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Abstract
This work proposes and compares perceptually motivated loss
functions for deep learning based binary mask estimation for
speech separation. Previous loss functions have focused on
maximising classification accuracy of mask estimation but we
now propose loss functions that aim to maximise the hit mi-
nus false-alarm (HIT-FA) rate which is known to correlate more
closely to speech intelligibility. The baseline loss function is bi-
nary cross-entropy (CE), a standard loss function used in binary
mask estimation, which maximises classification accuracy. We
propose first a loss function that maximises the HIT-FA rate in-
stead of classification accuracy. We then propose a second loss
function that is a hybrid between CE and HIT-FA, providing a
balance between classification accuracy and HIT-FA rate. Eval-
uations of the perceptually motivated loss functions with the
GRID database show improvements to HIT-FA rate and ESTOI
across babble and factory noises. Further tests then explore ap-
plication of the perceptually motivated loss functions to a larger
vocabulary dataset.
Index Terms: HIT-FA, speech separation, binary mask

1. Introduction
Speech separation from a monaural source aims to separate tar-
get speech from interfering background noise to produce a more
intelligible signal. Such systems have widespread application
in areas such as speech enhancement, robust speech recognition
and hearing aid design [1, 2, 3]. There are two main approaches
to this problem. The first is to derive a statistical model that
makes certain assumptions about the background noise, and in-
cludes methods such as spectral subtraction, Weiner filtering
and mean-square error estimation [4]. These approaches have
been shown to not provide an increase in intelligibility for hu-
man listeners [5, 6]. This is because distortions (e.g. musical
noise) are introduced and low-intensity sounds (e.g. unvoiced
consonants), which are important for intelligibility, are lost.
The second approach uses computational auditory scene anal-
ysis (CASA) [7], inspired by perceptual principles of auditory
scene analysis (ASA), can be effective in both stationary and
non-stationary noise [8].

In CASA, speech can be extracted by applying a mask to a
time-frequency (T-F) representation of noisy speech. An ideal
binary mask (IBM) retains speech dominant T-F units and sup-
presses noise dominant T-F units. An IBM can be constructed
from premixed speech and noise and defined as

IBM(t, f) =

{
1, if SNR(t, f) ≥ LC
0, otherwise (1)

where t and f represent time frame and frequency bin respec-
tively and LC is a local criterion. T-F units dominated by speech
are assumed to have a signal-to-noise ratio (SNR) greater than

Feature 
Extraction DNN

Enhanced 
Audio

Speech + Noise 
Mixture

Features

Filterbank

Cochleagram

Estimated Mask

Overlap & 
Add

Figure 1: Overview of the speech separation system.

or equal to LC are represented by 1 and retained. Noise dom-
inant units are assumed to be less than LC are represented
by 0 and suppressed. Several studies have reported subjec-
tive test results where IBMs improve intelligibility for speech
in noise for both normal-hearing and hearing-impaired listen-
ers [9, 10, 11, 12]. In practice an IBM is not available and in-
stead the binary mask must be estimated from the noisy signal.
This allows speech separation to be treated as a mask estimation
problem that uses supervised learning to map acoustic features
extracted from noisy speech to a binary mask [13].

Previous studies have focused on either developing im-
proved feature extraction methods or using more sophisticated
classifiers - for example moving from Gaussian mixture models
(GMMs) to deep neural networks (DNNs). Some attention has
been focussed on improving the classifier to reduce perceptual
error by changing the loss function for text-to-speech applica-
tions [14], and introducing signal approximation loss functions
[15, 16] as a replacement for mask approximation within speech
separation applications. Signal approximation loss functions
apply the output of the network to the noisy spectrum within
the loss function, and minimise this with respect to the target.
Signal approximation works well when the network target is
the power spectrum, outperforming mask approximation, how-
ever is not applicable to a cochleagram framework, due to the
cochleagram is constructed from overlapping gammatone fil-
terbanks. In this work we focus on mask approximation loss
functions within a cochleagram framework for consideration to
cochlear implants.

We first compare the performance of two different feature
extraction methods, namely the multi-resolution cochleagram
feature (MRCG) and the complementary feature set (ARpMG)
[17, 18]. We also propose two perceptually motivated mask ap-
proximation loss functions that are inspired by the hit minus
false-alarm (HIT-FA) rate, which has been shown to correlate
more closely to speech intelligibility than classification accu-
racy [19, 20, 17, 18, 21]. Classification accuracy is the basis of
the binary cross-entropy (CE) loss function used as standard for
binary mask estimation forming our baseline.

