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Abstract

A critical problem in the clinical management of prostate cancer is that it shows high
intra- and inter-tumoural heterogeneity. As a result, accurate prediction of individ-
ual cancer behaviour is not achievable at the time of diagnosis, leading to substantial
overtreatment. It remains an enigma that, in contrast to other cancers, no molecu-
lar biomarkers which define robust subtypes of prostate cancer with distinct clinical
outcomes have been discovered.

In the first part of this study, using data from exon microarrays, we developed a novel
method that can identify transcriptional alterations within genes. The alterations might
be the result of chromosomal rearrangements, such as translocations, and deletions, or
of other abnormalities, such as read-through transcription and alternative transcriptional
initiation sites. Using data from two independent datasets we identify several candidate
alterations that are constantly correlated with the biochemical failure or that are linked
to the development of metastasis.

In the second part of the study we illustrate the application of an unsupervised
Bayesian procedure, which identifies a subtype of the disease in five prostate cancer
transcriptome datasets. Cancers assigned to this subtype (designated DESNT cancers)
are characterized by low expression of a core set of 45 genes. For the four datasets
with linked PSA failure data following prostatectomy, patients with DESNT cancer
exhibited poor outcome relative to other patients (p = 2.65 ·10−5, p = 4.28 ·10−5, p =
2.98 ·10−8 and p = 1.22 ·10−3). The DESNT cancers are not linked with the presence
of any particular class of genetic mutation, including ETS gene status. However, the
methylation analysis reveals a possible role of epigenetic changes in the generation of
the DESNT subtype. Our results demonstrate the existence of a novel poor prognosis
category of human prostate cancer and will assist in the targeting of therapy, helping
avoid treatment-associated morbidity in men with indolent disease.
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Chapter 1

Introduction

Prostate cancer is the most common cancer in males [1, 2]. In 2013, over 1.4 million
men were diagnosed with prostate cancer worldwide and 293,000 died due to the disease
[1]. In England, one in four diagnosed cancers is a prostate cancer [2] (Figure 1.1).
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Cancer is a group of conditions characterized by uncontrolled division of cells,
which invade and destroy the surrounding healthy tissue. In later stages cancer may
spread to other parts of the body, destroying the functions of different organs. A group
of modified cells that show abnormal growth is referred to as tumour.

The prostate is a gland of the male reproductive system, which is the size of a
chestnut, situated underneath the bladder and surrounding the urethra. Its main function
is to produce a fluid that is a major constituent of semen [3].

Prostate cancer is a disease usually affecting men that are over 50 years old, with the
majority of cases being diagnosed between the ages of 50-80 [4]. Studies have shown
that one third of men aged 50 years or more have evidence of prostate cancer [5–10],
but in 80% of cases, the disease is low grade and is clinically insignificant [11].

1.1 Biomarkers

According to the National Cancer Institute, a biomarker is “a biological molecule found

in blood, other body fluids, or tissues that is a sign of a normal or abnormal process,

or of a condition or disease.” [12]. Cancer biomarkers can be anything that predicts
the presence, progression or treatment response of the disease, from proteins and urine
markers to genomic alterations, abnormal gene expression and epigenetic modifications
[13].

Recent technological developments such as expression microarrays, gene cloning
and sequencing technology have led to the discovery of a multitude of new biomarkers
with important roles in the management of cancer. For example in leukaemia, genetic
alterations are used as biomarkers in the selection of treatment. It has been found
that patients with a PML-RARA translocation respond to a certain treatment (all-trans

retinoic acid) while those with a BCR-ABL1 translocation respond to a different one
(imatinib mesylate)[14]. In breast cancer, the Mammaprint test [15] uses the molecular
profile of 70 genes to identify patients with high risk of cancer recurrence after the
tumour has been surgically removed.

1.2 Prostate cancer biomarkers

In prostate cancer, the detection rates sharply increased with the introduction of the PSA
biomarker at the end of 1980s [16]. The PSA test measures the levels of the prostate
specific antigen (PSA) serum-marker in peripheral blood. High levels of PSA have been
associated with the presence of prostate cancer [17]. However, it has been estimated
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that PSA screening (testing all males over 50 in the USA) leads to the detection of up to
50% of cancers that are clinically irrelevant [18–20] - that is cancers that would never
have caused symptoms in a man’s lifetime in the absence of screening.

Prostate cancer shows high inter- and intra-tumour heterogeneity. Many times
patients from the same risk category have quite different clinical behaviours [21].
Some patients have indolent forms of the disease, that never require treatment, while
others have lethal forms [22]. Even within the same tumour, multiple linages with
different properties very often coexist [23]. The intra-tumour heterogeneity can further
complicate the molecular profiling of cancer and the identification of distinct molecular
subtypes [24].

In contrast to other types of cancer, prostate cancer currently lacks a consistent clas-
sification in subtypes that differ in prognosis or treatment response [25]. For example,
in breast cancer there are at least three subtypes (ERBB2 overexpressing, basal and
luminal subgroups), with different outcomes [26, 27]. The current risk stratification
strategy of early stage prostate cancer [28], based on clinical indicators, cannot accu-
rately predict the outcome of the patients. As accurate prediction of individual prostate
cancer behaviour at the time of diagnosis is not possible, immediate radical treatment
for all cases has been a common approach.

Radical treatment, which consists of surgical removal of the prostate (prostectomy)
or radiotherapy, has a significant risk of complications [29] and, also, has a high
impact on quality of life, as most men report urinary incontinence and impotence [30].
Radical treatment of early stage prostate cancer should ideally be targeted to men with
significant cancers, so that the remainder, with biologically irrelevant disease, are spared
the side-effects of treatment.

Around 35% of men experience recurrence of the disease within 10 years of radical
treatment [31]. It is therefore important to also predict the recurrence of the disease as
early as possible, so that the patients with risk of recurrence are referred to secondary
treatments, increasing chances of survival.

With the advent of new technologies a multitude of recurrent genetic alterations have
been identified, but they do not seem to constitute reliable biomarkers for predicting
disease outcome. The most common genomic alteration, the TMPRSS2-ERG fusion,
which occurs in around 50% [32] of cancers is not robustly associated with cancer
aggressiveness [33–35]. Some other frequent genomic abnormalities such as TP53

and PTEN alterations have been linked with poor outcome. However, their role as
independent predictors has not been proven [36].

Several molecular biomarkers have been also discovered. Noteworthy are the PCA3
gene overexpression in urine, which detects prostate cancer with high sensitivity and
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specificity [37] and several commercially available gene panels such as, Prolaris [38],
OncotypeDx [39] and Dechipher [40], which can predict aggressive prostate cancer.
Even though these advancements have the potential to improve the clinical management
of the disease and to benefit the patients, so far they have failed to reach a widespread
clinical use.

Hence, there remains in the field a need for reliable biomarkers for prostate cancer
that could better assist in distinguishing between aggressive cancer, which may require
treatment, and non-aggressive cancer, which can be left untreated and spare the patient
any side effects from unnecessary interventions.

1.3 Thesis aims

The purpose of the work presented in this thesis is to derive more reliable prostate
cancer biomarkers, that could help better stratify patients and distinguish aggressive
prostate cancers from indolent cancers. We focused our efforts in two main directions.

In the first part of the thesis we present a novel method that can identify transcrip-
tional abnormalities within genes. We then present several candidate genes for which
the transcriptional abnormalities correlate with aggressive prostate cancer.

In the second part of the thesis we describe the analysis that led to the identification
of a molecular subtype of prostate cancer, designated DESNT, with poor clinical
outcome. We also present the main characteristics of the DESNT cancers. Additionally,
we illustrate the derivation of a gene signature with high predictive power for DESNT,
which has the potential to be used for a better stratification of prostate cancer in a
clinical setting.

1.4 Chapter summaries

We now briefly summarise the chapters presented in the rest of this thesis:

• In Chapter 2 we introduce the key biological concepts used in this thesis. We
also present the current recommendations for managing prostate cancer in the
clinic and the exon microarray technology used to measure gene expression.

• In Chapter 3 we present the computational approaches used in this thesis. We
focus in particular on describing the Latent Process Decomposition (LPD) model,
which is the basis of the analysis presented in Chapter 5, and the algorithms used
to perform survival analysis.
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• In Chapter 4 we describe a novel method that we developed to identify possible
transcriptional abnormalities within a gene, using exon microarrays. We describe
how this approach works, how it was set up and how it compares with previous
approaches. We also present the results obtained by applying the method on three
prostate cancer datasets. We further focus on several candidate genes, for which
the transcriptional alterations are correlated with clinical outcome of patients.

• In Chapter 5 we apply the LPD algorithm on five prostate cancer datasets and
identify a molecular subtype of cancer with poor prognosis, denoted DESNT. We
then describe the analysis that led to the definition of a core set of genes that
characterise the DESNT cancers. In the second part of the chapter we present the
derivation of a 20 gene signature that can predict DESNT membership. Finally,
we correlate the DESNT cancers with mutational and methylation data.

• In Chapter 6 we conclude our findings and discuss several possible future direc-
tions for this research area.



Chapter 2

Biomedical background

2.1 Summary

In this chapter we present an overview of the main biological concepts and medical
approaches relevant for the management and research of prostate cancer. We briefly
describe the central dogma of molecular biology, to introduce some basic concepts used
throughout the thesis such as exon, gene and gene expression. We then present the
general characteristics of cancer and the main types of mutations associated with cancer.
Next, we describe the current understanding and management of prostate cancer and
also present the emerging biomarkers, that try to address some of the current challenges
in the field. Besides this, we briefly describe some biological and bioinformatical
approaches used in the study of prostate cancer, such as the use of microarrays.

2.2 Genes and gene expression

As presented in Kuriyan et al. [41], organisms store genetic information in DNA
(deoxyribonucleic acid), a helicoidal, double-stranded macromolecule of nucleic acids.
The central dogma of molecular biology [42] states that the information in DNA is
transcribed into RNA (ribonucleic acid), which is then translated into proteins, that
make up the structural and functional elements of the cell (Figure 2.1).

A gene is the unit of heredity, made of DNA and regulatory elements, that encodes
a protein or a functional non-coding RNA (ncRNA) molecule [44]. In eukaryotes, the
protein-coding genes are transcribed into pre-mRNA (precursor messenger RNA). The
pre-mRNA is then processed in a mechanism named RNA splicing, in which some
portions of the molecule, known as introns, are cleaved out, and the remaining portions,
known as exons are ligated together, resulting in mRNA (messenger RNA). Alternative
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Figure 2.1 Central dogma of molecular biology (adapted from Wikipedia [43]).

splicing is a process that can result in the selective inclusion of some exons, as well as
in the modification of the transcription start and/or end locus, allowing the creation of
several different mRNAs from the same pre-mRNA. The different versions of mRNA
created via alternative splicing are referred to as isoforms. The mRNA nucleotide
sequence is then translated into the amino acids sequence of a protein via a mapping
known as genetic code, which associates three consecutive nucleotides to a codon, that
is specific to a given amino acid. Notably different splice isoforms may encode proteins
with different sequences and distinct functions.

