begin by reviewing the categorical theory of coreflective hulls
of subcategories. We apply this to subcategories of the category of topological
spaces, generalizing the construction of the category of compactly generated
spaces and the category of compactly generated weak Hausdorff spaces. In the
last section, we construct Moore relation structures in many of these conve-
nient categories of topological spaces and in the topological topos (introduced
in [Johy9]). Thus, we find models of ¥ and Id types within these categories
(Theorem 4.5.25).

15
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Chapter 1

Weak factorization systems and
structures.

This chapter is an overview of the theory of factorizations, weak factorization
structures, and weak factorization systems which will be used in later chapters.
It is intended to fix notation and to record standard results of model category
theory for later use. The definitions and results here, while well-known, have
been reformulated and optimized for use in the following chapters. Good ref-
erences for a more standard presentation of this material include [Hovgg] and
[MP12]. The perspective taken here was introduced by Rosicky and Tholen
[RTo2] and Grandis and Tholen [GTo6] and was later promoted in work of
Garner (e.g. [Garog]) and Riehl (e.g. [Rie11]).

1.1 Lifting properties.

Fix a category M. A weak factorization system on M first of all consists of two
classes £ and R of maps of M with a certain relationship.
First we need to fix some notation.

Definition 1.1.1. A lifting problem in M is a commutative square in M as shown
on the left-hand side below.

A—==B A—==B
b )

~

17



A solution to such a lifting problem is a morphism s making the right-hand
diagram above commute.
Lifting problems will often be denoted by a diagram of the following form

A—=B
// l’"
D

to indicate that the solid arrows are known and that the dashed arrow is sought.

~
*

C

|

Definition 1.1.2. Fix two classes £ and R of morphisms of M. Suppose that
every lifting problem as shown below has a solution if / € £ and r € R.

A—2~B
/L

¢ Y

~

/
/

Then we say that £ has the left lifting property against R or that R has the right
lifting property against £, and we write L[/1R. We will often also say that L lifts
against R.

The class of all morphisms with the left lifting property against R is denoted
YR, and the class of all morphisms with the right lifting property against £ is
denoted LY.

When any of the classes in the above terminology or notation is a singleton,
we will drop the braces: e.g., /[1r means {¢} [1{r}.

Definition 1.1.3. Say that two classes £, R of maps of M are a lifting pair if
L =YR and R = LY. We call L the left class of this lifting pair and R the right
class.

If £ and R form a lifting pair then not only does every ¢ € L lift against every
r € R, but we can also determine whether a morphism is in R (or, respectively,
L) by checking whether it lifts against every ¢ € L (or, respectively, every r € R).
We use this in the following example and propositions.

Example 1.1.4. Consider the category of sets. Let Z denote the class of injections,
and S denote the class of surjections. Then (Z, S) is a lifting pair.

18



Consider any injection 7 and surjection s in a lifting problem as below.

A—"~

B
L
il 7 s

C D

|

Using the axiom of choice, choose a splitting ¢ of s. Consider C' as the union of
A and its complement A°. Then x Uty : Au A° — B is the lift we seek. We have
shown that Z[1 S, or, in other words, that Z < ¥S and S < 7Y.

To see that YUS < 7, consider any i : A — C' in ¥S. If A is empty, then i is an
injection. Otherwise, ! : A — = is a surjection, and there is a solution ¢ to the

A A
C st

But since o7 = 1, we can conclude that ¢ is in Z.

following lifting problem.

7
o s
7/
v
|

To see that Z¥ = S, consider any s : B — D in Z9¥. We construct the dual

@——~B
|k
D

lifting problem.

J

Then s must be in S.

The preceding example foreshadows the kind of weak factorization systems
that will be studied in the following chapters. There, the right classes will always
contain every map to the terminal object. Thus, repeating the argument above,
every map in the left class will be a split monomorphism. In Example 1.3.4, we
will see a lifting pair for which this is not the case.

Now we prove two useful lemmas concerning lifting pairs.

Lemma 1.1.5. Consider a lifting pair (£,R) in M. The class R contains all
isomorphisms, and is closed under the following operations:

19



1. pullbacks: if f is in R and

is a pullback square, then o* f is in R;
2. composition: if f: X > Y andg:Y — Zarein R, then go f isin R;

3. products: if f : W — Yandg: X — ZareinR,then fxg: WxX - YxZ
isin R;
4. retracts: if f is in R, and there is the commutative diagram of the form

below,
? P N
WZ X —=W

bbb

72y Y.z

S~ —
then g isin R.

Dually, £ contains all isomorphisms and is closed under

1. pushouts,
2. composition,
3. coproducts, and

4. retracts.

Proof. We will only prove the statements for R. The proofs of the statements
concerning £ are dual to these.
To see that R contains all isomorphisms, consider a lifting problem as below
with ¢ € £ and 7 an isomorphism.
A—=B
1
e 7 lz
C Ty

Then i~'y gives a lift of this diagram. Thus, i has the right lifting property
against every / € £, and so is in L2 = R.



1. To see that R is stable under pullback, we need to find a solution to the
lifting problem below on the left with / € £ and o* f as in the statement.

A—to X A—tsorx Do x
1 //

| 7 ke |

ClsaxY O ~a*Y Y

Consider the lifting problem above on the right. Since / € £ and f € R,
there is a lift s. Then the morphisms s and y induce a morphism C' — o*X
(by the universal property of a*X) which is a solution for the original
lifting problem. Thus, o* f lifts against £, and so is in R.

2. To see that R is closed under composition, consider the lifting problem
below with ¢ € £ and composable f,g € R.

A—=X
7
// gf

Ve

C—2-7

~

We construct the lift in two stages. First we find a lift s as in the diagram
below on the left.

fx

7 ¢ 7
el 57 g el 7 lf
/ 7/

Y

Then we can find a lift ¢ as above on the right. This morphism ¢ is also a
solution to the original lifting problem. Thus, gf € R.

3. To see that R is closed under products, consider f, g as in the statement.
The morphisms f x 1y W x X -Y xXandly xg: Y xX ->Y xZ
are in R as they can be constructed as pullbacks of f, g respectively. Then
f x g is the composition of f x 1x and 1y x g, so it is also in R.

21



4. To see that R is closed under retracts, consider a lifting problem as below
with ¢ € £ and g as in the statement.
A——=W

a
7
v

~
<

/
7/
&

C—Z7

To find a solution, we first find a solution to the following lifting problem,

A—>W =X

/7
et //S// jf

C~Z——=Y

and then zs is a solution to the original lifting problem. Thus ge R. [

Remark 1.1.6. Note that this result will be employed frequently and so it will be
used without citation.

Lemma 1.1.7. Consider categories M and N with lifting pairs (£, Rr¢) and
(Ly, Ryr), respectively, and an adjunction

LA4R: M2 N.

Then L preserves the left class if and only if R preserves the right class of
these weak factorization systems. More precisely, L(L) < Ly if and only if
R(Ry) € Rum-

Proof. Suppose that L(Ln) < L. To show that R(Ry) € R it suffices to
show that Lo R(Ry).

To that end, consider a morphism ¢ € L), a morphism Rr € R(Ry ), and a
lifting problem between them.

A—~RB

7
el e er

7
C—=RD

22



Let x denote the bijection hom(LX,Y) — hom(X, RY). Then we can form the
following lifting problem, which has a solution s by hypothesis.

AX'ep

7
S

Lét 2 g jr
7/

X ¢

Then x(s) is a solution to the original lifting problem.
Therefore, L(Lr) € Ly implies R(Ry) € Ra. The proof that R(Ry) <
R implies L(L ) < Ly is dual to the argument just given. O

1.2 Factorizations.
We now introduce factorizations.
Definition 1.2.1. A factorization (), p) on a category M consists of:

1. a function (}, p) : morM — morM x morM which takes a morphism f
as shown below to composable morphisms \f, pf whose composition is f;

and

Af

X Y X

Mf oy

2. a function M which takes any commutative square {«, 5) as shown below
on the left to a commutative diagram as shown below on the right.

X—=W
X—==W A(f)l l/\(g)
f g Mf A Mg
y 2.z p(f)l lp(g)

B

Y Z

Note that the second function in the definition above is not traditionally part
of the definition of ‘factorization’. However, such a function is entailed by the
usual definition of ‘functorial factorization’ which we introduce now.

23



We first need to establish some categorical notation. Let 2 denote the poset
containing the natural numbers 0, 1,

0——1
and let 3 denote the poset containing the natural numbers 0, 1, 2.
0—s1—->2

Then the objects of the category M? (the internal hom of 2 and M in the
cartesian closed structure on Cat) are morphisms of M, and its morphisms
f — g are pairs {«, ) of morphisms of M which fit into the following diagram

flﬁjg

s

and make it commute.

Similarly, the objects of the category M3 are pairs (), p) of composable mor-
phisms of M, and its morphisms (A, p) — (N, p’) are triples {«, 3, ) fitting into
the following diagram and making it commute.

There are functors dy, 01,92 : 2 — 3 which map the non-trivial morphism
0 < 1 of 2 to the morphism 1 < 2,0 < 2, or 1 < 2 of 3, respectively (borrowing
simplicial notation). These give rise to functors M2 — M?. The functor M?%
projects (), p) to p, and the functor M? projects (), p) to A. The functor M%
maps (), p) to the composition pA.

Now note that the first function morM — morM x morM required by
the definition of factorization can be characterized as a section of the function
obM?’ : obM3 — obM?2.  Moreover, the second function required by the
definition of factorization can be characterized as a section of the function
morM?® : morM?3 — morM?. Thus, we are led to an obvious strengthening of
the notion of ‘factorization’.

24



Definition 1.2.2. A functorial factorization on M is a section of the functor
MO MBE - M2

By the preceding discussion we know that a functorial factorization on M is
in particular a factorization on M.

We now define the categories of these factorizations. To do that we introduce
a notion of (unnatural) transformation between factorizations.

Definition 1.2.3. Consider two factorizations (), p) and (X, p’) on a category M.
A transformation 7 : (X, p) — (X, p’) consists of a commutative diagram in M of
the following shape for each morphism f : X — Y of M.

Mf
/ K
X Tf Y
Nf o'f
MY

This constitutes a category.

Definition 1.2.4. Let Fact}y denote the category of factorizations on a category
M and transformations between them.

Let Facty; denote the category of functorial factorizations on a category M
and transformations between them.

Let Jact), denote the category of sections of the functor M : M3 — M2,
This is the category of functorial factorizations on a category M and natural
transformations between them.

Notation 1.2.5. The superscript i of Fact}, is meant to specify what is functorial
or natural. The first bit 7 specifies whether or not the objects are functorial, and
the second bit j specifies whether or not the morphisms are natural.

We can see above that i = 0 when the objects are not necessarily functors
and that i = 1 when the objects are required to be functors. Similarly, j = 0
denotes that the morphisms are just transformations whereas j = 1 means that
the morphisms are natural transformations.

There are natural inclusions between these categories.

Factyy — Factyy — Facty

25



The first inclusion is the identity on objects, and the second is the identity on
hom-sets.

1.3 Weak factorization structures.

Now we introduce the notion of weak factorization structures. First, we need

some terminology.

Definition 1.3.1. Consider a pair (£, R) of classes of morphisms of a category
M and a factorization (), p) on M. Say that (), p) is a factorization into (£, R)
if \(f) € £ and p(f) € R for every morphism f of M.

Definition 1.3.2. A weak factorization structure (X, p, L, R) on M consists of a
factorization (), p) into a lifting pair (£, R) of M.

Now we describe a factorization for the lifting pair introduced in the previous

section.

Example 1.3.3. Consider the lifting pair (Z, S) in Set defined in Example 1.1.4.
A factorization into (Z, S) can be given for each f : X — Y by the coproduct.

X>Xoy <4

In the following example of a weak factorization structure, the solution to
any lifting problem between a morphism of the left class and a morphism of
the right is unique. Such a weak factorization structure is called an orthogonal
factorization system, but these will not be considered further in this work.

However, one aspect of this next example foreshadows the perspective that
we will take. To show that a map is in the left class (and respectively, right class),
it will suffice here to show that it lifts against its right factor (and respectively,
left factor). These particular lifting problems will become of central importance
in the next section.

Example 1.3.4. Consider a regular category C, the class £ of regular epimor-
phisms of C, and the class M of monomorphisms of C. For example, the category
Set is regular, its regular epimorphisms are the surjections, and its monomor-
phisms are the injections.
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In any such category C, there is a functorial factorization of any map f into

mg

X —Lom(f) 2Ly
where e; is a regular epimorphism and m; is a monomorphism. In Set, the
object Im(f) is the usual image of f.

This is a factorization into the pair (£, M) which we claim is a lifting pair.

To see that £ [1 M, consider a lifting problem

. B

A
|
C/

R
Yy

where e € £ and m € M. Since e is a coequalizer, say of a,b : Z =3 A, and m is
a monomorphism, we have that xa = zb.

A
aub
A—==1B
7

7/
e v m
/

C Yy

This induces a morphism ¢ : C' — B which is a solution to our lifting problem.

Then to see that “M < &, we consider for any morphism f in Y M, the
following lifting problem.
X~ Tm(s)

fj 5/1 lAmf
Ve

Y Y

There is a solution ¢ since f is in “M and m; is in M. From the diagram, we
see immediately that m;o = 1. Since m/ is monic, this gives an isomorphism
Im(s) =~ Y and thus f is a regular epimorphism.
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To see that £¥ = M, consider any f : X — Y in £4. Then the following
lifting problem has a solution o.

X

X

/1
erl o |f
Im(f) =Y
Since oe; = 1, we see that e; is a monomorphism. Thus, mse; = f is also a
monomorphism.

Our definition of ‘weak factorization structure’ deviates from the usual one of
‘weak factorization system’ in two ways. First of all, the second function required
in the definition of factorization is not usually given as part of the definition of
weak factorization system. Secondly, we explicitly include the factorization as
part of the structure of a weak factorization structure, hence the terminology. In
Section 1.6, we will define a ‘weak factorization system’ where the factorization
is decidedly not part of the structure. Here, we address the first deviation by
showing that this second function mentioned above is actually entailed by the
usual definition of ‘weak factorization system’.

Proposition 1.3.5. Consider a function (A, p) : morM — morM x morM such
that pf o Af = f and \f 1 pg for any morphisms f,g of M. Then the function
(A, p) underlies a factorization on M.

In particular, if (£, R) is a lifting pair and the image of (A, p) is in £ x R, then
(A, p, L, R) is a weak factorization structure on M.

Proof. Consider a commutative square {«, ) : f — g as below.

X =W

1]

Y —7

We need to find a morphism M<{«, ) which gives a factorization of the square
below on the left. We can find such a morphism by solving the lifting problem
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on the right below.

X—W
Ag)a
A(F) lA(g) X P Mg
ML g A(f)J M(aB) jp(g)
o(f) ; p(9) Mf M Z
Y Z

1.4 An algebraic perspective.

In this section, we show that if a factorization (), p) on a category M is part of a
weak factorization structure (\, p, £, R), then the lifting pair (£, R) is uniquely
determined by the factorization (J\, p). That is, a factorization is part of at most
one weak factorization structure.

1.4.1 (Co)algebras.

Notice that in a functorial factorization (A, p) on M, the functor p is a pointed
endofunctor on M?. Its point 1 — p is given at each morphism f of M by the

following commutative square.

x-Momf
f of
Y=Y

(Recall that we always use M to denote copDA = DOMp.)
Dually, A is a copointed endofunctor M? whose copoint A\ — 1 is given at
each f by the following square.

X=X
Af Lf
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Now consider morphisms with algebra structures for the pointed endofunctor
p. A p-algebra structure on a morphism f is a commutative square as on the left
below which makes the diagram on the right below commute.

s //\
Mf—X X=-Mf X
pfl lf fl lf lf
Y ——Y Y —Y .V

v

We can see immediately that ¢ must be the identity. Then rearranging these
diagrams, we see that their commutativity is equivalent to the commutativity of
the following diagram.

7

pf

This proves the following result.

Proposition 1.4.1. Consider a functorial factorization (), p) on M.
An algebra structure for the pointed endofunctor p on a morphism f : X — Y
is a solution to the following lifting problem,

X X
7
Afj AT
7
Mf—=Y

and a coalgebra structure for the copointed endofunctor \ on a morphism f of M
is a solution to the following lifting problem.

K

X Mf

7
d lpf
Y

We use this to extend the notion of algebra and coalgebra to the non-

~

s
Y

functorial setting.

Definition 1.4.2. Consider a factorization (), p) on M.



A \-coalgebra structure on a morphism f : X — Y of M is a solution to the
following lifting problem,
x-Momf

7
7 lpf
Ve

Y Y

and a p-algebra structure on f is a solution to the following lifting problem.

X X

7
/\fj P Lf
Ve

Let A-alg denote the class of morphisms with \-coalgebra structures, and let
p-coalg denote the class of morphisms with p-algebra structures.

Remember that a factorization (), p) on M gives not only a factorization of
any morphism of M but also a factorization of any commutative square in M.

X—2> W
X 2w A(f)l lx(g)
f lg - M
Y —’B> A p(f)l lp(g)

B

Y A

Consider a morphism ¢ with a A-coalgebra structure s and a morphism r with
a p-algebra structure t. Then we can construct a lift in the square below on the
left. First, factor it to get the diagram in the middle.

X W X © W
X 2w A(é)l lx(r) A(e)l tax(r)
, " ML vy Me—29D gy
y -7 pwl lpm puz)D s jpm
y—2 .7 Y o Z

Then the composite to M{«, 3) 0o s gives a solution to the original lifting problem.
Therefore, \-alg 1 p-coalg.
Now we have proven the following proposition.
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Proposition 1.4.3. Consider a factorization (), p) on a category M. Then A-alg/]
p-coalg.

Now we show that if (), p) is part of a weak factorization system then the left
class of morphisms must be A-alg and the right class must be p-coalg. We prove
a slightly more general statement since it will be of use in later chapters.

Proposition 1.4.4. Consider a factorization (), p) on a category M. Consider also
a class of morphisms R such that \(f) 1R and p(f) € R for every morphism f of
M. Then \-alg = YR.

Proof. To see that YR < A-alg, consider a morphism ¢ € YR. Since p({) € R, we
see that /[ p(¢), and thus ¢ has a \-coalgebra structure.

To see that A\-alg = YR, first note that Proposition 1.4.3 implies that \-alg =
Yp-coalg. Since every r € R has the right lifting property against \(r), it has a p-
algebra structure. Thus, R < p-coalg so “Yp-coalg = YR (since for any classes of
maps, A € B implies “B < U A). Then we have that A\-alg < Yp-coalg < YR. [

Corollary 1.4.5. Consider a weak factorization structure (), p, L, R) on a category
M. Then we have the following equality.

(A, p, £, R) = (A, p, A-alg, p-coalg)

Proof. Applying the preceding proposition to the right class R, we see that
A-alg = YR = L. Applying the dual of the preceding proposition to £, we see
that p-coalg = LY = R. O

Now we have shown that A-alg[/p-coalg for any factorization (), p), and if this
is already part of a weak factorization structure (A, p, £, R), then (A, p, L, R) =
(>‘a Ps )‘_alga p—Coalg).

1.4.2 Weakly algebraic factorizations.

Now we investigate what properties of a factorization (), p) will ensure that it is
part of a weak factorization structure (), p, A-alg, p-coalg).

Reading Definition 1.1.3, we see that A-alg, p-coalg form a lifting pair if and
only if

1. \-alg? < p-coalg , and
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2. Yp-coalg < X-alg

since we already know that A-alg [/ p-coalg by Proposition 1.4.3. Reading Def-
inition 1.3.1, we see that this is a factorization into A-alg, p-coalg if and only
if

3. A(f) € A-alg for every morphism f of M,
4. p(f) € p-coalg for every morphism f of M,

But property (3) implies (1), and property (4) implies (2).
To see that (3) implies (1), consider a morphism r € A-alg”. Property (3)
implies that A\(r) € A-alg, so there is a solution to the following lifting problem.

X X

7
A(r)L i l
7

Mf{——Y
! p(r)

Thus, r is in p-coalg so property (1) holds. The argument that property (4)
implies (2) is dual to this one.

Therefore, a factorization (), p) underlies a weak factorization structure if
and only if A\(f) has a A-coalgebra structure and p(f) has a p-algebra structure
for every morphism f of M. This leads us to the following definition and result.

Definition 1.4.6. A factorization (), p) on M is weakly algebraic if A\(f) has a
A-coalgebra structure and p(f) has a p-algebra structure for every morphism f
of M.

Proposition 1.4.7. A factorization (A, p) on M underlies a weak factorization
structure if and only if it is weakly algebraic, and this weak factorization structure

is (\, p, A-alg, p-coalg).

Proof. In the above discussion, we saw that a weakly algebraic factorization
(), p) is part of a weak factorization structure (A, p).

Conversely, by Corollary 1.4.5, in a weak factorization structure (A, p, £, R),
we have \-alg = £ and p-coalg = R. Since (), p) is a factorization into (£, R) =
(A-alg, p-coalg), every A(f) has a A-coalgebra structure, and every p(f) has a
p-algebra structure. O
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Remark 1.4.8. In this proposition, 1.4.7, we see that if a factorization (), p)
underlies a weak factorization structure, then it completely determines that
weak factorization structure. Thus, in this case, we will call the factorization
(), p) itself a weak factorization structure.

Proposition 1.4.9. Consider a factorization (X, p) on M. Ifamorphism f : X — Y
has a \-coalgebra structure, then it is a retract of \(f) in the slice X /M. If it has
a p-algebra structure, then it is a retract of p(f) in the slice M/Y'.

Proof. We saw in the preceding discussion that if a morphism f : X — Y has a
p-algebra structure, then there is a morphism s making the following diagram

commute. S
X=Mf—X
A | s
fj p({) f
Y Y Y
_—_—
Thus, f is a retract of p(f) in the slice M /Y. O

Corollary 1.4.10. If A-alg is part of a lifting pair and contains the image of ), then
it is the retract closure of the image of \. Dually, if p-coalg is part of a lifting pair
and contains the image of p, then it is also the retract closure of the image of p.

Proof. Suppose that p-coalg is part of a lifting pair and contains the image of p.
Then any p-algebra f is a retract of p(f) in M? by the preceding proposition,
1.4.9. By Proposition 1.1.5, p-coalg is closed under such retracts. Thus, it is the
retract closure of the image of p.

The statement concerning \ follows from the dual argument. O

Corollary 1.4.11. A factorization (A, p) on M is a weak factorization structure if
and only if A\-alg is the retract closure of the image of A and p-coalg is the retract
closure of the image of p.

Proof. Suppose that (J, p) is a weak factorization structure. Then the preceding
corollary says that \-alg is the retract closure of the image of A and p-coalg is
the retract closure of the image of p.

Conversely, suppose that (), p) is a factorization on M such that \-alg is the
retract closure of the image of A and p-coalg is the retract closure of the image
of p. Then A-alg contains the image of )\ and p-coalg contains the image of p.
Thus, A\(f) has a A\-coalgebra structure, and p(f) has a p-algebra structure for
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each morphism f of M. Then we can conclude that (), p) is weakly algebraic
and is therefore a weak factorization structure. ]

1.4.3 Categories of weak factorization structures.

Since we have shown that any factorization (), p) is part of at most one weak
factorization structure, we can easily define the categories of weak factorization
structures.

Definition 1.4.12. Let 20§67, denote the full subcategory of Fact?, spanned by
those factorizations (J, p) which form a weak factorization structure (), p) for
ij = 00,10, 11.

Now we have defined the following six categories.

SZUSG}\Z s Sact}&t

I

WFS | — Factly
%&69& s 3act?&

The horizontal morphisms are inclusions of full subcategories by definition.
As before, the top two vertical inclusions are the identity on objects while the
bottom two are the identity on morphisms.

1.5 New weak factorization structures from old.

In this section, we use our characterization of weak factorization structures to
describe several situations in which one weak factorization structure induces
another. We will need these results in subsequent chapters.

Proposition 1.5.1. Consider a weak factorization structure (A, p, L, R) on a cat-
egory M. For any object X, the slice category M /X inherits a weak factoriza-
tion structure (Ax, px,Lx,Rx). The factorization \x,px takes any morphism
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a:f—-gin M/X to

° AOC MQ{ po °
\g O;/
f g

and any commuting square {v,d) : a« — in M/X to

|
X

o A8 Mﬁpﬂ o

N2

The lifting pair is given by Lx = bpom 'L, Ry = pom 'R (where pom : M /X —
Mmaps f: D — X to D).

Proof. First of all, note that a lifting problem in M/X has a solution if and
only if its underlying lifting problem in M does. That is, if the following two
left-most diagrams in M commute, then we can paste them together to obtain
a commuting diagram in M as shown on the right below.

P, 7
& &

Therefore, the diagrams of the statement do commute.

We also see that a morphism « of M/X has a Ax-coalgebra structure if and
only if poMm(«a) has a A-coalgebra structure. Since ADoM(«) = DOMAx(«) has a
A-coalgebra structure, Ax («) has a A x-coalgebra structure. Then Lx = pom 'L
and this is the class of morphisms with A x-coalgebra structures.

Dually, we find that every px(«) has a px-algebra structure and that Rx =
DOM 'R = px-coalg.

Thus, (Ax, px) is weakly algebraic, so by Proposition 1.4.7, (Ax, px, Lx, Rx)
is a weak factorization structure. O
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Proposition 1.5.2. Consider a weak factorization structure (\, p, L, R) on a cate-
gory M. Also consider a full subcategory N of M such that for every morphism
f of N, the object cop\(f) = pomp(f) is in N (i.e., the factorization restricts to
N). Then the weak factorization structure on M restricts to a weak factorization
structure (A, p, LA N, R nN)on N.

Proof. Note that a morphism of A is a A\-coalgebra in N if and only if it is a
A-coalgebra in M. Thus, every \(f) is a A-coalgebra in N since it is one in
M. Furthermore, we see that £ n A\ is the class of morphisms with \-coalgebra
structures in N.

Dually, every p(f) is a p-algebra in A/, and R n N is the class of p-algebras
in \V.

Therefore (), p) is weakly algebraic on A/, and by Proposition 1.4.7, (A, p, L N
N, R n N) is a weak factorization structure on N O

Now we borrow some terminology from model category theory proper.

Definition 1.5.3. Consider a weak factorization structure (A, p, £, R) on a cate-
gory M. An object X is fibrant if a morphism X — = to a terminal object is in
R.

Corollary 1.5.4. Consider a weak factorization structure (\, p, L, R) on a category
M. Let Mz denote the full subcategory of M spanned by its fibrant objects. Then
Mz inherits a weak factorization structure (A, p, L " Mz, R n Mzx).

Proof. Consider any morphism f : X — Y in M. Since p(f) is in R, and
'Y — = isin R, the composition ! : M f — = is also in R. Thus, M f is in M.
Then the preceding proposition, 1.5.2, applies. O

Corollary 1.5.5. Consider a weak factorization structure (\, p, L, R) on a category
M. Let D be a class of maps of M which contains the image of p and is closed under
composition. For any object X of M, let {D, M} x denote the full subcategory of
the slice M /X spanned by those objects which are in D. Then

(Ax, px, Lx 0 {D, M}x,Rx n {D, M}x)

is a weak factorization structure on {D, M} x.
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Proof. By Proposition 1.5.1, there is a weak factorization structure

(Ax, px, Lx, Rx)

in M/X. Consider a morphism « : f — g in {D, M} x. The middle object of the
factorization of « is the composition gp(pom(«v)) as illustrated below.

A(poMa) p(DOM)
|
; gp(D\?MM
X

Since g and p(poM(«)) are in D, the composition gp(pDoM(«)) is also in D. Thus,
by Proposition 1.5.2, we see that {D, M} x has a weak factorization structure

(Ax,px,cxﬂ{D,M}X,Rxﬁ{D,M}X). [

1.6 Weak factorization systems.

We are also interested in the concept of weak factorization system, which for
us is similar to a weak factorization structure except that the factorization is
not explicitly given as part of the structure, but merely assumed to exist. We
take the view that a weak factorization structure is a ‘presentation’ of a weak
factorization system. Indeed the third chapter of this thesis can be understood as
an account of finding nice ‘presentations’ of certain weak factorization systems.

Definition 1.6.1. Say that two weak factorization structures are equivalent if
they have the same underlying lifting pair. A weak factorization system (L, R)
on a category M is an equivalence class of weak factorization structures with
the underlying lifting pair (£, R).

If W is a weak factorization structure, we will denote the weak factorization
system that W represents by [IV/].

A weak factorization system on a category M is then a lifting pair (£, R)
for which there exists a factorization (J, p) into (£, R). This coincides with the
usual definition of weak factorization system (cf. §2.1 of [RTo2], where the
terminology closely matches ours, or Def. 6.2 of [Bou77], where the notion first
appeared).
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Consider the category 20§67 defined previously. The equivalence relation
on weak factorization structures is already encoded by this category.

Proposition 1.6.2. Consider two weak factorization structures (A, p) and (X, p/)
on a category M. These are equivalent if and only if there are morphisms (X, p) <
(N, p') in WFSY,.

Proof. Suppose that there is a morphism a : (A, p) — (X, p/) in WFSY,. We want
to show that a morphism has a )\'-coalgebra structure if it has a A-coalgebra
structure. So consider a morphism ¢ with a A-coalgebra structure o. The
composition a,o as displayed in the following diagram is a \'-coalgebra structure

| N
L2

Thus, M-alg < \'-alg, and consequently p'-coalg = \'-alg” < \-alg” = p-coalg.

If there is also a morphism b : (\,p) — (A, p) in 2WFSY),, then we can
conclude dually that A-alg < \'-alg and p’-coalg < p-coalg.

Therefore, if there are morphisms (A, p) < (X, '), then A-alg = \'-alg and
p-coalg = p'-coalg. Thus, the weak factorization systems (), p) and (X, o) are
equivalent.

Now consider two equivalent weak factorization structures (A, p) and (X, o).
Since every \f lifts against every p’'f and every )\ f lifts against every pf, we
obtain the following morphisms

Nf Af
—_— _—
7 7
Afl e lp’f /\’fl d pr
A A
of o'f
which assemble into transformations (), p) < (X, p') in 2056, O

Now we can make this equivalence relation more explicitly categorical by
making this category into a proset (pre-ordered set).
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Definition 1.6.3. Given a category C, define the proset |C| to have the same
objects as C and morphisms

«  if home(X,Y) is inhabited
h0m|c|(X, Y) =
&5 otherwise

Note that this constitutes a 2-functor from categories to prosets, which is
often called the proset reflection.

Then isomorphism in |C| defines an equivalence relation on the objects of C.
This is the equivalence relation given by X ~ Y when X and Y are isomorphic
in |C| or, equivalently, when there exist morphisms X < Y in C. Therefore, we
see the following.

Corollary 1.6.4. Consider two weak factorization structures on a category M.
Then these are equivalent if and only if they are isomorphic as objects of |[20F&%|.

In other words, the isomorphism classes of |[20§&%| are the weak factorization
systems on M.

Proof. This follows immediately from the preceding proposition, 1.6.2, and the
fact that (), p) and (\, p') are isomorphic in [20F&")| if and only if there are
morphisms (A, p) < (X, p') in WFSY,. O

1.7 Algebraic weak factorization structures.

Consider a functorial factorization (), p) on M. We saw in Proposition 1.4.7 that
this underlies a functorial weak factorization structure if and only if it is weakly
algebraic: that is, if A(f) has a A\-coalgebra structure and p(f) has a p-algebra
structure for every morphism f of M.

A p-algebra structure for p(f) is a morphism p; : p*(f) — p(f) in M? making
the following diagram commute.

<)‘pf’1>

p(f) —=r*(f)
)

N

p(f



If there were a choice of each iy, natural in f, and if it satisfied the monad

axioms,

<)‘71> 2 P</\,1> p3 1% p2

N2

2

p?——=0p

then (p,{\, 1), u) would be a monad on M?. Dually, a natural choice of \-
coalgebra structures d; : A(f) — A\?*(f) for each f satisfying the comonad axioms
would make ) into a comonad on M?2. Thus, we have the following result and

definition.

Definition 1.7.1. An algebraic weak factorization structure on a category M con-
sists of a functorial factorization structure (J, p), a multiplication x4 making the
pointed endofunctor p into a monad, and a comultiplication § making the co-
pointed endofunctor A into a comonad.

Note that we do not include a distributivity law in this definition, as is often
done.

This defines extra structure on a weakly algebraic factorization (), p) which
takes it from weakly to fully algebraic. Thus, it generates a weak factorization
structure (A, p).

This gives us the following result. It is a restatement of Proposition 2.5 of
[GTo6] in our vocabulary.

Theorem 1.7.2. Consider an algebraic weak factorization structure on a category
M with underlying factorization (), p). Then (), p) is a weak factorization struc-
ture on M.

1.8 Summary.

In this chapter, we defined weak factorization structures and systems on a cat-
egory M. We showed that a factorization (), p) is part of a weak factorization
structure in at most one way, and this depends on whether or not the factoriza-
tion is weakly algebraic.

41



42



Chapter 2

Models of type theory: display map
categories.

In this chapter, we will define our notion of a model of dependent type theory
with X, I, and Id types in a category. This is the structure which will be studied
in the following chapters of this thesis.

There are currently many definitions of a model of dependent type theory in
the literature. Ours, which we describe in Sections 2.1 — 2.4, will be very closely
related to the notions of a class of displays of [Taygg] and tribe of [Joy13]. We
aim to make our definition a special case of that of comprehension categories of
[Jacg3]. These are well-studied and accepted as a good notion of a model of
type theory, and so our models will enjoy results of the literature concerning

comprehension categories.

The contents of Section 2.5 aim to simplify the situation when one is consid-
ering a Cauchy complete category. The results of this section concerning display
map categories are original. In Section 2.6, we use these results to characterize

the weak factorization systems that we will consider in the next chapter.

2.1 Display map categories.

Definition 2.1.1 ([Jac93, Def. 4.1]). A comprehension category consists of a
Grothendieck fibration G : £ — C and a cartesian functor F : £ — C? which
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make the following diagram commute.

£E—=>F 2
& %D
C
Remark 2.1.2. Note that we do not require C to have all pullbacks, or, in other
words, cop : C? — C to be a Grothendieck fibration itself.

Remark 2.1.3. In this work, we do not attempt to justify that these structures
model type theory. However, in this chapter we will point out which features of
the model are meant to represent which features of type theory.

In such a comprehension category, C is meant to represent a category of
contexts and context morphisms, the fiber G~!(T") to represent types in context T,
the lifting property of G to represent context substitution, and the functor F' to
represent context extension in a type theory.

We consider only certain comprehension categories because we want to find
models in structures on categories which are already of interest in category
theory and categorical homotopy theory. In particular, we want our notion
of model to be characterizable with only concepts from categorical homotopy
theory. In doing so, this work is an attempt to understand the relationship
between type theory and homotopy theory.

There are thus two principles that will guide our choice of a definition of
model:

1. that the structure to be defined is invariant under the isomorphisms of the
category (sometimes called the equivalence principle), and

2. that the structure can be found within the category.

The first of these ideologies is well-defined; the second, less so. Many definitions
of ‘model’ take multiple categories and functors between them as input. In
particular, the data for a comprehension category include two categories and a
Grothendieck fibration between them. Here, we restrict ourselves to considering
only one category and a specified subcategory as input.