Figure 1 shows the overall speech separation system. Fea-
tures are extracted from noisy speech and input into a DNN to
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estimate a binary mask. Masking is applied to a cochleagram
[7] of the noisy speech which suppresses noise-dominated T-F
units and the remaining signals are overlapped and summed to
produce the enhanced signal.

The remainder of the paper is organised as follows. The
classifier and proposed loss functions are described in Section
2. Section 3 provides an overview of two feature extraction
methods. Performance evaluations are made in Section 4 which
first compare the feature extraction methods and then the effec-
tiveness of the proposed perceptual loss functions under varying
noise and SNR conditions using both a small dataset (GRID)
and large dataset (RM-3000).

2. Perceptually motivated loss functions
The purpose of the classifier is to learn a mapping between
acoustic features extracted from the noisy speech mixture and
the binary mask output. Previous studies have shown a progres-
sion in classifiers used, beginning with GMMs through to sup-
port vector machines (SVMs), multilayer perceptrons (MLPs)
and finally deep learning [19, 20, 17, 18, 21, 22]. We use DNNs
as the classifier in this work which normally uses the binary
cross-entropy (CE) loss function in training for classification
tasks. The DNN uses rectified linear units for hidden layers and
a sigmoid layer for the output. The CE loss function is now
reviewed and two new perceptually motivated loss functions in-
troduced inspired by the HIT-FA rate.

2.1. Binary cross-entropy (CE)

Binary cross-entropy (CE) is a standard loss function used
within DNN training for classification tasks [23] and forms the
baseline loss function. The aim of CE is to maximise the ac-
curacy of the estimated mask where accuracy is defined as the
proportion of correctly labeled T-F units. The CE loss, LCE, is
calculated as

LCE = − 1

N

N∑
n=1

[
yn log(ŷn) + (1− yn) log(1− ŷn)

]
(2)

where y and ŷ are vectors that comprise concatenated frames of
T-F units for each mini-batch in DNN training, from the IBM
and estimated mask respectively. Each of these vectors com-
prises N T-F units which are indexed by n.

2.2. HIT-FA (HF)

Our first perceptually motivated loss function (HF) is based on
maximising the HIT-FA rate, which several studies have shown
correlates more closely to intelligibility than mask accuracy
[19, 20, 17, 18, 21]. In terms of the loss function, HITs refer
to the proportion of correctly labeled target-dominant T-F units
while FAs refer to the proportion of incorrectly labeled noise-
dominant T-F units. Studies have shown that achieving high
HITs and low FAs produces higher intelligibility [19].

The key difference between the CE and HF loss functions is
that CE calculates accuracy over all T-F units together, whereas
HF calculates the accuracy of target-dominant (1) and noise-
dominant (0) T-F units separately. HIT-FA has a range between
1 and -1, with 1 being best performance. However within DNN
training loss is minimised, therefore we use FA-HIT to give best
performance at -1 and remove this discrepancy. The HIT-FA
loss, LHF, is calculated as

LHF =
1

S

N∑
n=1

[
(1− yn)ŷn

]
− 1

R

N∑
n=1

[
ynŷn

]
(3)

where S is the number of T-F units within y that should be
suppressed (0s) and R is the number of T-F units within y that
should be retained (1s).

2.3. Binary cross-entropy HIT-FA hybrid (CHF)

Within an IBM the number of retained T-F units, R, and number
of suppressed units, S, are generally not equal. In most cases
there are more noise-dominant T-F units than target-dominant
units, due mainly to areas of non-speech. The HF loss function
is calculated as proportions of R and S separately, and is there-
fore less affected by bias towards a difference between R and
S. Conversely, the CE loss function is calculated as an overall
accuracy of R and S and is therefore biased towards the greater
of the two. We take inspiration from the HF loss function to
produce a hybrid cross-entropy HIT-FA (CHF) loss function by
modifying the CE function to remove this bias. To do this we
normalise the ratio between R and S such that R = S. This is
achieved by multiplying the portion related to S by R/S. The
cross-entropy HIT-FA loss function, LCHF, is calculated as

LCHF = − 1

N

N∑
n=1

[
yn log(ŷn)+

R

S
(1−yn) log(1−ŷn)

]
(4)

Our data has a bias towards S, therefore this normalisation will
cause an increase of HITs at a cost of increasing FAs. The oppo-
site would occur if the bias was towards R. A reduction to over-
all classification accuracy will occur in all cases where R 6= S
prior to normalisation.