The non-coding RNA molecules, on the other hand, are not translated into proteins,
but have important functional roles in the cell. They are roughly divided into two
categories based on size: small ncRNAs (<200 base-pairs) and long ncRNAs (>200 base-
pairs) [45]. Small ncRNAs include transfer RNA (tRNA) and ribosomal RNA (rRNA),
essential for the cell machinery, micro RNA (miRNA), small nuclear RNA (snRNA) and
small interfering RNA (siRNA), with roles in gene regulation [45]. The long ncRNAs
(lncRNA) are divided into intergenic and intragenic lncRNA. The lncRNAs are mainly
involved in transcription regulation [45], and their aberrant activity has been linked with
various diseases, including prostate cancer [46].

The process of synthesising a functional gene product (proteins or ncRNAs) using
the information encoded in a gene is usually referred to as gene expression, and the
amount of RNA transcribed as gene expression level. The mechanisms that control
gene expression in a cell are very complex and are not completely understood. The
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expression level change dynamically in time, as it depends on many factors such as
tissue type, external stimuli or internal needs.

2.3 Cancer

Cancer is characterised by uncontrolled cell division. The progression from normal cells
to cancer cells in known as tumorigenesis and is a multistage process, during which a
significant number of redundant cell control mechanisms are disabled or bypassed.

Hanahan and Weinberg [47] described six essential capabilities that cancer cells
need to acquire in order to multiply and spread: self-sufficiency in growth signals,
insensitivity to growth-inhibitory (anti-growth) signals, evasion of programmed cell
death (apoptosis), limitless replicative potential, sustained angiogenesis (growth of
blood vessels), and tissue invasion and metastasis. In a newer version of the study [48],
they add two more capabilities: reprogramming of energy metabolism and evading
immune destruction.

Firstly, cancer cells need to be able to proliferate independent of external growth
signals, a set of complex extra-cellular stimuli without which normal cells do not
grow; and also they need to become unresponsive to growth suppressors. Another key
capability is the ability to avoid programmed cell death (also known as apoptosis), that
occurs in normal cells due to either external stimuli, or if internal abnormalities, such as
DNA damage, are detected. Besides these capabilities, the cancer cells gain a survival
advantage when they are able to evade the senescence mechanism, an independent
machinery that controls the maximum numbers of divisions a cell can undergo.

Once the tumour starts to grow in size, it needs to develop a system of blood vessels,
to supply the cells with oxygen and nutrients and to evacuate the waste. Usually tumours
hijack the mechanism that is responsible for angiogenesis (the sprouting of new vessels
from existing ones) in normal cells to supply this need.

Most of the cancers will invade the surrounding sites and later move to more
distant locations, developing metastasis, which is the main cause of cancer-related
death. Metastasis is the result of a series of stages starting with local invasion of
the surrounding tissue, then the transfer of cancer cells into blood and lymph, which
transports them to distant sites where they form new settlements.

Cancers adjust also the energy metabolism mechanisms to fuel faster growth. Fur-
thermore, it is currently thought that the immune system constantly monitors cells and
eliminates the incipient tumours if irregularities are observed. Therefore, in order for
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the cancer to develop it needs to evade the immune system. The exact mechanisms to
do this are not well understood.

2.4 Genetic and epigenetic alterations in cancer

There are multiple ways in which the function of key regulatory genes are altered, in
the evolution of cancer. The most common abnormalities are genetic alterations, such
as point mutations, indels, structural and numerical alterations of chromosomes, and
epigenetic alterations such as DNA methylation.

The multitude of combinations in which these alterations can occur and the genes
they target account for the heterogeneity observed in cancers. However, there have
been identified a significant number of alterations which are recurrent in some diseases.
Their discovery lead to an improved understanding of the disease, definition of genetic
subtypes (often with different clinical outcomes), the development of new diagnostic
tests and therapeutic targets.

The genetic alterations can be classified into two main categories, based on the
effect on chromosome structure: small-scale mutations and chromosomal abnormalities
[49].

2.4.1 Small-scale mutations

Small-scale mutations are genetic alterations that affect one or several nucleotides
within a gene, and include point mutations (the substitution of a DNA nucleotide with
another) and indels (the deletion or the insertion of DNA nucleotides) [49]. They are
the result of either exogenous factors (chemicals, ultraviolet light, radiations etc.) or
endogenous factors (such as mitotic errors or errors in DNA repair) [50].

If the mutation takes place within a protein coding gene, then the protein encoded
might have different properties, leading to its malfunction. Alternatively the mutation
might lead to a truncation of the protein encoded. Mutations can also affect the
functionality of non-coding genes, leading to expression aberrations and promoting
tumorigenesis [51].

It is estimated that most cancer harbour between 1,000 and 20,000 point mutations
and indels [50]. Some of the most relevant mutated genes in cancer are TP53 (36.1%),
PIK3CA (14.3%), and BRAF (10%) [50]. TP53 is a tumours suppressor gene, while
PIK3CA and BRAF are involved in cell growth, therefore all play an important role in
the development of cancer.
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2.4.2 Chromosomal abnormalities

Chromosomal abnormalities are a complex class of alterations that result in changes
in the structure or number of chromosomes. They have been originally thought to be
specific to blood cancers and leukaemia, but in the recent years they have been also
found in almost all major solid tumours.

Fröhling and Döhner [52] identify two main categories of chromosomal abnormali-
ties: balanced chromosomal rearrangements and chromosomal imbalances.

a b c

d e f

Figure 2.2 Chromsomal abnormalities: a) reciprocal translocation, b) inversion, c)
insertion, d) chromoplexy, e) duplication, f) deletion.

Balanced chromosomal rearrangements are those alterations that result in the modifi-
cations in the structure of the chromosomes, but do not result in an increase or decrease
in the number of copies of a gene. The typical balanced chromosomal rearrangements
are reciprocal translocations (two chromosomes exchange a portion), inversions (a
portion of a chromosome is inverted) and insertions (a portion of a chromosome is
inserted into another chromosome) (Figure 2.2a-c). In recent years a new complex
chromosomal rearrangement, referred to as chromoplexy has been identified in prostate
cancer [53, 54] (Figure 2.2d). Chromoplexy refers to a chain of translocations and
deletions that involve simultaneously several genomic intra and inter-chromosomal
locations.

Chromosomal imbalances are those abnormalities that result in gains or losses of
genetic material. The amount of genetic material can range from entire chromosomes
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to chromosome arms, portions of chromosome, to intragenic deletions or duplications
[52] (Figure 2.2e,f).

Sometimes, the breakpoints of chromosomes involved in rearrangements are within
or in the proximity of genes. This might result in the formation of gene fusions, in the
deregulation of the expression of a structurally normal gene, due to its translocation
close to the promoter of another gene or to the truncation of the gene transcript. A gene
fusion is the juxtaposition of parts of two distinct genes, leading to the formation of a
chimeric gene with altered or new functionality [52].

One of the first gene fusions discovered was the Philadelphia chromosome [55], the
fusion between the BCR gene, located on chromosome 22, and the ABL1 gene, located
on the chromosome 9. The BCR-ABL1 fusion is the result of a reciprocal translocation
and is found in almost all chronic myeloid leukaemia (CML - a type of leukaemia) cases.
The protein encoded by ABL1 is involved in the cell division process and under normal
conditions its activity is carefully regulated. When fused to BCR, the ABL1 function
is preserved, but the resulting hybrid protein is not responsive to control mechanisms
anymore, leading to uncontrolled cell proliferation [56].

Genomic losses or gains can also have a significant contribution to tumorigenesis.
For example, the amplification of the part of chromosome 17, which occurs in 30%
of the breast cancers, leads to the up-regulation of the ERBB2 gene, which, in turn,
results in an increased proliferation of cancer cells [52]. Or, the deletions occurring in
chromosome 10 leads to loss of the PTEN tumour suppressor gene. PTEN loss leads
to deregulation in the PIK3/Akt pathway, which has an important role in controlling,
among other things, cell growth, cell proliferation and apoptosis [57].

2.4.3 DNA methylation

There is another class of processes that alters the activity of genes without changing the
DNA sequence, called epigenetic modifications, which are essential to many organism
functions. However, if they occur improperly, they can contribute to the promotion
of various diseases, such as cancer [58]. There are at least three known epigenetic
processes: DNA methylation, histone modification, and RNA silencing [59].

Here we focus on DNA methylation, which is a process that adds a methyl (CH3)
group to DNA in regions known as CpG sites (regions where a cytosine nucleotide
is followed by a guanine). Usually the CpG sites are more dense around the pro-
moter of genes (these regions are called CpG islands), leading to interference with the
transcription mechanisms [59].
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The promoters of genes have in normal conditions a certain level of methylation.
Both hypomethylation (a lower level of methylation than normal) and hypermethylation
(a higher level of methylation than normal) can lead to significant changes in expression.
In breast cancer, for example, the hypomethylation of the SATR1 gene has been linked
with the early stages development of the tumour [60]. Conversely hypermethylation has
been proven to have important roles in tumour progressions; hypermethylation of the
CDH13 promoter leads to progression of non-small cell lung cancers [61].

2.5 Prostate cancer

2.5.1 The prostate

The prostate is a fibromuscular and a glandular organ which weighs about 18 grams
and measures approximately 3 cm in length, 4 cm in width in 2 cm in depth [3]. It is
located underneath the bladder and surrounds the lower part of the posterior urethra
(Figure 2.3a). Prostate is composed of around 70% glandular elements and 30%
fibromuscular stroma and is surrounded by a capsule composed of collagen, elastin and
smooth muscle [3].

Prostate gland

Ejaculatory duct
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fibromuscular
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Figure 2.3 The prostate gland: a) the location of prostate (adapted from CDC [62]); b)
the zonal architecture of prostate (adapted from Aibolita [63])

The prostate is part of the male reproductive system. It along with the seminal
vesicles, ampullae, Cowper’s gland and glands of Littre form the sex accessory tissues.
The sex accessory tissues are responsible for producing seminal plasma, which is the
major component of the ejaculate. The prostate is contributing to 0.5 mL to the total
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volume of ejaculate (of about 3 mL). The prostate secretions are rich in citric acid,
polyamines and zinc, along with some secretory proteins such as PSA [64].