Admittedly, these principles will make our notion of ‘model’ incongruent with
the strict syntax of type theory. In particular, many constructions of dependent
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type theory are defined up to equality, not merely up to isomorphism. However,
there is a strictification operation [LW15] which replaces a comprehension cate-
gory with one equivalent to it (but violating ideologies (1) and (2)) that better
emulates the syntax of type theory. Our display map categories modeling ¥, I,
and Id types will be full comprehension categories modeling weakly stable ¥, I1,
and Id types, in the language of [IW15]. Thus by Theorem 3.4.1 of [LW15],
if the display maps are exponentiable, there is an equivalent comprehension
category modeling these types strictly. (Note that below, we will only require
that display maps satisfy Definition 2.4.1, a strictly weaker property than that
of being exponentiable.) We take this as a justification of our consideration of
more ‘categorical’ models of type theory.

Definition 2.1.4. A category of display maps consists of a category M with a
terminal object and a class D of morphisms of M such that:

1. D contains every isomorphism;
2. D contains every morphism whose codomain is the terminal object;
3. every pullback of every morphism of D exists; and
4. D is stable under pullback.
Call the elements of D display maps.

This coincides with Joyal’s notion of tribe [Joy13]. Without conditions (1)
and (2), this is the definition of a class D of displays in M [Tay9g, Def. 8.3.2].

In such a category of display maps, the objects of M are meant to represent
contexts and the morphisms of M represent context morphisms. A morphism
p: E — B of D represents a type family £ dependent on B. The empty context
is represented by the terminal object of M, so condition (2) says that every object
of M may be viewed as a type dependent on the empty context. The pullback
of a morphism of D along a morphism of M represents context substitution.

Consider a category of display maps (M, D). Let {D, M} denote the full
subcategory of M? which is spanned by D, and let I : {D, M} — M? denote
the inclusion. Then, from the category of display maps (M, D), there arises a
comprehension category.
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Lemma 2.1.5 ([Jacg3, Ex. 4.5]). A category of display maps (M, D) gives rise to
the following comprehension category

(DML . A2

N

Proof. First we claim that any morphism {(«, 3) : ¢ — d of {D, M} is a cartesian
morphism if /{«, ) is a pullback square in M. Consider such a morphism
{a, B). Then for any morphism {/, ") : ¢ — d in {D, M} and any morphism
d : cop(¢’) — cob(c) in M such that 56 = §’, we can find a unique (v, 6) : ¢ — ¢
such that con{vy,d) = ¢ and {a, B){v,0) = {/, ") by the universal property of
the pullback. Thus, {«, ) is cartesian.

Now we claim that cop : {D, M} — M is a Grothendieck fibration. Consider
an object d of {D, M} which is a morphism d : X — Y in D. Also consider a
morphism m : Z — cobp(d) =Y in M. Since pullbacks of morphisms in D exist
and are in D, we obtain a morphism m*d : m*X — Z in D and a morphism
{d*m,m) : m*d — d in {D, M} such that cop{d*m, m) = m. Since I{d*m,m) is
a pullback square in M, it is a cartesian morphism {D, M}.

Lastly, we claim that if {«, 3) : ¢ — d is a cartesian morphism of {D, M}, then
I{a, B) is a pullback square in M. In other words, we claim that / is a cartesian
functor. Consider such a cartesian morphism {«, ) : ¢ — d. We have just
shown that there is another cartesian morphism {d*j, 5) : f*d — d in {D, M}
such that copc = copf*d. But since {(a,f) : ¢ — d and {d*f3,5) : p*d — d
are both cartesian, this induces an isomorphism {;,1) : ¢ ~ §*d making {«, )
isomorphic to {(d*, B). Since I{d*/, ) is a pullback square, I{a, ) : ¢ — d is
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also a pullback square.
° 5%3 °
t _1d*pB
l %*d ld
e ———— 0
B
O

This lemma defines an injection C' from the class of categories of display
maps to that of comprehension categories. This gives mathematical content to
our attitude that display map categories are a kind of comprehension category.

Remark 2.1.6. Note that since D has all isomorphisms, our display map category
(M, D) already models unit types ([Jaco3, Def. 4.12]) given by the functor
1: M — {D, M} which takes an object M of M to the display map 1,,.

2.2 ) types.

Now we consider the representation of > types in our category. We use the
notion of ‘strong sums’ in a comprehension category of [Jacg93, Def. 5.8]. First,

we need some notation.

Notation 2.2.1. For any class D of morphisms of a category M and an object X
of M, let {D, M} x denote the full subcategory of the slice category M /X which
is spanned by those objects which are in D. It is the fiber cop™' X in {D, M}.

Let poM : {D, M}x — M denote the functor which takes each object d :
Y — X of {D, M}x to its domain Y in M.

Consider a category (M, D) of display maps. The comprehension category
obtained from (M, D), as described in Lemma 2.1.5, has strong sums if and only
if properties 1-3, described below, hold.

1. Forevery f : X — Y in D, the pullback functor f* : {D, M}y — {D, M}x
has a left adjoint 3.

If property 1 holds, then we can obtain the Beck-Chevalley natural transfor-
mation
B . Ea*f(f*oz)* - (I*Ef . {D,M}X i {D,M}A
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(forevery f : X > Y in D and a : A — Y of M) by taking the unit 1 —
f*%y, whiskering it with (f*«)* to obtain a natural transformation (f*a)* —
(ffa)*f*3s = (o f)a*Xy, and then taking the transpose to obtain 5. The next
property says that this is an isomorphism.

2. (Beck-Chevalley condition) Forevery f : X > Y inDanda: A — Y of
M, the Beck-Chevalley natural transformation

B : Za*f(f*a)* - O./*Zf . {D,M}X - {D,M}A
is an isomorphism.

If properties 1 and 2 hold, then since postcomposition with f is left adjoint to
pullback along f (as a functor M /Y — M/X), we find the following bijection

MY (fg,y) ={D, M}y (X¢g,y)

(for f: X > Y inD, ge {D, M}y, and y € {D, M}y). Thus, replacing y with
¥ tg, we find natural transformation v : fo — = X;: {D,M}x — {D, M}y.
Then whiskering v with pom we find a natural transformation pomvy : bom =
poMY; : {D, M}y — M (since poM(f o g) = boMg). The next property says
that this is an isomorphism.

3. Forevery f : X — Y in D, the induced natural transformation
DOM7Y : DOM = DOMX; : {D, M}x — M
is an isomorphism.

Now we show that these three properties imply that 3 is actually postcom-
position with f.

Proposition 2.2.2. A category (M, D) of display maps has strong sums if and only
if D is closed under composition. When this is the case, ¥ ;g =~ fg for composable

f,g9€D.

Proof. Suppose that D is closed under composition. Then for every f : X — Y
in D, postcomposition with f is a left adjoint to f* : {D, M}y — {D, M}y.
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The isomorphism required in (3) above is given by the identity. The Beck-
Chevalley isomorphism in property (2) is the isomorphism o*(fg) =~ o* fa*g for
composable f,gin D.

Suppose that the category (M, D) of display maps has strong sums. Then for
any f: X - Y and g : W — X in D, we obtain the morphism v, : fg — X;g, as
described before property 3 above. But v, is a morphism in the slice M/Y’, and
property 3 says that its underlying morphism in M is an isomorphism. Thus v,
is an isomorphism itself. We can then conclude that the composition fg is in D
(since X ;g is) so D is closed under composition. Furthermore, v : fo — — X, is
a natural isomorphism. O

Thus, we make the following definition.

Definition 2.2.3. A category of display maps (M, D) models ¥ types if D is closed
under composition. Call a composition ¢ f of display maps a ¥ type.

2.3 Id types.

Here, we define our notion of Id types. We will consider a category (D, M) of
display maps which already models ¥ types.

Note that {D, M}y is closed under products in M /Y since D is closed under
pullback and composition.

Definition 2.3.1. Consider a category of display maps (M, D) which models ¥
types. We say that it models 1d types if for every f : X — Y in D, the diagonal
Ay : f— fx fin{D, M}y has a factorization Ay = ¢;r;

X Lo 1d(f) L X %y X

\ l” Fxf
Y

in {D, M}y where ¢ is in D and for every morphism o : A — X in M, the
pullback a*r, as shown below, is in YD for each i = 0, 1.
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o*Td(f 1d(f)

AN
AN

X TiEf (*)
Call the morphisms ¢y : Id(f) — Y the Id types in {D, M}y.

\X

o

Remark 2.3.2. Note that this definition is slightly stronger than that which is
usually given for Id types. Usually, only pullbacks of r of the following form

* a*1d(f) Id(/f)
oy ry

a*f/ ‘ X/ Lf (%)
N

are required to be in “D. Since the map r; is defined ‘in the context Y, requiring
that these pullbacks of diagram (x+) are in @D can be interpreted as ensuring that
this property of r; (of being in YD) is stable under any substitution o : A — Y.

For the rest of this discussion, we will denote by P(x) (respectively, P(xx))
the property that the pullbacks of r; of the form (+) (respectively, (++)) are in
4D,

To see that P(xx) is weaker than P(x), consider the situation displayed in
diagram (++) and assume that P(x) holds. We can obtain the morphism a*r; in
diagram (=+) by first pulling back « along f and then pulling back r; along f*«,
as shown below in diagram ().

_o1d(f) Id(f)
ot .
A X/ miey
\OM . \X ()
_
A o Yf
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Since the triangular prism in diagram (f) above is of the form of that in diagram
(+), a*ryisin Up.

We need to make the stronger assumption P(x) if the factorization data
(r,Id,€) is going to generate a weak factorization system. Let o)r; denote
the pullback in diagram (+) in the above definition for i = 0,1. We will see in
Proposition 2.3.4 that requiring that all or; are in D is exactly the requirement
that the factorization given there is one into (YDx, Dx) in each {D, M} x. Then
requiring that each o7 is in ¥D could be justified by a desire for symmetry, but
we will also see in Lemma 3.3.9 that this is actually a consequence of requiring
that all afr, are in ¥D.

Furthermore, P(x) entails to a common variant of path induction. When the
a of diagram () is a point * — X, then this is called based path induction or
Paulin-Mohring elimination, and, in fact, it is equivalent to path induction in the
presence of II types (see [Uni13, §1.12.2] or [Str9o3], where the crux of the proof
first appeared as a theorem due to Martin Hofmann). Then the property P(x)
itself can be understood as ‘parametrized’ version of based path induction.

In [GGo8] and [BGi12], the authors also work with a stronger variant of Id
types, called strong Id types in [BG12]. Lemma 11 of [GGo8] shows that our
definition of Id types follows from theirs. In Appendix A, we translate that proof
into our context, and also show that their definition follows from ours.

The definition we have given here of Id types treats each slice {D, M}x
equally, as the syntax of type theory does. We claim however, that requiring this
structure in {D, M}, =~ M is sufficient. We show below that the structure in
each {D, M}y generates a weak factorization structure (Proposition 2.3.4 and
Corollary 2.3.8). We know that a weak factorization structure in M induces a
weak factorization structure in each {D, M}x (Corollary 1.5.5). In Corollary
2.3.8, we show that these two weak factorization structures in {D, M}x are
equivalent. It then remains to be seen that this weak factorization structure in
M also entails the structure of Id types in each {D, M}x. Unfortunately, we
will not have the machinery to prove this until the next chapter so this appears
in Appendix A as Proposition A.1.5.

Definition 2.3.3. Consider a category (M, D) of display maps which models
Y types. We say that it models Id types of objects if it has all Id types in
{D, M}, =~ M. Thatis: if for every X in M, the diagonal Ay : X — X x X has
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a factorization
X5 1d(X) S X x X

in M where ey is in D and for every morphism o : A — X in M, the pullback
a*rx, as shown below, is in ¥D for each i = 0, 1.

a*Id(X) Id(X)

Now we show that this structure generates a weak factorization structure on
M.

The following theorem uses ideas from the proof of Theorem 10 of [GGo8],
where a weak factorization structure is constructed in the classifying category
of a dependent type theory. A categorical version appears as Theorem 2.8 in
[Emmai4].

Proposition 2.3.4. Consider a category of display maps (M, D) which models
Y types and 1d types of objects. There exists a weak factorization structure
(N, p,2D, (U¥D)4) in M where the image of p is contained in D.

Proof. The factorization is defined in the following way for any f : X — Y in
M. We have a factorization

Y 2L 14(Y) 2 Y x Y
of the diagonal A : Y — Y x Y. Now we define the factorization of f to be
X B0 Xy 14(Y) B Y
where the middle object is obtained in the following pullback.

X xy Id(Y) — Id(Y)

L b

X Y
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The left factor
Mf)=1xryf: X > X xy I4(Y)

is obtained as the following pullback of ry.

pay) L)
Xf ry ‘ YV 3
NN

Thus, it is in ¥D.

The right factor
p(f) :=mey : X xy Id(Y) - Y
is in D because it is the composition of a pullback of ¢y with a pullback of X — .

X xy Id(Y) —1d(Y)

_
-
Y xY
p(f) U
X xY X
S
Y *

Since D < (¥D)4), each p(f) is also in (¥D)4). Thus (), p) gives a factoriza-
tion into (YD, (UD)9).

For any morphisms f, g, we have \(f) 11 p(g) since \(f) € ¥D and p(g) € D.
Thus by Proposition 1.3.5, A and p underlie a factorization. Since A(f) 1 pA(f)
and M\p(f) 1 p(f), we can find a A-coalgebra structure for every A\(f) and a
p-algebra structure for every p(f). Thus, this factorization is weakly algebraic,
and it generates a weak factorization structure (\, p) by Proposition 1.4.7.

By Proposition 1.4.4, we see that M\-alg = ¥D, and thus also that p-coalg =
(UD)Y. Therefore, we have a weak factorization structure (\, p,“¥D, (UD)¥). [
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Notation 2.3.5. Let D denote (D)2,

Definition 2.3.6. Consider a category (M, D) of display maps which models >
types.

By the preceding proposition, 2.3.4, a model (Id,r,€) of Id types on objects
in (M, D) generates a weak factorization structure (\, p, 2D, D).

In this case, we will say that the data (Id,r,¢) presents or is a presentation of
the weak factorization system (YD, D).

Corollary 2.3.7. Every morphism f : X — Y of D is a retract in M/Y of some
morphism of D. Thus, the class D is the retract-closure of D.

Proof. Every morphism f : X — Y of D is a p-algebra, so it is a retract in M/Y
of p(f) € D. Conversely, as the right class of a lifting pair, D is closed under
retracts (Lemma 1.1.5). O

Now we show that the structure of Id types also generates a weak factoriza-
tion structure in each {D, M}y and that these are all compatible with that in
{D, M}, =~ M and thus also with each other.

Corollary 2.3.8. Consider a category of display maps (M, D) which models X
types and 1d types.
Then for each object X in M, the structure given by the 1d types in {D, M}x
generates a weak factorization structure (\x, px,2 Dx, 5;() on {D, M}x.
Furthermore, this weak factorization system (YDx,Dx) on {D, M} x coincides
with the one (YD, D) on M in the sense that bomy' (YD) = YDy and pomy' (D) =
Dx where oMy : {D, M}x — M is the domain functor.

Proof. Let Dx denote the class of morphisms in {D, M}y whose underlying
morphism in M belongs to D. Then note that ({D, M}x,Dx) is a category of
display maps which models ¥ types and Id types on objects. By the preceding
proposition, this generates a weak factorization structure which we will denote
here by (\x, px,2 Dx, Dx).

Then from the weak factorization system (YD, D) on {D, M}, =~ M, we get
by Corollary 1.5.5 another weak factorization system (poM,'2D, bomy'D) on
{D, M}x.

To show that YDy = pomy'¥D and Dy = pomy'D, note that Dy is the
retract closure of Dy = pomy'D and that D is the retract closure of D. But
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a morphism f in {D, M}y is a retract of something in pom'D if and only if
poMf is a retract of something in D so the retract closure of bomy' D is oM ' D.
Thus, Dy = pomy'D and consequently 2Dy = pom'ED . O

2.4 II types.

Now we discuss our notion of II types in a category of display maps. This
coincides with the usual definition [Jacg3, p. 196].

Definition 2.4.1. A category of display maps (M, D) models 11 types if

1. for every f : X — Y in D, the pullback functor f* : {D, M}y — {D, M}
has a right adjoint II;; and

2. (Beck-Chevalley condition) for every morphism o : A — Y of M, the
induced natural transformation

B:ally = Iy s(ffa)* : {D,M}x — {D, M}a

is an isomorphism.
Call such a morphism Il;g a II type.

Remark 2.4.2. The natural transformation [ is obtained from the counit of the
adjunction € : f*II; — 1. First, pullback ¢ along f*a to get the following
morphism,

(ffa)*e: (o fla*ly = (ffa)* f 1 — (ffa)*
and take the transpose of this to get 3.

B = (fra)*e: a™lly — [y p(ffa)”
Proposition 2.4.3. A display map category (M, D) models 11 types if and only if

forevery f: X — YinDand gin {D, M}x, there exists an object [1;g in {D, M}y

with the universal property

MY (y, 1lpg) = M/X(f*y, g)

natural in every y in M/Y (and in this case the II types are the morphisms I1;g).
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Proof. First suppose that (M, D) models II types. Consider f,y,g as in the
statement. For any o : A — Y, the Beck-Chevalley condition says that o*Il;g =~
o+ ¢(f*a)*g. Therefore, we have the second isomorphism in the following chain
of isomorphisms.

MY (o, T;g) = {D, M} (14, a*TI;g)
= {D, M}a(La, Hax g (f*)*g)
= {D, M}axyx (Laxy x, (f*2)"9)
=~ M/X(f*a,g)

The first and fourth isomorphisms above are applications of the (X type) adjunc-
tions x o — - z* and the third is an application of a II type adjunction.

Now we show the converse. Consider f and g as in the statement. Restricting
the universal property of II;g described in the statement to any y in {D, M}y
gives us the universal property

{D, M}y (y,11;g9) = {D, M}x(f*y, 9)

required of II types.

It remains to prove the Beck-Chevalley condition. To that end, consider any
a: A —Yin M. We want to show that o*Il;¢g =~ II,+;(f*a)*g. Consider the
following chain of isomorphisms for any z : Z — A in D.

{D. M}alz axs(f*a)*g) = {D, Mjau, x (7 )"z, (f*a)"g)
= M/X(f*ao(a*f)*z,g)
=~ M/X(f*(ao2),9)
=~ M/Y(aozIlsg)
=~ {D, M} a(z,a"1l;g)

The first and fourth isomorphisms are applications of the universal property of I,
the second and last are applications of the (X type) adjunctions z o — - x*, and
the third comes from the (X type Beck-Chevalley) isomorphism f*«ao (a* f)*—

lle

f*(aw o —). Then applying the Yoneda lemma, we find that II,«/(f*a)*g

(I

a*Ilsg.
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2.5 Cauchy complete categories.

We would like to study categories of display maps with the tools of categorical
homotopy theory. Thus we would rather study D than D itself since D is the
right class of a weak factorization system and as such can be described by the
language of categorical homotopy theory.

We show in this section that if a category M is Cauchy complete and (M, D)
is a category of display maps which models ¥ types and Id types, then (M, D) is
also a category of display maps which models ¥ types and Id types. Moreover,
if (M, D) also models II types, then (M, D) models II types as well.

Note that in these results, the hypothesis that M is Cauchy complete will
only used to establish that (M, D) is a category of display maps and that (M, D)
models II types when the same are true of (M, D). The other results, concerning
Y and Id types, are proven using more general, homotopical methods.

For those results which do utilize Cauchy completeness, the proofs use the
following idea. In both cases, we need to prove that a certain functor, built out
of elements of D, is representable while we hypothesize that the same functor, if
built only out of elements of D, is representable. In a Cauchy complete category,
retracts of representable functors are themselves representable (). Thus, using
the fact that every element of D is a retract of an element of D (), we aim to show
that those functors we want to be representable are retracts of those functors
we know to be representable.

We use these results to justify our interest in (M, D) over (M, D) since they
imply that if there is a model in (M, D), there is also a model in (M, D). We
do not deny that there might be interesting models of the form (M, D) where
D < D (and indeed, ‘syntactic’ models will likely be of this form). However, this
work is motivated by questions of the following sort: given a weak factorization
system (£, R) in a category C, how can one decide whether or not it carries the
structure of a model? We show below, that to answer this question, it suffices to
consider just the pair (C, R).

2.5.1 Basics.

Definition 2.5.1 ([Borg4, Def. 6.5.8]). A category C is Cauchy complete if every
idempotent splits: that is, for every idempotent e : C' — C in C, there is a retract
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of C
R—s(C-"~R

such that ir = e.

Lemma 2.5.2. If a category C is Cauchy complete, then every slice C/X for X € C
is Cauchy complete.

Proof. Consider an idempotent ¢ — c in a slice C/X which is represented by the

N2
X

Then the morphism e : C' — (' is an idempotent in C. It splits into

following diagram in C.
C

R—~C-"-R
such that ir = e. Since cir = ce = ¢, the following diagram commutes.

R—‘~C-"-R

NpA

X

This is a retraction in C/X which splits our original idempotent (). O

We will make extensive use of the following two lemmas so we record them
here.

Lemma 2.5.3. Consider a category C, idempotentse : C' — C and f : D — D in
C, and a morphism ¢ : C' — D making the following diagram commute.
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Then splittings of both ¢ : C' — C' and f : D — D extend uniquely to a splitting
of the idempotent (e, f) in C2.

R—~C-—"+R

| |
sci | c I'sci

Yo v
S——=D-—"2=5

Moreover, if ¢ is an isomorphism, then so is sci.

Proof. The proof is a straightforward diagram chase.
First, we claim that both squares in the diagram of the statement commute.
For this we need that j o sci = coi and s o ¢ = sci or. We see that

jsci = fci (since js = f)
= cel (since ce = fc)
= ciri (since e = ir)
= ci (since ri = 1)

and similarly

scir = sce (since ir = e)
= sfc (since ce = fc)
= sjsc (since f = js)
= sc (since sj = 1)

so the diagram in the statement commutes.

Suppose there were another = : R — S making this diagram commute. Then
we would have that x = sjx = sci.

Now suppose that c is an isomorphism with inverse ¢c~!. Using our splitting

! we obtain a morphism

of f and e to split the idempotent (f,e) : ¢! — ¢~
rc'j : S — R. Both 1 and the composition rc™'j o sci give splittings of the
Similarly, sci o r¢™'j = 1.

idempotent {e,e) : 1 — 1, so 1 = rc'j o sci.

Therefore, sci is an isomorphism. O

Corollary 2.5.4. If C is Cauchy complete, then C? is Cauchy complete.

Corollary 2.5.5. Splittings of idempotents are unique up to unique isomorphism.
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This result can be used to show that a splitting of idempotent ¢ : C' —
C' can be obtained as either the equalizer or the coequalizer of the diagram
lg,e : C =3 C [Borgg, Prop. 6.5.4]. Thus, the requirement that a category be
Cauchy complete is weaker than requiring the existence of all equalizers or all

coequalizers.

Lemma 2.5.6 ([Borg4, Lem. 6.5.6]). Consider a category C, and a representable
functor C(—,C) : C°? — Set such that all idempotents C' — C split. Then any
retract of C(—, C) is itself representable.

In particular, if C is Cauchy complete, then any retract of any representable
functor C°? — Set is representable.

Proof. Consider such a C(—, C'), and consider a retract of it as below.
F—>(C(—,C)—L~F

Then ¢p is an idempotent C(—,C) — C(—, ). Since the Yoneda embedding is
full and faithful, we have 1p = C(—,e) for some idempotent ¢ : C' — C. But
since this idempotent splits, we obtain a retraction of C'

R—~C—">R
such that ir = e, and this produces a retraction of C(—, C).

C(_vi)

C(—,T)
C<_7 R) - <_7 C) -

C(_7R)

But splittings of idempotents are unique by Lemma 2.5.5. Thus, C(—, R) = F,
and we conclude that F' is representable. O

2.5.2 Categories of display maps.

Proposition 2.5.7. Consider a Cauchy complete category M. If (M,D) is a
category of display maps, then (M, D) is as well.

Recall that D denotes (D) (Notation 2.3.5).

Proof. Since D < D and D contains all isomorphisms and morphisms to the
terminal object, then D does as well. Since D is the right class of a lifting pair, it
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is stable under pullback (Lemma 1.1.5). It only remains to show that pullbacks
of morphisms of D exist.

Consider a morphism d : X — Y of D and a morphism a : A — Y of M. By
Corollary 2.3.7, d is a retract in M/Y of some d' : X’ — Y in D. Let P denote
the pullback diagram category, and let D, D' : P — M denote the following two
pullback diagrams in M.

X X'
d §
A—>Y A—=Y

Let ¢ denote the functor M — [P, M] which sends an object m of M to the
constant functor ¢, : P — M at m.

Then since d is a retract of d’ in M/Y, the functor D is a retract of D’
in [P, M], and thus the functor Nat(c¢(—),D) : M — Set is a retract of
Nat(c(—),D’) : M — Set. Now since we assume that there is a limit of the
pullback diagram D’, the functor Nat(¢(—), D’) is representable. Therefore, by
Lemma 2.5.6, the functor Nat(c(—), D) is also representable, and we conclude
that D has a limit.

Therefore, assuming that pullbacks of morphisms of D exist, pullbacks of
morphisms of D exist. O

2.5.3 X types.

Since right classes of lifting pairs are closed under composition, we see the
following. Note that for this result, we only use the hypothesis that M is Cauchy
complete to ensure, by Proposition 2.5.7, that (M, D) is a category of display
maps.

Proposition 2.5.8. Consider a Cauchy complete category M and a category of
display maps (M, D) which models ¥ and 1d types.

Then (M, D) is a category of display maps which models ¥ types.

Proof. D is closed under composition by Lemma 1.1.5, and this means that
(M, D) models . types. O
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2.5.4 Id types.

The result for Id types relies on machinery developed in the next chapter, so we
relegate the bulk of its proof to the appendix.

Proposition 2.5.9. Consider a Cauchy complete category M and a category of
display maps (M, D) which models ¥ and Id types.

Then (M, D) models 1d types.

Proof. Note that since (M, D) models Id types on objects, so does (M, D). Then
by Proposition A.1.5, (M, D) models Id types. O

Note that in the preceding result, we did not use the hypothesis that M is
Cauchy complete except to establish that (M, D) is a display map category. In
the next proposition, we provide an alternative result which does not rely on ma-
chinery developed in the next chapter but instead utilizes the Cauchy complete
hypothesis. However, it only holds when the Id types are given ‘functorially’.

Proposition 2.5.10. Consider a Cauchy complete category M. Suppose that
(M, D) is a category of display maps which models ¥ types and 1d types. Suppose
further that the identity types are given functorially in the sense that, in each slice
{D, M}y, the assignment

X X " 1d(d) > X xy X
ld Land \ l/Ld
d dxd
Y

is the object part of a functor {D, M}y — {D, M}3.
Then (M, D) is a category of display maps which models 1d types (and these
1d types are also given functorially).

Proof. Fix a slice M /Y and an object e € D in this slice. We want to construct
an Id type on e. There is a d € D such that e is a retract of d (Corollary 2.3.7).
Since we have an Id type on d, we have the following diagram in M /Y (where
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i, s form the retraction and r4, ¢; form the Id type on d).

(+)

The factorization gives a morphism (s isxisy : ta — tq making the following

diagram commute.

Since (is, is x is) is an idempotent and this factorization is given functorially,
the morphism ¢, ;sxis) is also an idempotent. By Lemma 2.5.2, M/Y" is Cauchy
complete, so we can split the idempotent ¢ ;sxsy. Then by Lemma 2.5.3, this
extends to splittings of the rectangles in diagram (+) above. This gives us the

following commutative diagram.

Now we see that the morphism e, is in Dy since it is a retract of e; € Dy-.

Now, we need to show that for any « : a — e, the pullback a*r, is in “Dy..
Let ¢,; denote the composition m;e, for x = d,e and ¢ = 0, 1. Since r, is a retract
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of r4, as shown in the following diagram, a*r, is a retract of a*r,.

a¥re
a——a*t, e—s 1,

Since a*ry is in @Dy by hypothesis, and YD is closed under retracts, we find
that o*r, is in ¥D.
Therefore, we have 1d types for (M, D). O

2.5.5 I types.

Proposition 2.5.11. Consider a Cauchy complete category of display maps (M, D)
which models ¥ types, 1d types, and II types. Then the category of display maps
(M, D) also models 11 types.

Proof. Recall that by Proposition 2.3.4, the Id types (on objects) generate a weak
factorization structure (A, p, 2D, D) on M.
Consider f: X — Y and g : W — X in D. We aim to obtain a II type I1;g.
Note that because

p(g) xy Id(Y) : (W xx Id(X)) xy Id(Y) — X xy Id(Y)
is a pullback of p(g), it is in D.

(W Xx Id(X)) xy Id(Y) —= W x x Id(X)

_
g)xyId(Y l lp(g)

X Xy Id ) X
_

l ;

1d(Y) = Y
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We will denote p(g) xy Id(Y) as
M(pg) : M(f o pg) — Mf

when it improves readability. (Note that the domain and codomain are indeed
the middle objects of the factorizations of f o pg and f, respectively.)

Since M(pg) and pf are in D, we can form the II type I1,; M (pg).

In Lemma 2.4.3, we demonstrated the following isomorphism for anyy : A —
Y in M.
MY (y, o M(pg)) = M/M f(pf*y, M(pg))

This means that 11, M (pg) represents the functor
M/M f(pf*=, M(pg)) : M/Y — Set.

We now show that M /X (f*—, g) is a retract of this functor, so by Lemma 2.5.6,
it will itself be representable.

Let ¢ denote the natural transformation

M/X(f* =, 9) = M/M f(pf*—, M(pg))
which at a morphism z : Z — Y in M, takes a morphism m : f*z — g in M/X

XXyZ
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to the following morphism in M /M f

X X Id(Y), xZ

(leIdyXIZ

TA(X)(feox fer) X (coxe) TA(Y ), X Z

lrax X1y xm(e1x x1z) xox!
€ 1
TA(X) (e x fer) X (e xen) TA(Y )y X W —X% X xy Id(Y)
M(pg)

bx 1IdY

W . TA(X) e, %o IA(Y)

where a and b are given by solutions to the following lifting problems.

X ~— 1d(X) WLngmId(X)
7 d
A(f)[ s cox fer rgxll - jmg)
X pxeId(Y) 25 X x v Td(X)e, x W —2 X

(The morphism ¢, x fe; is in D because it is the composition of ¢y x ¢; : Id(X) —
X x Xwithl x f: X x X - X x Y. The morphism rg x 1 is in ¥D because it
is one of the pullbacks of  : X — Id(X) ensured to be in YD by the definition

of Id types.)

Then let » denote the natural transformation
M/M f(pf*—, M(pg)) — M/X(f*~,g)

which at a morphism z : Z — Y in M, takes a morphism n : pf*z — M(pg) in

M/M f
X % Id(Y ), xZ

K

n X %, Id(Y)

Mo

W X o IA(X) ey X, Id(Y)
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to the following composition in M /X

XXyZ

IXxTyXIZ

X X Id(Y ), xZ

1

n

W x¢ TA(X),, X Id(Y) —2

€0

C

w

where c is a solution to the following lifting problem.

Now we claim that

M/X(f*~.g) 5 M/Mf(p(f)*—, M(pg)) = M/X(f*~, g)

is a retract diagram. To that end, consider a morphism m of M /X (f*z, g). Then
ri(m) is the following composition.

XXyZ

1x><7'y><12

X X¢ Id(Y), xZ

1

axlgy X1z

Id(X)(fﬁonﬁl) X (€0X€1)Id(Y)61 xZ
lrax X 1ray xm(e1x x1z)

IA(X) (feox fer) X (eoxer) IA(Y ) ey x W

bx 1IdY

W Xy IA(X) e X, IA(Y)
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The composition a o (1x x ry) : X — Id(X) is rx. Thus, the composite of the
first three vertical morphisms in the above diagram is

rx X Ty Xm: X Xy 7 — Id(X>(feo><fel)X(eoxel)Id<Y)61XW

Moreover, bo (rx x ly) : W — WxId(X) is 1y x rx so the composite of the
first four morphisms above is

mxry Xry : X Xy Z — W xq Id(X) e, X, IA(Y).

The composite co (1 x rx) : W — W is the identity, so the vertical composite
above is m. Therefore, i(m) = m, and ¢ and r form a retract.

Now by Lemma 2.5.6, we can conclude that M/X(f*—,g) : M/Y — Set is
representable by an object which we will denote by I1;¢. Furthermore, I1;¢ is a
retract of I1,; M (pg). Since I1,; M (pg) is in D, we can conclude that I1;g is in D,
the retract closure of D. Finally, by Proposition 2.4.3 we find that (M, D) does
in fact model II types. O

2.5.6 Summary.

Putting together Propositions 2.5.7, 2.5.8, 2.5.9, and 2.5.11 of this section, we get
the following theorem.

Theorem 2.5.12. Consider a Cauchy complete category (M, D) with display maps
modeling ¥ types, 11 types, and 1d types. Then (M, D) is again a category with
display maps modeling ¥ types, 11 types, and 1d types.

Proof. By Proposition 2.5.7, (M, D) is a category with display maps. By Propo-
sition 2.5.8, it models ¥ types. By Proposition 2.5.9, it models Id types. By
Proposition 2.5.11, it models IT types. O

2.6 Weak factorization systems.

In the following chapters of this thesis, we consider the converse situation to that
considered in the last sections. Given a category C with a weak factorization
system (£, R), when does (C,R) carry the structure of a category with display
maps modeling ¥ types, Id types, and II types?
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We take the time here to record the most basic results towards an answer to
this question in order to clarify the problem for the following chapters.

We will assume that our categories with weak factorization systems have all
finite limits. This is usually the case in examples (to be precise, our examples will
often come from Quillen model categories which are assumed to be complete
and cocomplete). At the very least, we would need to assume that every pullback
of every morphism of R exists and that there is a terminal object, but we will
make the stronger assumption for simplicity.

First, we point out that any such weak factorization system gives a display
map category modeling ¥ types.

Proposition 2.6.1. Consider a weak factorization system (L, R) on a category C
with finite limits such that every object is fibrant. Then (C,R) is a display map
category which models X types.

Proof. By Lemma 1.1.5, every isomorphism is in R, and R is stable under pull-
back. Thus, (C,R) is a display map category.

By the same proposition, R is closed under composition, so it models ¥
types. 0

Corollary 2.6.2. Consider a weak factorization system (L, R) on a category C with
finite limits. Let Cr denote the full subcategory of C spanned by the fibrant objects.
Then (Cx, R n Cx) is a display map category which models X. types.

Proof. By Corollary 1.5.4, (L nCx, R nC#) is a weak factorization system on Cx.
Then the statement follows from the proposition above. O

Secondly, we give a name to the situation where this weak factorization
system gives a model of Id types. Such weak factorization systems will be
studied in the next chapter.

Definition 2.6.3. Consider a weak factorization system (£, R) on a category C
with finite limits. Say that (£, R) has an Id-presentation if (C,R) has a model
of Id types of objects which presents (Def. 2.3.6) the weak factorization system
(L, R).