3. Feature extraction
Feature extraction aims to identify suitably discriminative in-
formation in the noisy input speech that enables the DNN to de-
termine whether T-F units are target (1) or noise (0) dominated.
We investigate two different acoustic features.

3.1. Multi-resolution cochleagram feature (MRCG)

The MRCG feature was designed specifically for mask estima-
tion and combines four cochleagrams at different resolutions
[17]. The first captures high resolution localised detail while the
remaining cochleagrams capture lower resolution spectrotem-
poral content. Cochleagrams are computed by passing the input
signal through a 64-channel gammatone filterbank [24].

The outputs from the gammatone filterbank are split into
20ms frames with 10ms frame shift with power spectrum com-
puted followed by a log which gives the first cochleagram,
CG1. Similarly, CG2 uses 200ms frames with 10ms frame
shift. Finally, CG3 and CG4 are derived by applying an 11×11
and 23 × 23 mean filter kernel to CG1 [17]. The final MRCG
feature, xMRCG, is produced by stacking all four CGs.

3.2. Complementary feature set (ARpMG)

The complementary feature set (ARpMG) is an ensemble of
commonly used acoustic features [17, 18, 21]. This com-
bines amplitude modulation spectrum (AMS) [25, 26, 19], rela-
tive spectral transformed perceptual linear prediction (RASTA-
PLP) [27] and mel-frequency cepstral coefficients (MFCCs)
[28] with a gammatone filterbank (GFB) [17].

The specific implementation is taken from [18] where AMS
features are computed from 32ms frames with 10ms frame
shift to give a 15-D vector. RASTA-PLP features are also com-
puted from 32ms frames with 10ms frame shift and result in



a 13-D vector. MFCCs are computed from 20ms frames with
10ms frame shift with a 30-D vector produced.The GFB fea-
ture is computed from a 64-channel gammatone filterbank, dec-
imating to 100Hz to give a 10ms frame shift and results in a
64-D vector. Combining these gives the 122-D ARpMG fea-
ture, xARpMG, which is produced at a 10ms frame rate.

3.3. Temporal information

Including temporal information with static features have shown
to improve performance for automatic speech recognition
(ASR) [29, 30]. In this work we include temporal informa-
tion via vector stacking. Given a sequence of static feature
vectors, {. . . ,xi−2,xi−1,xi,xi+1,xi+2, . . . }, neighbouring
vectors within a window that extends K vectors either side of
the current vector are stacked, i.e.

xSTACK
i = [xi−K , . . . ,xi, . . . ,xi+K ] (5)

Preliminary tests found a window of 7 frames (i.e. K=3) gave
best performance.

4. Experimental results
Experiments first identify the best performing feature set, then
compare the performance of the proposed loss functions within
a small dataset (GRID) across a range of noises and SNRs. This
is then expanded to a larger vocabulary dataset (RM-3000).

Initial tests use the GRID database which contains record-
ings from 34 speakers who each produced 1000 sentences [31].
Each sentence comprises six words and follows the grammar
shown in Table 1. Speaker 12 (male) was selected for the eval-
uations and the audio downsampled to 16 kHz. The speech
database is split into 200 test sentences, and 800 training sen-
tences of which 160 are removed for validation within training.

Table 1: GRID sentence grammar.

command colour preposition letter digit adverb

bin blue at A-Z 1-9 again
lay green by minus W zero now

place red in please
set white with soon

The second dataset, RM-3000 [32], consists of 3000 sen-
tences spoken by a single native English speaking male speaker.
The sentences were randomly selected from the 8000 sentences
in the Resource Management (RM) Corpus [33]. The vocabu-
lary size of 1000 words and no strict grammar give a more real-
istic environment, and more challenging task when compared to
GRID. The audio was downsampled to 16 kHz and the speech
database is split into 600 test sentences, and 2400 training sen-
tences of which 480 are removed for validation within training.