The prostate is divided into four zones: transitional zone, central zone, peripheral

zone and anterior fibromuscular stroma (Figure 2.3b). The transitional zone accounts
for 5-10% of the glandular tissue. It is believed that 20% of prostate cancers originate in
this area. The central zone, which constitutes 25% of the glandular tissue of prostate, is
structurally different from the rest of the prostate tissue. Only 1-5% of prostate cancers
originate in this area. The peripheral zone, which makes up around 70% of the prostate
glands is where 70% of cancers develop. The anterior fibromuscular stroma makes up
to a third of the prostate. This zone is rarely involved in prostate cancer [3].

Also, in clinical practice, prostate is regarded as having two lateral lobes, separated
by a central sulcus and a middle lobe. This division does not correspond to anatomical
components of the prostate [3].

2.5.2 Risk factors

There are several established risk factors associated with the development of prostate
cancer including age, race/ethnicity and positive family history of prostate cancer
[65, 66]. Other factors that have been reported as having some association with the risk
of prostate cancer are consumption of lycopene, consumption of milk protein, sexually
transmitted diseases, infections, smoking, obesity and environmental factors [65].

The risk of prostate cancer increases sharply in men after 50 years, with the majority
of cases being diagnosed between ages 50-79 [4]. In the US, Leitzmann and Rohrmann
[65] reports an incidence of about 9 case per 100,000 per year in men aged 40-44 years,
while for men aged 70-74 years the incidence increases sharply to 985 cases per 100,000
men per year. Also, autopsy studies performed in various locations on different races
and ethnicities reported a prevalence of prostate cancer of 25%-40% in men over 70
years and 33%-87% in men over 80 years old [5–10].

Afro-American and Afro-Caribbean men have a higher risk than Caucasians of
developing prostate cancer, and tend to have worse prognosis and higher chance of
recurrence following prostectomy [67–69]. Asian men, on the other hand, tend to have
lower incidence and mortality rates than Asian-Americans, which in turn have lower
rates than Caucasians [70]. The difference between Asian-Americans and Asians might
be explained by environmnetal factors, particularly Western diet [70].

Family history of prostate cancer increases the risk. Men with a first degree relative
diagnosed with prostate cancer have a 2.5 times higher chance of developing the
diseases themselves [71]. The risk increases with the number of first degree relatives
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with prostate cancer and can reach an odds ratio of 17.7 for men with three brothers
diagnosed with the disease [72].

Sexually transmitted infections (STIs) have not been consistently associated with
the risk of prostate cancer. Some studies reported elevated risk in patients with history
of STIs, especially syphilis, gonorrhoea and human papillomavirus (HPV) [73, 74].
However, they are mainly case-control retrospective studies that are susceptible to recall
biases [75]. Subsequent large-cohort, retrospective and prospective studies failed to
identify associations between the most common STIs and the risk of prostate cancer
[75–78].

There is no commonly accepted consensus about the effects of dietary factors on the
development prostate cancers. A number of food categories such as vegetables, meat,
fish and diary products have been reported as either increasing or decreasing the risk of
prostate cancer [65]. However the results are heterogeneous and the results have not
always been supported by independent studies.

One of the most notable dietary factors that might play a role in prostate cancers
is the intake of lycopene. The main source of lycopene are tomatoes, watermelons
and pink grapefruits [79]. Several studies reported an inverse correlation between the
intake of lycopene and prostate cancer risk, progression and mortality, but others have
not found any association [79]. Noteworthy is also the inverse correlation between the
intake of cruciferous vegetables, such as broccoli, and the risk of developing prostate
cancer [80].

2.5.3 Screening and early detection

Screening means the application of the test diagnostics to patients which are at risk
of developing a disease, but which do not present symptoms, in order to identify the
disease at an early stage, and therefore to reduce the disease-specific mortality rate,
while trying to have as little impact as possible on the patient’s quality of life [81].

In the context of prostate cancer, the detection rates sharply increased with the
introduction of the PSA screenings at the end of 1980s. In the United States, for
example, the incidence of prostate cancer increased 12% per year from 1986, the year
before the PSA was reported, until 1992, when it peaked [16]. The PSA test measures
the levels of the prostate specific antigen (PSA) serum-marker in peripheral blood. High
levels of PSA have been associated with the presence of prostate cancer [17].

PSA screening generates a great deal of debate on its benefits compared to its
disadvantages. Currently there is no consistent evidence that PSA screening reduces the
cancer-specific mortality rates. The randomised study of Schröder et al. [82], performed
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on 162,387 men, identified a reduction with 20% in the rate of death for patients
screened. On the other hand, the meta-analysis of Ilic et al. [83] of five randomised
clinical trials (RCT), comprising of a total of 341,342 participants found no survival
difference between the patients who received screening and those who did not (risk ratio
(RR) 1.00, 95% confidence interval (CI) 0.86 - 1.17). Moreover the subgroup analysis
found that the mortality was not influenced by the age at which screening was given.
Ilic et al. [83] also reported a higher proportion of localised prostate cancers in the
patients that received screening (RR 1.79, 95% CI 1.19 - 2.70) and a lower proportion
of advanced cancers (RR 0.80, 95% CI 0.73 - 0.87).

PSA screenings do lead to significant overdiagnosis and overtreatment [81, 83].
Overdiagnosis refers to the detection of indolent disease, that would have not shown
any clinical symptoms during the lifetime of the patient. It has been estimated that the
PSA screening led to an overdiagnosis rate of around 50% [18–20]. The immediate
adverse effects of the overdiagnosis are the anxiety associated with the diagnosis and
the possible complications due to invasive tests, such as biopsy.

Also, many times the overdiagnosis leads to unnecessary treatment. Besides the
quality of life impact the overtreatment has, there is a a significant risk of treatment-
related complications. Around 10-15% of the patients who undergo radical prostectomy
report urinary incontinence and about 70% have erectile problems [30]. There have
been also reported surgery-related complications such as infections, respiratory and
cardiac problems in about 20-25% of patients who underwent surgery, with about 0.5%
of patients dying due to surgery [84, 85].

In the light of the current evidence the European Association of Urology (EAU)
guidelines on prostate cancer [81] recommended against population-wide screening for
prostate cancer. Instead a risk-adapted strategy for screening men at risk, that have a
life expectancy of more than 10-15 years has been devised. Broadly the main categories
of risk identified are men over 50 years old, men over 45 years old with family history
of prostate cancer and Afro-American and Afro-Caribbean men [81]. However, these
strategies are also prone to overdiagnosis and overtreatment.

2.5.4 Diagnosis

Patients suspected of having prostate cancer are first referred for a prostate specific
antigen (PSA) test and a digital rectal examination (DRE).

PSA as an indicator for prostate cancer that lacks both sensitivity and specificity.
Many patients with prostate cancer have low values of PSA [86]. On the other hand,
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high levels of PSA might also be associated with benign prostatic hypertrophy (BPH),
prostatis or other non-malignant conditions.

Most cancers are located in the peripheral zone, and can be detected by DRE if the
tumour is larger than 0.2 mL [81]. DRE can complement the PSA screening, as it has
been reported that in about 18% cases prostate cancer was indicated solely by DRE,
irrespective of PSA levels [87].

The EAU and NICE (National Institute for Health and Care Excellence) guidelines
on prostate cancer recommend that the definitive diagnosis should be made based on
a needle biopsy [81, 88]. NICE recommends that the decision of referring a patient
to biopsy should be made based on the results of the PSA screeing, DRE results, risk
factors (age, race, family history), therapeutic risks, general health. etc [88].

The standard biopsy is a transrectal ultrasound (TRUS)-guided biopsy which collects
10-12 cores [81]. The TRUS-guided biopsies might miss 20-30% of the clinically
relevant cancers [89]. If the first biopsy is negative, but the PSA levels remain high
or other clinical factors still indicate the possibility of having prostate cancer, a repeat
biopsy might be performed [81]. NICE recommends that the second biopsy is performed
if the multiparametric magnetic resonance imaging (MRI) comes back positive. It is
recommended that the second biopsy is a template biopsy, aiming to collect more than
20 cores [81], for a more accurate sampling.

2.5.5 Classification criteria

Once the prostate cancer is diagnosed, several clinical factors are evaluated in order
to decide the most suitable way of managing the disease. Besides the PSA and DRE
results, CT scan and multiparametric MRI can be used to determine the extent of the
disease [81]. A management strategy of the disease is developed by assessing the
PSA levels, DRE results, Gleason score, TNM stage (clinical stage), and several other
pathological features.

2.5.5.1 Gleason score

Gleason score [90, 91] is a grading system based on the architectural patterns of the
tumour and is one of the most important prognostic indicators available for prostate
cancer. Gleason score is calculated as the sum of two grades, each one taking values
between 1 and 5. The primary grade is assigned to the most common tumour pattern.
The secondary grade is assigned to the second most common pattern, with the condition
that it is present in at least 5% of the total patterns. If the condition is not met, then
the primary grade is doubled. Grade 1 is assigned to well-differentiated tissue, that
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resembles the normal tissue, while grade 5 is assigned to poorly-differentiated tissue,
that is very dissimilar to normal tissue.

Gleason sum can range between 2 and 10. A higher Gleason sum is associated with
a poorer outcome. Within the Gleason sum 7 category, score 4 + 3 (primary grade 4
and secondary grade 3) has a significantly worse outcome than score 3 + 4 [92–95].

2.5.5.2 TNM stage

TNM (Tumour Node Metastasis) classification [96] is the standard system for staging
malignant tumours, maintained by the AJCC (American Joint Committee on Cancer)
and UICC (International Union for Cancer Control ). As described in Leslie et al. [96],
it comprises of three components:

• T: describes the spread of the primary tumour;

• N: describes the presence/absence and the extent of regional lymph node metasta-
sis;

• M: describes the presence/absence of distant metastasis.

For prostate cancer, the TNM classification is made as follows [96]:

T - primary tumour:

TX - primary tumour could not be assessed;

T0 - no evidence of primary tumour;

T1 - clinically inapparent tumour, neither palpable nor visible by imaging:

T1a - tumour incidental histological finding in 5% or less of tissue
resected;

T1b - tumour incidental histological finding in more than 5% of tissue
resected;

T1c - tumour identified by needle biopsy;

T2 - tumour confined within prostate:

T2a - tumour involves one-half of one lobe or less;

T2b - tumour involves more than one-half of one lobe, but not both
lobes;

T2c - tumour involves both lobes;

T3 - tumour extends through the prostatic capsule:
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T3a - extracapsular extension;

T3b - tumour invades seminal vesicle(s);

T4 - tumour is fixed or invades adjacent structures other than seminal
vesicles: external sphincter, rectum, levator muscles, and/or pelvic wall;

N - regional lymph nodes:

NX - regional lymph nodes cannot be assessed;

N0 - no regional lymph node metastasis;

N1 - regional lymph node metastasis;

M - distant metastasis:

M0 - no distant metastasis;

M1 - distant metastasis:

M1a - non-regional lymph nodes;

M1b - bones;

M1c - other sites.