Proposition 2.6.4. Consider a weak factorization system (L, R) on a category C
with finite limits. This weak factorization system has an Id-presentation if and
only if (C,R) models 1d types.
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Proof. If (C,R) models Id types, then, in particular, it models Id types on objects
which generates the weak factorization system (YR, R) = (£, R) by Proposition
2.3.4.

Proposition A.1.5 gives the converse. O

Lastly, we disentangle the categorical requirements of modeling II types
from the more homotopical requirements. To model II types is to have the
existence of universal morphisms which, furthermore, are display maps. We
leave the problem of finding such universal morphisms aside, and focus on the
problem of when they are display maps. Many examples (e.g., simplicial sets, the
topological topos, etc.) are already locally cartesian closed so these universal
morphisms are already known to exist. In any case, it is not a question that
categorical homotopy theory is well equipped to answer.

Definition 2.6.5. Say that a weak factorization system (£, R) on a category C
with finite limits is type theoretic if

1. every object of C is fibrant, and
2. L is stable under pullback along R.

Note that condition 2 above is often called the Frobenius condition [BG12].

We are particularly interested in this property because, as we will show
in Theorem 3.4.4, weak factorization systems with Id-presentations are type
theoretic, and we prove below that this implies that the universal objects II;g
defined below are in D.

Definition 2.6.6. Say that a weak factorization system (£, R) on C models pre-11
typesif forevery g : W — X and f : X — Y in R, there is a morphism Il ;g with
codomain Y satisfying the universal property

i:C/X(f*y,9) = C/Y(y,T;g)
natural in y.

In particular, any weak factorization system in a locally cartesian category
models pre-II types.
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Proposition 2.6.7. Consider a category C with finite limits. Consider also a weak
factorization system (L, R) on C in which all objects of C are fibrant and which
models pre-II types.

Then (C, R) models 11 types if and only if (L, R) is type theoretic.

Lemma 1.1.7 says that a right adjoint preserves the right class of a weak
factorization system if and only if the left adjoint preserves the left class. That
is not exactly the situation here, but it is close enough that we imitate its proof.

Proof. Suppose that (C, R) models II types. Let i, denote the bijection

iyrg 1 C/Y (y,1lrg) = C/X(f*y,9)

of Proposition 2.4.3. We need to show that £ is stable under pullback along
R. To that end, consider a morphism ¢ of £ and a morphism f of R such that
cop/ = copf. To show that f*/ is in £, we must show that it has a A\-coalgebra
structure for every factorization (), p) into (£, R).

A(f*0)

—_—

7
f*ﬂl 7 lp(f*é)
/.

Consider the following lifting problem. It is the transpose of the above lifting

problem under ;1.

i (A(f*0)

—

7
fj e lnfp(f*f)
7

It has a solution ¢ since /¢ is in £ and II;p(f*¢) is in R. Then i(c) gives us a
solution to our original lifting problem.

Now suppose that (£, R) is type theoretic. We need to show that II;¢ is in R.
Then by Proposition 2.4.3, the display map category (C,R) will model II types.
Let i, s, denote the bijection

iyrg 1 C/Y (y, 1lrg) = C/X(f*y,9)

which defines the pre-II type I1;g.
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The morphism Ilg is in R if and only if for every factorization (), p) into
(L, R) there is a solution to the following lifting problem.

7
A(Hfg)l 7 Lnfg

/ﬁ-

p(Myg)
Consider the following lifting problem. It is the transpose of the above lifting
problem under i.

Since f*A(Il;g) isin £ and g is in R, there is a solution ¢ to this lifting problem.
Then i 10 is a solution to the original lifting problem. O

Corollary 2.6.8. Consider a type theoretic weak factorization structure (L, R) on
a locally cartesian closed category C. Then (C,R) models II types.

We summarize the results of this section with the following proposition.

Proposition 2.6.9. Consider a weak factorization system (L, R) on a category C
with finite limits. Then (C, R) is a display map category modeling ¥ types. If it has
an Id-presentation, then (C,R) models Id types. If it is type theoretic and models
pre-11 types, then (C, R) models II types.

Proof. This follows from Proposition 2.6.1, Proposition 2.6.7, and Proposition
2.6.4. OJ

2.7 Summary.

In this chapter, we have defined what it means for a display map category
(M, D) to model ¥ types, II types, and Id types. We showed that if M is a
Cauchy complete category and (M, D) models X types, II types, and Id types,
then so does (M, D). Thus, if one wants to know whether a weak factorization
system (£, R) on a category C underlies a display map category (C, D) (where
D = R) modeling ¥ types, II types, and Id types, it suffices to check just the
display map category (C,R). Such a display map category models ¥ types, 11
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types, and Id types if it is type-theoretic, has an Id-presentation, and has pre-IT
types. In the next chapter, we study weak factorization systems which are type
theoretic — needed to model II types — and those which have an Id-presentation
— needed to model Id types. We will show that these properties of a weak
factorization system are equivalent.
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Chapter 3

Weak factorization systems in
display map categories.

In this chapter, we study the weak factorization systems which form display map
categories modeling ¥, Id, and II types. We saw in the previous chapter that for
a weak factorization system (£, R) on a category C with finite limits to form a
display map category (C, R) modeling ¥. types, it is necessary and sufficient that
every object of C is fibrant. Thus, all weak factorization systems in this section
will be of this flavor. We also saw that for (C,R) to model Id types, the weak
factorization system must have an Id-presentation, and for it to model II types
(in addition to having pre-II types) it should be type theoretic.

In the following sections, we will show that for a weak factorization system
(L,R) on a category C with finite limits, the conditions that it (1) has an Id-
presentation and (2) is type theoretic are equivalent. To prove this, we also
describe an algebraic structure (called a Moore relation structure) on a category
C with finite limits which generates a weak factorization system of this flavor

and, conversely, is always entailed by such a weak factorization system.

In the first section, we give a categorical analysis of the structure underlying
an Id-presentation. In the second, we define Moore relation structures in such
categories and show that they generate type theoretic weak factorization sys-
tems. In the third section, we show that any type theoretic weak factorization
system has an Id-presentation. In the fourth section, we tie these threads to-
gether by showing that a weak factorization system has an Id-presentation if and
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only if it is generated by a Moore relation system. A more precise description
can be found below in Section 3.1.6.

To our knowledge, the material of this chapter is new, save that in Section
3.2.1 which overlaps considerably with that of [BG12]. However, it is the only
section of this chapter that does not contribute directly to the proof of our main
result, Theorem 3.5.1. This is because the notion of model that interests us
is decidedly weaker than that under consideration in [BGi12]. It is however
informative to see that the approach here and in [BGi2] are, at least at this
point, congruent.

3.1 Relations and factorizations.

This section is largely intended to build vocabulary for the following sections.
We discuss how a factorization on a category C can be generated from a suitable
collection of internal relations

€0

X —a=R(X)

inC.

We have already seen one such collection of internal relations which gener-
ates a factorization on a category: Id types on objects in a display map category
(C, D). This will be an example of what we discuss below. However, in defining
Id types on objects, we already had a potential lifting pair (4D, D) in mind and
required certain morphisms to be in certain classes (YD or D) accordingly. In
this and the next section, we take a lifting-pair-agnostic approach justified by
the fact (Corollary 1.4.5) that a factorization which is part of a weak factoriza-
tion structure completely determines the lifting pair. Thus in this section, we
describe how a collection of relations determines a factorization, and in the next
section (3.2), we will characterize those collections of relations which determine
factorizations underlying weak factorization structures.
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3.1.1 Relations.
Definition 3.1.1. Let R denote the diagram category generated by the graph

€0

-
O —n—=v
-
€1

and the relations e¢yn = €11 = 1o. A relation on an object X of a category C is a
functor R : ;R — C such that R(O) = X.

Let C* denote the category of relations in C, and let C° : C®* — C denote the
forgetful functor given by evaluation at O.

Remark 3.1.2. What we have just defined could more descriptively be called an
internal reflexive pseudo-relation. However, since all relations in this work will
be of this type, we will call them relations.

We will sometimes use the following kind of relation.

Definition 3.1.3. A monic relation on an object X of a category C is a relation R
on X such that the morphisms R(¢y) and R(e;) are jointly monic.

A monic relation in Set is then just a reflexive relation, in the usual sense.

Example 3.1.4. On any object X of any category C, there is a minimal monic
relation on X given by the following diagram.

1x
B ——
X —1x> X
B ——

1x

Example 3.1.5. On any object X of any category C with binary products, there
is a maximal monic relation on X given by the following diagram

T
-
XA X x X
™

where 7y and 7, are the first and second projections X x X — X, respectively,
and Ay is the diagonal X — X x X.

Example 3.1.6. Consider the category 7 of topological spaces. Let [ = [0, 1]
denote the usual interval. For any space X, consider the internal hom X’ which
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we think of as the space of paths in X. Let ¢ : X — X! denote the continuous
function which takes any point in X to the constant path at that point. For any
tel,letev, : X! — X denote the continuous function which takes a path p in
X to p(t). Then the following is a relation on X in 7.

evo

X —= X!

evy
Example 3.1.7. Consider any category C with a terminal object =, objects X and
I of C, and morphisms 0, 1 : * =3 I of C such that an internal hom X exists in C.
Let ! : I — = denote the unique morphism to the terminal object.

This creates a relation on X whose image is the following diagram.
X0

X == X!
o
Xl

The preceding three examples can be seen as a special case of this example
where I = = for the minimal relation, / = = + = for the maximal relation, and [
is the interval [0, 1] for the relation in 7.

Definition 3.1.8. Consider a morphism f : X — Y in a category C and relations
RX on X and RY on Y (whose images are illustrated below).

€0X €0y

X —nx=RX Y —nv=RY
€1X €1y

Say that a natural transformation Rf : RX — RY is a lift of f if it is sent to
f via the forgetful functor C°. That is, the natural transformation Rf is a lift
if it has the component f : X — Y at O and some component which we will
denote Rf : RX — RY at W, as illustrated below.

Rf

R{( RTY
S

Example 3.1.9. Consider the relation of Example 3.1.7 defined on two objects,
X and Y, of a category C. Given a morphism f : X — Y we obtain a lift of
f from the relation on X to that on Y as the natural transformation illustrated
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below.

Xy
XOL)HXI XOMELP
x— 71 oy

Definition 3.1.10. A relation R on a category C consists of a relation R(X) on
each X in C and a lift R(f) : R(X) > R(Y) ofeach f : X - Y inC.

Remark 3.1.11. Note that we are abusing terminology by speaking of both rela-
tions on an object of a category and a relation on that category.

Example 3.1.12. Consider a category C in which there exist an object / and
morphisms 0,1 : = — [ such that the relation of Example 3.1.7 can be defined on
any object X of C. Denote this relation by I(X'). Then in Example 3.1.9, we saw
thatany f : X — Y of C has a lift I(f) : I(X') — I(Y). This forms a relation I on
the category C.

Now we define morphisms between relations on a given category C. Given
two relations R, R’ on C, an (unnatural) transformation 7 : R — R’ consists of
a morphism 7(X) for each object X of C which makes the following diagram in
C display a natural transformation of relations R(X) — R/(X).

R(X)—~ - R/(X)

NN
N X 7 €

(To be clear, at each object X of C, 7(X) is a natural transformation between
the functors R(X) and R/(X) : R — C. However, 7 itself is not required to
be natural: that is, no naturality square of the form R/(f)7(X) = 7(Y)R(f) is

required to commute.)

Definition 3.1.13. Consider a category C. Let NRel2’ denote the category of
relations R on C and transformations between them.

Notation 3.1.14. As in Notation 1.2.5, the superscript 00 of Rel2’ signifies that
the objects are not functorial and the morphisms are not natural. We will define
variants below.
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Now we begin to show the connection between relations and factorizations.
This will be made more explicit in the following sections.

Proposition 3.1.15. Let C be a category with binary products and a factorization
(A, p)-
Then there is a relation R(\, p) on C which at each object X is given by the

following diagram
m1p(Ax)
X —xax)— M(Ax)
mop(Ax)

(where M denotes cobp\ = DOMp).

Proof. For every X in C, we factorize the diagonal Ay : X — X x X.

X220 A ) 28 x o« x

Rearranging this, we get the following relation on X

m1p(Ax)
X —Max)— M(Ax)
mop(Ax)

which will be denoted by R (A, p)(X).

For any morphism f : X — Y, there is a square {f, f x f): Ax — Ay. The
factorization of this square gives a lift R(X, p)(f) : R(\, p)(X) — R(\, p)(Y) of
f.

This defines a relation R(), p) on C. O

Now we define the functorial version of what we have been considering.

Definition 3.1.16. A functorial relation on a category C is a section of the functor
Ce . C% - C.

Note that a functorial relation R on a category C is in particular a relation R
on C with the additional requirements that the specified lifts R(f) of morphisms
f of C respect identities and composition of morphisms (that is, R(1x) = 1g(x)
and R(go f) = R(g) o R(f) for all objects X and all composable morphisms f, g
of C).
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Definition 3.1.17. Let Mel}’ denote the category of functorial relations on C and
transformations between them.

Let el denote the category of sections of the functor C© : C® — C. This is
the category of functorial relations on C and natural transformations between

them.

There are natural inclusions
Relp! — NRell — NRel.

The first inclusion above is the identity on objects, and the second is the identity
on morphisms.

Proposition 3.1.18. Let C be a category with binary products and a functorial
factorization (), p).
Then the relation R(\, p) on C constructed in Proposition 3.1.15 is functorial.

Proof. We need to show that R(\, p)(1x) = 1lrpx and that R(\, p)(go f) =

R(X, p)(g) o R(A, p)(f)-
Recall that R(\, p)(f) for any f : X — Y in C is obtained by factoring the

square shown below on the left to get the diagram shown below on the right

f

X Y
x—71 .y A(Alm A(Alw
Alx Aly M) 0 (Ay)
X x X WY xY p(Alx) ﬂ(AlY)

XXXWYXY

and then rearranging that diagram to get the diagram shown below.

M{f fxf)
M(Ax) - M(Ay)
Wop(Ax)lA(ATx)lﬂp(Ax) TFOP(AY)l/\(ATY)lMP(AY)
7 Y

Then we can see that (), p) is functorial if and only if M : C? — C is functorial
if and only if R(), p) is functorial. O
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3.1.2 Relational factorizations.

Definition 3.1.19. Let § denote the diagram category generated by the graph

K

VRS

and the equation k\ = 1o. A relational factorization of a morphism f : X — Y
in a category C is a functor F': § — C such that F'(p)\) = f.

Let CS denote the category of relational factorizations, and let C** : C5 — C2
denote the forgetful functor which sends a factorization of f to f itself.

Example 3.1.20. Consider the relation of Example 3.1.12. Let f : X — Y be a
morphism in the category. Let X xy Y denote the pullback

X XyYI—>YI

|7

x—' .y
of f: X ->YandY":Y! - Y. Then
T )
Y'n
X Xy vy
lxxY‘f

is a relational factorization of f.

Proposition 3.1.21. Consider a category C with a weak factorization structure
(A, p, L, R) and a terminal object =. There is a relational factorization of any

morphism in C whose domain is fibrant.

Proof. Consider a morphism f : X — Y such that X is fibrant. Factor f,

X2 Mf-Lsy

and observe that the following lifting problem has a solution.

X X

i 7
,\j e
7

Mfﬁ-*
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Then the diagram

in C is a relational factorization of f. O

Definition 3.1.22. Consider a category C, morphisms f : W — X andg:Y — Z
in C and a morphism {(a,3) : f — ¢ in C? which is given by the following
commutative square in C.

W—=Y

f 9

x-L.z
)

Consider also relational factorizations F'(f) on f and F(g) on g whose compo-
nents are illustrated below.

Py P
W— Mf—X Y Mg~ 7

Say that a natural transformation F(«, 3) : F(f) — F(g) is a lift of {«, 5)
if CPAF(a, ) = {«a,8). Thatis, F(a, () is a lift of {«, B) if it has components
a:W->YatO,p: X - Zat©, and some M{a,): Mf — Mg at ® making
the following diagram display a natural transformation F'(f) — F(g).

M M
pf 24
X a 7z

Example 3.1.23. Consider factorizations of two morphisms f : X — Y and
g : V — W as obtained in Example 3.1.20, and a morphism {(«, 3) : f — g. The
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following is a lift of {«, 55).

X @ Vv
IXXY’leﬂ'X 1VxW’gl5“V
axgB!

X xy YI— 2y, W
Ylﬁyjj Wlﬂ'wll
B
Y w

Definition 3.1.24. A relational factorization on a category C consists of a rela-
tional factorization F'(f) of every morphism f of C and a lift F'(a, 8) : F(f) —

F(g) of every (o, ) : f — g in C2.

Example 3.1.25. The previous example, 3.1.23, describes a relational factoriza-
tion on a category C (where the internal hom X exists for every X in C).

As we did for relations, we now define (unnatural) transformations between
relational factorizations.

A transformation 7 : ' — G between relational factorizations on a category
C consists of a morphism 7(f) : F(f)® — G(f)® which makes the following
diagram in C display a natural transformation F(f) — G(f).

Fo GO

7(f)

Y

Definition 3.1.26. Let RelFacty’ denote the category of relational factorizations
on C and transformations between them.

Now we define the analogous functorial object.

Definition 3.1.27. A functorial relational factorization on a category C is a section
of the forgetful functor C* : C¥ — (C2.

Definition 3.1.28. Let RelFact)’ denote the category of functorial relational
factorizations on C and transformations between them.
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Let RelFact,' denote the category of sections of C** : C5 — (2. Its objects
are functorial relational factorizations on C, and its morphisms are natural
transformations between them.

As before, there are natural inclusions
RelFacty! — RelFacty’ — RelFactd’

where the first is the identity on objects, and the second is the identity on
morphisms.

3.1.3 Factorizations and relational factorizations.

In this section, we describe the relationship between the categories Sactg of
factorizations on a category C and fRelFacty of relational factorizations on C (for
each ij).

In this section, we define functors

R : Facty S RelFacty : U

(for ij = 00,01, 11). The functor U takes a relational factorization to its under-
lying factorization (described below).

In the first subsection below, we define the functors U and R.. In the second,
we show that they produce a comonad UR on § ac’cé1 (and a similar endofunctor
on Sact? when ij # 11). In the third subsection below, we justify our interest
in the category fRelFact by showing that for every weak factorization structure
W in the image of U, all objects are fibrant, and, furthermore, that for every
weak factorization structure W in Fact, every object is fibrant in W if and only
if UR(W) ~ W. Thus, the weak factorization structures that interest us in this
chapter all underlie relational factorizations.

3.1.3.1 The functors.

In this section, we describe the functors between the categories Sactéj and
RelFact.

First of all, there is an obvious forgetful functor %e[&act@j — Sactéj. This
arises from the inclusion 7/ : 3 — § which maps the morphism 0 < 1 to A and
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1 < 2to p. (Inthe diagram below, what appears to the right of 3 is the generating
graph of the category 3, and what appears to the right of § is the generating
graph of the category §, described in Definition 3.1.19.)

0<1 1<2

3: 0= 1 =29
3 020 ".0

Then any relational factorization R(f) : § — C of a morphism f in a category
C has an underlying factorization R(f) oI : 3 — C. Furthermore, this produces
the following functor.

Proposition 3.1.29. There is a forgetful functor
U9 . ?ﬁe[&act@j — Sactéj

(for ij = 00,10, 11) which at a relational factorization R in %e[&actéj and mor-
phism f in C gives the underlying factorization U(R)(f) = R(f) o 1.

These make the following diagram commute.

RelFacty! v Fact!

.

RelFacty’ ue, Fact’

.

RelFacty’ L FactY

Proof. First, for any relational factorization R, we describe the factorization
U(R)onC. Weset U(R)(f) = R(f)ol for any morphism f of C and U(R){a, ) =
R{a, B) o I for any square {«, §) : f — g. Note that U(R) is functorial if R is
functorial.

Consider any transformation 7 : R — S of relational factorizations. At a
morphism f, this is a natural transformation 7(f) : R(f) — S(f). Whiskering
this with 7, we get a natural transformation 7(f) o I : U(R)(f) — U(S)(f).
Thus, we set U(7)(f) to 7(f) o I. Note that if 7 is a natural transformation, then
so is U(7).
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Now let each U : RelFacty — Facty foreachij = 00, 10, 11 be the restriction
of U to RelFacty. We have shown that its image is in Fact?. O

Remark 3.1.30. When ij = 11, the categories RelFacty' and Facty' are just the
categories of sections of C** : C5 — C2 and C° : C® — (2, respectively. Then
UM : RelFact, — Facty' is just postcomposition with C! : C5 — C5.

Proposition 3.1.31. Consider a category C with binary products. Then there is a
functor
RY : Factd — RelFacty

(for ij = 00, 10, 11) which maps a factorization (), p) and a morphism f : X —»Y
to R(A, p)(f) depicted by the following diagram.

mxp(1xf)
/_\
X =my = MU ) >

These make the following diagram commute.

Fact! RY RelFacty!

|

Fact R RelFacty

|

Fact? B2 RelFact?

Proof. Consider a factorization (J, p) and a morphism f : X — Y in C. We use
the factorization (), p) to factor 1 x f: X — X x Y as shown below.

A(1xf)

X M@ x f) 22D x vy

Then we obtain a relational factorization R(\, p)(f) of f as shown below.

Txp(1xf)

/_\

X M1 x f) Y

my p(1x f)
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Consider any square {a, 8) : f — ginC. We set R(\, p){a, () to the following
lift of («, 3).

mxp(1xf)
X/_\M(]_ « f)ﬂ-Yp(le) Y
A(1xf)
& mwp(lxg) j]\/[<av@><5> B
/\
M(1
W= MU x9) 25

Now note that the relational factorization R(), p) is functorial if the factor-
ization (), p) is.

Consider any transformation 7 : (X, p) — (X, o) of factorizations on C which
consists of morphisms 7(f) : M f — M'f for each morphism f of C (where
M = cop)\ = pomp, M’ = cobp)\ = poMp’). Then the morphisms 7(1 x f) :
M(1x f) — M'(1x f)assemble into a transformation R(7) : R(A, p) — R(X, o).
Moreover, this is natural when 7 is natural.

Then let R be the restriction of R to Facty. We have shown that its image
is in NelFacty. O

3.1.3.2 The near-adjoint relationship.

We show in this section that R!' and U'! have a near-adjoint relationship.

The discussion in this section can be regarded as parenthetical. It is not
necessary to understand the rest of the chapter, unlike the following section,
3.1.3.3, where we justify our interest in the RelFact categories over the Fact
categories.

In this section, we restrict ourselves to the case when ij = 11 in order to
evaluate the properties that these functors have. (When ij # 11 we expect
the properties to be completely analogous, but more difficult to express without
recourse to standard categorical language. For example, in Proposition 3.1.34
below, we define natural transformations n and ¢. However, their naturality is
inherited from the naturality of the morphisms in Fact''.)

Notation 3.1.32. For the remainder of this section, we will omit the superscript
11.

Remark 3.1.33. Though we will show in this section that R : Facte — RelFacte
is ‘nearly’ a right adjoint to U : fRelFact, — Facte, the functor U does in fact
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have a true right adjoint L : Fact; — RelFact, when the ambient category C has
binary products.

This functor L takes a factorization (J, p) and a morphism f : X — Y to the
following relational factorization.

X
QX x M(f)
Lx xA(f) p(f)mary

However, we are not interested in this functor. Our goal is to find a relational
factorization R for any type theoretic weak factorization structure W such that
the underlying factorization U(R) is a weak factorization structure equivalent
to W. This is not satisfied by the functor L but will be by R.

(To see that L does not satisfy this in general, we can consider the minimal
monic relation Min on Set given in Example 3.1.4. We will see in Examples 3.2.4,
3.2.15, and 3.2.25 that this is strictly transitive, homotopical, and symmetric. Thus
by Theorem 3.2.34, it generates a type theoretic weak factorization structure
UF(Min) whose underlying factorization takes a function f : X — Y to the

following simple factorization.

x—t-x-1L.y
Its left class is the class of bijections and its right class is the class of all functions.

The factorization ULUF(Min) takes f : X — Y to

XA x xx Iy
Since A is not in general a bijection, we see that ULUF(Min) is not a weak
factorization structure equivalent to UF(Min).)

Proposition 3.1.34. Consider a category C with binary products, and the functors
U : RelFacte < Facte : R defined above. There are natural transformations

€ : UR — 1z, and n : R — RUR making the following diagrams commute.

R~ RUR UR 2% URUR R— " ~RUR
\ LRé \ je ln jn
RUn
R UR RUR —% RURUR
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Proof. As before, given a morphism f : X — Y, we will often consider the
morphism 1 x f: X — X x Y.

Consider a factorization (\, p) in Facte. If (A, p) takes a morphism f : X — Y
to the diagram on the left, then UR()\, p) takes f to the diagram on the right.

Af of TY P1x f

Ale
X Y X 2L v x )2y

Mf

Then we get a natural transformation ¢, ,) : UR(), p) — (A, p) which at f has
the following component.

This assembles into a natural transformation € : UR — 1.

Now, the relational factorization R(), p) takes f to the following diagram,

TXP1Ixf

X=——=M(1xf)—Lsy
1xf

and RUR(), p) takes f to the diagram below.

TOP1Ix1x f Ty p ;
— 1x1x
X M(1x1x f) 2y
Alxle

Then we get a natural transformation 7, ,) : R(}, p) = RUR(A, p) which at f
has the following component.

M(1 x f)
TXPLIxf
TY P1x f
%
X M<lx,Ax><1y> Y

TOP1Ix1x f

m YPIx1xf
M(1x1xf)

This assembles into a natural transformation  : R — RUR.
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Now, to see that the diagrams in the statement commute, it suffices to check
that they commute point-wise. Thus, consider again a factorization (A, p) on C
and a morphism f : X — Y of C. Evaluated at (), p) and f, these become natural
transformations between functors 3 — C or § — C which are the identity at the
objects 0 and 2 of 3, or the objects O, ® of § (i.e., the domain and codomain of
the morphism being factorized). Thus, it suffices to check that the diagrams in
the statement commute when evaluated not only at a factorization (), p) and a
morphism f, but also at the middle object 1 of 3 or ® of §. Evaluating, we find
the following diagrams.

M<1X Axx1y> M<1X Axxly>

M x fy ————"M(1 x1x f) M x fy ————M(1 x1x f)
\ lM(lX X Ty ) \ lM<1X,7r0><ﬂ'y>
M(1 x f) M(1 x f)
M(1 x f) Ml Bxxty) M(1x1xf)
LM<1X,AX><IY> lM(lx,AxxmxwY>
M(1x1xf) M1 x1x1xf)

M<1x,7'r0><Ax><1y>

But these diagrams are wrapped in the functor M. Thus, to show that these
diagrams commute, it suffices to remove the applications of M. But then note
that every morphism is of the form {1y, ?). Thus, it suffices to show that these
diagrams commute when we remove the applications of M and then project to
the codomain (1, ?) —7. Doing this, we find the following diagrams.

Xxy 20 oy xxy Xxy 22X x X xY
\ j“”Y \ lmm
X xY X xY
XxY Axxly XxXxY
lexly lexwlxwY
X xXxY XxXxXxY

7T0><Ax><1y

Now, we can easily see that these diagrams commute, and we conclude that the
diagrams of the statement commute. O
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Corollary 3.1.35. Consider a category C with binary products. Then (UR, ¢, Un)
is a comonad on Facte.

Proof. The following diagrams display the comonad laws, and are obtained from
the diagrams of the above proposition by applying the functor U to the first and
third.

UR 2% (UR)? UR 2% (UR)? UR - (UR)?
\ |on \ | jun - Jor
UR UR (UR)?— (UR)*

O

The coalgebras of this comonad are, in particular, factorizations (), p) equipped
with morphisms v (f) : M(f) — M (1 x f) (natural in f) as depicted below.

M(1 x f)

X ¥(f) Y

Mf

Let EM(UR) denote the Eilenberg-Moore category of coalgebras of UR,
and let
U : EM(UR) < Facte : R

denote the associated adjunction. Then R, U factors through R’, U’ in the
following way.
Given a coalgebra v : (\,p) — UR(A\,p) as described above, we get the

following composition
M M x f) 2L X Yy TS X

which is natural in f, and this makes (), p) into the relational factorization with
the following components at any morphism f: X — Y.

wx p1x fY(f)

X == M({) My
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This defines a functor A : EM(UR) — RelFacte which relates the pair U, R of
functors to the adjunction U’ 4 R’ in the following way.

Proposition 3.1.36. Consider a category C with binary products, and the following
diagram of functors defined in the previous pages.

RelFact,
U
X
A Sacte
U/
)Y
EM(UR) R’

Then AR’ = R and UA = U".

Proof. Consider a factorization (\,p) on C. Then for any f : X — Y in C,
AR/(\, p)(f) is the relational factorization below on the left, and R(\, p)(f) is
the relational factorization below on the right.

mop1x1xf M{1x,Axx1y) ——_— TXPLxf Ty PLx
. X X
X 3 M(le)—>Y XA/—)\—>M(1><f)—>Y
1xf 1xf

To show that these two relational factorizations coincide, we must check that
TopixixfM{1x, Ax x 1y) = mxpixs. This follows from the commutativity of the
following diagram.

Pixf

M(1 x f)

Xxy-2X s X
l/M<1X7Ax><1y> LAxxly H

MIx1x /2 X« X xy "= X
Thus, we have established that AR/(\, p)(f) = R(\, p)(f)-
Now consider a morphism (o, 8) : f — ¢ of C2. Both of the natural trans-
formations AR/(\, p){«, 5) and R(\, p){«, ) have components «, M{«,a x [3),
and £.

TXP1Ixf Ty pixs
X==M(1x )"y

Ixf

TV P1Ixg

TTW Plxg

VE— M(Lx g) W
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Thus, we have AR'(\, p){a, 5) = R(\, p){a, #), and consequently we have shown
that AR/(\, p) = R(\, p).

Now consider a natural transformation 7 : (\,p) — (XN,p/). Viewed as
a natural transformation of functors 3 — C, it has three components: 1 :
pOM — DOM,g : M — M’ and 1 : cop — cop. And, viewed as natural
transformations of functors § — C, both AR/7 and R7 have the components
1:DOM — DOM, g1« : M(1x—) — M’'(1x—),and 1 : DOM X COD — DOM X COD.

M(1 x f)

y&

X T(1xf) Y

’
k K

M'(1x f)

Therefore, AR'T = Rr, and we have shown that AR’ = R.
Now consider a coalgebra v : (), p) — UR(}, p). Both U" and UA take ~ to
(A, p) and morphisms (o, UR«) : v — 7' to a. Thus UA = U'. O

3.1.3.3 Fibrant objects.

In this section, we justify our interest in the categories PRelFact over the cat-
egories §act. Namely, we are interested only in weak factorization systems in
which all objects are fibrant, and show below that these each have representative
weak factorization structures in the image of U : fRelFact — Fact.

Proposition 3.1.37. Consider a category C with finite products and a weak factor-
ization structure (X, p, L,R). Suppose that every object of C is fibrant. Then the
factorization UR(A, p) is a weak factorization structure equivalent to the original
one (A, p, L, R).

That is, [UR| = 1 on the full subcategory of |Fact?| spanned by weak factor-
ization structures in which all objects are fibrant.

Proof. Recall that the factorization UR/(), p) takes a morphism f : X — Y to
the following factorization.
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The left factor is A(1 x f), soitisin L.

Note that since ! : X — = is in R (which is stable under pullback), the
projection 1y : X x Y — Y is in R. Thus, the right factor, which is the
composition my p(1 x f), is also in R.

By Corollary 1.4.5, we see that

(AM(1 x —)-alg, mp(1 x —)-coalg) = (L, R).

Therefore, the factorization UR/(), p) is a weak factorization structure equivalent
to (A, p, L, R). O

Proposition 3.1.38. Every factorization (), p) in the image of U : RelFact —
Jacty has the property that every map to the terminal object has a p-algebra
structure.

In particular, consider a weak factorization structure (X, p, L, R) whose factor-
ization (), p) underlies a relational factorization on a category C. Then every object
of C is fibrant.

Proof. Consider an object X of C and a factorization (J, p) in the image of U.
We want to show that ! : X — = has a p-algebra structure. Thus, we need to
show that the following lifting problem has a solution.

X X

7
A(!)L i l
7

M! —— =

Since (), p) extends to a relational factorization, A(!) has a retraction «(!). This
solves the lifting problem. O

Corollary 3.1.39. Consider a weak factorization system (L, R) on a category C
with finite products. Every object of C is fibrant if and only if (L,R) has a
representative weak factorization structure (A, p, L, R) where (), p) underlies a

relational factorization on C.

Proof. The “if" statement is Proposition 3.1.38. The “only if" statement is Propo-
sition 3.1.37. O

Since we are only considering weak factorization systems in which all objects
are fibrant, we move from considering factorizations to considering relational
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factorizations. However, we do not introduce a variant of the notion of weak
factorization system. Instead, we will extract a relational factorization from any
weak factorization system by applying the functor R.

3.1.4 Relational factorizations and relations.

In this section, we describe the relationship between the categories JRel” and
the categories RelFact”. In the first subsection, we describe functors between
them. In the second subsection, we show that these functors form an adjunction
when ij = 11.

3.1.4.1 The functors.

First, we describe the forgetful functor V : RelFact — Rel.

Proposition 3.1.40. There are forgetful functors
Vi RelFact — Rell

(for ij = 00,10, 11) which at a relational factorization R in %e[&actéj and object
X in C gives the following relation on X.

These make the following diagram commute.

RelFact,! Y Rel!

|

RelFact’? V> Rell0

|

RelFact Yo Rel?
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Proof. Consider a relational factorization R on C which takes any morphism
f: X — Y of C to the following diagram.

R(f)r
XZ RO —Y
R R

We define the relation V(R) by setting V(R)(X) to the following relation on X

X —R(1x)A— R(1X><D

R(1x)p
f R{f.fH®
R(1y)k
Y —R(y)A— R(1Y>(I)
R(1y)p

for any morphism f : X — Y of C. Note that if the relational factorization R is
functorial, then so is the relation V(R).

Consider a transformation 7 : R — R’ between relational factorizations on
C. We define the transformation V(7) : V(R) — V(R’) at an object X of C to
be given by the following diagram.

R(1x)® e R'(1x)®
R(x)s  R(lx)s
/
R(1x) '(1x)
R(1x)p X — 1)

Note that if 7 is natural, then so is V(7).

Now, let each V¥ : RelFacty — NRel be the appropriate restriction of V. [

Now we construct a functor in the opposite direction. The construction is
the same as that used to construct a factorization from an Id-presentation in
Proposition 2.3.4.
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Proposition 3.1.41. Consider a category C with pullbacks. There are functors
F7 : Rel — RelFacty

which takes a relation R on C and a morphism f : X — Y in C to the relational
factorization F(R)(f)

TX

e €1
X T X e RY 2Ty
when the relation RY on'Y is denoted as follows.

€0

Y ——=RY

These functors make the following diagram commute.

ERe[ R E)%e[&act

|

Rell? T2 RelFact

|

Rel? 2 RelFact?

Proof. Consider a relation R on C. We define F(R)(f) to be the following
relational factorization of f

X

=
X - X.,x RY 2™y
Ixnf = f7eo

(when RY is denoted as in the statement) where the middle object is the pullback
obtained in the following diagram.