A range of DNN parameters were explored to find the best
performing network and are shown in Table 2. From these, 30
different network configurations were randomly selected and
the best performing configuration based on the validation set
chosen. This procedure was repeated for all loss functions with
babble noise at -5 dB, so that the DNN configuration for each
loss function can be considered optimised. The optimal param-
eters for each loss function was used in subsequent experiments
for the remaining noise types and SNRs.

For evaluating the performance of our speech separation
systems, we utilise three objective measures: i) classification
accuracy, ii) HIT-FA rate and iii) ESTOI [34]. Within the

ESTOI function, non-speech frames are removed via dynamic
range thresholding, however in our experiments, we found this
method to perform poorly and not remove the desired non-
speech frames. Therefore, we remove the non-speech frames
using the alignment transcriptions provided for each dataset
prior to the ESTOI function.

Table 2: Parameter set for DNN optimisation

Parameter value

hidden layers 3, 4, 5

hidden units 1024

mini-batch size 256, 512, 1024

hidden dropout 0.0, 0.2, 0.5

learning rate 3e−4, 1e−4, 3e−5, 1e−5

momentum 0.0, 0.9, 0.99

4.1. Analysis of features

These tests compare the performance of our two feature extrac-
tion methods on the GRID dataset. Experiments are performed
in babble noise at an SNR of -5 dB with LC set to -10 dB. An
LC 5 dB lower than the overall SNR was found to give best
performance in a initial tests and conforms to that described in
[18, 21]. Table 3 shows the objective performance for the two
feature sets with all loss functions.

Table 3: Classification accuracy (in %), HIT-FA (in %) and ES-
TOI scores for the feature comparison using the GRID dataset
in babble noise at -5 dB.

Feature Loss Acc HIT-FA (FA) ESTOI

MRCG
CE 89.7 66.7 (4.6) 46.9

HF 84.8 68.0 (14.5) 42.6

CHF 88.3 71.7 (9.5) 46.1

ARpMG
CE 87.9 60.6 (5.4) 41.6

HF 83.1 62.2 (15.1) 37.7

CHF 85.5 65.3 (12.0) 39.8

unprocessed audio 20.3

Performance shows that across all loss functions and ob-
jective measures, the MRCG feature extraction method outper-
forms the ARpMG method. Intelligibility gains can be found
for all features over that of unprocessed.

4.2. Analysis of perceptual loss functions

These tests compare the performance of our proposed percep-
tual loss functions using the MRCG feature (see Section 4.1).
Experiments are performed in babble and factory noise at SNRs
of -5 dB, 0 dB and +5 dB, with LC set to 5 dB lower than the
selected SNR with the GRID dataset. Table 4 shows the objec-
tive performance across all experiments.

Focusing first on classification accuracy, the CE loss func-
tion gives highest accuracy across all SNRs and noise types.
This is expected as the CE loss function is targeted to maximise
accuracy. The hybrid CHF loss function has accuracy almost
as high as CE and exceeds that of HF which is not designed to
maximise classification accuracy.

Considering now the HIT-FA rate, the HF loss function now
outperforms the CE loss function as it is designed to maximise
HIT-FAs. However, the hybrid CHF loss function gives even



higher HIT-FAs across all SNRs and noise types. In terms of
HITs, the CHF and HF loss functions perform similarly, but
their main difference is that the CHF loss function generates
less FAs compared to the HF loss function. Lowest HITs and
FAs are found with the CE loss function due to it favouring 0s
over 1s in the mask, which is caused by the bias towards the
larger of S and R. The CHF loss function is able to remove this
bias and provides a balance between increasing HITs without
increasing as many FAs.

Table 4: Classification accuracy (in %), HIT-FA (in %) and ES-
TOI scores for the GRID dataset in babble and factory noise at
-5 dB, 0 dB and +5 dB.