2.5.5.3 Clinical vs. pathological classification

The extent of cancer is evaluated at diagnosis, using clinical indicators, such as Gleason
grade and TNM stage. However, due to sampling errors, biopsies might miss some
cancer foci, leading to a suboptimal calculation of the Gleason grade. Also, CT scans
and other technologies used to measure the spread of tumour might underestimate the
extension of cancer.

Sometimes a more accurate classification is obtained following a radical prostectomy,
when the whole prostate can be analysed by a pathologist. This might yield different
classification than the one obtained previously. In order to distinguish between these
two situations, TNM stage calculated at diagnosis, or before the prostectomy is usually
referred to as clinical stage, while the TNM stage evaluated after prostectomy is referred
to as pathological stage. For Gleason grade, the score evaluated after prostectomy is
referred to as pathological Gleason grade/score.

2.5.5.4 Additional pathological features

Following radical prostectomy, the resected prostate and the surrounding tissue is
analysed in order to determine the extent of cancer. Besides the classical pathological
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Gleason score and pathological stage, several additional criteria associated with clinical
outcome are evaluated. These criteria are: seminal vesicle invasion, lymphovascular

involvement, extracapsular extension, and positive surgical margins.

2.5.5.4.1 Seminal vesicle invasion (SVI) Seminal vesicle invasion is the spread of
cancer to the muscular wall surrounding the seminal vesicles [97]. This pathological
feature is assessed at prostectomy and is associated with poor prognosis [97]. It has
been found that SVI positive patients have a 7-year survival rate of 32.2%, compared
with 66.6% in SVI negative patients.

2.5.5.4.2 Lymphovascular invasion (LVI) Prostate cancer spreads through lym-
phatic channels. Therefore the microscopic analysis performed to detect lymphovascular
invasion is a widely used procedure in analysing radical prostectomy specimens [98]. In
a study on 1709 men who underwent radical prostectomy [99], LVI has been reported in
7% of cases. LVI is a significant clinical predictor for recurrence, tumour grade, volume
and several other pathological features [99]. Biochemical progression for men with LVI
was around 34%, compared to 10% of men without.

2.5.5.4.3 Extracapsular extension (ECE) Extracapsular extension is the spread
of prostate cancer in the tissue surrounding the prostate. There have been reported
several ways of subgrouping patients with extracapsular extension [100–103]. One of
the most commonly used is the classification of Epstein et al. [100], which divide ECE
into two categories: focal (the cancer spread to a lesser extent outside the prostate) and
established (a more extensive penetration). The patients with established extension
seem to have a higher risk of progression. In patients without seminal vesicles invasion
or lymph node involvement, 5 years after radical prostectomy, the progression-free
rate is 87% for the men without capsular extension, 73% for the patients with focal
extension and 42% for the patients with established extension [102].

2.5.5.4.4 Positive surgical margins (PSM) At prostectomy, some adjacent tissue
surrounding the prostate is removed as well. Positive surgical margins refers to the
detection of cancer cells on the surface of the removed tissue [104]. About a third of
prostectomies have positive surgical margins [105]. Progression free rate of patients
with positive surgical margins is 58-64%, while for the patients with negative margins
the rate is 81-83% [105].
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2.5.5.5 ICGC risk stratification after prostectomy

In this thesis we will use a stratification of prostate cancer patients who undergo pros-
tectomy into three risk groups of progression, based on the UK International Cancer
Genome Consortium (ICGC) consensus (Professor Chris Foster, personal communica-
tion). The criteria are presented in Table 2.1.

Table 2.1 ICGC risk stratification of prostate cancer after prostectomy.

Low risk PSA <= 10ng/ml AND (Gleason = 3+3 OR (Gleason = 3+4 AND no
extra capsular extension))

Medium risk 10ng/ml < PSA <= 20ng/ml OR (Gleason = 4+3 AND no extra cap-
sular extension) OR (Gleason = 3+4 AND extra capsular extension)

High risk PSA > 20ng/ml OR Gleason sum > 7 OR (Gleason = 4+3 AND extra
capsular extension) OR Seminal vesicle invasion

2.5.6 Localised prostate cancer

Patients with localised prostate cancer (clinical stage T1/T2) are stratified at diagnosis
into risk categories using D’Amico stratification [28] presented in Table 2.2.

The low risk men usually do not receive immediate treatment, but rather they are
enrolled to active surveillance or watchful waiting programmes. If the disease seems
to progress, patients can receive radical treatments with the intent of cure. The most
common radical treatments are prostectomy, radiotherapy or brachytherapy, which are
discussed below. The intermediate or high risk patients are usually referred for radical
treatments.

Table 2.2 D’Amico risk stratification for men with localised prostate cancer [28].

Level of risk PSA Gleason score Clinical stage

Low risk <10 ng/ml and ≤6 and T1–T2a
Intermediate risk 10–20 ng/ml or 7 or T2b
High risk >20 ng/ml or 8–10 or ≥T2c

2.5.6.1 Active surveillance and watchful waiting

Active surveillance aims to avoid or at least delay the treatment for the patients with low-
risk prostate cancer, with the purpose of reducing overtreatment, without influencing
the cancer-specific survival. Instead of receiving treatment, the low-risk patients are
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closely monitored. PSA and DRE screenings are performed at regular intervals (every
3 months in the first 2 years and every 6 months afterwards), and repeat biopsies are
done every 6-18 months [106, 107]. If there is indication of the cancer progression,
such as PSA doubling time less than 2-3 years, histological progression (Gleason ≥
4+3 at repeat biopsies), clinical progression [106, 107], or at patient’s request, the
active surveillance is interrupted and treatment is given. Most patients who leave
active surveillance receive curative intended treatment such as radical prostectomy,
radiotherapy and brachytherapy.

The outcome of men initially managed with active surveillance is good in general.
It is estimated that the 10-year prostate cancer specific survival is greater than 96%
[108–110].

Watchful waiting is usually a strategy for patients with a life expectancy of less than
10 years that, due to general health conditions, might not be fit for receiving radical
treatment. Their disease is regularly monitored with PSA screenings and digital rectal
examinations. If there is sign of progression they are offered hormone therapy.

2.5.6.2 Prostectomy, radiotherapy and brachytherapy

For the men with localised prostate cancer, there are several treatment options available,
offered with curative intent. The most commonly used in clinical practice are radical
prostectomy, radiotherapy and brachytherapy. Besides them, the EAU guidelines also
suggest new alternative treatments such as cryosurgery (the use of freezing techniques
to induce cell death) and high intensity focused ultrasound [81].

Radical prostectomy refers to the surgical removal of the prostate gland, seminal
vesicles and a portion of the surrounding tissue, in order to obtain a negative margin
[81]. It is mostly suitable for patients with localised prostate cancer and a higher life
expectancy.

Patients who have undergone radical prostectomy have a relatively good outcome.
The proportion of patients free from cancer progression at 5, 10 and 15 years after
prostectomy has been estimated at 82-84%, 74-77% and 66-75% [111, 112]. Also,
the cancer-specific survival at 5, 10 and 15 years was 99%, 95-96% and 89-90% [111,
112]. Unfortunately a significant proportion of the patients that undergo prostectomy
experience permanent erectile dysfunction and urinary incontinence.

External beam radiotherapy, followed by androgen deprivation therapy is an alterna-
tive way of treating patients with localised prostate cancer, especially the patients that
are less suitable for surgery. Radiotherapy can still result in urinary incontinence and
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impotence too. Besides that, the patients experience radiotherapy side-effects such as
fatigue, irritation, nausea, etc.

Currently there are no large randomized clinical trials comparing the efficiency of
radical prostectomy and radiotherapy, but the data from 16 retrospective studies and
one small randomized study suggests that patients with high-risk prostate cancer treated
with radical prostectomy have a higher prostate cancer specific survival than those
treated with radiotherapy [113]. Sun et al. [114] also reported higher overall survival in
patients with a life expectancy of ≥10 years, treated with radical prostectomy, relative
to radiotherapy. For the patients with <10 years life expectancy, the survival rates seem
comparable [114].

Another treatment option for patients with early stage localised prostate cancer is
brachytherapy. Brachytherapy is a treatment in which radioactive seeds are implanted
into the prostate. This therapy is recommended for low risk patients. Brachytherapy can
also be used in combination with external beam radiotherapy to maximise the treatment
efficacy.

Because brachytherapy is a minimal invasive technique, the side effects associated
with surgery are minimised. Besides that, it has been reported that men who receive
brachytherapy have significantly less urinary problems compared to men who undergo
prostectomy [115]. Also about 80% of patients who receive report satisfactory erectile
function, compared to 50% of the men who receive prostectomy [115]. There is little
evidence, however, about the efficacy of brachytherapy relative to the other treatment
options [116].

2.5.6.3 Biochemical recurrence (BCR)

After radical treatment, the PSA level of patients is constantly monitored. An increase in
PSA levels following radical treatment indicates biochemical recurrence of the disease.
In general, a patient is considered to have BCR if two consecutive PSA measures, yield
values above 0.2 ng/mL [81]. Around 35% of men who undergo radical treatment
experience BCR within 10 years time [31].

The biochemical recurrence precedes metastasis by around seven years and prostate-
cancers specific death by 15 years [117] and is usually a trigger for secondary therapy.
However, not all patients patients with BCR progress to metastasis. It is estimated that
BCR leads to metastasis only in around 35% of cases [117].
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2.5.7 Androgen deprivation therapy (ADT)

Androgens are steroid hormones that control the development and the function of the
male sexual organs and male characteristics. The major circulating androgen is testos-
terone, produced by testicles [118]. Another important androgen is dihydrotestosterone
(DHT) produced by the peripheral tissue, which is even more potent than testosterone
[118].

Androgens also play an important role in the development of prostate cancer. Reduc-
ing the levels of androgens or preventing them from binding to the androgen receptors
often results in tumour shrinkage, or slows down its development. This strategy of
handling prostate cancer is called androgen deprivation therapy, or hormone therapy.
Androgen deprivation is achieved by surgical or chemical castration, the use of androgen
blockers (compounds that block the androgen receptors, so that the androgen cannot
bind to them), or a combination of both methods, referred to as maximum androgen
blockade (MAB).

ADT is usually used along with radiotherapy for the patients with localised prostate
cancer. Also it can be used if the cancer spread outside the prostate and the radical
treatment will not be effective anymore, or if the patients are unfit for receiving curative
treatment. Androgen deprivation therapy might also be an option if the disease relapses
after radical treatment [119].

Hormone therapy comes with significant adverse effects such as muscular and bone
mass loss, hot flushes, depression, erectile dysfunction, anaemia, cardiovascular and
endocrinological problems [120].