X, % RY —=RY

nf l leo

x—71 .y
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Denote this factorization by the following diagram.

kf

The relational factorization F(R) takes any square {«, 5) : f — g in C to the
following natural transformation F(R){«, ().

Kf
X My Y
Af
« Hg jM<a75> Lﬂ
el Pg /
X' Mgy

where M{a,B): Mf - Mgisax R : X, ,x RY — X', x RY"

Consider a transformation 7 : R — R’ which consists of components 7(X) :
R(X) — R'(X) on each object X of C. Then the transformation 1x x 7(Y) :
X xy RY — X xy R'Y foreach f : X — Y in C assembles into a transformation
F(7) : F(R) - F(R').

If R is functorial, then F(R) will be functorial as well. If 7 is a natural
transformation, then so will be F(r).

Then let F¥ be the restriction of F to 9%[? — ‘ﬁe[&actéj. O

3.1.4.2 The adjunction.

In this section, as in Section 3.1.3.2 above, we restrict ourselves to the case when
the superscript ij in F¥ : Rel — NRelFact? is 11. In this case, the functor F'!
arises as a right Kan extension of V!!. (As in Section 3.1.3.2, analogous results
hold for ij # 11, but they are not readily expressible in the standard language
of category theory.)

Lemma 3.1.42. Consider a category C. The category Rel}' of functorial relations
on C is isomorphic to the category of functors £ : C — C¥ making the following
diagram commute.

c—E-c3

NE

CZ
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Proof. Consider a functorial relation on C: it is a morphism D : C — C™ in the
slice Cat/C as illustrated below.

c—L2.c» c—L.¢c%
C c C?

Under the adjunction (C")* X : Cat/C — Cat/C?, we see that
home e (C, (C)*C¥) = homeg c2(EeC, CY).
And since (C')*C% = Ct x(2 C% =~ 2% ~ ¢ and XC = C, we have that
home,/c(C,C™) = homey e2(C,C¥). O

Notation 3.1.43. For any category C, we will denote the following objects of the
comma category Cat/C? by their domains: C will stand for C' : C — €2, C3 will
stand for C** : C¥ — C?, and C? will stand for 1.2 : C? — C?.

Theorem 3.1.44. Let C be a category with a functorial relation R and with pull-
backs of RX¢, for every object X of C. Then the right Kan extension of R along C'
in Cat/C? is F(R).

c—.c?

Ve
Rl d
%

Cs

Furthermore, F(R)C' =~ R.

Proof. For any morphism f : X — Y, we will denote the components of RY by

€0

Y —a=R(Y)

and the components of F(R) f by the following diagram.

X

X< XwxyRY—— Y

1xnf €1TRY

100



First note that at any object X of C, F(R)C'X is isomorphic to

€0

X RX X

n €1

which is the relational factorization RX, and similarly we see that F(R)C'f ~ Rf
for any morphism f of C. Thus, F(R)C' ~ R. (Note that we could choose
pullbacks along ¢, so that they preserve identities, and this case we would have
F(R)C' = R. For simplicity, we will assume, without loss of generality, that this
is the case in the rest of this proof.)

We want to show that the description of F(R) in the proof of Proposition
3.1.41 is indeed the right Kan extension.

Suppose there is a commutative diagram of the following form.

c—C, 2

| 7

Cs

We will construct a natural transformation 3 : F = F(R) such that 30 C' = «
and show that this (5 is unique.

Denote the components of F'f by the following diagram for any morphism
f: X —>YofC.

Kf
X< Ty y

Af Pf

For every arrow f : X — Y, we have the following diagrams in which all
squares commute. (Both diagrams represent the same information, and each
row of morphisms in the right-hand diagram is an unpacking of the correspond-
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ing object in the left-hand diagram.)

Kf
Ff XTFf —Y
lF<f,1y> ! ) lF<f1y> H
Rly
! —
FC'(Y) = F(ly) VS Fly 5o
| |
€0y
RY Y= = RY
ny €1y
inC® incC

In the right-hand diagram, we can see arrows ks : F'f — X and ayoF{f,1y):
Ff — RY which induce an arrow x¢ x ay o F{f,1y): F'f — X xy RY by the
universal property of X xy RY. All squares in the following diagram commute

Kf
X=————=Ff — Y
lnfxozyoFQc,ly} H
TX

X=X xy RY ——Y

Uxyny f 1Y TRY

so this depicts a transformation ; : F'f = F(R)f of relational factorizations.
Since ky, ay, and F{f,1y) are all natural in f, this assembles into a natural
transformation 5 : F' = F(R).

Whiskering 8 with C' : C — (C? gives a natural transformation with the
following component at any object X of C.

K1y

/\

X = Fly———X
€0

X=—=RX——(——>X

Therefore, 5o C' = a.

To see the uniqueness of 3, suppose there were another natural transforma-
tion v : F = F(R) such that y o C' = a. For each morphism f : X — Y of
C, the components /3; and v, are completely determined by their only nontriv-
ial components B ¢,vse : F'f — X xy RY (recall that ¢ is the middle object
of the relational factorization diagram ), so it is enough to show that these
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two are equal for every f. By the universal property of X xy RY, it is then
enough to show that these coincide when projected to X and when projected to
RY. We have that 7x7v;¢ = mx /3¢ since both squares in the following diagram
commute.

kf

X Ff

| . o] [
X

X“ X xy RY

Now we want to show that mzy Ve = Try Sre. We have the equations

F(R)(f, 1y)B = b1y F{f, 1y)
F(R)f, 1y )y = my F<{f, 1y)

by considering the naturality of 5 and v on the morphism {f,1y): f — 1y, and

since 31, = ay = 71,., we can see that

F(R)(f, y)Br = F(R){f, Iy )vs-

Now the middle component of F(R){f, 1y ) is F(R){f, 1y )® = mgy, so by taking
the component of the above equation at ®, we can conclude that 7ryy;® =
mry By ®. Therefore, g = ~. O

Corollary 3.1.45. If a category C has pullbacks, then F : Rel}' — RelFacty' is a
reflective subcategory with reflector V.

Proof. Proposition 3.1.44 gives an adjunction (C')* 4 F where (C')*F = 1.
Both (C')* and V : RelFacty' — NRel}' take a relational factorization which

atany f: X — Y of C gives the following diagram

w(F)
X M) ——Y
i MU S5

to the relation which at any X of C gives the following diagram
r(1x)

X —\1x)— M(lx)
p(lx)
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and which at any f : X — Y of C gives the following natural transformation of
diagrams.

r(1x)

X —A(lx)é M(lx)

p(lx)

f MCff

Thus, (C))* = V. O

3.1.5 Id-presentations.

In Definition 2.6.3, we defined what it means for a weak factorization system
(L,R) on a category C to have an Id-presentation. This consisted of a model
of Id types on objects in the display map category (C, R) which presents the
weak factorization system (£, R). Explicitly, this consists of a factorization of
the diagonal

X5 1d(X) S X x X

on every object X of C such that
1. ex isin R for every object X of C

2. for every morphism o« : A — X in M, the pullback a*ry, as shown below,

isin L.
. a*Id(X) - Id(X)
LT
SN

foreach ¢ =0, 1.

In this situation (when the weak factorization system (£,R) has an Id-
presentation), the data of the Id-presentation partially defines a factorization
into (£,R). Consider the following relation on any object X of C which we
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obtain by rearranging the factorization of the diagonal X — X x X.

ToEX
X —rx> Id(X)

-
T1EX

For any morphism f : X — Y of C, we can find a lift of f by solving the following

lifting problem.
rf

X 14(Y)

P
A solution to this lifting problem exists since r € £, e € R, and L [JR. Now the
relation on each object of C and chosen lift on each morphism assemble into a
relation on C which we will denote by Id. Then Proposition 2.3.4 states that the

factorization UF(Id) is a weak factorization structure with lifting pair (£, R).

Now we define what it means for a relation on C to be an Id-presentation of
a weak factorization system.

Definition 3.1.46. Consider a category C with finite limits. Consider a relation
R which takes an object X to the diagram below.

€1X
X “nx=R(X)

€0X

Say that R is an Id-presentation if the factorization UF(R) is a weak factorization
structure (whose lifting pair we will denote by (£,R)) such that ¢y x €x :
R(X) — X x X is in R and every pullback of nx for i = 0,1 and any morphism
f: W — X as shown below is in £

F*RX RX

fEnx

\
<N

for every object X of C.

w

105



In this case, we say that R is an Id-presentation of the weak factorization
system [UF(R)] that it represents.

That is, a relation R on a category C with finite limits is an Id-presentation
of a weak factorization system (£, R) just when the data (r, R, ¢y x €;) (using
the notation of the definition above) forms a model of Id types on objects in the
display map category (C, R) which is an Id-presentation of (£, R).

Conversely, a model (r, Id,€) of Id types on objects in the display map cate-
gory (C,R) is an Id-presentation of a weak factorization system (£, R) just when
all (or, equivalently, one) of the relations Id on C which can be constructed from
(r, 14, €) by adding lifts of morphisms are Id-presentations of (£, R).

Thus, we have the following fact.

Proposition 3.1.47. Consider a weak factorization system (L, R) on a finitely
complete category C. There is a relation which is an Id-presentation of (L, R) if
and only if the display map category (C,R) has a model of 1d types which is an
Id-presentation of (L, R).

Note that in the statement of this proposition, the first object (the Id-
presentation relation) contains exactly the same data as the second (the Id-
presentation model of Id types) with the exception that lifts of morphisms are
included explicitly as part of the structure of the relation but are only ensured
to exist by the model of Id types. It will behoove us to carry along these lifts as
structure in our categorical analysis. Thus, in this chapter, we restrict our anal-
ysis to relations which are Id-presentations though we ultimately are interested
in models of Id types which are Id-presentations.

In Section 3.3.2, we will be able to simplify what is required for a relation R
to be an Id-presentation.

3.1.6 Summary and prospectus.

Consider a category C with finite limits. In the preceding sections of this chapter,
we have described the following diagram of categories and functors in which
each square commutes.
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Rll Fll
11 == o 11 — 11
Sact; ——= RelFact, = Rel;

[\ Ull [\ Vll [
10 R 10 F° 10
Sacty /= RelFact,” = Rel,
[ UlO [\ VlO f
00 B 00 F*_ 00
Sact; —— RelFacty” = Rel;
UOO VOO

We are interested in the relationship between type theoretic weak factoriza-
tion structures and Id-presentations of weak factorization systems. The former
are a kind of factorization, so they naturally form full subcategories of the
categories Fact. The latter are a kind of relation, so they naturally form full
subcategories of the categories fRel.

Definition 3.1.48. Let ttQ0FGY be the full subcategory of WFSY spanned by
type theoretic weak factorization structures on C.

Definition 3.1.49. Let Td%res)/ denote the full subcategory of el spanned by
those relations R which are Id-presentations.

Then we are interested in what relationship the subcategories t20F&y and
Idmtesg have in the following diagram.

11 11 VR 11 11
HWFS, —— Fact, —— NRel, < IdPres;

I

VR
tHWFS —— Fact)) — NRely’ < IdPres,’

I

VR
HWFSY —— Fact?) —— Relp’ < IdPresy’
UF

In the next section, 3.2, we describe structure on functorial relations R which
will make the factorizations UF(R) type theoretic, algebraic weak factorization
structures. We also describe structure on relations R which will make the
factorizations UF (R) type theoretic weak factorization structures.

In Section 3.3, we show that given any type theoretic weak factorization
structure W e t20FS", the factorization UFVR (W) is again a type theoretic
weak factorization structure in #0F&" equivalent to the original one, .
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In Section 3.4, we show that any relation R is in IdBres” if and only if it has
the structure described in Section 3.2, and that VRUF(R) is equivalent to R.
Putting these results together, we will have the following result.

Theorem 3.1.50. The functors VR and UF described above restrict to functors
shown below.

HWFS, — - IdPres;
T

HIIFSL == TdPres’
T

HWIGY ——= ﬂ’ IdPresy’

Furthermore, when we apply the proset reflection, these give equivalences.

|VR
[HWFS| = |1dPres,’

[ fii [

HWFSY| =~ B \Id‘Btes

In what follows, we will prove these results for the 00-flavored categories.
But then since both squares in the following diagram commute,

[HWTS, | — |Id£T3tes
[UF|
.

[HWF S | \ IdPresy’

we see that an equivalence [t0FS’| ~ |IdBresy’| will restrict to an equivalence
[HWTFSY| ~ |1dPres,’

Recall that the property of being type-theoretic is one of weak factorization
systems (i.e., one representative weak factorization structure has it if and only
if all do). Thus, the objects of [ttQBFSY| are really type theoretic weak factor-
ization systems. Then we can interpret the above theorem by the following.

Theorem 3.1.51. Any type theoretic weak factorization system has an Id-presentation,

and, conversely, any 1d-presentation generates a type theoretic weak factorization
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system. Thus, the properties of (1) being type theoretic and (2) having an I1d-
presentation are equivalent.

3.2 Type theoretic weak factorization systems gen-

erated from relations.

In this section, we consider a category C with finite limits and a relation R.
In the first subsection, we describe structure on R which will make UF(R) a
type theoretic, algebraic weak factorization structure. We call this a strict Moore
relation structure. In the second subsection we describe structure on R which
will make UF(R) a type theoretic weak factorization structure. We call this
structure a Moore relation structure.

In Section 3.4, we will show that any relation is an Id-presentation of a weak
factorization system (i.e., an object of Id3resy’) if and only if it has a Moore
relation structure. Then the full subcategory of Mel2’ spanned by Moore relation
systems will coincide with TdBres’.

We originally defined the subcategory Id%Bresy’ by referencing the functor
UF : Rel)’ — Facty. The description of Moore relation structures which
follows describes this subcategory more directly, without making reference to
UF. Thus, it will be invaluable in connecting the category Idvesy’ with the
category 0TS, the goal of this chapter.

We are mostly interested in the (plain) Moore relation structures since these
correspond to Id-presentations. These will be described in Section 3.2.2 be-
low. However, first we describe strict Moore relation structures in Section 3.2.1.
As mentioned in the introduction to this chapter, these have already been in-
vestigated in [BG12]. We mention these first because they have many natural
examples, and are thus more readily understandable. By contrast, the only ex-
amples of non-strict Moore relation structures that we know of will come from
the equivalence between them and type theoretic weak factorization systems.
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3.2.1 Strict Moore relation systems.

In this subsection, we consider a functorial relation R which preserves pullbacks.
For any object X in C, denote the image of RX by

€0

X ——RX .

Note that the requirement that R preserves pullbacks is equivalent to the re-
quirement that R does.
For any morphism f : X — Y of C, denote the relational factorization F(R) f
by the following diagram.
Ky
X Ty y

Af Pf

Recall that ) is a copointed endofunctor on C?, and p is a pointed endofunctor
on C?.

In this section, we discuss the structure on R. that will produce a comonad
structure on \ : C2 — C? and a monad structure on p : C?> — C2.

3.2.1.1 Strictly transitive functorial relations.

Definition 3.2.1. Say that a functorial relation R : C — C™ is strictly transitive if

there exists a natural transformation
px : RX x RX — RX
(natural in X) such that:

1. u is a lift of the identity between the following functorial relations (that
is, the following diagram commutes).

R, x R—" R
6()7r0ll617r1 EOllﬁl (3.2.2)
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2. (1¢, R, €, €1,m, 1) is an internal category in [C,C] (that is, the following
diagrams commute).

% % 1x
RLl'RﬂXeoR(l_nR R€1X€0R€1X€OR - R€1X€0R
\ ju/ lp,xl L,u (3.2.3)
R R. xR = R

€17 €

Note that if R is a monic relation, then the existence of ; with the commu-
tativity of the diagram in (3.2.2) says that the relation R(X) on each object X
of C is transitive, and the commutativity of the diagrams in (3.2.3) is automatic.
Thus, the notion of transitivity here is a generalization of the usual one.

Example 3.2.4. Consider the minimal monic relation Min on any category C
introduced in Example 3.1.4 which takes any object X to the following diagram.

1x

<
X —1x>=X .
-
1x

The morphism 1x : X — X for ux makes this relation strictly transitive.

Example 3.2.5. Consider the maximal monic relation Max on any category C
with binary products introduced in Example 3.1.5 which takes any object X to
the following diagram.

™0

X=X xX.

-
Ust

The morphism 7y x mp : X x X x X — X x X for ux makes this relation strictly
transitive.

Example 3.2.6. More generally, consider the relation which takes any object X
in C to the following diagram

X0

X —x=XI!

as in Example 3.1.7.
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Suppose that there a morphism m making the following diagrams commute.

1
e % R S
lz’ Lbi I—m>11+0] Lm mi+ol
ILfl-l-of L Il—l-o]m]l-f—o]l-f-o]
I

Then taking X : X'_x X' — X' for ;1x makes this relation strictly transitive.

For example, in the category Cat, there is such an m when [ is 2 (i.e., the
category generated by the graph 0 — 1) or the groupoid generated by the graph
0— 1.

Example 3.2.7. Consider the category 7 of topological spaces. Let R™ denote
the non-negative reals, and let I'X denote the subspace of XR" x R* consisting
of pairs (p, r) such that p is constant on [r, o). This is called the space of Moore
paths in X, and it is functorial in X. We think of this as the space of paths in X
of finite length.

There is a natural transformation ¢ : X — I'X which maps = € X to the
constant path of length 0 at x. There are natural transformations evg, evy, :
I'X — X which map a pair (p, ) to p(0) and p(r), respectively. These assemble
into a functorial relation T" : 7 — T™.

There is also a natural transformation px : I'X,,_x,, I'’X — I'X which maps
two paths to their concatenation. To be precise, it takes a pair ((p,r), (p,t'))
such that p(r) = p/(0) to the pair (q,s) where s = r + 1/, q|o,] = plp,, and
q()|[r0) = P'(x — r). This makes I" a strictly transitive functorial relation.

This will be revisited and generalized in Section 4.5.

Proposition 3.2.8. Let R : C — C™ be a strictly transitive functorial relation.
Then the functor p : C?> — C? underlies a monad on C? with unit and multiplication
components at an object f : X — Y in C? given by the following diagrams

XLMf MpfiMf

f Py lp? lpf

Y =—=Y Y Y
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where 1 x p: Mpy — M f is the morphism

Ix x py : X px RY  x RY — X ;x  RY.

Proof. We have already seen that the unit square above commutes. The com-
mutativity of the multiplication square above follows from the commutativity of

(3.2.2).

The following diagram displays the unit axioms for the monad.

1x1xn 1xnfx1
XX BY —= X ;x RY x RY <———

I /

X % RY

X % RY

Its commutativity follows from that of the left-hand diagram in (3.2.3).

This diagram displays the associativity axiom for the monad.

Ix1xp

X} RY (% RY % RY =L X ;x RY, x RY

llxuxl leu

X px RY  x RY X px RY

Ixp

Its commutativity follows from that of the right-hand diagram in (3.2.3). O]

3.2.1.2 Strictly homotopical functorial relations.

Definition 3.2.9. Say that a functorial relation R. : C — C™ is strictly homotopical
if there exist natural transformations

dx : RX — R?X
Tx : X X R(x) > RX

(natural in X) such that:
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1. ¢ is a lift of » between the following functors (that is, nn = dn and ney = €0
in the following diagram).

R R
eot % EOL % (3.2.10)

1c ! R

2. 7 is a lift of the identity between the following functorial relations (that
is, ¢,7 = m and 7(1 x n) = n in the following diagram).

le x R(+) — =R

B e

1¢ 1

3. (R,€1,9) is a comonad on C (that is, the following diagrams commute).

R R g RZ
/ la\ j(; l(; (3.2.12)
R (T R2 R—q> R R2 RS R3

4. 7 is a strength for this comonad in the sense that the following diagrams

commute.
1c X R*
lr [ (3.2.13)
R__E >p
R—2 - R2 le x Re % R(1¢ x Rx)
jeoxR! lReg lT LRT (3.2.14)
1C X Rx T R R g R2

The word homotopical is used to describe this functorial relation for the
following reason. Suppose that we extract from the functorial relation R a
notion of homotopy equivalence in the usual way: where two objects X and Y
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are homotopic if there are morphisms f : X - Y, ¢9:Y — X, h: X - RX,
i:Y — RY such that egh = gf, e1h = 1x, €9t = fg, and €;i = 1y. Then the data
given in the above definition provide a homotopy between every X and RX.

Example 3.2.15. Consider the relation Min in Example 3.2.4. Then1x : X — X
for 0x and 7x make this relation strictly homotopical.

Example 3.2.16. Consider the relation Max in Example 3.2.5. Then
Mo XX X7 : XXX —>XxXxXxX

for ox and A : X — X x X for 7y make this relation strictly homotopical.

Example 3.2.17. More generally, consider the relation in Example 3.2.6.
Suppose that there is a morphism d making the following diagrams commute.

T pp Ix1E O] o Ix0U 73 % g2
\ / \\ / jdx] Ld
P47

Then taking X9 : X — (X7)! for 6x and X' : X — X for 7x makes this relation
strictly homotopical.

For example, in the category Cat, there is such a d when [ is 2 (i.e., the
category generated by the graph 7 : 0 — 1) or the groupoid generated by the
graph I : 0 — 1. Let the following diagram denote the graph (7 : 0 — 1)

00 -2 01
10 l]l

102511

Then in either case, d is generated by sending 0/ and /0 to the identity morphism
on(0,and /[1and 1/ to [ : 0 — 1.

Example 3.2.18. Consider the functorial relation T" on topological spaces de-
scribed in Example 3.2.7.

There is a natural transformation dy : '’X — I'?X which takes a pair (p,r)
to the standard path from ¢(p(0)) to (p,r). To be precise, it maps (p, ) to (g, r)
where ¢(t) = (pi,t) € I'’X and py|[o,q = p|[o,) for each t € R".

115



There is a natural transformation 7x : X x I'(x) — I'’X. The space I'(x) is
isomorphic to R*, so it maps a pair (z,r) € X x R* to the constant path at x of
length 7.

These natural transformations make I" into a strictly homotopical functorial
relation.

In the following lemma, we record a natural transformation 7 whose exis-
tence is equivalent to that of 7, but which will make the proof of the following
proposition clearer.

Lemma 3.2.19. Consider a strictly homotopical functorial relation as above. For
any f: X -V, let7;: X ,x_RY — RX be the composite
X px RY 2 X x R« 5 RX.

It makes the following diagrams commute.

X pxe RY X 2L X < RY
/ l% \ \ l% (3.2.20)
X s RX o X RX
om TX6
X jx, RY 7L R2Y X ;% RY —L R(X ;% RY)
l% lReo li’ lR? (3'2°21)
rRX — Ry RX g R2X

Proof. The commutativity of these diagrams is equivalent to that of the corre-
sponding diagrams in (3.2.11), (3.2.13), and (3.2.14). O]

Proposition 3.2.22. Let R : C?> — C™ be a strictly homotopical functorial relation.
Then the functor \ : C?> — C? underlies a comonad on C? where the components of
the counit and comultiplication at each object f : X — Y in C? are given by the
following diagrams
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where the morphism 1 x 7 x ¢ is the composition

1x XT§xd
X X RY ———5 X\ % (RX ppx g RY) = X\ x R(X ;x  RY).

Proof. We have already seen that the counit square commutes. To define 1x x
7 x 0y we make use of the commutativity of (3.2.10) and the left hand sides of
(3.2.20) and (3.2.21). The commutativity of the comultiplication square above is
given by the commutativity of (3.2.10) and the right-hand diagram of (3.2.20)

The following diagrams display the comonad axioms. The commutativity of

X px, Ry <20mm), X, % RIX px RY) 0 e RY
\ 1><7-><6 /
Xfx

follows from the commutativity of the left-hand diagrams in (3.2.12) and (3.2.20)
and the commutativity of

1><7~'f><5y
X px RY

XX R(X px RY)
lef‘fX(SY

le%AX(SXXRY
XX R(X px  RY)

IXR(1x7fxdy)
X o p% (o RIX px ( R(X > RY))

follows from the right-hand diagrams in (3.2.12) and (3.2.21).

3.2.1.3 Strictly symmetric functorial relations.
Definition 3.2.23. Say that a functorial relation R : C — C* is strictly symmetric
if there exists a natural isomorphism

tx : RX - RX
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(natural in X) which is a lift of the identity between the following functorial
relations.

. [{ -

(That is, tn = n, egt = €1, and €11 = €).

R
QL % leo (3.2.24)
Ie

If R is a monic relation, then the definition of strictly symmetric given here
coincides with the usual definition of symmetric.

Example 3.2.25. Consider the relation Min in Example 3.2.4. Then1y : X — X
for 1x makes this relation strictly symmetric.

Example 3.2.26. Consider the relation Max in Example 3.2.5. Then the twist
m X m: X x X —> X x X for 1y makes this relation strictly symmetric.

Example 3.2.27. More generally, consider the relation in Example 3.2.6.
Suppose that there an isomorphism ¢ making the following diagrams com-

N

I—=1

mute.

for n € Z/2. Then taking X¢ : X! — X! for .x makes this relation strictly
symmetric.

For example, in the category Cat, there is such an ¢ when [ is the groupoid
generated by the graph 7 : 0 — 1.

Example 3.2.28. Consider the functorial relation I" on topological spaces de-
scribed in Example 3.2.7.

There is a natural transformation ¢y : I'’X — I'X which takes a pair (p, ) to
the pair (¢, ) where ¢(t) = p(r —t) on [0, 7].

This makes I' into a strictly symmetric functorial relation.

Lemma 3.2.29. Consider a strictly symmetric, strictly transitive functorial rela-
tion R : C — C%, and denote the factorization UF(R) by (), p). Then for every
object X of C, the morphism

RX XU X « X
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has a p-algebra structure.

Proof. We need to show that there is a solution to the following lifting problem.

RX 7RX
A(eoxq)l _ - - jeoxq
)

peo x €1

R(X x X)—='"X x X

RX

X
(€0><€1) €0

We will do this by finding two lifts a and b as illustrated below.

RX RX
_ 7
b/ _ -
neo X 1 xXnex - -
1xn(eo xe1) RX x, RX  x, BRX coxer (+)
a_ - _ 7 \w
RX (vey® o BX x X) — X x X

Let u : R(X x X) - RX x RX denote the universal morphism induced by
the universal property of RX x RX. It makes the following diagram commute.

RX —""0 L RX (RX x RX)
eoxer)” (eoxe€p)

1xu

IXT](onel)J
RX

l(ﬁl X€1)T(RX x RX)

EITR(X x X)

R(X x X) X x X

(E()XE1)><60

Note that the outside square of this diagram is isomorphic to the lower-left
portion of diagram (+). Therefore, 1 x w is the lift a that we seek.
Now we let b : RX  x . RX_ x, RX — RX be the following composite.

€0 €0

RX , x.,RX x RX 2 RX_x_ RX “%RX, x RX ' RX.

€0 €0

This b makes the upper right-hand portion of the above diagram commute.
Therefore, we have found a lift in the original diagram, and shown that ¢; x ¢;

has a p-algebra structure. O

Theorem 3.2.30. Consider a strictly symmetric functorial relation R : C — C*
such that the factorization UF(R) represents a weak factorization system (L, R)
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and such that every morphism
RX 2%, X x X

is in R. Then the class L is stable under pullback along R.

Proof. Consider the following pullback
A Xy X ——

o

X T

where r isin R, and / is in L.

The morphism 7y is in £ if and only if there is a solution to the following

lifting problem.
Axy X225 A, RX
WXj /s/ -7 lp«X ()
XX

We will construct such a lift.

Since / is in L, there is a lift a in the following square.

A2 Ax RY
| e

¢ pad jﬂz
Yy i—Y

Since r is in R, the morphism r x 1y : X x X —» Y x X isin R (as itis a
pullback of r), and then the morphism rey x ¢; : RX — Y x X isin R (as it
is the composition of ¢y x ¢; € R and r x 1x € R). Thus, there is a lift in the
following square.

X * -~ RX
_ 7
)\rl _ b- TeQ X €1

€1 x1

X, X RBY —Y x X

Now let s be the following composition.

arx1x Tx XLy XT A TAXD
X 20X Ax  RY | x, X DXEOTA ¥ RY x AT A, RX

T€D
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This makes the diagram () commute. l

Corollary 3.2.31. Consider a strictly symmetric, strictly transitive relation R on C
such that the factorization UF (R) represents a weak factorization system (L, R).
Then (L, R) is type theoretic.

Proof. By the previous two results, we know that £ is stable under pullback
along R. By Proposition 3.1.38, every object is fibrant. Thus, (£, R) is type
theoretic. O

3.2.1.4 Summary.

We now have the following theorem.

Theorem 3.2.32. Consider a category C with finite limits and a strictly transi-
tive, strictly homotopical functorial relation R : C — C™. Then the functorial

factorization UF(R) is an algebraic weak factorization structure on C.

Proof. Let (), p) denote the functorial factorization of the statement. By Propo-
sition 3.2.22, A\ underlies a comonad, and by Proposition 3.2.8, p underlies a
monad. Thus by Theorem 1.7.2, (), p) is an algebraic weak factorization struc-
ture on C. [

Definition 3.2.33. A Moore relation structure on a category C with finite limits
is a functorial relation R together with the structure described in the definitions
of strictly transitive, strictly homotopical, and strictly symmetric.

A strict Moore relation system on a category C with finite limits is a functorial
relation R which is strictly transitive, strictly homotopical, and strictly symmetric
(i.e., a relation for which a strict Moore relation structure exists).

Then we have the following theorem.

Theorem 3.2.34. Consider a category C with finite limits and a strict Moore
relation system R : C — C™. Then the functorial factorization UF(R) is a type
theoretic, algebraic weak factorization structure on C.

Proof. By the previous theorem, UF(R) is an algebraic weak factorization struc-
ture on C. By Proposition 3.2.31, it is type theoretic. O
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Example 3.2.35. Consider the relation Min on any category C from Examples
3.2.4, 3.2.15, and 3.2.25. Then this generates a type theoretic, algebraic weak
factorization structure on C whose factorization of a morphism f: X — Y is

x % x Ly,

whose left class consists of all isomorphisms, and whose right class consists of
all morphisms.

Example 3.2.36. Consider the relation Max on any category C with binary
products from Examples 3.2.5, 3.2.16, and 3.2.26. Then this generates a type
theoretic, algebraic weak factorization structure on C whose factorization of a
morphism f: X — Y is

X2y xy Wy,

whose left class consists of split monomorphisms, and whose right class consists
of retracts of product projections.

Example 3.2.37. Consider the relation I" on the category 7 of topological spaces
from Examples 3.2.7, 3.2.18, and 3.2.28. Then this generates a type theoretic,
algebraic weak factorization structure on C whose factorization of a morphism
f:X—>Yis

X X ¥ wy TY ™5,

whose left class consists of trivial Hurewicz cofibrations, and whose right class
consists of Hurewicz fibrations (This weak factorization system was first de-
scribed in [Str72] while this particular weak factorization structure was origi-
nally described in [May7s5].)

3.2.2 Moore relation systems.

In this section, we describe the minimal structure that a relation R on a cate-
gory C with finite limits needs to have so that UF(R) is a type theoretic weak
factorization structure. The minimality will be justified by Corollary 3.4.8, and
though we do not give any examples in this section, many can be obtained from
that corollary.

In what follows, we define what it means for a relation to be transitive, ho-
motopical, and symmetric. Note that while the properties required of a transitive
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relation can be easily seen to be a subset of the properties required of a strictly
transitive relation, the definitions of homotopical and symmetric given below
differ more significantly from their strict predecessors.

In what follows, let (), p) denote the factorization UF(R), and let M denote
COD)\ = DOMp.

3.2.2.1 Transitive relations.

Definition 3.2.38. Say that a relation R on C is transitive if there exists a mor-
phism
px : RX %, ,RX — RX

for every object X of C such that the following diagrams commute.

RX % RX ————RX RX 2 RX_x_ RX
Eoﬂollflm GOHQ \ l# (3-2-39)
X X RX

Non-example 3.2.40. Now we can see why the relation I" on the category 7 of
topological spaces is more useful than the relation I on 7 sending every space
X to

X0
X :—XE X/
1
(where [ is the usual interval [0, 1]).
Suppose that this relation is transitive with a p : X7 1 x xo X! — X7 of the
form X™ : X[02 — X191 Then m would have to make the following diagrams

commute for ;: = 0, 1

I-"0,2]

N
I—=0,2] I

where s is the surjection which maps [0, 1] onto [0, 1] identically and [1, 2] onto
the point {1}. These diagrams say that m(0) = 0, m(1) = 2, and sm = 1.
But there is no such continuous function (if there were, m~'(1, 2] would be a
nonempty open set in [ sent to {1} by sm = 1;).
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Proposition 3.2.41. Consider a transitive relation R on C as above. Then for every
morphism f of C, the morphism p; has a p-algebra structure given by

Ixp

Mpy——=Mf

Pk

Y Y

where 1 x p: Mpy — M f is the morphism
Ix x py : X px RY  x RY — X ;x  RY.

Proof. The commutativity of the square in the statement follows from the com-
mutativity of the left-hand diagram of (3.2.39).

It remains to check that the composition of the point with the algebra struc-
ture, (1 x u) o Ap(f), is the identity.

Ix1xney

X px RY X px RY % RY

X ;% RY
The commutativity of this diagram follows from that of the right-hand diagram
in (3.2.39). O

As for the strictly transitive relations of the last section, when a relation R is
monic, our definition of transitivity and the usual definition coincide.

3.2.2.2 Homotopical relations.

The definition of transitive could immediately be seen to be a weaker version
of the definition of strictly transitive. This is not the case for the definition of

homotopical.

Definition 3.2.42. Say that a relation R on C is homotopical if for each object X
of C, there exists an object R°X of C with morphisms
_f
X = R°X —a=RX
¢
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5x : RX — R°X,

and for every morphism f : X — Y, a morphism
Tf . anXCRDY - R(XfXE(]RY>

which make the following diagrams commute.

RX <% R°X - RX RY —“+ RX
RN Lk
X RX 2 - X
X" RX RX -2 . X RX
NGt b N
R°X R°X —= RX R°X - RX
¢
Ixnf o o
X 20X X RY X, % RY

\ i . 1xe;
n(1xnf) l l \

R(X ;x RY) R(X jx RY)—+X ;x RY

where ¢ ranges over 0, 1.

(3.2.43)

(3.2.44)

(3.2.45)

Example 3.2.46. The object R°X will often (as in Proposition 3.4.6) be the
middle object of the factorization of the morphism n : RX — R**X where
R**X is the limit of the diagram below on the left and n : RX — R**X is

induced by the cone below on the right

X< RX2-X X< RX-2-X
lo lo ot o
RX RX RX RX RX
: bl bk
X< RX25X X< RX25X

In the category of topological spaces, this might look like the following. (We
use the relation I here, though we ultimately are interested in the relation T'.

This is because the description involving I is much easier to write down but still

provides intuition to think about I".)
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Let I denote the functorial relation on topological spaces which takes any

space X to the relation
X0
X —x=XI!
Xl
as described in Example 3.1.6.

Let (I x I) denote the boundary of the unit square / x I. Let S denote the
mapping cylinder of the continuous function (7 x I) — I which maps (z,y) to
xz. That is, S is the quotient of I x §(I x I) obtained by identifying the point
(1, z,y) with the point (1, z,y’) for any (x,y), (z,v') in §(I x I).