Noise (dB) Loss Acc HIT-FA (FA) ESTOI

babble

-5

CE 89.7 66.7 (4.6) 46.9

HF 84.8 68.0 (14.5) 42.6

CHF 88.3 71.7 (9.5) 46.1

unprocessed audio 20.3

0

CE 91.8 74.7 (4.1) 62.4

HF 88.7 77.4 (11.2) 60.3

CHF 90.6 79.5 (8.7) 62.8

unprocessed audio 33.9

+5

CE 92.6 77.6 (4.0) 72.2

HF 90.1 81.0 (10.3) 72.6

CHF 91.4 82.6 (8.5) 74.1

unprocessed audio 49.8

factory

-5

CE 92.8 69.1 (2.7) 44.8

HF 89.4 74.1 (9.4) 40.9

CHF 91.1 75.7 (7.2) 43.8

unprocessed audio 20.1

0

CE 94.4 76.9 (2.5) 58.7

HF 91.3 79.9 (8.0) 57.2

CHF 92.9 83.2 (6.4) 60.1

unprocessed audio 33.5

+5

CE 95.1 80.3 (2.4) 66.9

HF 92.1 83.9 (7.9) 68.1

CHF 93.6 86.6 (6.2) 70.6

unprocessed audio 49.9

Comparing now the intelligibility as measured by ESTOI,
the CE loss function outperforms the HF loss function at lower
SNRs while the HF loss function is better at the higher 5 dB
SNR. Even though the HF loss function outperforms CE with
regards to the HIT-FA rate across all SNRs, the large number
of FAs introduced by the HF loss function reduces the intel-
ligibility to be lower than CE at low SNRs. This shows that
even a large increase in HITs does not compensate for a large
increase in FAs, which are more detrimental to intelligibility at
low SNR than at high SNR. Considering now the performance
of the hybrid CHF loss function, this outperforms both CE and
HF at SNRs above -5 dB and is slightly worse than CE at -5 dB.
The CHF loss function had highest HIT-FA rate across all SNR,
confirming that increasing the HIT-FA rate does increase intel-
ligibility, but the number of FAs introduced affects the resulting
intelligibility. Reducing FAs at low SNRs is critical whereas a
higher HIT rate is more important at high SNRs.

Overall, with intelligibility being the main focus, all loss
functions provide large gains in intelligibility compared to that

of the unprocessed audio. If the SNR is very low, CE is the loss
function of choice, however at all other SNRs, CHF is the best
performing loss function. CHF also provides a strong balance
between both classification accuracy and the HIT-FA rate.

4.3. Further analysis of perceptual loss functions

From the experiments in Section 4.2, loss functions CE and
CHF are selected for further analysis in a larger vocabulary
dataset. Experiments are performed in babble noise at SNRs
of -5 dB, 0 dB and +5 dB, with LC set to 5 dB lower than the
select SNR using the RM-3000 dataset. Table 5 shows objective
performance across all experiments.

Table 5: Classification accuracy (in %), HIT-FA (in %) and ES-
TOI scores for the RM-3000 dataset in babble noise at -5 dB,
0 dB and +5 dB.

Noise (dB) Loss Acc HIT-FA (FA) ESTOI

babble

-5
CE 90.3 71.2 (4.8) 46.9

CHF 88.8 76.2 (10.6) 46.5

unprocessed audio 22.0

0

CE 91.7 76.2 (4.6) 59.6

CHF 90.5 80.4 (9.2) 60.5

unprocessed audio 35.4

+5
CE 92.4 78.9 (4.5) 68.8

CHF 91.3 82.7 (8.8) 70.8

unprocessed audio 50.7

Performance of the two loss functions on the RM-3000
dataset are found to follow the same trends as the experiments
with GRID, even though this task is more challenging. Ap-
plying paired comparisons using Tukey’s HSD [35], found the
improvement of the hybrid CHF loss function over the CE loss
function to be statistically significant (p<0.05) at both 5dB and
0dB, while at -5dB no statistical difference was found.

5. Conclusions
When applied to mask estimation, the conventional cross en-
tropy loss function aims to maximise the accuracy of the mask.
In this work, we proposed two new perceptually motivated loss
functions that consider the HIT-FA rate as this has been shown
to relate more closely to intelligibility than mask accuracy. The
first loss function (HF) was based solely on maximising the
HIT-FA rate and whilst this was achieved, ESTOI performance
was generally lower than the CE loss function due to a larger
number of false alarms being introduced. The second loss func-
tion (CHF) aimed to combine maximisation of mask accuracy
and HIT-FA rate and was able to reduce the bias found within
binary cross-entropy by adjusting the ratio between 1s and 0s
inspired by HIT-FA. Evaluation on both small (GRID) and large
(RM-3000) vocabulary datasets found that the proposed CHF
loss function gave highest HIT-FA and ESTOI in the majority of
test conditions, outperforming both CE and HF loss functions.
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