ADT improves the survival of patients with locally advanced prostate cancer when
used as adjuvant to radiotherapy. A randomized study on more than 400 patients [121]
reported that patients who received hormone therapy following radiotherapy had a
disease free survival rate of 85% (CI 78-92%), compared to the group that received only
radiotherapy - 48% (CI 38-58%). A follow-up study [122] reported similar results, with
a 5-year disease free survival of 74% (CI 67-81%) for the radiotherapy plus hormone
therapy group, compared to 40% (CI 32-48%) in the radiotherapy-alone group.

2.5.7.1 Castration resistant prostate cancer (CRPC)

Hormone therapy leads to remission for a short period of time, but after that virtually
all patients become unresponsive to treatment. This stage is referred to as castration
resistant prostate cancer (CRPC) or androgen-independent prostate cancer. CRPC is
characterised by continuous rise in the levels of PSA, progression of the pre-existing
disease and/or appearance of new metastases [123].
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Sharifi et al. [124] reported a median time of 13.1 months to developing CRPC in
patients with metastatic disease that are given ADT. The patients that had no evidence of
metastatic disease at the beginning hormone therapy, developed CRPC in 19.3 months
and metastasis in 37.8 months.

2.5.8 Metastatic disease

Initially, the patients with metastatic prostate cancer are given hormone therapy, that
delays the progression for about a year. After that the disease progresses to androgen-
independent stage and the disease progression resumes. At that point several palliative
treatments are available such as abiraterone, chemotherapy and immunotherapy. Also
because most CRPC prostate cancers develop metastasis to bones, bone-targeted thera-
pies can be tried, in order to alleviate the pain [123]. One example of such treatment is
radium-223, which reduces the bone pain and increases the overall survival from 11.2
months to 14 months [125].

2.5.9 Genetic alterations

2.5.9.1 TMPRSS2-ETS fusions

Fusions between TMPRSS2 and genes from the ETS transcription factors family have
been reported in about half of prostate cancers [32, 126]. The most common member
of ETS family fused to TMPRSS2 is ERG, occurring in 40-55% of prostate cancers
[32, 127–131]. Besides ERG fusions, fusions between TMPRSS2-ETV1 have been
reported in 5-10% of prostate cancers [32] and TMPRSS2-ETV4 with much lower
frequency (about 2% [132]).

TMPRSS2 is an androgen-regulated gene located on chromosome 21, highly ex-
pressed in prostate [133]. Androgen-regulated genes are important for the normal
function of the prostate, and also have significant contribution to the development of
the prostate cancer [133]. ETS is a family of genes, consisting of at least 27 genes, with
role in transcription regulation [134]. ETS genes regulate around 400 other genes, some
of them with role in cell proliferation and apoptosis [134].

Both TMPRSS2 and ERG are located on chromosome 21, only 3 million base
pairs apart, on the same strand. The most well-characterised mechanism that leads to
TMPRSS2-ERG fusion is the deletion of the chromosome between TMPRSS2 and ERG
loci, occurring in about 60% of fusions [131]. In some cases copy-number analysis does
not show a loss of the portion between the two genes, suggesting that the fusion might
be a result of balanced translocations. However the balanced rearrangements leading to
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TMPRSS2-ERG fusions are largely unexplored. Recently Berger et al. [53] described
some complex balanced translocations where sets of 3 and 4 genes are involved in
closed-chain translocations, called chromoplexy, that include TMPRSS2-ERG fusion.

The most common TMPRSS2-ERG fusion is between exon 1 of TMPRSS2 and exon
4 of ERG, occuring in about 44% of fusion positive samples, and TMPRSS2 exon 1
with ERG exon 5, in 4% of cases [135].

The ETS gene fusions seem to be an early event in the development of prostate
cancer. It is found in a high percentage of HGPIN (high-grade prostatic intraepithelial
neoplasia - a precursor of prostate cancer) [136], but seem to be insufficient to induce
the formation of prostate cancer [137].

The usefulness of TMPRSS2-ETS fusions as a biomarker in predicting the clinical
outcome is controversial. A number of studies have reported an association between
the TMPRSS-ERG fusions and poor outcome [138–140]. However some other studies
found no association [33–35]. Also, it is reported that TMPRSS2-ERG is not a good
predictor for the response to radiotherapy [141].

2.5.9.2 PTEN loss

PTEN is a tumour suppressor gene located on arm q of chromosome 10. It negatively
regulates the PIK3/Akt pathway, which has an important role in controlling, among
other things, cell growth, cell proliferation and apoptosis [57]. This means that when
PTEN is inactivated, PIK3/Akt pathway becomes over-active, leading to uncontrolled
cell division and decreased apoptosis [142].

The functional loss of PTEN might be induced by several events such as point muta-
tions, reported in around 16% of prostate cancers [143, 144], and methylation. However,
the most common cause are deletions occurring in the chromosome arm 10q, which is a
very frequent chromosomal rearrangement in prostate cancer and other malignancies
[142]. Deletions of PTEN have been reported in 30-60% of adenomacarcinomas, of
which 10-30% are homozygous deletions [145–149], with a higher frequency in CPRC
(deletions in 77% of samples and homozygous deletions in 43% [150]).

Inactivation of PTEN in general is linked to progression of prostate cancer and
significantly worse survival outcome [151, 152], while homozygous deletions are
associated with much faster biochemical recurrence [147].

There is a significant association between PTEN loss and TMPRSS2-ERG fusions.
In one study all samples with PTEN deletions also harboured TMPRSS2-ERG fusions
[149]. It has been hypothesised that the interaction between PTEN deletions and
TMPRSS2-ERG fusions prostate is a significant driver for prostate cancer development
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and progression [153]. Bismar et al. [153] suggested that initial hemizygous loss of
PTEN would promote genomic instability and facilitate gene fusions, leading to the
formation of prostate cancer. Subsequent PTEN homozygous loss, would trigger further
progression, to the invasive disease.

Disregulation of the PIK3/Akt pathway, mainly due to PTEN loss, seems to be
critical to prostate cancer proliferation. Therefore, inhibiting key genes from this
pathway might prove to be a viable therapeutic strategy for managing the disease.
Currently several trials aiming to test various inhibitors are in progress [154].‘

2.5.9.3 SPINK1 overexpression

SPINK1 overexpression has been reported in 8-11% of prostate cancers [155–157].
Initially, Tomlins et al. [158] found that SPINK1 overexpression was mutually exclusive
to ETS fusions and was associated with significantly poorer prognosis following pros-
tectomy. Moreover, the SPINK1 overexpression could be detected non-invasively, in
urine. However, later studies failed to find association between SPINK1 overexpression
and ETS fusion status [156, 157] or significant biochemical or mortality difference in
patients treated with radical prostectomy between the SPINK1 positive and negative
cases [157].

2.5.9.4 SPOP mutation

Barbieri et al. [159] discovered a subtype of prostate cancer characterised by mutations
of the SPOP gene in 6-15% of cancers. The samples that harbour SPOP mutations have
a distinct pattern of genomic alterations. The SPOP mutations are mutually exclusive
to the ETS family rearrangements, and are highly association with CHD1 deletions.
However it is not clear yet the clinical usefulness of SPOP in predicting biochemical re-
currence or survival. Blattner et al. [160] found no difference in biochemical recurrence
in patients with SPOP mutations.

2.5.10 Emerging biomarkers and clinical tests

In recent years, with the advance of the new technologies such as microarrays and
high throughput sequencing, a wealth of publications have reported new biomarkers
for prostate cancer. Despite this, only a few have reached clinical practice. Here we
described the most important biomarkers that are currently available in clinical practice
or at an advanced validation stage.
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2.5.10.1 PCA3

PCA3 is a non-coding mRNA that shows high values in over 90% of prostate tumours,
while not expressing elevated values in the normal prostate [161]. It is detectable in
urine collected following a DRE.

PCA3 score seems to increase with Gleason grade and with the probability of a
positive biopsy, but it is nor correlated with prostate volume, age and PSA levels [162].
Also PCA3 is correlated with the tumour volume, pathological stage and Gleason score
of the resected prostate [163].

PCA3 has higher sensitivity and specificity than PSA in predicting the outcome
of the first biopsy and, also, of the repeat biopsies [164, 165]. The accuracy of PCA3

can be further improved by combining it with PSA, prostate volume and the DRE
[164, 165].

In the UK, the PCA3 test is not available yet in the National Health System (NHS),
but only in a few private clinics. It is currently under assessment by NICE and in the
future might be introduced into general clinical practice together with PSA to help
doctors decide if a biopsy is necessary [166].

2.5.10.2 AMACR

AMACAR (α-Methylacyl coenzyme A racemase) is an enzyme that can be used as a
diagnostic biomarker for prostate cancer and can also be a therapeutic target. Some
studies suggested that the mRNA levels of AMACR are 9-fold higher in prostate cancer
compared with normal tissue and are also strongly correlated with metastatic and
androgen independent diseases [167].

AMACR seems to have high sensitivity and specificity for detecting prostate cancer.
Rubin et al. [168] obtained 97% sensitivity and 100% specificity by measuring protein
levels, while Luo et al. [167] obtained 95% sensitivity and 96% specificity.

Moreover, it seems that the expression of AMACR is functionally important for
the growth of prostate cancer cells, at least in-vitro [169]. Reducing the expression of
AMACR impaired the proliferation of prostate cancer cells in the LAPC-4 cell-line. As
AMACR is not regulated by androgens [170], these results suggest that targeting AMACR

as a complementary therapy might improve the efficiency of androgen deprivation. In
LAPC-4 the combination of AMACR knock-down with androgen deprivation led to
better results than either treatment alone [169].
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2.5.10.3 Prolaris

Prolaris [38] is a biomarker based on the expression of 31 cell cycle progression (CCP)
genes, designed to predict the outcome of prostate cancer. CCP genes are genes involved
in essential cell cycle processes, whose expressed vary at different stages of cell cycle
[171]. The expression of these genes seems to be correlated with the proliferation of
tumours [171]. Before Prolaris, CCP genes had been successfully used in the prognosis
of breast, lung and brain cancers [38, 172–174].

Prolaris was developed on data from two cohorts of patients: one cohort of 336 pa-
tients who underwent prostectomy and one group of 337 patients diagnosed from tissue
extracted by TURP (transurethral resection of the prostate - a type of surgery designed
to remove prostate tissue that causes urinary symptoms due to enlarged prostate). The
expression levels of 31 CCP genes and 15 housekeeping genes were assessed using
quantitative RT-PCR (a biological technique used to measure the expression levels of
RNA). The expression of the CCP genes were measured relative to the expression of
the housekeeping genes and the measures were combined to obtain a CCP score. The
score is correlated with the expression of the CCP genes, an increase with one unit
corresponding to a doubling in the expression.