Then let I°X denote the space X of all continuous functions from S into X.
The morphism 7 : X — [°X is the precomposition with the map S — *. The
projections ¢;, (; : I°X — X! are the precompositions of the inclusions of I into
each of the bottom edges in the illustration above.

There is a continuous function S — I which takes the bottom edges associ-
ated to ¢y and (, and the top vertex above their intersection to the point 0 € [
and maps the top edge and the edges associated to ¢; and (; each homeomor-
phically onto /. Precomposition with this continuous function is the morphism
ox : XTI - I°X.

There is a homotopy equivalence h : S — I? which commutes with the
projections to I*4. Then the composition

o h
X% 1Y = X i YT = (X e Y)Y

is the morphism 7.

Now we can provide some intuition as to why we have switched from consid-
ering R*X to R°X. In a space I'2X, the lengths of the sides are coupled (e.g., for
any v € X, I'eyy has the same length as I'e;~y) but this is not the case for ['° X.
In particular, the middle diagram of 3.2.44 could not be satisfied if "X = ' X.
To explain this from a slightly different perspective, when we obtain R°X in this
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way, the morphism R°X — R*4X is in the right class of the weak factorization
system, giving it better behavior than R?X — R*4X.
This intuition will be given mathematical content when we extract this struc-

ture from any type theoretic weak factorization structure in Proposition 3.4.6.

Proposition 3.2.47. Let R be a homotopical relation on C. Then for every mor-
phism f : X — Y in C, the morphism \; has a coalgebra structure given by

X=X
Ay A%

1x76

Mf—— MMy
where 1 x 70 : M f — MM\y is
Ix x 740y : X px RY — X, o< R(X;x RY).

Proof. The morphism 1y x 7¢dy in the statement is induced from the morphisms
mx : Xpx RY — X and 77(1 x dy) : X, x RY — R(X;x RY) by the universal
property of the pullback X, x R(X ;x  RY) because the following diagram
commutes.

X

/ N
1xneg

X ;% RY X ;% RY

1x6 1xeg
€0

X, X RY —= R(X ;x  RY)

The upper triangle commutes by the properties of the pullback in its domain.
The lower left-hand triangle commutes because of the commutativity of the
middle diagram in (3.2.44). The lower right-hand triangle commutes because of
the commutativity of the right-handle diagram in (3.2.45)

The coalgebra square in the statement can be written more explicitly as

X X
1xnf jlxn(lxm’)
1x71d
X px RY 22X ox R(X px, RY)
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The commutativity of this square follows from the commutativity of the outside
of the following diagram by the universal property of the pullback in the lower
right-hand corner.

X X X

llxm‘ llxnf len(lxnf)
1x0 IxT

X< RY —= X, < RY —= X x R(X ;x  RY)

The left-hand square above commutes because the left-hand diagram of (3.2.44)
commutes. The right-hand square commutes because the left-hand diagram of
(3.2.45) commutes.

Now it remains to check that the copoint composed with the coalgebra is the

identity.
X X X
bbb
My 1x78 M) PAf My
v

We have already seen that the two squares in this diagram commute. The
composition (pAr)(1 x 76) is equal to the composition of the top and right sides
of the diagram below.

1x6 1x7

X px RY —= X < RY —= X x R(X ;x_ RY)

\KA lqm

X % RY

The commutativity of the left-hand triangle above follows from the commutativ-
ity of the right-hand diagram in (3.2.44). The commutativity of the right-hand
triangle above follows from the commutativity of the right-hand diagram in

(3.2.45). O]

3.2.2.3 Symmetric relations.

Definition 3.2.48. Say that a relation R on C is symmetric if there exist mor-
phisms
Vx . RXEOXEORX — RX
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for every object X of C such that the following diagrams commute.

RX % RX ———— RX RX X% RX  x, RX
617T0ll617’(’1 eollﬂ \ l,, (3249)
X X RX

This might look very different from the strict symmetry defined previously.
But notice that if one takes 1y : RX — RX to be the following composite,

RX 29 RX « RX % RX

€0 €0
then . is a lift of the identity, as displayed in the following diagram.

RX - RX

il i

X=X

(That is, tn = n, egt = €1, and €11 = €).
Thus, v begets a more familiar symmetry, .. However, we need the full
strength of the morphism v to prove the following lemma.

Lemma 3.2.50. Consider a symmetric, transitive relation R on C and denote the
factorization UF(R) by (), p). Then for every object X of C, the morphism

RX X9, X x X
has a p-algebra structure.

Remark 3.2.51. Note that the following proof for this Lemma is identical to that
for the strict version (Lemma 3.2.50) except that here we define b to be v(1 x )
instead of (v x 1)(1 x p).

Proof. We need to show that there is a solution to the following lifting problem.

RX = RX
)\(60><61)l _ - - €0 X€1
RX %o ROX x X 20X o X
60><€1) €0

129



We will do this by finding two lifts a and b as illustrated below.

RX RX
_ 7
IL _ -
nep X 1 xXneq - -
1x7(eo xe€1) RX x . RX x, RX coxer (+)
E - 7 \Wﬂ
RX ()X RIX % X) X x X
€0 X€1 €0 €1

Let u : R(X x X) - RX x RX denote the universal morphism induced by
the universal property of RX x RX. It makes the following diagram commute.

RYX 1xneg Xner RX(eoxel)X(60X€0)(RX X RX)
1xn(eoxg1)l xu l(EIXEI)W(RXxRX)
RX (e ROX % X) — 55 ¥ X
egxe1) e

Note that the outside square of this diagram is isomorphic to the lower-left
triangle of diagram (+). Therefore, 1 x u is the lift a that we seek.
Now we letb: RX  x ., RX_ x, RX — RX be the following composite.
RX % RX x RX =% RX x, RX % RX.

€0 €0

This b makes the upper right-hand portion of the above diagram commute.
Therefore, we have found a lift in the original diagram and shown that ¢, x ¢;
has a p-algebra structure. O

Theorem 3.2.52. Consider a symmetric relation R on C such that the factoriza-
tion UF(R) represents a weak factorization system (L,R) and such that every
morphism

RX &L X x X

is in R. Then the class L is stable under pullback along R.
Proof. The proof for this is identical to that for Theorem 3.2.30. O

Corollary 3.2.53. Consider a transitive, symmetric relation R on C such that the
factorization UF(R) represents a weak factorization system (L, R).
Then (L, R) is type theoretic.
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Proof. By the previous two results, we know that £ is stable under pullback
along R. By Proposition 3.1.38, every object is fibrant. Thus, (£, R) is type
theoretic. N

3.2.2.4 Summary.
Now we have the following theorem.

Theorem 3.2.54. Consider a transitive and homotopical relation R on a category

C with finite limits. Then UF(R) is a weak factorization structure.

Proof. Let (), p) denote the factorization of the statement. By Proposition 3.2.47,
every morphism in the image of A\ has a A-coalgebra structure, and by 3.2.41,
every morphism in the image of p has a p-algebra structure. Then (), p) is
weakly algebraic, so Proposition 1.4.7 says that (A, p) is a weak factorization
structure. [

Definition 3.2.55. A Moore relation structure on C is a relation R together with
the structure given in the definitions of transitive, homotopical, and symmetric.

A Moore relation system on C is a relation R together which is transitive,
homotopical, and symmetric (i.e., a relation for which there exists a Moore
relation structure).

Now we have the following theorem.

Theorem 3.2.56. Consider a Moore relation system R on a category C with finite
limits. Then UF(R) is a type theoretic weak factorization structure.

Proof. By the previous theorem, UF(R) is a weak factorization structure. Then
by Corollary 3.2.53, UF(R) is type theoretic. O

3.3 Finding relations to generate type theoretic weak

factorization systems.

In this section, we consider a type theoretic weak factorization structure W
on a category C with finite limits. In the first section, 3.3.1, we show that the
factorization UFVR (W) is again a weak factorization structure equivalent to W
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(Corollary 3.3.6). In the second section, 3.3.2, we show that the relation VR(V)
is an Id-presentation of [UFVR(W)| = [W] (Theorem 3.3.10). Combining
these two results, we will have shown that any type theoretic weak factorization
system has an Id-presentation.

3.3.1 The main result.

Consider any type theoretic weak factorization structure ¥ on a category C with
finite limits. Let (£, R) denote the lifting pair underlying W'.

Our aim in this section is to show that UFVR(IV) is equivalent to V.
However, we prove a slightly more general result which will become useful later
(in Lemma 3.3.9, Proposition 3.4.6, and Proposition A.1.5).

To that end, consider any relation R with the following components at each
object X of C

€0x

X —x>=RX
e1x

such that each ny : X — RX isin L and each ex = ¢y x 61x : RX — X x X is
in R. (We have in mind the relation VR (W) for our main result.)

Now let (A, p) denote the factorization UF(R). Recall that for morphism
f : X — Y, this factorization gives

XM My

where M f is the pullback X xy RY, where A, is 1y x ny f, and py is e;y gy (as
described in Proposition 3.1.41).

Now we show that UF(R) is a weak factorization structure equivalent to V.
For this, we need to show that (1) A-alg = £, (2) p-coalg = R, (3) A(f) € L,
and (4) p(f) € R for every morphism f of C. These facts are all relatively
straightforward to show except (3) that \(f) € £ which appears as Proposition
3.3.4.

The hypothesis that 1 is type theoretic is integral to the proof below. In
Lemma 3.3.1, where we show fact (4), we need every object in IV to be fibrant.
In Lemma 3.3.2, which is used to show fact (3) in Proposition 3.3.4, we need £
to be stable under pullback along R.

Lemma 3.3.1. For any morphism f of C, the morphism p(f) is in R.
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Proof. Note first that 7y : X x Y — Y and 1x X € : X x RY — X xY arein
R because they are pullbacks of morphisms hypothesized to be in R.

XxY——X X x RY ——RY
- _|
lﬂy l! llxxel j€0><€1
! fxly
Y * XxY——=Y xY
Since p(f) is the composition of these two maps, it is also in R. O

Lemma 3.3.2. For any morphism f in R, the morphism A(f) is in £,

Proof. The morphism ), is a pullback of € £ along f € R,

X ;x RY RY
P
X Y €0
X ! Y
and since (£, R) is type theoretic, £ is stable under pullback along R. O]

Proposition 3.3.3. There are equalities £ = \-alg and R = p-coalg.

Proof. Consider a morphism f in p-coalg. Because f is a p-coalgebra, it is a
retract of p(f). By Lemma 3.3.1, p(f) is in R. Since R is closed under retracts,
fisin R.

Now consider a morphism f in R. Since A; is in £ by Lemma 3.3.2, A\; has
the left lifting property against f. Therefore, f has a p-coalgebra structure and
is in p-coalg.

Thus, R = p-coalg.

Now consider ¢ € L. Since ¢ has the left lifting property against R, it has
the left lifting property against p, in particular (Lemma 3.3.1). Thus it has a
A-coalgebra structure, and so is in A-alg.

Now suppose that ¢ € \-alg. Since ¢ has a A-coalgebra structure and any
r € R = p-coalg has an p-algebra structure, ¢ has the left-lifting property against
any such r (Proposition 1.4.3). Thus, ¢ is in YR = L.

Therefore, £ = X-alg. O
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Now we have established that (), p) = (£,R) and is thus a lifting pair. It
only remains to be seen that (), p) is truly a factorization into this lifting pair.
We have already showed that any p(f) is in R, and we now show that A(f) is in
L for any morphism f of C.

Proposition 3.3.4. For any morphism f of C, the morphism \(f) is in L.

Proof. We need to show that A\(f) has a A-coalgebra structure, or that, equiva-
lently, there is a solution to the following lifting problem.

A2 f

X XX R(X px  RY)
As 7 jpr
X xRY =———X ;% RY

First we define a new morphism p : RY'_ x, RY — RY. Note that ney x 1 :
RY — RY . x, RY isin L since it is a pullback of a morphism in £ along a
morphism in R, as shown below.

RY  x . RY

A
\Rl}f <« \Y

Then, we define 1 to be a solution to the following lifting problem.

RY

RY RY
_ 7
negx 1 _ - € X€1

€EQTTQ XE1TL
RY  x RY 29Ty xy

Now, we refer to figure Figure 3.1 on page 133. Since p(f) is in R, we know
that Ap(f) is in L. Therefore, there is a lift o as illustrated in the figure.

Leto': X;x RY — R(X;x RY)bethe composite R(1x x p)o(1xxnfx1gy)
— that is the composite from the bottom left to top right of the diagram in
Figure 3.1. Then a rearrangement of Figure 3.1 produces the commutative
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(A% x)

T3x 03

werderp Suyry :1°€ aIndig

(AXXT) X (flix XT)

N

(X XT)

o AY

cwXG\wmokak

v (AU X KT XXT)x (Tolyx AT XXT)

-
-
~
-

-

\wmowxﬁw\wmokak

~

Talt x \wﬁxvmﬂnnxm\&

T3x 03 \M
~
\\
~
\\
N\

15 0 f (Tolix AU XX )l
X XY X XY

(Jlox XY=/l

R [lix XT

Jluxt

A= x

Fluxi=fy

A x! x
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diagram below, and 1x x ¢’ is our desired lift.

YT X, %, R(X ;% RY
Lx xn(1x xnf) A eo ( e )
/\fllmf oo PAF=EITR(X X RY)
X px RY X px RY
Therefore, \; is in L. ]

We put the preceding results together into the following theorems.

Theorem 3.3.5. Consider a type theoretic weak factorization structure W on a

category C with finite limits. Consider a relation R on C which has components

€0X

X —nx=RX,
€1X

at each object X of C such that each nx is in the left class and each eqx x €1x :
R(X) — X x X is in the right class of this weak factorization structure.

Then the factorization UF(R) is a weak factorization structure equivalent to
w.

Proof. Let (A, p) denote the factorization UF(R). By Lemma 3.3.1 and Propo-
sition 3.3.4, (A, p) is weakly algebraic. Thus, by Proposition 1.4.7, it is a weak
factorization structure. By Proposition 3.3.3, it is equivalent to WV O

The following corollary is the main result of this section.

Corollary 3.3.6. Consider a type theoretic weak factorization structure W on a
category C with finite limits. The factorization UFVR(W) is a weak factorization
structure equivalent to W.

Proof. We need to show that the relation VR (W) can be substituted for R in the
statement of the previous theorem, 3.3.5. Let (A", p") denote the factorization
of W. Then (in the notation of the previous theorem, 3.3.5) 1y is \" (Ax) and ex
is p(Ax), so these are in the left and right class, respectively, as required. [

136



The following corollary will become a useful technical device (in Proposition
3.4.6) and is the reason that we proved Theorem 3.3.5 in more generality than
needed for Corollary 3.3.6.

Corollary 3.3.7. Consider a type theoretic weak factorization structure W on a
category C with finite limits. Consider a relation R : R — C on an object Y of C
with the following components

€0y

Y —m=RY,

-
€1y

such that ny is in the left class and egy x €1y : RY — Y x Y is in the right class of
W. (Note that R is a relation just on Y, not on the whole of C.)
Then for any morphism f : X — Y of C, in the following factorization

1xnf

X~ X x,RY T2y

the morphism 1 x nf is in the left class, and e;mRy is in the right class of W.

Proof. Consider the relation VR(IW). We construct a new relation S which
coincides with VR (W) everywhere except at Y. So set S(X) = VR(W)(X)
for every object X # Y and set S(Y) = R. Then a lift of any morphism with
domain or codomain Y can be extracted from the weak factorization structure
W. That is, a lift of any morphism f : X — Y can be obtained as a solution to
the following lifting problem.

X

Ta(y)
€0 X€1

Id(X)f 0 Wy

A lift of any morphism ¢ : Y — Z can be obtained analogously.

The relation S satisfies the hypotheses of Theorem 3.3.5 so UF(S) is a
weak factorization structure equivalent to W. But UF(S) sends a morphism
f : X — Y to the factorization in the statement. Thus 1 x 7 f is in the left class
and e,y is in the right class of V. O

Example 3.3.8. Given any Cisinski model structure (C, F,W) on a topos M
([Ciso6]), we claim that the weak factorization system (C n W n Mz, F n Mx)
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restricted to the full subcategory M » of fibrant objects (Corollary 1.5.4) is type
theoretic.
Note thatif f : X - Yisin Fn Mzrand g: Z7 — Y is in Mx, then the
pullback square
XxzY—>7
7k

x—' .y

is contained in M » (since g* f is a fibration, the composition o g*f : X x5 Y —
7 — = is a fibration). Thus, any pullback along a fibration in M exists and
coincides with that in M.

For this weak factorization system to be type theoretic, all its objects must
be fibrant, which we have satisfied by construction, and C n WW n Mz must be
stable under pullback along F n M£.

In a Cisinski model structure, C is precisely the class of monomorphisms, so
it is stable under pullback (along all morphisms) in M. Then, in particular, it is
stable under pullback along F n Mz in M£.

A standard result of model category theory says that YW n M # is stable under
pullback in M = (see [Bro73], §1, Example 1 and §4, Lemma 1).

We conclude that C n W n M # is stable under pullback along F n M, and
the weak factorization system (C n W n Mz, F n M) is type theoretic.

Thus, we find many examples of type theoretic weak factorization systems,
including those in the categories of Kan complexes ([Qui67]), quasicategories
([Joyo8]), and fibrant cubical sets ([Ciso6]).

3.3.2 Id-presentations.

In this section, we can now clarify what it means for a relation R to be an
Id-presentation.
We have the following simplifying result.

Lemma 3.3.9. Consider a relation R on a category C such that UF(R) is a type
theoretic weak factorization structure. Denote the components of R(X) for any
object X of C by the following diagram.

€0x

X —nx>= RX

-
€1Xx
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Then R is an Id-presentation of the weak factorization system [UF(R)] if
and only if egx X €1x : RX — X x X is in the right class for each object X.

Proof. Let (), p, £, R) denote the weak factorization structure UF(R).

Suppose that R is an Id-presentation. Then by definition, we must have that
each gy x e1x : RX - X x X isin R.

Conversely, suppose that each ¢yx x ¢;x : RX — X x X isin R. Then it
remains to show that each f*7y, as displayed in the diagram (=) below, is in L.

F*RY RY

Xfy ‘ YV €iv (+)
~ N\

Note that when ¢ = 0 in the diagram () above, the morphism f*ny is

isomorphic to Ay (i.e., it has the same universal property as 1x x nyf : X —
X xy RY). Thus, it must be in L.

There is an involution / on PRel” which sends R(X)e; to R(X)e;4; for any
ReNRel?’, X € C,and i € Z/2 (and keeps all else constant). Then I R satisfies the
hypotheses of Theorem 3.3.5, so it generates an equivalent weak factorization
system which we will denote by (—\, —p, £, R). Now when i = 1, the morphism
f*ny in the diagram (=) is isomorphic to —\y, so it is in L.

Therefore, every f*ny in the diagram (=) is in £, so R is an Id-presentation
of this weak factorization system. O

Now combining Corollary 3.3.6 with this lemma, 3.3.9, we see the following.

Theorem 3.3.10. Consider a type theoretic weak factorization structure W on a
category C with finite limits. The relation VR(W) is an Id-presentation of the
weak factorization system [W].

Thus, every type theoretic weak factorization system has an Id-presentation.

Proof. By Corollary 3.3.6, VR (W) generates a type theoretic weak factorization
structure UFVR(IV) equivalent to 1. For any object X of C, the morphism

VR(W)Xe) x VR(W)Xe; : VR(IW)XP - X x X
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is the right factor of the morphism A(X) in the factorization W. Thus, it is in
the right class of the weak factorization system. Then this is an Id-presentation
of [IW] by Lemma 3.3.9. O

Corollary 3.3.11. The functor VR : Factd’ — Rel2 restricts to a functor VR, :
WIS — IdPresy’, and the composition [UFVR]| : [HIFGSY| — [HWFSY|

is isomorphic to the identity functor.

Proof. By the previous theorem, 3.3.10, all objects in the image of VR : 203G —
Rel2 are Id-presentations. Thus, this functor restricts to VR : t{UF&SY —
IdPresy .

By the previous theorem again, for any object W e tH0F&?°, we have that W/
is equivalent to UFVR(WW). Thus, they are isomorphic as objects of [tQ0F&S|.
Since |0FGY’| is a proset, these isomorphisms assemble into a natural trans-
formation 1 ~ [UFVR|. O

Example 3.3.12. Consider Example 3.3.8. Then given a Cisinski model structure
(C, F,W) on a topos M, the weak factorization system (C n W N Mz, F n Mgx)
has an Id-presentation. In particular, the weak factorization systems in the
category of Kan complexes, the category of quasicategories, and that of cubical
sets have Id-presentations.

3.4 Relations which generate type theoretic weak

factorization systems.

In this section, we tie up the preceding sections by showing that a relation R on
a category C with finite limits is a Moore relation system if and only if it is an
Id-presentation.

We can immediately see from our previous results that any relation R which
underlies a Moore relation system is an Id-presentation of the weak factorization
system it generates.

Proposition 3.4.1. Consider a Moore relation system R on a category C with finite
limits. Then R is an 1d-presentation.

Proof. By Theorem 3.2.56, R generates a type theoretic weak factorization struc-
ture UF(R). By Lemma 3.2.50, every RX ¢, x RXe¢ is in the right class. Then
by Lemma 3.3.9, this is a Id-presentation of [UF(R)]. O
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Now we prove the converse: that any Id-presentation is a Moore relation
system.

In the following results, we consider a category C with finite limits and a
relation R on C which at an object X gives the following diagram.

€0X

Cox
X Znx= RX,
Silie
€1Xx

We let (), p) denote the factorization UF(R).

Proposition 3.4.2. Suppose that R is an Id-presentation of a weak factorization

system. Then R is transitive.

Proof. For any object X of C, we let ux be a solution to the following lifting

problem.
RX = RX
)\EIL /'LL/X/ -7 LEOXEI
RX  x. RX X x X
EQTTO XE1TTL
This makes R into a transitive relation. O

Proposition 3.4.3. Suppose that R is an 1d-presentation of a weak factorization
system. Then R is symmetric.

Proof. For any object X of C, we let vx be a solution to the following lifting
problem (where 7 : RX_ x RX — RX_x [RX is the standard twist involution).

RX = RX
T)\eol /V/)(// ” Leoxel
RXEOXQ)RX €170 X €17 X X X
This makes R into a symmetric relation. O

Theorem 3.4.4. Suppose that a relation R on a category C with finite limits is an
Id-presentation. Then UF(R) is a type theoretic weak factorization structure.

Proof. By Proposition 3.4.3, R is symmetric. Then by Proposition 3.1.38 and
Theorem 3.2.52, UF(R) is type theoretic. O
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Corollary 3.4.5. Consider a category C with finite limits. The functor UF :
Rell’ — Factd restricts to a functor UF : IdPresy’ — HATFS.

Proof. The previous theorem, 3.4.4, tells us that every object in the image of
UF : IdPresy’ — Fact? is in the full subcategory t20FSL . Thus, this functor

restricts to UF : Idresy’ — tUFSL . O

Proposition 3.4.6. Suppose that R is an Id-presentation of a weak factorization

system. Then R is homotopical.

Proof. Let R**X denote the limit of the following diagram in C.

X< px -9 . ¥

L

RX RX

L

X< px_9 .Y

There is a morphism u : RX — R**X which is induced by the following cone.

X< px -2 . ¥

-

RX =—RX=—7=RX

b

X< px_< .Y
Now we factor v : RX — R**X.
RX 2% Mu 25 R¥AX

Let R°X denote Mu, and let the following diagram denote the cone correspond-

ing to p,.
X< Rpx_9 . ¥

T

RX < Rpox . RX

X< Rx -2 . X
Note that the object R°X is defined to be the pullback RX ,x  R(R*'X).
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Now we let 0x : RX — R°X be a solution to the following lifting problem.

X M ReX

7
5)( — -
n -~ PuEEOXﬂ XCox¢1

R*X

_—
neg X 1xnegx1

Forany f : X — Y, we need to find a solution to the following lifting problem
in order to define 7 : X, ,x . R"Y — R(X ;x RY).

n(1xnf)

X

R(X ;xRY)

1><)\u’l7f /Tf/ -7 - Leoxel
anxCORu}amngfxeoRY) x (X ;x ., RY)

Since R is an Id-presentation of (£, R), we know that the right hand map
above, ¢ x €1, is in R. Thus, we need to show that 1 x \,nf isin L.

To see this, first observe that (;, x (; : R**Y — RY x RY isin R, since it is
given by the following pullback.

RX“lj Loxa RY x RY
lCOXCl lsoxgxmxgl
RY x RY 220X % v o Yy x Y x Y

The right-hand map in the above diagram is in R since it is the product of two
maps in R, and thus its pullback, (, x (i, is also in R. Then the composition
(o x C1)pu : RPY — RY x RY, which we also denote by (, x (3, is in R.

Thus, the following is a factorization of the diagonal Agy into (£, R).

Au CoxC1

RY RY RY x RY
By Corollary 3.3.7, in the following factorization of nf : X — RY,
IxAunf o G
X 22 x % RY S RY

the morphism 1 x A\,nf isin L.

Thus, we obtain a lift 7y as above.
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Then 7 and 6 make R into a homotopical relation where the diagram
n —>60
X — R X ——>RX
¢

of Definition 3.2.42 is given by the diagram

Aun i>-
X —R°X > RX
¢o

that we have defined here. O]

Thus, we have the following theorem.

Theorem 3.4.7. Consider a relation R on C. It is an Id-presentation of a weak
factorization system if and only if it is a Moore relation system.

Proof. By Proposition 3.4.1, a Moore relation system is an Id-presentation of the
weak factorization system it generates.

By Propositions 3.4.2, 3.4.3, and 3.4.6, an Id-presentation of a weak factor-
ization system is a Moore relation system. O

Now we can restate Theorem 3.3.10 in the following way.

Corollary 3.4.8. Consider a type theoretic weak factorization structure W. Then
the relation VR(W) is a Moore relation system which generates the weak factor-
ization system represented by W.

In particular, every type theoretic weak factorization system can be generated

by a Moore relation system.

Proof. This is Theorem 3.3.10 with ‘Moore relation system’ substituted for ‘Id-
presentation’ as justified by Theorem 3.4.7. O

Example 3.4.9. Consider Example 3.3.8. Then given a Cisinski model structure
(C, F,W) on a topos M, the weak factorization system (C n W N Mz, F n Mgz)
is generated by a Moore relation system. In particular, the weak factorization
systems in the category of Kan complexes, the category of quasicategories, and
that of cubical sets are generated by Moore relation systems.
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To conclude this section, we show that [VRUF| : |IdBres2’| — |TdPresy’| is
isomorphic to the identity functor. We have shown that [UFVR]| : [t20F&%’| —
|ttQﬁ$620| is also isomorphic to the identity functor (Corollary 3.3.11). Thus,
this will show that |VR| and |[UF| form an equivalence |IdJtes>’| ~ [t20FSY).

Proposition 3.4.10. The functor [VRUF| : |[IdPres?’| — |IdPresl’| is isomorphic
to the identity functor.

Proof. We need to provide an equivalence between any R in Id%Bresp’ and
VRUF(R). Since |IdBresy’| is a proset, this will automatically assemble into a
natural isomorphism 1 =~ [VRUF|.

As usual, let RX be denoted by the following diagram for any R in Idfresg’
and any X in C.

€0x

X —nx>= RX
€1X

Then VRUF(RX) gives the following diagram

mop(Ax)
X —Aax)— Xy x R(X x X)
m1p(Ax)

where (J, p) denotes the factorization UF(R).

Now a morphism R — VRUF(R) consists of a natural transformation
R(X) — VRUF(R)(X) at each X, as displayed below, which, in turn, con-
sists of the identity on X and a morphism 7x : RX — X \x, R(X x X).

€0X

X X RX
€1x :
|
|
mop(Ax) WI,
X —MAx)— XAXEOR(X x X)
m1p(Ax)
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But we can obtain the morphism 7y as a lift in the diagram below.

X 22 ¥ % R(X x X)

T - 7
’7] /X/ LP(AX)
Z X x X

€Q X €1

since 7 is in £ and p(Ay) is in R.
Similarly, we can get a morphism VRUF(R) — R by solving the following
lifting problem for each object X.

X i - RX

—
—

/\(AX)L _ - €p X €1

—

X % R(X % X)—= X x X

p(Ax)

These lifts exist since A(Ax) isin £ and ¢, x ¢; is in R. O

3.5 Summarizing theorems.

In Section 3.1, we defined the following diagram of categories,

11 1n_R_ nF_ 11 11

HWFS, —— Fact, —= RelFact, = NRel, <— IdPres,
| I |

ttﬂﬂ%@éo s Fact %) RelFact’ # %e[éo -~ Id‘,BteséO
| I |

HWFSY — Fact)) —— RelFacty’ == Reld < IdPresp’
U A%

and showed that the functors in the top row enjoy certain universal properties.

In Section 3.2, we defined (strict) Moore relation systems. We showed that
strict Moore relation systems generate type theoretic, algebraic weak factor-
ization systems, and that Moore relation systems generate type theoretic weak
factorization systems.

In Sections 3.3 and 3.4, we showed the following theorem.
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Theorem 3.5.1. Consider a category C with finite limits. The functors VR and
UF described above restrict to functors shown below.

HWFS, — - IdPres;
[T

HWFS — e TdPres,’
T

VR
t&meoo — IdiBtes

Furthermore, when we apply the proset functor, these give equivalences.

[VR|
[HWFS| —= |1dPres,’

[

[HWF S \ \ IdPresy’

Proof. The fact that VR and UF restrict to functors HQ0FS2" < IdPresy’ is
proven in Corollary 3.3.11 and Corollary 3.4.4. Then consider an object or
morphism X of t2UFSY. We have just seen that VR(X) € Tdres’, and we
know VR(X) € %elg (see Propositions 3.1.31 and 3.1.40). Since Idmtesg is
the intersection of IdPresd” and MRel in Rel?’, we see that VR(X) € IdPresy.
Therefore, VR restricts to a functor t20§6; — IdPresy for ij = 00,10, 11.
Similarly, UF restricts to a functor IdBtesy — t2UFSY for ij = 00, 10, 11.

The fact that |VR/| and |[UF| give an equivalence [tQ0FGSY’| ~ |IdPresy’
is proven in Corollary 3.3.11 and Proposition 3.4.10. Since both squares in the
following diagram commute,

|VR\
[HWFS| = |1dPres,’
Y[ |UF\ [
VR
|t&n@6°0| = |1dq3tes
we see that this restricts to an equivalence [t20FS | ~ |IdPresy’|. O

We then interpret this in the following theorem.
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Theorem 3.5.2. Consider a category C with finite limits. The following properties
of any weak factorization system (L, R) on C are equivalent:

1. it has an Id-presentation;

2. it is type theoretic;

3. it is generated by a Moore relation system;

4. (C,R) is a display map category modeling . and 14 types.

Proof. The equivalence between (1) and (3) appears as Theorem 3.4.7.

That (2) implies (1) is Theorem 3.3.10.

That (3) implies (2) is Theorem 3.2.56.

By Proposition 2.6.1, (2) implies that (C, R) is a display map category model-
ing > types. By Proposition 3.1.47, (1) is equivalent to (C, R) modeling Id types
on objects. Then by Proposition A.1.5, this is equivalent to (C,R) modeling Id
types. Thus, the combination of (1) and (2) is equivalent to (4). O

Theorem 3.5.3. Consider a category C with finite limits and a weak factorization
system (L, R) satisfying the equivalent statements of the preceding theorem, 3.5.2.

If (C,’R) models pre-I1 types, then it models II types. In particular, if C is locally
cartesian closed, then (C,R) models II types.

Proof. By the previous theorem, 3.5.2, (£, R) is type theoretic. Therefore, by
Proposition 2.6.7, (C, R) models II types. O
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Chapter 4

Convenient categories of
topological spaces.

In this chapter, we find type theoretic weak factorization systems in convenient
categories of topological spaces. In the sections leading up to the final one, we
generalize the construction of compactly generated weak Hausdorff spaces to
obtain a large class of convenient categories of topological spaces. In the final
section, we then construct strict Moore relation structures in these categories
and in the topological topos. By Theorem 3.2.34, this will generate type theoretic
weak factorization systems in these categories.

In the first section, we review the construction of a coreflective hull of a
subcategory. The results of this section belong to folklore. In the second section,
we apply the results of the first section to the category of topological spaces.
Accounts of the results of this section (with the exception of Proposition 4.1.22,
which we believe to be original) abound; we were most influenced by [Vogy1].
In the third section, we generalize the construction of the weak Hausdorff reflec-
tion. We believe that the results of this and the following sections are original in
their generality. In the fourth section, we characterize exponentiable morphisms
in these categories, generalizing the results of [Lew85]. In the last section, we
construct strict Moore relation structures in categories which contain a certain
subcategory of the category of topological spaces. This produces models of 3> and
Id types in most of the categories defined in this chapter and in the topological
topos.
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4.1 The coreflective hull of a subcategory.

In this section, we consider a category C which may not be cartesian closed but
which contains a collection BB of exponentiable objects. Here we recount how one
can use these exponentiable objects to obtain a cartesian closed ‘approximation’
— precisely, a coreflective subcategory — of C.

In the sections that follow, we will apply this theory to the case where C is the
category 7 of topological spaces. Letting B be the category of compact Hausdorff
spaces, we recover the classical recipe for the category of compactly generated
spaces. Letting 53 be the category spanned by the disks {D,, = [0,1]" | n € N},
we obtain A-generated spaces.

Now fix a bicomplete, concrete category C whose underlying set functor
U : C — Set is represented by the terminal object and preserves colimits. We
will assume that C is equipped with a choice of colimit for each diagram.

Also fix a full subcategory I : B — C. We require that the colimits displayed
in (4.1.1) exist in C, which is not guaranteed by the cocompleteness of C unless B
is small. In practice, either 3 will be small or B and C will satisfy the hypotheses
of Proposition 4.1.3.

4.1.1 The comonad.

Consider the left Kan extension of / along /.
B-—1-c

Lan;
/

1

C

This left Kan extension can be defined point-wise as
LanII(X) = COhmfeleDOMx(f) (4.1.1)

where B | X is the comma category whose objects are morphisms f : B — X
of C such that B € B and where pomy : B | X — C is the functor which sends
an object f: B — X in B | X to its domain B in C.

We will denote Lan;I(X) = colimseg xDoMx (f) by X to simplify notation.
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There is a canonical cocone with vertex X over the diagram pomy given by
the natural transformation whose component at f : B — X in Dy is f itself.
This induces a universal morphism

Uxi)?—>X

natural in X.

Proposition 4.1.2. For every object X of C, the morphism uy : X > Xisa

monomorphism.

Proof. Since U is faithful, it reflects monomorphisms. We show that Uuy is an
injection. Since U preserves colimits, Uu is the universal arrow induced by the
cocone on UpoMy with vertex U X.

Suppose there are two distinct points a,b € U X. These are monomorphisms
a,b:x — X in C. Each of these points must be in the image of some set in the
cocone under UX. That is, there are some objects f : A > X,g: B — X in
B | X and points @' : * — A, I/ : + — B such that {;a’ = a, {,b' = b (where
(s : DOMx (f) — X is the appropriate leg of the colimiting cocone).

Now suppose that u(a) = u(b). Consider any C' € B such that UC' # ¢J. Let
l': C' — » denote the terminal map. Then u(a)!: C' — X isin B | X, and there
are morphisms a'! : u(a)! — fand V! : u(a)! — g as shown in the diagram above.

Then we have the equalities (;a’! = Cy,) = L0 - C — X. Substituting
the equalities (¢(a’) = a,l,(b') = b, this gives a! = bl. Since C' is nonempty,
U! . C — = is a surjection, and we conclude that a = b.

Therefore, U is an injection, and we conclude that u is a monomorphism [

Proposition 4.1.3. Suppose that C is well-powered and that U : C — Set is an
isofibration with small fibers. Then the colimit displayed in (4.1.1) exists.

Proof. For any cardinal k, let Set,, denote the full subcategory of Set consisting
of those sets of cardinality less than or equal to . This is an essentially small
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category. Since U is an isofibration with small fibers, the full subcategory
B, := (UI)"'Set, of B is essentially small (since it is equivalent to the preimage
of the skeleton of Set,, which is small).

Now since C is cocomplete, each

—~

X, := colimep, | xDOM,( f)

(where powm,, is again the domain functor) is a colimit of a small diagram,
and so exists in C. There is a monomorphism u, : X, — X by the preceding
proposition.

The inclusions of the subcategories B, — B, for x < X induce inclusions
of the diagrams d,.<) : boMm, — DOM,, and so we obtain universal morphisms
U )/(; — )/(\A such that for any « < k < A\, we have u.<\u,<. = u,<) and
U Ug<x = U,. From this last equation, we see that each u,<, is a monomorphism.

Since C is well-powered, X has only a set of subobjects. Thus, this chain
of monomorphisms must eventually be constant. Let X denote the object it
converges to.

Now since for each x, we have C(X,,Z) =~ Nat(DoMm,,cz), we have the

following isomorphism.
C(colim, X, Z) = lim, C(X,, Z) = lim, Nat(poM,, cz) = Nat(colim,DoM,, cz)

Since colim, X,, =~ X and colim,.poM,, = pom : B | X — C, we see that X is the
colimit of pom. O

A~

Proposition 4.1.4. For any X in C, the monomorphism uy : X - X is an

isomorphism.
Proof. Consider the functor
u Bl X 5Bl X

given by postcomposition with uy. Since X is the colimit of the diagram pomy :
B | X — C, there is an inclusion

i:B|X—>B|X
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such that u,i = 1. Thus, u, is surjective. To see that u, is injective on objects,
consider two objects f,g € B | X. Since u is a monomorphism, u,f = u.g
implies f = g. To see that u, is injective on morphisms, recall that the hom-sets
of B| X and B | X are subsets of the hom-sets of 3, and u, acts identically on
these.

Therefore, u, is an isomorphism. This induces an isomorphism between

DOM ¢ and DOMy, and the isomorphism induced between the colimits is ax. [

4.1.2 Coreflective subcategories.

In this section, we consider a more general situation in order to show how the
functor ~: C — C picks out a coreflective subcategory of C.

Fix a category .4, an endofunctor M : A — A, and a natural transformation
a: M — 14, such that for each A € A, a4 is a monomorphism and M a4 is an
isomorphism.

Lemma 4.1.5. The natural transformations M« and a;, : M? — M are equal.

Proof. For any A € A, there is the following naturality square.

Moy
—

M?*A MA

fowr o

MA-24 . 4

Since a4 is monic, we get that ay 4 = May. O

Theorem 4.1.6. The functor M : A — A is an idempotent comonad with counit

a and comultiplication Ma™?.

Proof. The isomorphism «, gives an isomorphism M? =~ M.

The comonad axioms follow immediately from Lemma 4.1.5.

M Mo M2 anm M M Ma~?! M2
\w%—/ Malt lMon1
M M2f‘ﬂ>1]\/[3
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Definition 4.1.7. Let A,, denote the full subcategory of A spanned by those
objects A for which a4 is an isomorphism.

Proposition 4.1.8. The subcategory A, is closed under all colimits of A.

Proof. Let D : D — A), be a diagram whose colimit exists in .4. Let ¢ denote the
colimiting cocone D — colimD. Then M/ is a cocone M D — McolimD. The
natural transformation o~! gives a natural transformation o= 'D : D — MD.
This induces a universal morphism f : colimD — McolimD such that the left
hand square below commutes.

QcolimD

colimD L McolimD == colimD

{ d

D—2 - MD—"2 . D

—_—  ———

Since « is a natural transformation, the right hand square above commutes.
Since the outer square above commutes, the universal property of colimD forces
Qeolimp 3 = leoimp. But since « is monic, we can conclude that S is its inverse.

Therefore, colimD is in Aj,. ]

Theorem 4.1.9. The category A, is isomorphic to the Eilenberg-Moore category
AM of coalgebras of M via the forgetful functor AM — A.
In other words, every coalgebra of M is of the form ;' : A — M A, and thus

every coalgebra of M is isomorphic to a free coalgebra.

Proof. For every A € Ay, the morphism ;' : A — M A gives A the structure of
a coalgebra. Let

Vi Ay — AM
denote the functor which sends every A to this coalgebra (A, a ;') and every f
to its naturality square for o *.

For every (A, c) in AM, the counit axiom for this coalgebra is the equation
asc = 14. Since a4 is monic, we see that ascay = ay implies cay = 14. Thus,
c must be a;'. Moreover, we see that any morphism (A, ¢) — (B, d) must be a
naturality square for a~!. Thus there is a forgetful functor

F:AM 5 Ay
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sending each (4, c) = (4,a}") to A, and this forgetful functor is the inverse of
V. O

Proposition 4.1.10. A,; is a coreflective subcategory of A whose coreflection is
given by M : A — Ay,.

This coincides with the Eilenberg-Moore adjunction A" < A, but we give a
proof of the adjunction in this special case.

Proof. Let J : Ay — A denote the inclusion.

The natural isomorphism o' : 14,, — MJ gives the unit, and the natural
transformation « : JM — 14 gives the counit. The triangle equalities follow
immediately from Lemma 4.1.5.

—1

MM MIM J S IMJ

NN

Corollary 4.1.11. The functor M : A — A, preserves limits.

Proof. By the previous proposition, M is a right adjoint. O

4.1.3 The coreflective hull.
Now we apply the general results of the previous section to our setting.

Definition 4.1.12. Let B denote the full subcategory of C spanned by those
objects X of C for which uy : X — X isan isomorphism. Call this subcategory
the coreflective hull of B in C.

Note that the subcategory B contains the subcategory BB of C. This is because
for any object B of 5, the object 15 : B — B of B | B is terminal, and so the
colimit colimpoMp is isomorphic to B via ug.

The general results of the previous section give the following.

Theorem 4.1.13. The endofunctor ~ is an idempotent comonad on C. This induces
an adjunction
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displaying Basa coreflective subcategory of C.
Moreover, B is closed under colimits of C, and the coreflection ~ preserves limits.

In particular, B is bicomplete.

Proof. This follows from Theorem 4.1.6, Proposition 4.1.10, Proposition 4.1.8,
and Corollary 4.1.11. O

Proposition 4.1.14. For any subcategory B’ of C such that B < B’ < B, the
coreflective hulls of B and B', and their respective coreflections, coincide.

Proof. Because coreflective hulls are closed under colimits, we have that B c
B < B. Moreover, since each object of Bis a colimit in C of a diagram in B, we
see that B c B. Therefore, B=RB =38.

Since then the inclusions of B and B’ coincide, their right adjoints, the
coreflections, coincide as well. O

4.1.4 Including the terminal object.

In this section, we consider a condition on B which, in some sense, says that B
is not trivial.

Lemma 4.1.15. The terminal object = of C is in B if and only if the image UB
contains a nonempty set.

Proof. Recall that the set UX is the colimit of UpoMy for every X in C. Then
UX is empty if and only if every set in the image of Upomy is empty.

Suppose that the terminal object = of C is in B. Then U (¥) =~ » is nonempty,
so UB contains a nonempty set.

Suppose that U5 contains a nonempty set. Then U (%) is nonempty (meaning
there is a point p : * — %), and the morphism u, : * — = is monic. Then from the
equation u.p = 1,, we see that u, is an isomorphism. Thus, the terminal object
isin B. [

Proposition 4.1.16. Suppose the terminal object = of C is in B. Then every ux :

A~

X — X is an epimorphism.

Proof. Let B, be the full subcategory of C spanned by the objects of B and the
terminal object. We have the inclusions B < B, < B, so we can assume without
loss of generality that B = B, by Corollary 4.1.14.

156



Since U is faithful, it reflects epimorphisms. Thus we show that Uuy :
UX — UX is surjective. Since U preserves coproducts, this is the universal
arrow colim Upomy — UX.

Consider any point x € UX. This is a morphism z : = — X. Then x is in
poMmy and there is a leg of the colimiting cocone ¢, : U(x) — U X such that
(Uux)l, = Uzx. Thus, the image of ¢, is a point y such that Uux(y) = =z.
Therefore, Uuyx is surjective. [

Corollary 4.1.17. Suppose the terminal object * of C is in B. Then the underlying
function Uux of ux : X—>Xisa bijection for every object X of C.

4.1.5 The cartesian closure of the coreflective hull.

In this section, we show that B is cartesian closed under certain conditions on
B.

Notation 4.1.18. For clarity, we will use x to denote the product in B, and x to
denote the product in C. Note that for all X, Y, there is an isomorphism

X xY >~ X%V,

lle

We need the following lemma to prove the main theorem of this section. Note
that the hypothesis that B is closed under binary products will not in general be
satisfied by the subcategories 55 that we will consider in the following sections.

Lemma 4.1.19. Suppose that for any A, B € B, the product A x B is in 5. Then
for any objects X, Y of C, there is an isomorphism

X x Y = colim(DOMy x DOMy)

where
DOMx X DOMy : (B | X)x (B|Y)—>C

is the diagram which maps an object (f, g) to bomMx f x DOMyg.

Proof. The object X x Y isitself a colimit, and the isomorphism of the statement
can be written more explicitly as

colimp(xxy)DOMx xy = colims| x)x(5,y)DOMx X DOMy-.
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There is a functor
LBl X)x(BlY)—>B|(XxY)

which maps a pair (f : B—> X,g: C - Y)to fxg: Bx(C — X xY. This
makes the following diagram commute.

(Bl X)x(BlY) : B (X xY)

DOM x X DOM Mxy

C

We claim that . is a final functor. To that end, consider the comma category
(fxg)lieforany fxg: B— X xY in B | (X xY). It is nonempty since it
contains the following object.

Ap

k fxg

X xY

B B x B

It is connected since every object (¢ x d) : (f x g) — (h x i) as in the following

diagram
CxD
exd *\ exd
hxi > o
B2z B x B
m L fxg
X xY

is connected to Ap by the arrow ¢ x d: Ap — (¢ x d) as displayed above.

Therefore, . : (B | X) x (B|Y) — B | (X xY) is a final functor, and by
[ML9g8, IX.3, Thm. 1], we can conclude that it induces an isomorphism

colim ¢ : COhm(ng)X(Biy)DOMX X DOMy = COlimBi(Xxy)DOMXXy. OJ

Definition 4.1.20. Say that B generates its products if any finite product (taken
in C) of objects of B lies in B.
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Recall that an object X of C is exponentiable if the functor C(— x X,Y) is
representable for every object Y of C.

Theorem 4.1.21. Suppose that B generates its products and contains only expo-

nentiable objects of C. Then B is cartesian closed.

Proof. By Corollary 4.1.11, B inherits all limits from C.

Let B denote the closure of B under finite products of C. Since finite products
of exponentiable objects are exponentiable themselves, B verifies the hypotheses
of both this theorem and the preceding lemma, 4.1.19. We have that B < B < B
and so by Corollary 4.1.14, the coreflective hulls B and ﬁ coincide. Thus, we can
and will assume without loss of generality that B = .

We need to show that for any objects X, Y, Z € C there is an object 7Y such
that

CXxY,Z)=cC(X,2Y).

lle

Define

A

ZY = 1imfegly ZDOMYf

where, for each f, Zrowv ! is the object in C which represents C(— x boMy f, A ).

Now we note the following chain of bijections.

C(X,27) = C(colimyes; xDOMx g, lim pegsyy 270 )

~ C(colim DOM lim ZPoMv/
( geBLX xg, lim )

lle

lim lim C(DOMygq, Z°MY/f
feBlY geBlX ( X9, )

lle

lim lim C(DOMxg x DOMy f, 2)
fEBLY geBIX

=~ C(COhmfeBlyCOhmgengDOMXg X DOMyf, 2)

~ C(XXY,Z)

where the first equality is given by substituting the definitions of X and 27,
the second bijection follows from the adjunction of Proposition 4.1.10, the third
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and fifth follow from the commutativity of colimits and limits with hom-sets, the
forth from the adjunction defining Zrowyf and the sixth from Lemma 4.1.19. [

Proposition 4.1.22. Suppose that B generates its products and contains only expo-
nentiable objects of C. Then for any B € Band C € B, the product B x C (taken
in C) is in B.

Proof. Consider B e Band C € B. Then we have the following chain of isomor-
phisms

Bx(C>~B x COhmfeBLC DOMcf

=~ colimep;c B x DOM¢ f

where the first follows from the fact that C' =~ C' = colim reBic DOM¢ f and the
second follows from the fact that B is exponentiable so B x — is a left adjoint.
Since each B x bom¢ f is in B by hypothesis, and B is closed under colimits by
Proposition 4.1.8, we conclude that colim ez, B x DoM¢ f, and thus B x C, is
in B. ]

4.2 Coreflections of topological spaces.

Now we focus on the situation where the ambient category is the category 7 of
topological spaces. This is a bicomplete, well-powered concrete category whose
underlying functor is an isofibration with both left and right adjoints and small
fibers. Thus, it satisfies all the hypotheses placed on C in the preceding section.

4.2.1 The coreflection.

In this section, we consider any full subcategory B of 7 which contains the
terminal object «. Recall from the preceding section (Corollary 4.1.17) that for
every space X, the underlying function of uy : X > Xisa bijection. Thus, X
and X have the same underlying set, and X has a stronger topology than X.
We now describe this topology.

Proposition 4.2.1. For each topological space X, let X be the topological space

whose underlying set is that of X and whose open sets are those subsets V' such that
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for every f € B | X, the subset f~'V is open in pomx (f). This defines a functor
~ . T — Bwhich is naturally isomorphic to ~: T — B.

Proof. First note that the description of X defines a topology on U (X). Since
each f~'¢J is open in poMy (f), the empty subset is open in X. Similarly, X is
open in X. For any finite collection of opens Vi, ..., V,,, since each f~'V} is open
in pomx(f), then N, f~'V; = f~1 A", V; is open in pom(f) for every f, and
therefore ~™ ,V; is open in X. Similarly, for any collection of opens {V;};, its
union u,;V; is open in X.

The topology on X is defined so that the canonical cocone Uc : Upomy —
UX in Set lifts to a cocone pomy — X in 7 and that, furthermore, it is
the strongest such topology that can be placed on UX. In other words, it is
initial amongst cocones d : poMmx — Y such that Ud =~ Uc. But we know that
the colimit X has this property (Corollary 4.1.17). Thus X has the defining
universal property of X. O

Corollary 4.2.2. A subset V of)A( is open if and only if for every f € B | X, the
subset f~'V is open in oMy (f).

Corollary 4.2.3. A subset C of X is closed if and only if for every f € B | X, the
subset f~1C is closed in DoMx ( f).

From now on, we will use the more concrete specification of X for X.

4.2.2 Examples.

We are interested in cartesian closed B. We require from now on that B contains
only exponentiable objects of 7 and generates its products. Then the results of
Section 4.1.5 (except Lemma 4.1.19) will apply so B will be cartesian closed.

This section contains examples of subcategories B satisfying these hypothe-
ses.

Proposition 4.2.4. Consider the full subcategory K of T spanned by compact
Hausdorff spaces. Then K contains only exponentiable objects of T and generates
its products.

Proof. Compact Hausdorff spaces are exponentiable by [Fox4s, Thm. 1].
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Now we claim that that K generates its products. First of all, the terminal
space = is compact Hausdorff, so it contains nullary products. Now consider a
product K x L of compact Hausdorff spaces. Itis compact by Tychonoff’s theorem
([Kel7s, Ch. 5, Thm. 13]) and is Hausdorff by [Kel7s, Ch. 3, Thm. 5]. O

The category K is usually called the category of compactly generated spaces.

Proposition 4.2.5. Consider the full subcategory £ of T spanned by exponentiable
spaces of T. Then & contains only exponentiable objects of T and generates its
products.

Proof. Note that = is exponentiable as the identity functor is right adjoint to — x =
(also the identity functor). Therefore, £ contains nullary products.

To see that £ contains its binary products, consider two exponentiable spaces
E and F of 7. Consider also any two spaces X,Y of 7. Then we have the
following chain of isomorphisms natural in X and Y.

hom(X x (E x F),Y) = hom(X x E,YF)
~ hom(X, (YF)F)

Therefore, (—1")¥ is a right adjoint to — x (E x F'), so E x F'is exponentiable. []

Proposition 4.2.6. Consider the full subcategory D of T spanned by just the
interval I = [0,1] of T. Then D contains only exponentiable objects of T and

generates its products.
To prove this, we first need the following lemma.
Lemma 4.2.7. Any locally path-connected metric space is in D.

Proof. Consider a locally path-connected metric space X. Let C' denote a closed
subset of X : that s, a subset for which the preimage f~'C under any continuous
function f : I — X is closed. We need to show that C' is already closed in X.
Then by Corollary 4.2.3, we will be able to conclude that X =~ X and that X is
in D.

Let x € X be a limit point of C. This means there is a sequence {x;};cn in C
converging to .

Let B, . denote the open ball B, . around z of radius e.
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Now we can inductively define a sequence Ay 2 A; 2 A, 2 ... of path-
connected open neighborhoods of = such that each A; is contained in B, ; ;. Since
X is locally path-connected, we can find a path-connected open neighborhood of
x to be Ay. Thenlet A;,, be a path-connected open neighborhood of x contained
in A; 0 B, 1.

Now for each i, let j(i) denote the least natural number j such that z; is
contained in A;. This exists since each open A; contains some open ball 5, ;
which contains some z,. Moreover, since each z;;) is contained in the open ball
B,.1/i, the sequence {z;;}en also converges to .

Now one can construct a function f : I — X by setting f(0) to z, f(3) to
(), and f‘[i%p%] to a path from z;,; to x; in A; (for i € N*). We claim that this
function is continuous. On (0, 1], it is a piecewise continuous function. To see
that is continuous at 0, consider an open ball B, ;; around z. This contains A;,
and f~'(A;) contains [0, 1/i) by construction. Then the open ball [0, 1/i) around
the point 0 is contained in the preimage of f~'B, ;. Therefore, f is continuous,
and so is an object of D | X.

Then we see that f~'C contains the sequence {1/t};, and f~'C contains 0
if and only if z € C. But 0 is the limit point of {1/t};, and since f~'C must be
closed, it must contain 0. Therefore, the limit point # must be in C, and so C
must contain all its limit points. In other words C' is closed. O]

Proof of Proposition 4.2.6. First of all, I is compact Hausdorff, so by Proposition
4.2.4, D contains only exponentiable objects of 7.

Since any finite product [" is a locally path-connected metric space, it is in
D by Lemma 4.2.7. O

The category Dis usually called the category of A-generated spaces.
We will find the following lemma useful.

Lemma 4.2.8. Let D’ denote the full subcategory of 7 spanned just by R*, the
non-negative real numbers. Then the subcategories D and D’ of T coincide.

Proof. By Lemma 4.2.7, R is in 23, so D' < D.

It only remains to show that [ € D.

To that end, consider a subset U < I such that f~'U is open for every
f : Rt — I. There are homeomorphisms f : R* — [0,1) and g : Rt — (0,1]
(where f(t) = t/(t + 1), f7'(t) = t/(1 — 1), gt) = 1/(t + 1), and g '(¢) =
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(1 —t)/t). Since f~'U is open in R™, then ff~'U = U n [0,1) is open in [0, 1).
Similarly, g¢g~'U = U ~ (0, 1] is also open in (0,1]. Since [0,1) and (0, 1] are
open in /, then U n [0,1) and U n (0,1] are open in /. We conclude that
U={Un|0,1))u (Un(0,1]) is openin I.

Therefore, T~1 (where ~ here denotes the coreflection 7 — 5’), SO we can
conclude that [ is in D'.

Therefore, DcD. O

4.2.3 The topology of products in B.

Recall from the previous section (Proposition 4.1.22) that for any B € B and
C e B the product B x C taken in 7 coincides with the product BxC' taken in
B.

Proposition 4.2.9. For any product X xY in B, the projections mx : XxY — X
and 7y : X XY — Y are open maps.

Proof. The projection 7y : X x Y — X is an open map. We check that it remains
open under the strengthened topology of X xY'.

Consider an open U < X xY, a space B of B, and a continuous function
f: B — X. We need to show that f~!'nxU is open in B. Since the following
diagram is a pullback square,

Biy L iy
|
jﬂ—B Lﬂ-X
B—7) . x

we have the following Beck-Chevalley equation:
flax(U) = mp(f x 1y)H(U).

Since BxY =~ B x Y, the projection 7p is open. Thus, 7g(f x 1y)~*(U) and
hence f~!7x(U) are open. O

Definition 4.2.10. Say that a space X in B is locally in B if every point 2 € X
has a neighborhood N, which is in B with the subspace topology.
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Proposition 4.2.11. Consider spaces X and Y in B such that X is locally in B.
Then the products of X and Y in T and in B coincide:

X xY = XxY.

Proof. Recall that X x Y ~ X %Y. We show that an open set of X xYis already
openin X x Y.

Fix such an open set U < X xYanda point (z,y) € U. Since X is locally in
B, there is a neighborhood N of x which is in B with the subspace topology. Let
M denote an open neighborhood of = contained in V.

We show that there are open neighborhoods V' of = and W of y such that
VxWcU.

By Proposition 4.1.22, the product N x Y is in B. Let ¢ denote the following
inclusion.

NxY=NxY—XxY.

Then . '(U) = U n (N x Y) must be open in N x Y. Thus, there is an open
(in N) neighborhood V' of x and an open neighborhood W of y such that
ViIxWcUn(NxY).

Let V := V'’ n M. Then V is an open (in both NV and X) neighborhood of z
suchthat V x W <cUn (N xY)cU.

Now we see that every point of U is contained in an open (in X x Y)
neighborhood contained in U. Therefore, U is open in X x Y.

Therefore, X x Y has the same topology as X x Y. O]

4.2.4 The topology of mapping spaces in B.

For X,Y € B, let XY denote the representing object of l§(— x Y, X) which was
defined in Proposition 4.1.21 as

XY = hmfeBiY )/(\'DOMyf.

Its underlying set is B(x, X¥) =~ B(Y, X) = T(Y, X).

165



Proposition 4.2.12. Consider spaces X,Y € B and a closed subset C < X. Then
the subset CY < XY consisting of all those maps Y — X whose image is in C'is a
closed subset of XY .

Proof. Consider the counit e : XY XY — X of the defining adjunction. It is given
by mapping a pair (f,y) to f(y). For any y € Y, let¢, : X¥ — X denote the
restriction of e to X x {y}. Let C, denote the preimage ¢, 'C which is a closed
subset of X' Since C'* is the intersection Ncy C,, it is closed in X. O

4.2.5 Closed and open subspaces.

In certain cases, BB ‘generates its closed or open subspaces’ (defined below). We
record some consequences of these properties here.

Definition 4.2.13. A closed subspace of a space X is a closed subset of X with
the subspace topology. Say that B generates its closed subspaces if every closed
subspace of every space of B is in B.

Analogously, an open subspace of a space X is a open subset of X with the
subspace topology. Say that 5 generates its open subspaces if every open subspace
of every space of B is in B.

Proposition 4.2.14. B generates its closed subspaces if and only if B generates
its closed subspaces. Analogously, B generates its open subspaces if and only if B

generates its open subspaces.

Proof. It is clear that if B generates its closed subspaces, then B generates its
closed subspaces. We show the other direction.

Suppose that B generates its closed subspaces.

Consider a closed subspace C' of a space X in B. We want to show that C is
in B, and to that end we show that any closed subset of C is already closed in C.

Let D be a closed subset of C'. For every f : B— X inB | X, thesubset f~1C
is closed in B. Let f- denote the restriction of f to f~!C — C. By hypothesis,
#71C is in B, so we obtain a continuous function fo : f~'C — C. Then fc‘ 'D
must be closed in f~!C, and since f~'C is closed in B, we conclude that f~'D
is closed in B.

Therefore, D is closed in X, and so is closed in C. We conclude that O =~cC.
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The proof that B generates its open subspaces if and only if B generates
its open subspaces is exactly the same as this proof with ‘closed’ replaced by
‘open’. O]

Example 4.2.15. Consider the class K of compact Hausdorff spaces. Since closed
subspaces of Hausdorff spaces are Hausdorff, and closed subspaces of compact
spaces are compact, K generates its closed subspaces.

Example 4.2.16. Consider the class D whose only object is the interval I = [0, 1].
We claim that D generates its open subspaces.

Consider an open subspace U of I. By Lemma 4.2.7, it suffices to show
that U is locally path-connected. For this, we need to show that for any open
neighborhood V' of a point ¢, there exists a path-connected open neighborhood
W of t contained in V. But in this case, the open set V' contains an open ball
B, . around ¢ which is locally path connected.

4.3 The weak Hausdorff reflection.

We again focus on the situation where the ambient category is 7 and 5 has the
properties we required in the previous section. In this section, we construct a
reflective subcategory of ‘weak Hausdorff’ spaces of B which remains bicomplete
and cartesian closed.

4.3.1 The reflection.

Definition 4.3.1. Say that a space X € B is weak Hausdorff if the image of the
diagonal Ay : X — XxX is a closed set in XxX. Let By denote the full
subcategory of B spanned by its weak Hausdorff spaces.

We construct a functor H : B — Z§H. To do this, for each space X of B3, we
will take a quotient of X which identifies ImA y with a closed subset of X x X.
Consider equivalence relations on the space X

€0
X ——=R

-
€1
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such that ¢; and ¢, are jointly monic. These can be described as monomorphisms
fi RS XX

which obey the usual axioms for equivalence relations: (z,z) € R, (z,y) € R
implies (y,x) € R, and (x,y), (y,2) € R implies (z,z) € R for every z,y,z € X.
Say that such an equivalence relation is closed if the image of the monomorphism

R <9, X X

is a closed subset of X x X.

Lemma 4.3.2. For every space X of B, there is a minimal closed equivalence
relation M (X) on X, and this induces a functorial relation on B.

M:B - B

Proof. Let £x denote the set of subsets of X x X which are closed equivalence
relations on X. Since X x X itself is a closed equivalence relation of X, the set
Ex is nonempty.

Let m(X) denote the intersection of £x. We claim that this is a closed
equivalence relation. First of all, it is a closed subset of X x X as the intersection
of such. It is straightforward to check that it is an equivalence relation:

1. Itis reflexive: Fix x € X. Since (z, z) is in every element of £y, it is also in
the intersection.

2. Itis symmetric: Fix z,y € X. If (z,y) is in m(X), then it is in every element
of Ex. Thus, (y, x) is in every element of £x and so is in m(X).

3. It is transitive: Fix z,y,z € X. If (z,y) and (y, z) are in m(X), then they
are in every element of £x. Thus, (z, 2) is in every element of £x and so is
in m(X).

Let M(X) := n/”L’(Y), and let uy : M(X) — XxX denote the coreflection of
the inclusion m(X) — X xX. Let g, pt; : M(X) — X denote the composition
of 1 with each projection to X. Note that M (X) is a closed equivalence relation
on X. The image of the diagonal A : X — X xX falls within M (X), so let
0 : X — M(X) denote the restriction of A.
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Now we show that M extends to a functor. Consider a continuous function
f: X — Y. The preimage (fxf)"'m(Y) is a closed subset of X xX. It is
straightforward to check that it is an equivalence relation:

1. It is reflexive: Fix z € X. Since (fz, fz) is in m(Y’), then (z,z) is in

(fxf)"m(Y).
2. It is symmetric: Fix z,y € X. If (z,y) is in (fxf)"'m(Y), then (fz, fy)
and hence (fy, fz) isin m(Y). Thus (y,x) is in (fx f)"'m(Y).
3. It is transitive: Fix z,y,2z € X. If (z,y) and (y, 2) are in (fxf)"m(Y),
then (fxz, fy) and (fy, fz) and hence (fz, fz) are in m(Y"). Thus (z, 2) is
in (f = f)"m(Y).
Since (fxf)~'m(Y) is a closed equivalence relation on X, the minimal one
m(X) is contained in it. Therefore, the image (fx f)m(X) is contained in m(Y),
and so fx f restricts to a continuous function M(f) : M(X) — M(Y) making
the following diagram into a lift of f.

Therefore, M extends to a functor B — B*. O

Now let H be the composite of M with the colimit functor.

A~

H::B\ﬁ)l’g‘m colim B

For every X, the space H(X) is the coequalizer of the following diagram.

Ho
M(X)—=X

1
Let v denote the universal natural epimorphism in the coequalizer cocone.

M(X) == X % H(X)

H1
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Note that 3 is closed under colimits in T (Theorem 4.1.13) so this is also the
coequalizer in 7. Thus H(X) has the underlying set X /m(X) endowed with
the quotient topology.

This quotient is X itself if and only if m(X) is the minimal equivalence
relation ImA x which is the case if and only if X is weak Hausdorff. Thus, the
epimorphism vy is an isomorphism if and only if X is in By.

Now we show that H preserves finite products. For this, we need a lemma.

Lemma 4.3.3. Consider two reflexive coequalizer diagrams C' : R — C and
D : R — C in a cartesian closed category C.

If their colimits exist, there is an isomorphism
colim C' x colim D = colim(C x D)

where C' x D : R — C is the diagram which maps an object r in R to C'(r) x D(r)

inC.

Proof. Because C is cartesian closed, the product preserves colimits in each
variable. Thus, there is the following chain of isomorphisms.

colimeenCe x colimgegy Dd = colimgeg (colimenCe x Dd)
~ colimgegcolimeen (Ce x Dd)

= colim( g)emxnCc x Dd.

Thus, it remains to be seen that the colimit of the diagram C'x D : Rx R — C
which maps (¢, d) € R x R to Cc x Dd is isomorphic to the colimit of the diagram
C x D:R — CwhichmapsacefRtoCcx Dec.

Let 0 : ;B — PR x R denote the diagonal embedding. Then we have the

following commutative diagram.

C>>\;/><D

C

We claim that § is a final functor.
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The category R is generated by the graph

€
B S

O —n—=V

¢

and the relations en = (n = 1o. Thus, the category R x 9 is generated by the
graph

(lg

OO lon ov

1o¢

and the appropriate relations.

The comma category (OO | ¢) is isomorphic to the slice O/ which has an
initial object, 1o. Thus, this comma category and, dually, (VW | §) are nonempty
and connected.

The slice (VO | ¢) is generated by the graph

e Ce

elo Lyn ¢lo
€€ CC

so it is nonempty and connected.

The slice (OV | 4) is isomorphic to (PO | ¢) via the twist functor R x R —
R X R so it is also nonempty and connected.

Therefore, ¢ is a final functor, and by [ML98, IX.3, Thm. 1], we can conclude
that it induces the desired isomorphism. O

Proposition 4.3.4. The reflector H preserves all finite products.

Proof. We prove that H preserves the terminal object and binary products.

Consider =, the one point space. It is weak Hausdorff, so it is in Z§H, and
H(*) = =. Itis the terminal object of both B and By, so H preserves the terminal
object.
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Now consider objects X,Y in B. We claim that the subset m(X) x m(Y) of
(X xY)? is the minimal closed equivalence relation m(X xY') on X xY.
For any x € X, let ¢, denote the inclusion

V> ({z}xY)? - (XxY)2

Consider the preimage ¢ 'm (X xY). This is closed in Y?, and it is straightfor-
ward to check that it is an equivalence relation on Y. Therefore, it must contain
m(Y). Similarly, for any y € Y, we define ¢, : X? — (XxY)? and find that
m(X) € ;' m(X xY).

This means that for every z; ~ x5 € m(X) and y; ~ y2 € m(Y’), we have

(xlvyl) ~ (xlayQ) € m(X;(Y)
(z1,y2) ~ (22,y2) € M(X XY")

and by transitivity, we find that
(1,91) ~ (22,92) € M(XXY).

Therefore, m(X xY) = m(X) x m(Y).
By the preceding lemma, 4.3.3, we see that the product of the coequalizers
H(X)xH(Y) is isomorphic to the coequalizer of the following diagram.

M(X)*M(Y) === X XY

K1

But we have just shown that M (X)xM(Y) =~ M(X xY) as subobjects of X xY,
so this is the coequalizer of the following diagram

M(XXY)—= XXY

M1

which is H(X xY).
Therefore, H(X)xH(Y) =~ H(XXY). O

Proposition 4.3.5. For every space X of B, the space H (X) is weak Hausdorff.

Proof. We need to show that the image of the diagonal Ay x : H(X) — H(X)xH(X)
is closed.
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By Lemma 4.3.3 and Proposition 4.3.4, we have H(X)xH(X) =~ H(XxX)
and the following commutative diagram.

H(X)%H(X)

Thus, ImA is closed in H(X)x H(X) if and only if v"'ImHA is closed in X x X
if and only if (v x v)~'ImA is closed in X x X. But this last subset is

{(z,y) e XxX |vz = vy} = m(X)

which is closed in X x X. We conclude that ImAj; x is closed in H (X)x H(X). O
Corollary 4.3.6. The functor H is idempotent.

Proof. Since m(X) = ImAy just when X is weak Hausdorff, we have H(X) ~ X
just in this case. Then by the preceding theorem, H?(X) =~ H(X). O

Proposition 4.3.7. H preserves exponentials of the objects of By.

Proof. For any Z € B, we have the following isomorphisms.
(Z,XY) x B(Z,XY)
(ZXY,X) x B(ZxY, X)

B(Z%Y,X%X)
(Z,(X3X)")

B(Z, XY xXY)

lle

)

lle

B

lle

112
)

Using the Yoneda lemma, we then see a natural isomorphism XY x XY ~
(X x X)¥ under which the subset Im(A xv ) corresponds to Im(Ax)¥.

If X is weak Hausdorff, then Im(Ax) is closed in X x X. Thus by Proposition
4.2.12, Im(Ay)Y is a closed subset of (X x X ). Therefore, Im(Ayv) is closed in
XY x XY, and we see that X" is weak Hausdorff. N

Corollary 4.3.8. Z§H is cartesian closed.
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Proof. Since H preserves finite products (Proposition 4.3.4) and exponentials
(Proposition 4.3.7), Z§H inherits exponentials from B. O

Proposition 4.3.9. The functor H : B — Bis an idempotent monad with unit
v and multiplication Hv. The full subcategory By is isomorphic to the Eilenberg-
Moore category of algebras of H.

This generates an adjunction

B\HTB\

-~

H

which displays By as a reflective subcategory of B.

Moreover, By is closed under limits of B, and H preserves colimits.