For the radical prostectomy cohort the endpoints considered were time to biochemi-
cal recurrence (BCR) and death after progression. In the univariate analysis evaluating
the association between CCP score and time to BCR, an increase of one unit of CCP
score had a hazard ratio 1.89 (95% CI 1.69 - 5.28), indicating that patients with higher
CCP scores progress faster to BCR. Also the CCP score seems to be associated with
the risk of death due to disease progression, HR 2.99 (95% CI 1.69 - 5.28). The result
was similar in the multivariate analysis, with CCP score and PSA value being the most
important predictors.

In the TURP cohort only the time to death from prostate cancer was used as endpoint.
The univariate hazard ratio 2.92 (95% CI 2.38 - 3.57) and multivariate ratio 2.56 (CI
1.85 - 3.53) were in line with the radical prostectomy cohort, suggesting that Prolaris is
a robust biomarker.

2.5.10.4 Oncotype DX

Oncotype DX [39] is a a multi-gene RT-PCR array that measures the expression levels
of 12 cancer-related genes and 5 reference genes from tissue extracted from biopsies,
which predicts the aggressiveness of early-stage prostate cancer. The 12 cancer-related
genes correspond to four biological pathways: androgen signaling pathway (AZGP1,
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KLK2, SRD5A2 and FAM13C), cellular organization (FLNC, GSN, TPM2, and GSTM2),
proliferation (TPX2) and stromal response (BGN, COL1A1, and SFRP4).

The expression of the 12 genes is normalised relative to reference genes and the
normalised expressions are combined to obtain a GPS score (genomic prostate score),
that ranges between 0 and 100, with higher score corresponding to more aggressive
prostate cancer.

The score has been validated as an independent predictor of adverse pathology in
patients with low/intermediate risk prostate cancer, based on biopsy samples. It has
been reported as a significant predictor of pathological outcome. Moreover, it seems
that GPS can be computed using very low sample volumes, which makes it suitable for
biopsy extracted samples [175].

2.5.10.5 Dechipher

Dechipher [40] is a gene signature that predicts the risk of developing metastasis
following radical prostectomy. The signature has been developed using Affymetrix

GeneChip Human Exon 1.0 ST Arrays. It consists of 22 probesets corresponding to
coding and non-coding RNA sequences.

The study was designed as a nested control-case study. The patients have been
initially classified intro three groups: no evidence of disease (NED) - patients with no
sign of BCR after 7 years, PSA-recurrence group (PSA) - patients with BCR, but no
signs of metastasis within 5 years and systematic progression (SYS) - patients with
metastasis within 5 years from radical prostectomy.

Initial screenings found little molecular differences between NED and PSA groups,
but large differences between these two groups and SYS group, therefore NED and PSA
groups have been combined into a single group (the control cases).

From the 545 samples that had RNA available for hybridisation on microarray,
359 samples were selected for training and 186 were held out for validation. Several
pre-processing steps were performed in order to select the 22 most informative probesets
from the total of 18,902 probesets differentially expressed between cases and controls.
The 22 features have been assembled into a random forest classifier (a machine learning
technique that will be discussed later in Section 3.2.2.1). The parameters of random
forest have been optimised, resulting in a genomic classifier (GC) that outputs values
between 0 and 1, increasing with the probability of developing metastasis.

The classifier obtained an AUC (area under the curve) of 0.9 in the training set and
0.75 in the validation set, more than a clinical-only classifier, built using only clinical
variables (Gleason score, PSA, SVI, ECE, etc.). If split into GC > 0.5 and GC ≤ 0.5,
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in univariate logistic regression, the GC classifier outperforms 17 classifiers based on
previously published signatures or individual biomarkers. Also in the univariate survival
analysis it seems that GC is a significant predictor of the risk of dying from cancer
(p-value 0.003).

2.6 Microarrays

Micorarrays are genomic tools that can be used to simultaneously measure the expres-
sion levels of thousands of genes or other transcripts. The first microarrays were created
by Schena et al. [176] in the mid-1990s and revolutionised biological and medical
research.

Microarrays are small glass or silicon slides that contain from a few tens to millions
of probes (or spots). At each spot there are attached millions of copies of the same
single-stranded DNA sequence, corresponding to a region of interest in the genome.
These regions of interest might be part of a transcript or a whole transcript.

The RNA extracted from cells is amplified and converted to cDNA (complementary
DNA) in a reaction called reverse transcription. The resulting material is then labelled
with a fluorescent dye and is injected onto the microarray. Depending on the expression
level of the genomic area (exon, gene) interrogated by the probe, a larger or a smaller
number of complementary sequences hybridize to each probe. The microarray is then
scanned with a laser, which measures the luminosity of each spot. The image resulting
from scanning is processed using software that converts the luminosity of each spot to a
number. The resulting numbers are mapped to corresponding sequence and the data is
normalised, to mitigate possible sources of non-biological bias. Normalisation algo-
rithms take into account several sources of variation such as probe affinity, background
noise, and position on the slide. The resulting normalised data can then be analysed
using various bioinformatical approaches, depending on the purpose of the study.

Trevino et al. [177] describes the most common applications of microarray technol-
ogy, including the identification of differentially expressed genes between two groups
of samples, biomarker detection, study of the relationship between the molecular pro-
file and biological manifestation and identification of genes associated with risk and
survival.

The identification of differentially expressed genes refers to finding those genes that
are up-regulated or down-regulated between two conditions, such as different treatment
conditions, cancer vs. non-cancer tissue, patients with different outcomes, and samples
before and after a certain treatment. There are several statistical methods available
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such as linear models, t-tests and gene-set enrichment analysis that can identify the
differentially expressed genes. Usually this type of analysis leads to the selection of a
subset of genes for further analyses.

One of the most useful applications of microarrays is the derivation of gene sig-

natures that can be used as biomarkers for various purposes, such as diagnosis, risk
stratification, response to treatment prediction, etc. A gene signature is a set of genes
whose expression levels can be used to discriminate between two or more conditions,
and which also have good predictive power for reliably classifying new samples [177].
Usually gene signatures are derived using supervised methods. Labelled samples (sam-
ples for which the outcome of interest is known) are used by a machine learning model
to identify and optimise the genes with the biggest discriminative power. The signature
is then validated on independent sets of data, that have not been used for training, in
order make sure that it is robust and has good predicative power.

Unsupervised methods are also often used for analysing microarray data. These
methods are used to identify groups of similar samples without using any labelled data.
In cancer, unsupervised analysis can reveal underlying mechanisms that can explain
clinical outcomes and can offer insights for understanding the heterogeneity of the
disease.

2.6.1 Exon microarrays

The analysis in this thesis is mainly based on data obtained using the Affymetrix

GeneChip Human Exon 1.0 ST Arrays platform, which are one of the highest resolution
microarrays currently available. Throughout this thesis we will refer to this type of
microarrays as exon microarrays.

Exon microarrays contain over 5.5 million probes, grouped in 1.4 million probesets,
interrogating over 1 million known or predicted exons, therefore offering a very com-
prehensive coverage of the genome. They contain on average 4 probes per exon and 40
probes per gene. This allows two main type of analyses, exon level and gene level.

As presented on the manufacturer’s website [178], the original purpose of exon
microarrays was to allow the study of alternative splicing events such as intron retention,
exon skipping and alternative promoter usage. However in this thesis we illustrate the
use of exon microarrays to detect gene fusions and transcriptional deregulations within
genes. Besides the exon level analyses, exon microarrays can also be used as to measure
the expression levels of genes, just as standard microarrays do.

Usually the standard microarrays contain a mismatch probe for every perfect match
probe (probes that interrogate the genome). The mismatch probes have the same
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sequence as the corresponding perfect match probe, except for one nucleotide in the
middle. The purpose of these probes is to estimate the non-specific hybridization levels,
and therefore to help correct for background noise. Exon microarrays lack mismatch
probes, and thus several normalisation algorithms that rely on mismatch probes can not
be used. However there are some algorithms such as RMA, fRMA and PLIER that can
be still used and which will be presented in the following sections. These algorithms
estimate the background signal using two types of probes that exon microarrays provide:
genomic background probes - probes from regions of genome which are very unlikely
to be transcribed and anti-genomic background probes - probes not found in genome.

Having only one probe to interrogate a genomic region, might be unreliable due
to various sources of technical bias, such as sequence hybridization affinity, position
on the microarray, and background noise. Therefore, microarrays have in general
several probes measuring the expression of the same biological sequence of interest
(exons in this case). These probes usually map to slightly different locations within
the same genomic region, to protect from sequence specific effects and also are placed
on different positions on the chip, to protect from local variations within the array.
During the normalisation phase, the estimates provided by each probes are adjusted and
summarised together, obtaining a single estimate. The group of probes that interrogate
the same region of interest is referred to as probeset.

Probesets from exon microarrays are classified into five confidence categories,
depending on the quality of evidence supporting the transcription of the genomic
sequence (see Table 2.3). Throughout the analyses, depending on the purpose of the
analysis, we will use various categories of probesets. We will describe which probesets
we used for each individual analysis in the following chapters.

2.6.2 Exon microarray normalisation

The raw microarray signals need to be pre-processed in order to correct the effects and
biases that occur during the experimental procedures. There are several algorithms
for normalising exon microarrays such as RMA (Robust multiarray analysis) [180,
181], Frozen robust multiarray analysis (fRMA) [182] and PLIER (Probe Logarithmic

Intensity Error, proposed by Affymetrix). However the most commonly used algorithms
in practice are RMA and, its slightly modified versions, such as fRMA. PLIER was
reported as being technically biased and numerically unstable [183], and is not very
much used.
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Table 2.3 Exon microarrays probeset classification by confidence level [179].

Evidence Level Description

Core Refers to probesets that are supported by the most reliable ev-
idence from RefSeq and full-length mRNA GenBank records
containing complete CDS information.

Extended Refers to probesets that are supported by other cDNA evidence
beyond what is used to support core probesets. Extended evi-
dence comes from other Genbank mRNAs not annotated as full-
length, EST sequences, ENSEMBL gene collections, synthetically
mapped mRNA from Mouse, Rat, or Human, mitoMap mitochon-
drial genes, microRNA registry genes, vegaGene, and vegaPseu-
doGene records.

Full Refers to probesets that are supported by computational gene
prediction evidence only. They are supported by gene and exon
prediction algorithms including GeneID, GenScan, GenScanSub-
Optimal, exoniphy, RNAGene, sgpGene and Twinscan.

Free Refers to probesets that are supported by annotations which were
merged such that no single annotation (or evidence) contains the
probeset.

Ambiguous Refers to probesets that cannot be unambiguously assigned to a
particular transcript cluster.

2.6.2.1 Robust multiarray analysis (RMA)

The RMA algorithm proposed by Irizarry et al. [180] is one of the most commonly used
normalisation methods for exon microarrays. The main advantage of RMA is that it
uses only perfect match probes. RMA normalisation consists of three steps: background
correction, quantile normalisation and summarisation.