Proof. This follows from the dual of the results in section 4.1.2. O

4.3.2 The topology of pullbacks.

Proposition 4.3.10. For any X,Y € é, Z € @H, and morphisms f : X — Z and
g:Y — Z, the canonical inclusion of the pullback X x ;Y into X xY has a closed
image.

Proof. The pullback can also be obtained as the preimage of ImA, under fxg.

Since ImA is a closed subset of Zx Z, then X x Y is a closed subset of X xY.
O

Corollary 4.3.11. Suppose that B generates its closed subspaces. Then for any
XY, Z € B such that Z € By, and any morphisms f : X — Zand g: Y — Z, the
pullback X x ;Y has the subspace topology as a subspace of X xY .

Proof. Since X x,Y is a closed subset of X xY by the preceding proposition, it
is in B with the subspace topology. O
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Proposition 4.3.12. Consider an open map g : Y — Z such that for any f : X —
Z, the pullback X x ;Y has the subspace topology as a subspace of X xY. Then
any pullback of g in By is open.

Proof. Consider such a pullback square in By.

XxzY —=Y
-
X

k

We need to show that for any open set U in X x ;Y, the image mxU is open
in X. It suffices to show that for any w : W — X in B | X, the subset w™'mxU
is open in W.

™

DEEEEND ¢

f

~

TXXY

W>A<2Y—>X>A<2Y—>Y
_ _

lww lm{ Lg

w—v x_—1 .z

Since Beck-Chevalley holds for the left-hand pullback square above, we have
that w™'rxU = mymy, ,U. Since WxY =~ W x Y by Proposition 4.1.22 and
W x 7Y has the subspace topology of W xY by hypothesis, Wx ;Y =~ W x, Y.
Since pullbacks of open maps are open in 7, the projection 7y in particular is
open. Thus w™'nxU = mymy, U is open. O

Corollary 4.3.13. Suppose that B generates its closed subspaces. Then the pullback
of any open map in By is open.

Proof. This follows immediately from Corollary 4.3.11 and Proposition 4.3.12. [

4.3.3 Pushouts.

Here, we record the calculation of some pushouts for future reference. Let O
denote pushouts of inclusions in By and U denote pushouts of inclusions in 7.

Proposition 4.3.14. Consider a space X in Z§H and a subset Y < X. The pushouts
X0y X and XT: X are isomorphic.

Proof. Leti : Y <> X denote the inclusion of Y into X, and leti : Y < X denote
the inclusion of the closure of Y into X. Let P and P represent the following
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diagrams in By.

v_i.x Y _i.x
X X
P P

For any B € By, let B! denote the constant diagram at B.

There is a function Nat(P, B!) — Nat(P, B!) induced by the inclusion P — P.
Now we show that this has an inverse Nat(P, B!) — Nat(P, B!).

Consider an element f € Nat(P, B!). It is given by two morphisms fy, f; :
X — Z such that fyi = fii, or, equivalently, such that the preimage of the
diagonal (fyi x f17)"'ImAy includes the diagonal ImAy in Y x Y. Then the
preimage of the diagonal (fyi x f17) 'ImA,inY x Y is a closed subset containing
ImAy. Since the closure of ImAy in Y x Y is ImAy, this preimage contains
ImAy-. In other words, foi = fii.

Therefore, Nat(P, B!) =~ Nat(P, B!) for any B € By, and we conclude that
the colimits of P and P are the same. O

Proposition 4.3.15. Consider a space X in Z§H and a closed subset Y < X. Then
the pushout X Uy X is in By.

Proof. First note that X Uy X isin B since B is closed under colimits (Theorem
4.1.13).

Note that X Uy X is the coequalizer of the following diagram

V—=XuX

where ¢y and ; are the inclusions of ¥ into each copy of X. Let ¢ denote the
universal morphism X v X — X uy X.

Since B is a cartesian closed category, products preserve colimits in each
variable. Thus, the product (X Uy X)x (X Up X) is the colimit of the following
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diagram.

1Xuo

(X UX)xY (X UX)x(X UX)

1§<L1

R R L0>A<L(] R R
L0><1 L1><1 L0><1 L1><1

1o

1 23% YX(X uX)

l;<L1

In particular, the induced map
exe: (X v X)x(X uX)— (X up X)x(X ug X)

is a quotient map.

Consider the image of the diagonal
A: X up X — (X up X)x(X up X).

We want to show that it is closed. It is closed if and only if its preimage
(exe) MmA is closed in (X U X)x(X U X).

Let the superscripts 0 and 1 distinguish between copies of X and its elements
in the union X U X = X% U X!. Now the preimage is the subset

{(2,27) e (X° U XH)%(X U XY) |2’ = ca? }
{(2°,2%) e X"x X} U {(z', 2") e XTx X1}

Ui y) e XOx X [y eYIu{(y'y)) e XIx X" [yeY}
=ImAyo uImAy: U (Y? x Y nImAx) U (V' x Y?) nImA).

Il

Since X is weak Hausdorff, ImA o is closed in each copy of X xX. Since YV
is closed in X, the product Y x Y is a closed subset of X xX, and so each
Yix Y+~ Ay is closed in X?x X+, Thus, the preimage is a closed subset.
We conclude that the image of the diagonal in closed in (X Uy X)x (X Uy X),
and X uy X is weak Hausdorff. O

Corollary 4.3.16. Consider a space X in By and a subspace Y < X. Then there is
an isomorphism
XO{,X ~ X U? X.
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Proof. By the Proposition 4.3.14, we have X3Jp X =~ X O§X . By Proposition
4.3.15, we have XO§X ~ X Vs X. O

4.4 Exponentiable morphisms in the weak Haus-
dorff reflection.

In this section, we describe exponentiable morphisms in B and By. Recall
that a morphism f : X — Y of a category C is exponentiable if the functor
C/Y(— x f,g) : C/Y — Set is representable for every g € C/Y: i.e., if it is
exponentiable as an object of C/Y.

4.4.1 The Sierpinski space

Let S denote the Sierpinski space. Its underlying set is {0, ¢}, and its open sets
are ¢, {e}, {0, €}.

There is a bijection
T(X,S)~{C < X |Cisclosed}

which takes a continuous function f : X — S to f~'0. Then there is also a
bijection
l§(X, §) ~ {C < X | C is closed}

which arises from the adjunction associated to B — 7.

Lemma 4.4.1. Suppose that there is some space X of B whose open and closed
sets do not coincide. Then the Sierpinski space is in B but not By.

Proof. Consider the topology given to S by ~ as described in Proposition 4.2.1.
It is a refinement of the topology of S, so either it is that of S or it adds {0} to
the open sets. For it to add {0} to the open sets, f~'0 would have to be open
for every fin B | S. But for f~!0 to be open for every f : Y — S, every closed
set in every Y must be open. Since we hypothesize that this is not the case, {0}
cannot be open in S,and so S = S.
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To see that S is not in By, consider the product S x S. It has the underlying
set

{(0,0),(0,€), (€,0), (¢, €)},

and its only nontrivial open set is {(¢,¢)}. If S were in By, then the diagonal
{(0,0), (¢,¢)} would have to be closed in S x 5. Consider a closed, non-open
subset of a space X of B. Let f : X — S x S map C to (0, €) and C° to (e, ¢). We
see that f~1{(0,0), (¢,€)} = C* is not closed, so {(0,0), (¢, ¢)} cannot be open in
S x 8. Therefore, S is not weak Hausdorff. O

Corollary 4.4.2. The following are equivalent.
1. Sisnotin B.
2. S is discrete.
3. The open and closed sets of each space in B coincide.

Proof. We saw in the proof above that (1) implies (3).

To see that (3) implies (2), consider the space S whose topology is the same
or stronger than S. Since {¢} is open in §, it must also be closed if (3) holds.
Then S is discrete.

If (2) holds, then S % S so S is not in B. Thus, (2) implies (1). O]

Now for any X € B, let X be defined as the following pushout in B.

Lemma 4.4.3. Suppose that S is in B.

Then the space X has the underlying set X U {€e}. The space X is a closed
subspace of X, and the nontrivial open sets of X are all those U U {¢} such that
U is an open subset of X.

Proof. First of all, since B is closed under colimits of 7, the pushout square in
B defining X is also a pushout square in 7. Since the underlying set functor
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U : T — Set preserves colimits and limits, we see that the underlying set of X
is the following pushout

U(X) x {e}—=UX x US

)

* UX

And calculating this pushout, we see that UX =~ X u {e}.

The open sets of X are those VV < X such that the preimage of V under the
projection 7 : X xS — X is open.

Consider subsets of X which contain e. They are of the form U U {¢} where
U < X. Their preimage under 7 is

(U x S) U (X x {c)) )

If U is open in X, then (+) is open in X x S, so it is also open in X x 8=~ XX8.
Conversely, if (+) is open in X xS, then the preimage of (+) under the inclusion
X = X%{0} — X xS, which is U, is also open. Therefore, a subset of the form
U u {e} (where U < X) is open in X if and only if U is open in X.

Now consider subsets of X which do not contain e. They are of the form U
where U < X. Then the preimage 7—'U is U x {0}. If this were open in X x5,
then {0} would be open in S (since projections are open maps, Proposition 4.2.9).
Then S would be discrete, a contradiction by Corollary 4.4.2. O

Now consider a morphism f : Y — X in B. There is a bijection
B(Y,X)~{f:C— X |Cisclosed in X}

where each C has the subspace topology. (Note that C' might not be in B, butif B
generates its closed subspaces, it will be by Proposition 4.2.14.) In one direction,
this bijection sends g : Y — X to its restriction to ¢~ 'X. In the other direction,
itsendsa f: C — X to f': Y — X which coincides with f on C and sends C¢
to €.
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4.4.2 The representing morphism.

In this section, we follow [Lew85] closely in order to generalize it.

Consider morphismsp: X — Zand¢:Y — Z in B where Z € By.

Let G(q) = Y xZ denote the graph of ¢. It is the preimage of A, under the
map g x 1, :YXZ — ZxZ.

G(Q)J Z
|7,k
YxZ X

L gz

Since Z is weak Hausdorff, the subset InA, — ZxZ and thus its preimage
G(q) c Y xZ are closed. Thus, the projection G(q) — Y xZ ~% Z corresponds
to a continuous function g, : Y xZ — Z. We take its adjunct g, : Z — Z*. This
function maps z € Z to the function g,(z) : Y — Z which sends ¢'(z) to z and
everything else to .

Now define p? to be the following pullback in .

X1—5 XY
J
qu LﬁY
z -7y
Proposition 4.4.4 ([Day72, Thm. 3.4]). Suppose that for every object z : A — Z

inB /7, the pullback Ax ;Y has the subspace topology as a subspace of AxY. Then
the object p? in B/ Z represents the functor B/Z(— x q,p) : B/Z — Set.

Proof. Consider a morphism a : A — Z in B. Then we see the following
isomorphisms.

B/Z(a,p") = {f: A— X" | p" [ = Gga}
> {f:AXY - X | Bf = gq(a x 1y)}
~ B/Z(a % q,p)

The first isomorphism above follows from the definition of p? as a pullback.
The second follows from the adjunction (—)xY — (—)¥.

To see the third, recall that functions f : AXY — X are in bijection with
functions f|;-1x : f7'X — X (where f~'X has the subspace topology and

181



might not be in B). Since the following diagram commutes,

Axy Lo X

b

7%y 2. 7

we see that f~'X = (pf)*Z = (g,(a x 1))71Z. A point (a,y) € AxY is mapped
into Z < Z by g,(a x 1) if and only if a(a) = ¢(y) so the preimage f~'X is the
subset A x, Y. Then we have

{f:A%Y—»f(‘pfzgq(axly)};{f:AxZYeX‘pf:WZ}

where the A x ;Y above has the subspace (of AxY) topology. Since we hypoth-
esized that this space is Ax Y, we see that the above is isomorphic to

{f:A%ZYHX‘pfzﬂZ},

and this is l§/Z(a X q,p). O

Proposition 4.4.5. Suppose that for every z : A — Z in l§/Z, the pullback Ax ;Y
has the subspace topology as a subspace of AxY. If X is in By, and q is an open
map, then p? is in Bu.

Proof. In what follows, let pom : B /Z — B denote the domain projection.
We must show that the domain X7 of p? is in Bh.

Lete : (—)?xq — (—) denote the counit of the adjunction (—) x ¢ + (—)?, and
let e denote bome. We will consider the component €,,, : (p X p)? X ¢ = p x p
which is illustrated below.

(XXZX)qXZY et XXZX

(pm pXp

A

Now consider the complement U of the image of the diagonal Ay in X x z X =

poM(p x p). Since X is weak Hausdorff, it is open. Then the preimage e, ;U is
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the open subset

{Z €Z, fiqlz— (pxp) 2z, yeqz| mf(y) # 7T1f<y)}'

Consider also the projection 7,y : (pxp)?xq — (pxp)? which is illustrated
below.

T(XxzX)4

(XXZX>qXZY (XXZX)q

(pm pPXD

Z

In l§, the morphism DOM7 ()« = T(x«,x) is Obtained as a pullbackof ¢ : Y — Z
and is therefore open by Proposition 4.3.12. Therefore, it takes the open set e, , U
to an open set which is the following.

T (X 5 X)i€ppU = {z €Z fiqlz—(pxp)lz ‘ Jyeqlzimf(y) # Wlf(y)}

:{ZEZ, f:q—1z_>(pxp)—lz‘7rof7é7r1f}

The complement of this set, W(XXZX)qe;XIPU, in (X xz X)? >~ X9x%x, X%is the
diagonal A x, which is therefore closed in X7 x; X%, Since X7 x; X1 is closed
in X7 x XY by Proposition 4.3.10, so is the diagonal. Therefore, X7 is weak

Hausdorff. O

Proposition 4.4.6. If the functor By/Z(— x q,p) : Bu/Z — By/Z is representable
for every p, then q is an open map.

Proof. Suppose that ¢ is not open.

If Z§H/Z(— X q,p) : @H/Z — Z§H/Z were representable for every p, then — x ¢
would be a left adjoint and would preserve colimits. We show this does not
preserve colimits.

Let U be an open set in Y such that ¢U is not open. Let (¢qU)° denote the

complement of ¢U, and (qU)¢ its closure.
___We want to show that pulling back along ¢ does not preserve the pushout

(qU)* Oy (aU)e
This pushout is

by Corollary 4.3.16.
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Now consider the following pushout.

q* (qU>C Qq*(qU)cq*(qU)c (+)

We want to show that this is not ¢*(qU)¢ = ¢~'(qU )e. First note that this pushout
(+) is isomorphic to

o — o —

—1 c - —1 c
q ' (qU) Yo (qU)

by Corollary 4.3.16. Since the underlying set functor preserves colimits in 7, it

suffices to show that ¢~!(qU )¢ contains a point not in ¢~ (qU)c.

Since qU is not open, there isaw € U such that qu € (qU)c. Thenu € ¢~ (qU)e.

Since ¢~ !(qU)¢ is contained in the closed U*, the closure ¢—1(qU)¢ is as well, and

thus u ¢ ¢~(qU)¢. Since the underlying set functor 7 — Set preserves colimits,
we see that the pushout

¢ (V) e 4 (qU)e

is not isomorphic to ¢! (qU)c.
Therefore, ¢* does not preserve this colimit. O

Now we summarize these results in the following theorem.

Theorem 4.4.7. Let ¢ : Y — Z be a map in By such that for every z : A — Z in
l§/ Z, the pullback Ax ;Y has the subspace topology as a subspace of AXY.
Then q is exponentiable if and only if ¢ is an open map.

Proof. Suppose that ¢ is exponentiable. By Proposition 4.4.6, the morphism ¢
must be open.
Now suppose that ¢ is open. By Proposition 4.4.4, we have an isomorphism

g/Z(z X q,p) = BA/Z(z,pq)

for any p, z € é/Z. Then by Proposition 4.4.5, we have that p? is in I§H/Z. By
Proposition 4.3.9, Z§H is closed under limits of l§, SO z x ¢ is in Z§H /Z. Thus
since By /Z is a full subcategory of l?/Z the isomorphism above restricts to an
isomorphism

Bu/Z(z x q,p) = Bu/Z(z,p?)

for any p, z € @H/Z, and p? represents @H/Z(— X q,p). O
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Corollary 4.4.8. Suppose that B (or equivalently, B) generates its closed subspaces.
Letp:X—»Zandq:Y—>Zbemapsinl§H.
Then the functor By /Z(— % q,p) is representable if and only if q is an open

map.

Proof. By Corollary 4.3.11, for every z : A — Z in l§/Z, the pullback Ax Y
has the subspace topology as a subspace of AxY. Then the preceding theorem
applies. ]

4.5 Moore relation structures in convenient cate-

gories of topological spaces.

In this section, we construct strict Moore relation structures in many of the cat-
egories constructed above in this chapter and in the topological topos. By the
results of the previous chapter, we will then obtain a construction of type the-
oretic, algebraic weak factorization systems which generalizes that of the weak
factorization system consisting of trivial Hurewicz cofibrations and Hurewicz

fibrations in the category of compactly generated weak Hausdorff spaces.

4.5.1 The setting.

We will construct a strict Moore relation structure in any finitely complete cate-
gory which includes a key fragment of the category 7 of topological spaces.

Let R denote the full subcategory of 7 spanned by a terminal object =, the
real numbers R, the nonnegative real numbers R*, and the product R* x R*.

In this section, we consider any finitely complete category C for which there
is a full embedding R — C which preserves the terminal object, the product
R* x R™, and the pushout R ~ R* Uy R* and which takes R™ to an exponentiable
object in C.

The examples which we have in mind for C are closely related to 7. Thus,
we think of the objects of C as topological spaces or generalizations of them.

Remark 4.5.1. In the following construction, we will often describe the points
hom(*, X') of an object X € C, and we will describe a morphism by its function on
points. Many of the categories in which this construction will be applied (e.g.,
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subcategories of 7)) are well-pointed. For these special cases, the results of this
section would have much simpler proofs (since it would be much easier to prove
that diagrams commute by examining the points). Here we do not assume that
C is well-pointed, but it will be illuminating to have this description.

We make use of the following morphisms of R, and so give them the following

names.

0:+—R" add : Rt x RT - R"

x—0 (r,s)—»r+s

min : RT x Rt - R add, : Rx Rt - R*
(s,t) — min(s,t) (r,s) — max(0,7 + s)

mins : R x R" x Rt - R* sub: R" xR - R

(r,s,t) — min(r, min(s,t)) (rys) »r—s

mid : R" xR xR - R sub, : R" x R" - R*
(r,s,t) — max(—r, min(s,t)) (r,s) — max(0,s — )

Remark 4.5.2. Note that the assumption that R is a full subcategory of topo-
logical spaces is stronger than necessary, since we only make use of the above
morphisms, their composites, and those associated to the limits », R* x R™ and
the colimit Rt uy R™.

Furthermore, one can see that the morphisms above form a fragment of the
totally-ordered group structure on R. Thus, one might describe a category G
axiomatizing (this part of) the structure of an internal totally-ordered group.
Then one would expect Moore relation structures to arise from embeddings of
G. However, we will not consider such a general theory here.

The rest of this section, 4.5, is devoted to proving the following theorem.

Theorem 4.5.3. Let C be a finitely complete category which contains an embedding
R : R — C which

1. preserves the terminal object, the product R* x R*, and the pushout R* UgR™
and

2. takes R™ to an exponentiable object in C.

186



Then C is equipped with a functorial relation T'(R) which is a strict Moore
relation system.

Example 4.5.4. Consider any full subcategory B < 7 such that 5 contains only
exponentiable objects and generates its own products. Then we claim that the
coreflective hull B satisfies the hypotheses of Theorem 4.5.3 if R™ is in B.

First of all, since R is in l§, we have that D' < B (where D' is the full
subcategory of 7 spanned by R*). Then by Lemma 4.2.8 and Lemma 4.2.7, we
see that all locally path-connected metric spaces are in B. This includes # R, RT,
and R™ x R, so there is a natural embedding R : R — B.

We know that = is the terminal object in B. Since R* x R* is in B, it is the
product in B. Since B is closed under colimits in 7, we also have that R is the
pushout R uy R™. Therefore, R preserves these (co)limits.

Example 4.5.5. Consider a B < 7 satisfying the hypotheses of the previous
example, 4.5.4. Then we claim that the weak Hausdorff coreflection Z§H also
satisfies the hypotheses of Theorem 4.5.3 if R™ is in B.

Since =, R, R™, and R* x R* are actually Hausdorff, they are also weak
Hausdorff in B, and thus they are in By. Therefore, there is a natural embedding
R:R — B.

Since By is closed under limits taken in B, we see that = is the terminal object
and R* xR is the product of R* with itself. Note that R* JoR* =~ H(RT UyR") =
R. Therefore R preserves these (co)products.

Example 4.5.6. Consider the topological topos £ ([Joh79]). Let F denote the
full subcategory of 7 spanned by sequential spaces. Note that R is a subcategory
of F. There is a full embedding of 7 — & which preserves all limits (as it is
a right adjoint, [Joh79, p. 254]), and which preserves many colimits, including
R =~ R™ ug R* ([Joh79, Thm. 6.2]). Therefore, the full embedding of R into &
preserves the limits = and Rt x R* and the colimit R ~ R* U, R*.

This example is of particular interest. Since £ is a topos, it is locally cartesian
closed. Then £ with the right class of the weak factorization system UFT'(R) is
a display map category modeling pre-II types. Since UFT'(R) is type theoretic,
it also models II types by Proposition 2.6.7. Thus, this is a display map category
modeling ¥, 11, and Id types.

187



4.5.2 The functorial relation.

In this subsection, we will define a functorial relation I" on C with the following
components.

€0

-~
]-C —n—>1T
-
€1

First consider the object XR" for any object X € C. We think of XR" as the
space of infinite-length paths in X since its points are morphisms Rt — X. We
denote the counit of the adjunction defining XR" by ev and we denote the unit
by h.

Let min : X®" xRt — XR" denote the transpose of the following composition.
YR Xmin R xRT

It takes a point (p,r) in XR" x R* to the point p(min(t,r)) in XR".

Remark 4.5.7. In this section, the letter ¢ will be reserved to denote a variable in
R*. If f is a morphism with domain R*, we will let f(¢) denote f = At.f(¢).

Definition 4.5.8. For any object X of C, let T'(X) denote the subobject of XR" x
R* obtained as the following equalizer.

+
—— XR

™o

I(X)—— XR" x R*
Call I'(X) the space of Moore paths of X.

The underlying set of I'(X') then consists of those points (p,r) such that p is
constant on [r, ).

Note that I" is an endofunctor on C.
Lemma 4.5.9. The endofunctor I" : C — C preserves pullbacks.

Proof. The functor (—)R" x R* : C — C/R* is a composition of right adjoints, so
it preserves pullbacks. The forgetful functor C/R* — C also preserves pullbacks,

Rt

so the composition (—)° x R* : C — C does as well. Thus for any pullback

X xzY, the following two equalizer diagrams are isomorphic.
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min

(X xzY) : (X xz Y)R" xR+ (X x5 V)R

™0

IIe I1e e

(XR" x RY) X ZRY xR+ (YR" x RY) ::;?Xm X grt YR

Note that the second equalizer diagram above is an equalizer of pullbacks.
Since limits commute, we can compute the pullback object ? to be I'(X) xp(z)
I'(Y). Therefore, we see that I'(X xz Y) = I'(X) xp» I'(Y). O

Notation 4.5.10. For any object Y in C, let | : Y — « denote the map from Y to
the terminal object. Then 0! : Y — R* will denote the composite

! 0

Y -+ > R".
Let ¢y : I'(X) — X denote the composite

T
RT x0!

I(X) <> XR xR+ X XR" x R* 2 X,

and let ¢; : I'(X) — X denote the composite
I'(X) <> XR xR 2% X.

Then ¢, maps a point (p,r) € I'(X) to p(0) € X, and ¢; maps (p,r) to p(r) € X.
We record the following equations for later use.

Lemma 4.5.11. The composite

X XX xR RS X
is the identity on X, and the composite

I R+
X x Rt 2XRL, xRY S RT &%

is the projection to X.

Proof. The second composite in the statement is the transpose of X' : X — XR".
Therefore, it equal to my.
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The first composite above is equal to the following composite,
X 2% X xR AXL xR RY S X

and we have just shown that ev(X' x 1) = 7y, so this is equal to 1y. O

Now let n : X — I'(X) denote the morphism induced by the universal
property of I'(X) as illustrated below.

X X!

n: X' x0!
' ™~ (4.5.12)

min

I(X)——= XR" x R* —= X~

It takes a point = € X to the pair (¢(z),0) € I'(X) where ¢(x) is the constant path
at x.

Lemma 4.5.13. The diagram (4.5.12) displays a cone over the equalizer diagram
which defines I'(X). This induces the morphism 7.

Proof. We need to show that min(X' x 0!) = X'. The transpose of min(X" x 0!)
is the composite

+ 1xmin + ev
x Rt x RY XM, XR" xR & X

X x RT X'x0Ix1 XR
which becomes

X x R XX, yRT RS, x

since min(0! x 1) = 0! : R — R*. Then Lemma 4.5.11 tells us that the above
composite is 7y, so it is the transpose of X'. Therefore, min(X' x 0!) = X'. [

Proposition 4.5.14. The morphisms 1, €y, €; assemble into natural transformations
which form a functorial relation T' on C which has the following components.

€0
-
1C —n—1".

-
€1
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Proof. We need to show that ¢yn = 1 and e¢;n = 1. Substituting the definitions
of ¢y and ¢;, we find that these equations are equivalent to

ev(l x 0l)in =1 evin = 1,
and then substituting the equation 7 = X' x 0!, we find that these two equations
are equivalent to ev(X' x 0!) = 1 which holds by Lemma 4.5.11. O

4.5.3 The symmetry.

We want to find a natural transformation
vx I'X - T'X

which takes a path to its ‘reverse’ path. To be precise, it should map a pair (p, )
to the pair (p, ) where the path p'|j,] is the reverse of the path p|;,]. To be
more precise, it should map (p,r) to (p max(0,r —t), 7).

For any space X € C, let sub, : XR" x Rt — XR" be the transpose of the

composite
+ Xoubt R+ xR+
XR = XRORY

It takes a pair (p, ) to p(max(0,r — t)).
We will restrict sub, x 1: XR" x R* — XR" x R* to a morphism I'X — I'X
to obtain «¢.

Lemma 4.5.15. The composite
Rt + m_'. x1 Rt + %4_ x1 Rt +
X" xRm—— X" xR" —— X xR

is equal to min x R* and is an idempotent.

Proof. Consider the morphism

in the slice C/R*. We will denote it by o.
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First note the following chain of isomorphisms hold for any object ¢ : Z — R*
in C/R*

C/R™(C,myre ) = C(Z, XR') = C(ZxR*, X) = C/RT ({xmr+, mx) = C/RT(C, m7")

where 7, denotes the product projection ? x R* — R*. Thus, m,e+ = 7", and
furthermore, this isomorphism takes any morphism

axRt

XR" x R XR" x R

™ ™

xRT xRT

R+

(where @ : XR" x RT — XR" is defined as the transpose of some X : XR" —

Rt xR+ . axRt | _Trt TR+
X ) to the morphism 7" 7" — 7w &7,

. . . b, xRt . . b xRT)2 .
Then ¢ is isomorphic to 73R, and ¢2 is isomorphic to 7 "> **")", Since

(sub; x RT)?2: R™ x RT — R" x R™ maps any (r, s) to (min(r, s), s), it is equal to

(subyxRT)2 minxR*
X =

min x R*. Thus, we see that = T and the underlying morphism

of 02 is equal to min x R*.
Similarly, o is isomorphic to (X xR0+ xR "and (sub, xR*)3 = sub, xR*.
Thus, (X x Rt)6ub+xRT? = (X » R+)sub+xR™ and 43 — 5. We conclude that

ot = 02 so that ¢? is an idempotent. O

To split the idempotent min x R*, one takes the equalizer of the following
diagram

minxRT

XR" x R XR" xR+

1

which was defined to be i : I'(X) < XR" x R* in the last section. Now since the

following diagram is a morphism of equalizer diagrams,

" minxR* i
XR" x Rt XR" xRt
SUb+><R+l l/Sle+><R+
i minxR* "
XR" x Rt XR" xRt

it induces a morphism ¢ : I'(X) — I'(X). This takes a point (p, ) to p(max(0, r —

t)).
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Since (sub, x R*)? = min x R*, its induced endomorphism on I'(X), that is,
(2, is the identity.

Proposition 4.5.16. The following diagrams commute, making T a strictly sym-
metric functorial relation.

R . R R . R R . R
N S T

Proof. To see that ) = 7, it suffices to show that (sub, x R*)(X' x 0!) : X —
XR" x Rt is X' x 0! since the following diagram commutes.

rx : rx
P |
X—— XR" x RT —= XR" xRt
X'x0! subxR™T

Since X' x 0! is the following composition

X x0! X'xRt +
X 225 X x RY 225, xRT R

Y

. + — . by xRt .
we see that X' x R* underlies 7% and sub, x R* underlines 75 """ in

C/R*, using the notation of the proof of Lemma 4.5.15. Their composition is
aibeDRT _ 2IRT 5o the composition of X! x R+ and sub, x R is X' x R*.
Therefore, (sub, x RT)(X' x 0!) = X' x 0! .

To show that €, = €, it suffices to show that ev(sub, x R*) = ev(XR" x 0!).

Note that ev x R* underlies 7§ and ev(XR" x 0!) x R* underlies 79*R". Then

we see that (ev x R¥)(sub, x R*) underlies 75*°+ R4 = 70R™ g4 it is equal to
(ev x R*)(XR" x 0!). Therefore, ev(sub, x R*) = ev(XR" x 0!).
That ¢3¢ = ¢, follows analogously. O

4.5.4 The transitivity.

We want a ‘concatenation’ natural transformation

px X x X ->TX
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which maps a pair of pairs ((p1,71), (p2,72)) Where pi(r1) = p(0) to the pair
(q,r1 + o) where ¢ coincides with p; on [0, 7] and with py(¢t — r1) on [rq, o).

We will define p to be the composition of three isomorphisms followed by a
projection.

PX o TX 5 TX o TX 2= XRx RY x RY = X® X RY x R* - TX

The first isomorphism « x 1 was defined in the last section.

The isomorphism « is an isomorphism of two limits with the same universal
property. Let mid : XR x Rt x R* — XR denote the transpose of the following

morphism.
R XM RxR*xR*

It takes a point (p, s,t) to a path p’ which coincides with p on [—s,¢] and is
constant on (—oo, —s] U [t, ). Let X® x R™ x R* be the object obtained as the
following equalizer.

XRx Rt x Rt —= XR x R x R* XR

Its points are triples (p, s,t) such that the path p : R — X is constant on (o0, —s]
and also on [t, o).

Lemma 4.5.17. The objects I'X _ x, I'X and X® % R* X R" have the same
universal property.

Proof. Consider the diagram defining the I'’ X, x I'X which is illustrated below.

XRY x RT XR" xRt
XRY XRY
\ /

X
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Using the hypothesis that R ~ R* Uy RT, we can add the pullback XR =~
XR" %, XR" to this diagram without changing the limit.

XR" xR+ XR" xRt

!

YRY X xR X RY

\ Levo
€0 €0

X

Welet j_ : RT — R denote the injection which sends 2 to —x, and let j, : R — R
denote the injection sending x to x.

Similarly, we can add the pullback XR x R* x R* = (XR" x RT) ¢, X eo (X’ x
R*) to this diagram without changing its limit. (Note that ¢, min = 7e :
XR" xR* - X))

XR+><R+<Xj7iXR><R+><R+LXW2>XR+><R+ (%)
A - -
XR* X7- XR X7+ XR*
\ levo
€0 €0
X

The arrows mid, 7 : XR x R* x R* — XR in the diagram above are induced by
the universal property of the pullback XR.

To see that mid : XR x R* x Rt — XR is really induced by the universal
property of the pullback XR, we must show first that X/~mid = min(X/- x ),
and for this it suffices to show that the following square commutes.

4 X7= xRt xR
_—~

XR" xRt xR XR xRt xRt

min><R+><R+l Lmide*’xRJf

+ XI- xRt xR+
XRT xRt x RT =222 XR xRt x R
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This square lives over R™ x R™ and so, as in Lemma 4.5.15, we see that it underlies
the following square in C/(R* x R™).

And since j_mid = minj_, this diagram commutes, and we conclude that

X7~mid = min(X7- x mp).
Similarly, we can show that X7+mid = min(X7+ x 7).

Now we have established that '’ X' x I'X is the limit of diagram (+). To see
that XR x RT x R* is also the limit of this diagram, note that the inclusion of
the following subdiagram

XR xRt xRt

-

X

is initial. Therefore, by [MLg8, IX.3, Thm. 1], the limit of the subdiagram and
the limit of the diagram coincide, and we see that '’X, x I'X and X® x R* xR*
have the same universal property. O

To define the isomorphism 3, first let XR" x R* x R* be the object obtained
as the following equalizer.

XR" x Rt x Rt — = XR" x R+ x R+MXR+.

Its points are triples (p,s,t) such that the path p : R* — X is constant on
[s + t,0).
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Lemma 4.5.18. The two squares in the diagram below commute.

midx1x1

XR xRt xRt XR x Rt x RT.

1

lsubxlxl lsubxlxl

+ min(Ixadd)x1x1_ .
XR" xRt x Rt ———= XR" xRt x R*
1

This induces a morphism £ : XR x Rt x R* — XR" x R* x R¥,
The two squares in the diagram below also commute.

min(1xadd)x1x1

XR" x R x RT XR" x Rt x RT

1

ladd+><1><1 ladd+><1><1

XRx R* x RF =2 XR X RY x R,
This induces a morphism 5! : XR" x Rt x R* — XR x R* x R* which is the

inverse of 3.

Proof. We need to show that the following square commutes.

midx1x1

XR xRt xRt XR x Rt x RT.

lsubxlxl jsubxlxl
XR+ y R+ v I:e_~_min(1><add)><1><1)(R+ v R+ y R+
This diagram lives naturally over R* x R*. As in Lemma 4.5.15, it underlies a
diagram isomorphic to

ﬂsub><1><1 (*)

X l j X
ﬂ_min(lxadd) x1x1

TR+ "X TR+
—_—
Tx Tx

in C/(R* x R*). Since the functions (mid x 1 x 1)(sub x 1 x 1) and (sub x 1 x 1)
(min(1 x add) x 1 x 1) are both functions R x R x R* — R* x R* x R* which
map (q,7,s) to (min(q — r, s),r, s), we see that these diagrams commute.

197



Thus, the first diagram in the statement displays a natural transformation
of the diagrams defining X® x R* x R* and XR" x R* x R* and so induces a

morphism  between them.

Similarly, the diagram

+ min(1xadd)x1x1_ ot
XR" xRt x RF ———= XR" x Rt x R*
ladd+><1><1

XR x Rt x RT.

laderxlxl

XR xRt xRt

midx1x1

underlies a diagram isomorphic to the following diagram

min(1xadd)x1x1
s

TR+ "X TR+
—_—
Tx Tx

add x1x1 add x1x1
l j
idx1x

(%)

in C/(RT x RT). Since (add; x 1 x 1)(mid x 1 x 1) and (min(1 x add) x 1 x
1)(add; x 1 x 1) both send (¢,r,s) € R x Rt x R* to min(max(0,q + 7),r + s),
this diagram commutes. Thus, the second diagram in the statement is a natural
transformation between the diagrams defining X?" x R* xR+ and XR xR+ xR*
and so induces the morphism 3~*.