The first step of RMA is background correction. The purpose of background
normalisation is to correct for non-specific binding, i.e. the hybridisation of sequences
that are not complementary to microarray probes. The model assumes that the observed
probes intensities are a combination of the true signal and background noise. More
specifically, as presented in Bolstad [181]:

S = X +Y, (2.1)

where S is the observed signal intensities of the probes, X is the true signal (assumed to
follow an exponential distribution) and Y is the background noise, normally distributed
and truncated at 0 to avoid negative values. Under this model the background corrected
values are given by the expectation E(X |S).



2.6 Microarrays 34

Next, the probe intensities are quantile normalised. Quantile normalisation [184]
is a method designed to make the distribution of probe intensities the same. This is
achieved by transforming the intensities so that the corresponding quantiles across all
microarrays are equal.

The third step of RMA normalisation is the summarisation of the intensities of probes
within a probeset in order to obtain a single value, the probeset estimate expression level.
Li and Wong [185] observed that the variation of the intensities of probes from the same
probeset can be very large, due to probe-specific effects (or affinities). Sometimes the
variation due to probe-specific effects was larger than the variance across microarrays
[185]. Fortunately these probe-specific effects are reproducible, predictable and can be
reliably accounted for. RMA uses the following linear additive model to account for
probes affinities, when estimated the probeset expression:

Yi jn = µin +α jn + ei jn, with i = 1, ..., I, j = 1, ...,J,n = 1, ...,N, (2.2)

where i is the index of the microarray, j represents the probe index in the probeset, and
n is the probeset index in the microarray. Yi jn represents the log2 background-adjusted
and quantile normalised expression level of a probe j from probeset n from the array i,
µin is the log2 expression level of the probeset n in array i, α jn is the probe affinity of
the probe j from probeset n and ei jn an independent identically distributed error term
with mean 0 [180].

The parameters of the above model are estimated using the median polish algorithm
[186], which is robust to outliers. In the end we are interested in the value of µin, which
represents the probeset expression level, after we corrected for probe affinities.

2.6.2.2 Frozen robust multiarray analysis (fRMA)

Frozen robust multiarray analysis (fRMA) [182] is an extension of the RMA algorithm.
The main difference is that the reference distribution used in quantile normalisation,
the probe-effects and the error variances necessary for RMA are not computed locally
from a set of microarrays anymore, but have been precomputed using a large number of
microarrays available in the public databases and frozen. This allows fRMA to process
single arrays or small batches separately, and to obtain in the end comparable arrays.

More specifically, the background correction for fRMA is the same as for RMA, as
background correction is a single-array procedure anyway. For quantile normalisation,
probe intensities of the single-array/batch are forced to the frozen reference distribution.

Intuitively, one would expect the probe effects to be constant across studies. How-
ever McCall et al. [182] discovered that the probe-specific effects were variable in
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samples coming from different batches. Also McCall et al. [182] noted the variance of
the error ei jn (see Equation 2.2) within batches is different. Therefore, the summarisa-
tion probe-level model has been extended to account for batch-effects and to allow the
error variability to depend on batch as well. The updated summarisation model is:

Yi jkn = µin +α jn + γ jkn + ei jkn, with i = 1, ..., I, j = 1, ...,J,n = 1, ...,N,k = 1, ...,K,

(2.3)
where a k has been added to notation to represent batch. We note that compared to
Model 2.2 this model has a new term, γ , that accounts for batch-specific variability and
that the error term depends now on the batch as well.

The performance of fRMA is comparable to the performance of RMA. When data
was processed together RMA slightly outperformed fRMA, while when processing the
data in separate batches, fRMA slightly outperformed RMA [182].

2.6.3 Quality assessment of exon microarrays

Affymetrix produced a series of metrics for identifying the outlier microarrays, due to
technical effects. These metrics are described in the Quality Assessment of Exon and
Gene Arrays whitepaper [187].

There are presented three probeset summarisation based metrics, useful in determin-
ing the general quality of the data, i.e. positive controls vs. negative controls area under

the curve (AUC), the mean of the absolute deviation (MAD) of the residuals from the

median and the mean absolute relative log expression (RLE). Out of these three metrics,
the mean absolute RLE metrics is useful only in experiments where the same sample
has been run over many chips. This is not the case in our analyses, as we have samples
from a big variety of RNA sources and hence we did not use it.

Besides the above three metrics, in the whitepaper there are presented a series
of other metrics, useful in troubleshooting various aspects of the microarray analysis
protocol, in order to identify the source of problems in the outlier microarrays. Also
these metrics have not been used in our analyses.

2.6.3.1 The positive controls vs. negative controls AUC metric

The positive controls vs. negative controls AUC metric is based on the intensity of
two groups of special probesets: positive controls and negative controls. The positive
controls are a set of probesets mapping to the exons of about 100 putative housekeeping
genes, and therefore are expected to have high intensities. The negative controls on
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the other hand correspond to intronic regions of the housekeeping genes. The negative
controls are expected to have low intensities in general.

The positive controls are considered to estimate the true positive rate, while the
negative controls are considered to estimate the false positive rate. Using these two
estimates a receiving operating characteristic (ROC) curve is generated. In this case,
the ROC curve evaluates how well the probeset signals separate the positive controls
from negative controls.

The positive controls vs. negative controls AUC metric corresponds to the AUC
value corresponding to the ROC curve. The AUC gives an indication of the separation,
with values close to 1 indicating a good separation, and values close to 0.5 indicating a
poor separation.

2.6.3.2 The MAD of the residuals from the median

The MAD of the residuals from the median is a summary statistic based on the devi-
ation from the estimated probe-specific affinities. More specifically, as described in
Section 2.6.2.1, each probe has a different hybridisation affinity, that can result in big
variations in signal intensities across different probes. However these probe-specific
affinities are usually predictable and can be estimated by the RMA algorithm.

The MAD of the residuals from the median aims to identify problematic chips
by assessing if a large number of probes are behaving differently than predicted by
RMA. This is achieved by calculating for each probe the difference (residual) between
the predicted intensity and observed intensity. The mean of all the residuals is then
calculated, resulting in a metric that has large values in poorly performing microarrays.

2.7 Primary tissues and cell cultures

In cancer research there are two commonly used approaches to obtain tissue samples
for analysis. The first one is to extract tissue from clinical samples, to store it and
analyse it using various techniques such as microarrays, sequencing, or methylation
arrays. The second one is to grow cancer cells in vitro or in vivo, eventually using
different experimental conditions, and to study their behaviour. Cell cultures can also
be subjected to -omic analysis.

Both approaches have advantages and disadvantages. The clinical samples can
give an accurate image of the state of disease. Mutations and recurrent alterations can
be detected, the expression level of genes can be determined and the histology of the
tumour can be evaluated. However they provide only indirect information about the
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processes happening inside the cell and how the cells evolve. Cell cultures, on the
other hand, can give a dynamical insight into how the cancer cells are proliferating and
how they are responding to treatment, but, they might not reflect accurately what is
happening in vivo.

Clinical samples can be obtained from primary tumour, normal or metastatic tissue.
The extracted tissues are fresh frozen (FF) or formalin-fixed paraffin-embedded (FFPE),
in order to protect them from degradation. FFPE tissues are obtained in two steps:
formalin fixation - the freshly extracted tissues are treated with formalin, a solution
that preserves the tissue permanently, with a minimum impact on its structure, and
paraffin embedding - the encapsulation of the fixed tissue into a wax called paraffin, that
supports the tissue and enables researchers to cut microscopic sections when needed.
FF tissues are obtained by submerging the fresh sample into liquid nitrogen.

FFPE tissues can be stored at room temperature for many years, therefore are
cost-effective and convenient, while FF samples need dedicated freezer storage [188].
Moreover, there are available large archives of FFPE tissues, many of them with long
follow-up time, which makes them very useful for retrospective studies. Also FFPE
tissues are preserved in a form more suitable for morphological analysis [188].

The main advantage of FF samples is that the quality of RNA is much better than
the RNA obtained from FFPE samples, making them more suitable for molecular
analysis [188]. Despite this, a large number of studies reported promising results when
performing sequencing and microarray profiling on genetic material obtained from
FFPE specimens [189–194]. One the other hand, the processing of FF tissues is much
faster than FFPE. Also the FFPE protocol is not standardized, and this can lead to biases
[188]

Another way of understanding cancer is to grow cancer cells outside the source
organism. The initial culture is referred to as primary culture, which undergoes multiple
sub-cultures in order to produce cell-lines [195]. The cell-lines can be grown in

vitro, given proper medium, or can be injected into immunodeficient mice, to obtain
xenografts, which are efficient in vivo models.

The primary culture is the closest model to the original tissue [196]. The main
disadvantage of using primary culture is that the cells do not always grow in culture or
die after few replications. Also the primary cultures are less well characterised.

An easier approach is to work with immortalised cell-lines. Immortalised cell-lines
are cultures derived from tumours which acquired capability to reproduce indefinitely
[195]. The first human cancer cell-line, named HeLa, was established in 1951 [197].
Ever since, cell-lines have been established in all types of cancer.
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Cell-lines revolutionised medical research and are used for drug development, study
of gene function, generation of artificial tissues and synthesis of biological compounds
[198]. They are cost effective, easy to use, provide an unlimited supply of material,
bypass ethical concerns and are well characterised [198]. The main drawback of cell-
lines is that they might not reflect accurately what is happening in the original tissue,
due to different growth conditions and mutations acquired by cells during the multiple
passages. Several studies evaluated the differences between the cell-lines and primary
tumours [199–205]. Most of these studies identify that cell-lines have similar recurrent
mutations and alterations compared with tumours, but, overall, cell-lines have more
mutations [206]. It is not clear yet the effect of the cell-line specific alterations in
producing differences between in vitro and in vivo models [206].

2.8 Discussion

In this chapter we have introduced the basic biological and medical concepts necessary
for understanding the analyses and the results presented in this thesis. We presented
the central dogma of molecular biology, the general characteristics of cancer and the
overview of the management of prostate cancer. We also described how microarrays
work and rationale for using various types of tissues in the research of cancer. We shall
now describe the bioinformatics methods used to analyse this type of data.



Chapter 3

Computational background

3.1 Summary

In this chapter we introduce the computational approaches that were used in this thesis.
We present a review of several machine learning approaches that were applied to define
groups of patients with different mutational and gene expression profiles. We also
introduce survival analysis models, that helped us compare the clinical outcomes of
patients from different groups. We further present methods used for pathway analysis,
to study the biological functionality of various sets of genes identified by our analyses.