Now, composing the diagrams () and (++) we see that 337! = 1 since

(add; x 1 x 1)(sub x 1 x 1) is the identity on R* x R* x R*.

min(1xadd)x1x1
TX

™ T
R+ R+
Tx Tx
add x1x1 add x1x1
+ +
Wmelxl
y X v
1T T |1
subx1x1 subx1x1
ﬂ_min(1><add) x1x1
uy X y

Rt Rt
Tx X
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Composing the diagrams (x+) and () we obtain the following commuting

diagram
midx1x1
TR B TR
X X
subx1x1 subx1x1
TX X
71_min(l xadd)x1x1
/ TR+ X TR+ ’
71,r}r\(ax x1x1 7TX 7TX 71_r)n{ax x1x1

midx1x1
Tx

addy x1x1
+

TR
Tx

where max’ : R x R — R x R* takes (r, s) to (max(r, —s), s).

Thus, 5713 is induced by the following diagram.

XR x Rt x Rt —~ XR x R* x R*
|
Ig=1p lmax’xlxl
%

XR x Rt x Rt — = XR x R* x R*

midx1x1

midx1x1

- XR xRt xRt

jmax’xlxl

XR xRt xRt

Note that (max’ x 1 x 1)(mid x 1 x 1) = mid x 1 x 1. Thus, we have the following

equation.

jBB = (Max x 1 x 1)j = (Max’ x 1 x 1)(mid x 1 x 1)j = (mid x 1 x 1)j = j

But j is a monomorphism, so 5! = 1.

Therefore, § is an isomorphism XR x Rt x R* =~ XR" x R* x R*, O

We let v be the following composite of isomorphisms.

Lx1

TX, % [X 2L TX x TX—2- XR xRt x Rt 2~ XR" x R* x R

Lemma 4.5.19. The following diagrams commute.

XR* % R x RY "2 D(X)

N

+ min X +
XR" x Rt x Rt YR x R
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Proof. Expanding the definition of myr~!, we obtain the following commutative

diagram.
7r(]l/_1
XR" x R+ x R* ?XR x RT x R* —T'(X) . I'(X)
| ] |
XRY % Rt x RSO DI N R Re o R XXM xR L R P g R
/

min Xy

Expanding 7;v~!, we obtain the following commutative diagram.

7r11/*1
XR" x R* x Rt — = XRx R* x R ———=T'(X)
671 7T10171

| | |

n add, x1x1 X+ xx +
XR" xRt x RT—— 5 XR x Rt x Rt =— 22 XR" x R*

mXﬂ'Q

Now we can define the projection = to be the morphism induced by the
following morphism of diagrams.

min(1xadd)x1x1

XR" x Rt x Rt — = XR" x RT x Rt 1 XR" xRt x Rt
|
| llxadd jlxadd
\ minx
(X) XR* % R* - XR' X R*

Let 1 be the following composite.

X, %, TX —2=XR" xRt xRt —“>TX

Proposition 4.5.20. The natural transformation i makes the relation T' into a

strictly transitive relation.
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Proof. We must show that the following diagrams commute.

rx, x, X —* rx
Eoﬂollelﬂl GOLLGI
X X

Ixp

X nx1 FXQXCOPX 1xn r'x FX€1X€OFX€1X€OFX FXqXEOFX

ST T

rx, x,IX rX

To show that ey = €qgmg in the first diagram above, we show that the following

diagram commutes.

I

rx,. x,Ix XR xRt xRY ———=TX

f | |

lle|=

Om0 [ (XRT X RY) g Xy (XRT x RY) < — XR" x Rt x RY 2% xR S Rt e
(minx71)x (addxm2)
leVQﬂ'Q LQVO leVO
X X X

We know that the upper left-hand square in the diagram above commutes by
the preceding lemma. The upper right-hand square commutes by the definition
of 7, and the bottom right-hand square also commutes. Thus, we only need to
show that the bottom left-hand square commutes. But we see that

evomo((min x 7)) x (add x m3)) = evp(min x 1) = evy

so this square commutes.

Similarly, to show that e;u = e;m, it suffices to show that the following
square commutes.

Rt + Rt + Rt + +
(XR7 X RY) g X (XT7 x RY) T X® xR" xR
evmy ev(1xadd)
X X

201



But we see that
evm ((min x m) x (add x m3)) = ev(add x 73) = ev(1 x add)

so this square commutes.

Now we show that u(n x 1) = 1 in the second diagram above. First note that
XR x 0l x RT: XR" xRt - XR" x Rt x RY

restricts to a morphism v : TX — XR" xR* xR*. We will show that nx 1 = v~y
since post-composing this equation with p gives us pu(n x 1) = 7y = 1. Now,
since 7 x 1 is the restriction of (X' x 0!) x 1, and v!v is the restriction of
((min x ) x (add x m5))(XR" x 0! x R*) as shown below,

nx1

rX rX, x. X
XR* x g X0 (XR" x R*)evxe\,O(XRJr x RT)
TX i XRY xRt x R* rX, x, X

| | f

YR o R+ XRT 0IxR* (min>x 1) x (add x72)

XR" x RT x R* (XRT x R) Xy, (X" x RY)
we see that it suffices to show that
(X' x 0D x 1= ((min x m) x (add x m))(XR" x 0! x R*).

But (min x m)(XR" x 0!) = X' x 0!, and (add x m5)(XR" x 0!) = 1, so we are
done.

The equation u(1 x 1) = 1 follows analogously.

Now we must show that (1 x ) = pu(p x 1). Let g : XR" x R* xRt - X

denote the composite

XR" xRt x R* 5 xR" =0, x
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and let ¢; : XR" x R* x R* — X denote the composite
Rt
XRT x Rt x RT X @44, yRY R &, X

Note that XR" x R* x R* is isomorphic to the object of the following equalizer.

add(my x7
X % (R* x R")&——=TX x R* x R ) o

T1T0

Also let XR" x R* x R X R* be obtained by the following equalizer.

min add (71 xma x73)

XRT

XR" X RT x R x Rt &= XR" x R x RT x RT

x

where add : R™ x Rt x R™ — R™ denotes the addition of three real numbers.
There is an evident projection 7 : XR" x R* x R* x R* — I'X induced by add.

Then we have the following diagram

X, %, (XR xR xR")

1xv \

X, x, X, x TX (TX,, x,IX)x (R x R)
luxl l/l/xl
(XR" x R* x RY)_ x X (XR" x R* x R*) x (R* x R*)
(R* x R*) x (I'X x,I'X) XR" xRt x R* x R*
1xv ~

(RT x R*) x (XR" x R* x R*)
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where the unlabeled isomorphisms are between limits with the same universal
property. Now, suppressing these isomorphisms, we see the following diagram.

rx, x,IX

™

X, x X, x, X —"% (X, x, [X)x (R xR

juxl vxl1

w1 (RY x RY) x (X %, [X)—2~ XR" x R* x R* x R*

jﬂ -

X, x,0X___  w  _T(X)

The four outside tiles in the above diagram commute, and so it remains to be
seen that (1 x v)(v x 1) = (v x 1)(1 x v). Since each of these morphisms is an
isomorphism, we will show that the following diagram commutes.

rx,.x, X, x,['X (TX, x,TX)x (Rt x RY)

u‘lxl] ]V1><7T2><7T3

(R* x R*) x (X x,,I'X) XR" xRt x Rt x R*

But since v~ ! is the restriction of
(min x m) x (add x m) : XR' x RT x R* — (XR" x R") x (XR" x R*),
we see that both composites above are the restriction of

(min(mg x ) x 71) x (min(add(mg x 71) X ) X m3)
x (add(my x add(m; x 7)) x m3) :

XR" xR x R* x Rt = (XR" x R*) x (XR" x RT) x (XR" x R*),

and thus the diagram above commutes. O
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4.5.5 The homotopy.

We now want to find a natural transformation
ox:I'X — rx

which maps a pair (p, r) to the pair (¢,) where ¢(t) = (p;,t) € I'’X and py|joq =
pljo,g- Then dx will give for all (p,t) € I'X, the standard homotopy from the
constant path (c,,0) to (p, ).

We also want to find a natural transformation

Tx : X xI's - T'X

which maps a pair (z, (p,7)) to (¢(x),r).
Let 6 : XR" x R — (XR" x R*)R" denote the transpose of the following

composite.

+

+ 1xmi + minx1
XR" x Rt x RT 20, XR™ « R 55, XRT x RT

The morphism &, takes a point (p,r) to (p;, min(r,t)) : R* — XR" x R* (recall
that we are using ¢ as a variable, Remark 4.5.7) where the path p, is given by
pe(s) = pmin(s, r,t).

Lemma 4.5.21. There is a restriction § of 6, x 1 as shown below.

X i r2x

| |

(50><1

XR" x R 255 (XRT x RYRT x RT

Proof. First, we show that &, x 1 restricts to amap d, : X®' xR* — (I'X)R" xR*.

. +
Since —R

x R*™ preserves equalizers, we see that the morphism §; would be
induced if the following diagram displayed a cone over the equalizer determining

(TX)R" x R,

XR" x R

| 50><1
I51
Y

(TX)R" x RT & (XR" x R"R" x R

(minx1)RT

(XR+ « R+)R+

o
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To see that this is actually a cone, we must show that (min x 1)%"(6,) = &,. But
note that (min x 1)R" () is the transpose of the following composite.

XR+ <« Rt x R* 1xmin XR+ % R+ minx1 XR+ % R+ minx1 XR+ <« R*
And since (min x 1)(min x 1) = (min x 1), this is the transpose of d.

Now, we show that ¢, restricts to a morphism ¢ : I'’X — I'?X. To do this, we

must show that the following is a morphism of equalizer diagrams.

minx1

X< XR" xRt XR" x Rt

- >
| 1
I's L51 151
¥ —

X C~ (TX)R" x RY ———— (TX)R" x R*

We must show that §;(min x 1) = (min x 1)d;. To do this, we note that in
the diagram below, the bottom square commutes, and the marked arrows are
monomorphisms. Thus, the top square commutes if and only if the outside

commutes.
XRY Rt minx1 XRT  R*
; §
sox1| (DX)R" x R minx1 (DX)R" x R* Jsox1
(XR" x RH)R" x Rt ﬂ>(XR+ x RT)R" x R+

Now we need to show that (5 x 1)(min x 1) = (min x 1)(Jy x 1). Note that both
of these composites are isomorphic to morphisms of the following form.

XRT xRt - XRORT o (RORT « RY

Thus, we show that the compositions of (J, x 1)(min x 1) and (min x 1)(dy x 1)
with projections to XR"*R" (R*)R", and R* coincide in each case. Composing
(6o x 1)(min x 1) and (min x 1)(§, x 1) with the projection to (R*)R" gives
min7; in both cases. Composing with the projection to R* gives 7, in both
cases. Thus, it remains to check that their projections to XR"*R" are equal. Let
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mins : R x R" x R — R" denote the function which takes the minimum of
three real numbers. Then the projection of §, to X® *R" is mins. Thus, it suffices
to prove that the following diagram commutes.

+ minx1 +
XR" x Rt 2 XRT x Rt

jminp,xl jminp,xl

+ <R+ minx1 + <R+
XR xR ><R+—>XR xR ><R+

But, as in the proof of Lemma 4.5.15, this underlies the following diagram in
C/R*.

inx1
7_‘_I"Tlln

s X Uy
Rt Rt
Tx Tx
ming x 1 ming x 1
o [E2
1Ixmin(mq xmg)x1
TR+ xR+ X TR+ xR+
Tx Tx

But since (min3x 1)(1xmin(m; xmp)x 1) and (minx 1)(mingx 1) : R* xR* xR* both
map (q,r,s) to (ming(q,r, s), s), we see that this diagram commutes. Therefore,
d; restricts to a morphism ¢ : T'X — I'2X, [

To define 7 : X x I'(x) — I'(X), first note that in the following equalizer
diagram, there is an isomorphism R = «.

[(x) —= R x Rt —x R
0

Thus, min = 7y, and we have the isomorphisms I'() =~ +R" x R* = R*. Now let

lle

7o be the following composite.

+

X x D(s) = X x Rt 2XL xR* 4 R+

This factors through I'(X'), so we obtain 7 : X x I'(x) — I'(X).

Lemma 4.5.22. The morphism 7, constitutes a cone over the equalizer defining
['(X). Thus, we obtain a morphism 7 : X x I'(x) — ['(X).

X xR™* X'mo

P(X) —> XR xR =20 xR
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Proof. We need to show that min(X'x1) = X'my : X xR* — XR", The transpose
of min(X' x 1) is the composite

X x RY x R X2IXL gRY R+ R XM, yRY R &,y
which is equal to
X x RT x Rt XM,y o gt XX yRT R+ & x

Then Lemma 4.5.11 tells us that the above composite is 7y, so it is the transpose
of X'my. Therefore, min(X' x 1) = X'm. O

Proposition 4.5.23. The morphisms § and ™ make the relation T' strictly homo-
topical.

Proof. We must show that the following diagrams commute.

rx 9 r2x X x = T rx
eol } EOL % ﬂll%nlrr Eol } jﬁl (1)
I'X rx J r2x
/ la\ la La (2)
PX < T2X —TX 2y D sy
X X F*
lf (3)
rx o 1.
rx — -T2X X x Ds —Z2T(X x [#)
LEQ xT'! jreo LT lFT (4)
X xTs+—>TX X LI ) ¢
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First of all, it suffices to show that the following diagrams commute since
they restrict to the diagrams above.

dox1

XR* % R 2240 (XRT  RY)R" x R X x RT XL xR Rt
EVOL [X’xo! eVOL TX!XO! wjljo' ™ eVoLXﬁoitev (1,)
X'x0! R+ | |
X— =X XRT xRt Xe—o-——X
XR" x Rt

minx1 minx1
/ L(Sox\

+ + + +
XR XR+<T(XR XRJr)R XR++—>XR XR+
evR" xRt

(29

dox1

XR" xRt (XR" x RHR" x R*

L(S()Xl j&)xl

(XR" x RY)R" x Rt Gox ) xR ((XR" x RPR" x RHR" x R*

X x RT
jx\ 3

XR" x Rt T~ R

XR+><R+ dox1 (XR+XR+) % R+ XXR+X!X50X1(XXR+)R+XR+
lEVOX1 l(evo)R+xR+ LX!XI (X’><1)R+><R+L (4)
X xR — X0 XRY G RY xRY R XL (yRY L RYRT xR

We have shown that the right-hand diagram in (1’) commutes in Lemma
4.5.11. The left hand diagram in (1’) is composed of two diagrams.

50><1 (50><1

XR xR 225 (XR" x RT)R" x RT XR" x RT 225 (XR x RT)R" x R*

evol eVOl [X’x()! TX!XO! an

XR" x R X X 0L xRY « Rt
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To show that the diagram on the left above commutes, we consider its pro-
jections to X®" and X, which are depicted below.

XRY Rt M3 R xR R+ _min_ (R*)R'
XO!j X“‘“j !\ (Rﬂml
X —X xR +—L -R*

The composite X' *%min is the transpose of
XR" x R* x RY % xRY « Rt x RT x R+ Xmins, xR o p+ &, x

which is the transpose of X, so the left-hand diagram above commutes. Simi-

larly, we can see the right-hand diagram above commutes.

To show that the right-hand diagram of (1”) commutes, we also consider its
projects to XR"*R" XR" "and X which are displayed below.

XR* x R+ ML yRExRY R+ M (R*)R* R+ L. R*
Txofxo! TXM” [0 T(Rﬂ! {0 ]0!
X X0 XR+ s— 0 _RT > %

Since these diagrams commute, we see that all the diagrams of (1) commute.
It is immediately clear that (3'), and thus also (3), commutes.

To see that the remaining diagrams commute, notice that the morphism
S x 1: XR" xRt - (X" x RMR" x R*
in C underlies the morphism

mingx1  ——_ 1 . Trt TR+ xR+ TR+
Tx xmin x 1:77 — g X TRy

(using the notation of the proof of Lemma 4.5.15) in C/R™ where min x 1: 1+ —
me8" is the transpose of

min X 1: mr+ — TR+.

The morphism
X'x1:X xR" - XR" xR*
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in C underlies the morphism
Tyt Tx — Ty
in C/R*.
Thus, it suffices to show that the following diagrams commute in C/R™.

7TR+
Tx

minx 1 minx 1
s s
%‘%Xllxminxl £
X
Y

s TR+ xR+ ™ M
Rt RT xR Rt R+
T -~ T T — T
X 1x A X X R+ Tt X
Ty ev R

2"

ming X1 ><'7><1
TR+ Tx min TR+ xR+ TR+
Tx X X TR

lw;"(mSXlxminxl llXTr;(mm?’XlXWgISXI><min><1

ming x1x1 ﬁ 1
TR+ xR+ TR X X(minxIx1)x1 moy ot rt TR+ xR+ TR+
X X Tt Ty X Tyt X TR

ﬂ—R+7rX xminx1 TR+ R+ Tt
—_—>T X 7TR+

Tx X
\”5?“ L(“%“r’w

T Tt
TX T8

(4"

! —= a1
Ty Xminx1 Tt Tt
7TX—>7TXR XWRE

! Ix1
LTA’X lwx x1
ming X 1 1
T3

,n.;R+ X Xmi"X17T;"<R+xR+ % 7_{_;$+
To show that the first diagram in (2”) commutes, we first observe that the
composite

1xA ingx1
R x Rt === R* x Rt x Rt X%, R+ x R*

is equal to min x 1 : R™ x R, so the left-hand triangle commutes. To see
that the right-hand triangle in this diagram commutes, note that the composite

ming x 1

evRY ('Y x min x 1) is equal to the following composite (where here ev
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denotes the counit m,*" x TR+ — 7x).

ming X 1 1 minx1x1 1 Tt
Tt X X TR+ xR+ TR+ TX x TR+ xR+ TR+ ev R TR+
Ty ———— Ty X MRt Ty X TRy ——— Ty (%)
Since the composite
TR+ xRt 1X1 _Trtypt TR+ TR+
X — Ty X TR — Ty

is wj‘(, the composite (++) is equal to

Trt Mingxl Triype TR Tat
Tx — > Tx —Tx
and this is equal to 77"*'. Thus, the right-triangle in the first diagram in (2")
commutes.
Since min is associative, the second diagram in (2”) commutes.
Since (ming x 1)(0! x 1) = 0! x 1 : mr+ — 7R+, the first diagram of (4")

commutes.
To see that the second diagram of (4”) commutes, we first consider the
. . U .
projections to m,* **" and 7 %" separately, as depicted below.
! minx1 7
TXx — = W;R+ * > R§+
LWIX lw!)?l ll
Tl'min3><1 T, minx1
y X + «R+ +
7TXR+ 7_[_‘XR xR % N WRE

Since these commute, the second diagram of (4”), and thus (4), commutes. []

4.5.6 Summary.
Now we have proven the following theorem and corollary.

Theorem 4.5.24. Let C be a finitely complete category which contains an embed-
ding R : R — C which

1. preserves the terminal object, the product R* x R™, and the pushout R* UgR™
and

2. takes R™ to an exponentiable object in C.
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Then C is equipped with a functorial relation T'(R) which is a strict Moore

relation system.

Proof. In Proposition 4.5.16, we showed that I'(R) is strictly symmetric. In
Proposition 4.5.20, we showed that I'(R) is strictly transitive. In Proposition
4.5.23, we showed that I'(R) is strictly homotopical. Therefore, I'(R) is a strict
Moore relation system. O

Theorem 4.5.25. Consider an embedding R : R — C satisfying the hypotheses of
the preceding theorem, 4.5.24. Then UFT'(R) is an algebraic, type theoretic weak
factorization system on C. Furthermore, C with the right class of UFT'(R) is a
display map category which models ¥ and 1d types.

Proof. By the preceding theorem, 4.5.24, I'(R) is a strict Moore relation system.
By Theorem 3.2.34, UFT'(R) is then an algebraic, type theoretic weak factor-
ization system on C. By Theorem 3.5.2, C with the right class of UFT'(R) is a
display map category which models 3 and Id types. O

Corollary 4.5.26. Consider a subcategory I3 of the category T of topological spaces
which (1) generates its products, (2) contains only exponentiable objects of T, and
(3) contains R™.

Then B and By contain the subcategory R of T, and the embedding produces a
strict Moore relation system I'(R) in both B and By. Moreover, this generates the
structure of display map category which models Y and 14 types in both B and B.

Proof. This follows from Theorem 4.5.25 and Examples 4.5.4 and 4.5.5. O

This generalizes the weak factorization system consisting of trivial Hurewicz
cofibrations and Hurewicz fibrations in the categories of compactly generated
or compactly generated weak Hausdorff spaces.

Proposition 4.5.27. When B is the category of compact Hausdorff spaces, then
UFT'(R) is the weak factorization system consisting of trivial Hurewicz cofibrations
and Hurewicz fibrations in B or By.

Proof. We claim that our factorization coincides with that defined on page 7 of
[BR13].
For any map f : X — Y in B or By, the factorization UFT'(R) takes f to the

following.

1xnf

X X xy Iy —™ .y
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The space T'Y is the subspace of XR" x R* consisting of those (p,t) such that
p: Rt — Y is constant on [¢,o0). Then the space X xy I'Y is the subspace of
X x I'Y consisting of those (z,p,t) such that p(0) = f(x) and p is constant on
[t,0). The left factor 1 x n) f maps a point z to (z, ¢y, 0) where ¢y, is the constant
function p : R — Y at f(z). The right factor €, mry takes (z,p,t) to p(t).

This matches the description of the factorization given in [BR13] which fac-
tors any map in B or By into a trivial Hurewicz cofibration followed by a Hurewicz
fibration. ]

Corollary 4.5.28. Consider the topological topos £. It contains the subcategory R
of T, and the embedding produces a strict Moore relation system I" in £. Moreover,
this generates the structure of a display map category which models ¥, 1d, and I1
types in £.

Proof. Let R denote the embedding R — £. By Theorem 4.5.25, UFT'(R) is an
algebraic, type theoretic weak factorization system on £ which generates the
structure of a display map category modelling > and Id types.

Since £ is topos, it is locally cartesian closed. Then by Theorem 3.5.3, the
display map category on £ also models II types. O
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Further work.

The first three chapters of this thesis tell a complete and coherent story. We
set out to understand those weak factorization systems which underlie display
map categories modelling > and Id (and II) types, and we accomplished this in
Theorem 3.5.2.

The fourth chapter, however, is only the beginning of an investigation into the
possibility of models of II types in convenient categories of topological spaces.
The possibility of such models is not as far-fetched as one might assume, but
ultimately we still expect it to be impossible. Here, we summarize the nexus of
the problem.

Consider the results of Section 4.4. Theorem 4.4.7 tells us that if l?H is to have
pre-11 types, then the morphisms of the right class (which we will call fibrations)
of the weak factorization system (of Corollary 4.5.26) must be open. Now by
examining the point-set topology of the basic fibrations ¢ : I'(Y) — ¥V x Y, we
find that a necessary condition for any fibration to be open is that its base space
(i.e., codomain) is locally path-connected. By employing the weak factorization
system, we find that a sufficient condition for a fibration to be open is that its base
space is in D, the coreflective hull of the subcategory spanned by the interval 1.
Thus many fibrations (those whose base space is in D, or in particular is a CW
complex) in Ky, the category of compactly generated weak Hausdorff spaces,
are exponentiable, and so II types exist along them. Thus, one might naively
hope that in Dy, or a similar category, all fibrations would be exponentiable.

On the other hand, for the results of Section 4.4 to apply, we need that
pullbacks X x ;Y (when one of the morphisms is a fibration) have the subspace
topology of X x Y. This is the case when the generating subcategory B generates
its closed subspaces (Corollary 4.3.11), but is not the case when B contains only
locally path-connected spaces.
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Thus, in the quest to find II types in a category By, we encounter a real
tension between these two requirements: that B generates its closed subspaces
and that B contains only locally path-connected spaces. This tension might be
dissolved by showing the results of Section 4.4 hold without the hypothesis on
the topology of pullbacks. However, in future work we hope to show that these
two inconsistent requirements present a real obstruction to the existence of I1
types in a category By.
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Appendix A

Generating Id types.

A.1 14 types from Id types on objects.

Consider a category of display maps (M, D) which models ¥ types and Id types
of objects.

The Id types of objects generate a weak factorization structure on M (Propo-
sition 2.3.4). We will denote this weak factorization structure by (), p,2 D, D).

Consider {D, M}y (the full subcategory of M /Y spanned by D) for any ob-
ject Y of M. Let pomy : {D, M}y — M denote the domain functor. Recall
that the weak factorization structure on M induces a weak factorization struc-
ture (\y, py,2 Dy, Dy) on {D, M}y (Corollary 1.5.5). The factorization (\y, py)
takes a morphism « : f — g of {D, M}y to the following.

ADoM () pDOM ()

w X

w X x Id(X)
gppom(a)

Y

The left class YDy is pom; ' (¢D), and the right class Dy is pomy ' D.

Lemma A.1.1. The class YDy is stable under pullback along Dy in the weak
factorization structure (\y, py,2 Dy, Dy) on {D, M}y

Proof. Since all pullbacks along D exist, pomy : {D, M}y — M preserves
pullbacks along Dy = pomy'D. Since the weak factorization system (D, D) on
M has an Id-presentation, YD is stable under pullback along D (Theorem 3.5.3).
Thus YDy = pom;'@D is stable under pullback along Dy = pom;'D. O

217



Note that in Section 3.3, though we made the hypothesis that the weak
factorization system is type theoretic and the category has all pullbacks, we only
used the weaker hypothesis that there is a subclass D of the right class which
contains each ¢, ¢; (using the notation of Section 3.3) such that (1) pullbacks of
D exist, (2) D is stable under pullbacks, (3) the left class is stable under pullback
along D, (4) D contains every morphism to the terminal object, and (5) D is
closed under composition. Call a weak factorization system satisfying this more
convoluted hypothesis D-type theoretic. Then we have the following analogues
of Theorem 3.3.10 and Corollary 3.3.7.

Proposition A.1.2. Consider a D-type theoretic weak factorization structure W on
a category C. Then VR(W) is an Id-presentation of W.

Proposition A.1.3. Consider a D-type theoretic weak factorization structure W on
a category C. Consider a relation R : R — C with the following components

Sl

Y —av=RY,

-
€1y

such that ny is in the left class of W and €py x €1y : RY — Y x Y isin D. (Note
that R is a relation just on Y, not on the whole of C.)

Then for any morphism f : X — Y of C, in the following factorization

1xnf
— >

X X x, RY X2y

the morphism 1 x nf is in the left class of W, and e¢;wgy is in D.

Remark A.1.4. Note that we have introduced this more complicated hypothesis
to avoid assuming that all pullbacks of D exist. If M had all pullbacks or were
Cauchy complete (Proposition 2.5.7), we would not have had to introduce the
notion of D-type theoretic, and we could have used the original Theorem 3.3.10
and Corollary 3.3.7.

Since the weak factorization structure (\y, py,2 Dy, Dy) on {D, M}y is Dy-
type theoretic, it has an Id-presentation VR ()\y, py 2 Dy, Dy) which at each
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f : X — Y gives the following relation (depicted as a diagram in M).

WOP(Af)
X—A(Af—>XA>< Id(X xy X)

\\mp Ay)
fxfp(Ay)

Now we show that the collection of these Id-presentations gives a model of

Id types in the display map category (M, D).

Proposition A.1.5. Consider a category of display maps (M, D) which models 3
types and Id types of objects. Then (M, D) models Id types.

Proof. We need to show that for every object f : X — Y of every category
{D, M}y, we can find a factorization of the diagonal A : f — f x f with the
properties required by the definition (2.3.1) of Id-types. By Lemma A.1.1, we
know that (\y, py 2 Dy, Dy) is a D-type theoretic weak factorization structure
on {D, M}y. We use this factorization to factorize the diagonal.

f )\Y(Af) Idy(Af) pY(Af) f % f
We know that py (Ay) is in Dy since its underlying morphism in M is p(DoMA ),
which is in D by Proposition 2.3.4.

Now we need to check that pullbacks (those required by the definition of Id
types) of Ay (A;) are in ¥Dy.. It suffices to show that the underlying morphisms
in M of those pullbacks are in “D.

Recall that the underlying morphisms of Ay (A) and py (Af) in M are

A(Ay) p(Ay)

X XAXGOId(X XyX) XXYX

where we are abusively denoting the diagonal X — X xy X by A, in M.
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Thus, we need to check that a pullback a*A\(Ay) (as shown below) of A\(Ay)
along any morphism a: A — X fori = 0,1 is in ¥D.

XAXEOId (X Xy X)pe; XaA

\ \

To do this, first note the pullback (A;mx)*r of r (as displayed below) is in
“D by hypothesis,

XAxeoId (X xy X)

mip(Ay)

A xy (XaxeId(X xy X)) Id(X xy X)
A XyX J X XyX €0
AXyX Bsmx X XyX

and it is isomorphic to (fa)*A(Ay).
Since the morphism p(Ay) is in D, its pullback (fa)*p(Ay) is also in D.
Thus the following diagram

*A(Af)

A><yX A Xy (XaxeId(X xYX))M

\ lﬂ'A A
A

depicts a factorization of the diagonal A : A xy X — (A xy X) x4 (A xy X)
into the pair (4D 4, D,) in the category {D, M} 4.

(A xy X) x4 (Axy X)

By Proposition A.1.3, this gives a factorization of the morphism 14 x a: A —
A xy X into (¥Dy, D).

MN(1laxa) P (laxa)

A

A XAXyX (A Xy (XAXGOId(X Xy X)))

AXyX
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Note that the middle object is isomorphic to X' x ., Id(X xy X) X, A and then
N (14 x «) is isomorphic to

axrAraxly

A

XaxeId(X Xy X) Xppe, A

which is isomorphic to the morphism a*A(Ay).
Since X (14 x ) is in ¥D4 = pom;' D, the morphism a*A\(A;) is in ¥D. [

A.2 1d types from strong Id types.

Definition A.2.1 ([BG12, Def. 2.2.4]). Consider a category of display maps (M, D)
which models ¥ types. We say that it models strong Id types if for every
f X — Y in D, the diagonal A : f — f x f in {D, M}y has a factoriza-
tion Ay = eyry

X Lo 1d4(f) L= X xy X

x l” Fxf
Y
in {D, M}y such that
1. €41sin D,

2. every pullback of r; as shown below is in ¥D, and

a*IT(f) Id(f)

a*fy
N

3. every pullback of r; along a display map is in ¥D.

First of all, we know that if (M, D) models Id types (Definition 2.3.1), then
they are strong.

Proposition A.2.2. Consider a category of display maps (M, D) which models 3
types and 1d types. Then it models strong I1d types.
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Proof. First of all note that a pullback of 7 of the form

a*1d(f) Id(f)
ol o
a*f X Lf
U N
A - Y
can be obtained as a pullback of the following form.
a*Id(f) Id(f)
ol o
Oé*f J X \ €1
F*A [ro X

Thus, the pullback a*r; is in ¥D.

By Theorem 3.4.4, we know that the weak factorization system generated
by the Id types is type-theoretic. In particular, pullbacks of r; € YD along
morphisms of D are in “D. O

Now, we emulate the proof of Lemma 11 in [GGo8] to show that strong Id
types give Id types on objects. One could also use the proof of Theorem 3.3.10
to show this.

Proposition A.2.3 ([GGo8, Lem. 11]). Consider a category of display maps (M, D)
which models ¥ types and strong 1d types. Then it models 1d types on objects.

Proof. Consider a object Y of M. We need to show that the pullback 1 x ry f
of 7y (shown below) is in YD for i = 0, 1. We will focus on the case i = 0. The
proof of the other is case is analogous.

X xy I4(Y) I4(Y)
Xy ‘ Yy miey
~_ N\
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That is, we need to find a solution to the lifting problem on the left below
for any c € D.

X /70 X %] C
1><rfl/ /// Lc 1><rfl /// l jc
X xy Id(Y)—=D X xy I4(Y) —— X xy Id(Y) -2~ D

Pulling back c along y as shown on the right above, we see that it is only necessary
to find a lift of o*r; against a display map with codomain X xy Id(Y’). Thus,
we seek a solution for the following lifting problem.

X - C

[~

lxrft -7 lc

X Xy Id(Y) —X Xy Id(Y)

Let C' x, Id(Y) denote the object obtained in the following pullback. (As
usual, we let ¢; : Id(Y) — X denote the composition m;e; for ¢ = 0,1.)
C x Id(Y) C
J
cxId(Y)l/ c
X xy Id(Y) ¢, X, Id(Y) /= X xy Id(Y)

Let 1 denote the solution to the following lifting problem.

=
o
—
~
N~—
™
X

(The left-hand map above is a pullback of r; along the display map ¢, so it is in
AD. Then the lift ;1 exists.)

Then consider the following commutative diagram.

X - C ¢
lerf llxrqc ,/Z/’///” l/c

X xy Id(Y) —C %, Id(Y) —= X xy Id(Y) ., X Id(Y) — X xy Id(Y
T 0 c 1 0 1xu

—_—
XTel x1d(Y)
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The lift ¢ above exists since the left-hand morphism 1 x re¢;c is a pullback of ry
along the display map ¢,c¢: C — Y, and so is in ¥D.

Now the composite along the bottom of the above diagram is equal to 1 x
p(reg x 1), so we get the commutative diagram below (where ¢’ is the composite
l(x x rep)).

X - C

X xy Id(Y) 0Dy Ta(Y)

Now this diagram is the one we sought save the bottom morphism. In what
follows, we correct this to the identity on X xy Id(Y).

Consider the following lifting problem in {D, M}, which has a solution m.

r(€o)

y 1a(Y) - Td(eo)
Lr(y) e - lg(go)
Id(Y) ~— Id(Y ), %o Id(Y)

Pulling this back along f : X — Y, we get the following diagram in {D, M} x.

X —2 X %y 14(Y) D) |y oy Td(eo)
j ixm _ —— " -7 l
1xrf - 1xe(ep)
X xy I4(Y e aeax D X Xy Id(Y ), X, I1d(Y)

\/

A solution to the following lifting problem exists since 1 x r(¢g) is one of pullbacks
of r(ey) hypothesized to be in YD (where 7y is the projection X xy Id(Y) — X).

r(rx)

X xy Id(Y) Id(my)
_ 7
jlxr(eo) - - le(ﬂx)

X xy Id(eo)m)X Xy Id(Y ), X, IA(Y)
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We also get a solution to the following lifting problem.

c —_¢C
ler(wx) _ b - Lc

- e1(mx)

C X (xxy1a(v)) Id(mx) —= X xy Id(Y)

Now, putting all of these lifts together, the composite

¢ xn(1xm)

X xy Id(Y) C X (X xyId(Y)) Id(WX) 5 C

is the lift we sought. O

Now using our earlier result, we see that strong Id types are Id types.

Corollary A.2.4. Consider a category of display maps (M, D) which models
types and strong 1d types. Then it models 1d types.

Proof. The preceding proposition says that (M, D) models Id types on objects.
Then Proposition A.1.5 says that (M, D) models Id types. O
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