3.2 Machine learning

Machine learning is a form of artificial intelligence that uses example data or past
experiences to learn the parameters of a mathematical or statistical model, that is then
used to partition (new) data into classes of objects with similar characteristics. Machine
learning techniques are used nowadays in a wide variety of applications, from speech
and face recognition to classification of cancers into subtypes. In machine learning
there are two main approaches for partitioning data objects into classes: supervised

methods and unsupervised methods.
Supervised methods classify objects based on models that are trained on a set of

objects (also referred to as instances, samples, data points, or, simply, points) for which
the class is known a priori. The objects for which the class is known are referred to
as labelled objects, while the objects for which the class is unknown are referred to as
unlabelled objects. We will present some supervised methods in Section 3.2.2.

The other main category of machine learning approaches is unsupervised methods.
Unsupervised methods partition the data into classes, or more commonly referred to as
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clusters of objects, with similar characteristics. The difference to supervised methods is
that the labels should not be known a priori, as they are derived from the data. We will
discuss three unsupervised methods in Section 3.2.1.

There are also semi-supervised methods that work with models trained using both
labelled and unlabelled data. However these methods are beyond the scope of this work
and will not be discussed here.

3.2.1 Clustering methods

In this section we discuss two commonly used clustering methods, hierarchical clus-
tering and k-means, based on Chapter 8 of Tan et al. [207] and Part III of Maimon and
Rokach [208] and also a relatively new method, called latent process decomposition
(LPD) based on the work of Rogers et al. [209].

Unsupervised classification, also referred to as cluster analysis, groups the objects
into clusters with common characteristics. The aim is for the objects in a cluster to be
similar to one another and different to objects in other clusters. The separation of the
objects from a dataset into clusters is referred to as a clustering.

One can distinguish between different types of clusterings such as hierarchical vs.
partitional and exclusive vs. overlapping vs. fuzzy.

Partitional clustering refers to the division of objects into non-overlapping groups,
with each object assigned to exactly one group. Hierarchical clustering, on the other
hand, allows the clusters to be further divided into subclusters. The clusters in a
hierarchical clustering can be organised into a tree with nodes representing clusters and
their children representing subclusters (see Figure 3.1).

Exclusive clustering assigns each sample exclusively to one cluster. However, there
are situations when objects need to be assigned to more than one group. This behaviour
can be modelled using overlapping clustering, which allows samples to be assigned
to several clusters simultaneously. Sometimes objects can be assigned to clusters with
a certain membership weight. This is called fuzzy clustering. One of the common
instances of fuzzy clustering is probabilistic clustering, where a sample is assigned to a
cluster with a certain probability. The probability of the sample to belong to a cluster is
a number between 0 and 1, with a further constraint that the sum of probabilities for all
clusters add up to 1.

3.2.1.1 Hierarchical clustering

As discussed earlier, hierarchical clustering is a technique of clustering where clusters
are organised as a tree, with nodes representing clusters and children subclusters. The
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root of the tree is a cluster comprising all samples, while leaves are clusters that contain
a single object.

There are two approaches for generating hierarchical clustering: agglomerative

(or bottom-up) and divisive (or top-down). Agglomerative clustering starts with each
objects assigned to a separate cluster and at each steps merges the closest pair of clusters,
until only one cluster is obtained. The agglomerative hierarchical clustering algorithm
is schematically presented in Algorithm 1. Divisive clustering, on the other hand,
starts with all objects assigned to a single clusters and at each step splits a cluster into
two subclusters. For the moment we will focus only on the agglomerative clustering
approach, as it is the technique used in this thesis. We will further refer to agglomerative
hierarchical clustering simply as hierarchical clustering.

Algorithm 1 The agglomerative hierarchical clustering algorithm.
Assign each data point to a separate cluster.
repeat

Merge the two most similar clusters into a single cluster.
until A single cluster is obtained.

In order to determine the closest clusters, a proximity measure is used. The proximity
measure gives an indication of how similar two clusters are. There are several ways
of defining the proximity measure. The complete link (or maximum linkage) defines
the proximity of two clusters as the maximum distance between any point from the
first cluster to any point from the other cluster. Single link (or minimum linkage) is the
minimum distance between two points from the separate clusters, while average link
defines the proximity as the mean distance between all possible pairs of points from the
two clusters.

Another very important aspect of clustering is how the distance between a pair of
points is computed. Hierarchical clustering can work with either distance measures
(also referred to as metrics), or similarity/dissimilarity measures, depending on the
nature of the data. For example, in the case of points from a metric space, Manhattan,
Euclidean or Minkowski distances can be used, while for objects with binary or nominal
attributes the Jaccard coefficient might be more suitable. For genetic expression profiles
on the other hand it might be more suitable to work with some similarity measures, such
as Pearson’s correlation, in order to assess how similar the expression patterns between
two tissues are.

Hierarchical clustering can be visually represented in a tree-like structure, called a
dendrogram (Figure 3.1b). A dendrogram depicts both the relationship between clusters
and its subclusters and the order in which they were merged. Each leaf represents a
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data point. A subtree represents the cluster that contains all the data points which are
leaves in the subtree. The height from the bottom of the tree to the horizontal line that
connects two subtrees indicates the degree of dissimilarity between the two clusters
represented by the subtrees. A dendrogram corresponding to the hierarchical clustering
of the points from a synthetic dataset containing points from the two-dimensional space
is presented in Figure 3.1.

●

●

●

●

● ●

●
●

●

●

●
●

●

p1

p2
p3

p4

p5 p6

p7

p8

p9

p10

p11
p12

p13

0

4

8

0.0 2.5 5.0 7.5
x

y

p2 p1 p4 p5 p3 p6 p7 p9 p1
3

p1
1

p1
2 p8 p1
0

a b

Figure 3.1 Hierarchical clustering on a synthetic dataset: a) a scatter plot depicting
points in a two-dimensional space; b) a dendrogram corresponding to the hierarchical
clustering of the points in Figure 3.1a, using the average linkage method and Euclidean
distance.

Hierarchical clustering algorithms cannot intrinsically determine the number of
optimal clusters in a dataset. This number needs to be evaluated separately using some
external numerical criteria, by visual inspection of the dendrogram, or using some a

priori knowledge about the data. Once the number of clusters is chosen, the clusters are
determined by cutting the dendrogram into the desired number of subtrees.

3.2.1.2 k-means

k-means is a member of the partitional clustering algorithms family. It splits the data
points into a predefined number k of non-overlapping clusters. Each data point is
assigned exclusively to a single cluster.

The k-means algorithm is also a prototype-based clustering technique. This means
that each cluster is represented by a prototype, i.e. a representative data point, usually
defined as the mean or the median of the points in the cluster. In the case of k-means,
the prototype is referred to as centroid. Each point is assigned to the centroid closest to
the point, therefore a cluster is represented by the set of points assigned to a centroid.
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k-means works by initializing k centroids, most commonly at random positions in
the data space. Each point is then assigned to closest centroid. Next, the centroids are
moved to the middle of all points assigned to that centroid (the cluster), i.e. to the mean
of all points in the cluster. Because the position of centroids changes it is possible that
some points become closer to other centroids than previously assigned. Therefore, the
previous two steps are repeated until the process convergences. Convergence means that
between two iterations no points changed the assignment and thus the position of the
centroids are stable. The k-means algorithm is schematically presented in Algorithm 2
and is visually illustrated in Figure 3.2.

Algorithm 2 The k-means algorithm.
Initialise the k centroids at random positions.
repeat

Assign each point to the closest centroid.
Update the position of centroid.

until The position of centroids does not change anymore (convergence).

k-means is a particular case of the EM algorithm, which is mathematically proven to
converge to a local maxima [210]. Thus, it is certain that in a finite number of iterations,
the algorithm will stop.

As in the case of hierarchical clustering, the distance between a pair of points
can be computed using different measures, depending on the k-means application.
Most commonly used distances are the Euclidean distance, Manhattan distance, cosine
similarity and Bregman divergence.

When applying the k-means algorithm to multidimensional data, a common practice
is to first apply a dimensionality reduction technique on the data, in order to make it
easier to visualize. We will discuss in Section 3.4 such a technique, called principal
component analysis.

3.2.1.3 Latent process decomposition (LPD)

In this section we present a hierarchical Bayesian technique called latent process

decomposition (LPD), which is the basis of the analysis presented in Chapter 5. LPD
is an extension of the latent Dirichlet allocation (LDA) approach [211] and is fully
described in Rogers et al. [209].

LPD is a probabilistic clustering of microarray data. This means that LPD allows
objects to have partial membership to more than one cluster, reflecting the fact that a
given object can share some characteristics with a group of objects, but in the same time
it can share other characteristics with a different group of objects.
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Figure 3.2 Illustration of the k-means algorithm on a synthetic dataset generated by
sampling four bivariate normal distributions with means (5, 5), (5, 16), (16, 3) and
(14, 14) and standard deviation (2, 2): a) the sampled points, prior to being assigned
to clusters (the round black points) and the randomly initiated centroids (the four red
diamonds); b) the initial assignment of the points to clusters, based on the initial position
of the centroids; c) the first recalculation of the centroid positions. We can see that the
centroids have been moved to the weight centre of each cluster; d) the second iteration
of the k-means algorithm - the points have been reassignment to clusters represented by
the closest centroid. We note that the top-right orange cluster is already well defined;
e) the second iteration of the k-means algorithm - the centroids have been moved to
the middle of the newly defined clusters; f) the final k-means result. In this case, the
algorithm converged after 5 iterations.
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In the context of prostate cancer we assume that a cluster represents a biological
process that leads to a certain expression pattern. As prostate cancer is a highly
heterogeneous disease, and often several foci are present in the same sample [23], it
is possible that several distinct processes are simultaneously present and are jointly
contributing to the expression profile of a given sample.

LPD determines for each process an expression profile, that describes the expected
expression level of each gene due to the process. Then, for a given sample it estimates
how well the expression profile of each process is reflected in the expression levels of
the genes in the sample. Alternatively, we say that LPD determines the contribution of
each process to the expression profile of a sample. More specifically, in a given dataset
D, for which the number, K, of processes is known in advance, LPD considers that
each gene g in a given set of genes G has a specific distribution in each process. The
distribution of each gene g in process k, is assumed to follow a normal distribution (a
Gaussian distribution) with mean µgk and variance σgk.

LPD assumes that for a given sample there is a specific distribution of processes, θ ,
that contribute to its observed expression profile. The distribution θ is a K-dimensional
vector whose elements θk are mixture components which take values between 0 and
1, and which sum to 1. These values reflect the probability of each process being
involved in the generation of the expression profile of a sample, i.e. the contribution
of each process to the sample. The distribution θ , in its turn, is assumed to come
from a dataset-specific Dirichlet distribution, Dir(α), which reflects how the mixture of
components θ vary across the samples in the dataset.

From a generative perspective, the model works as follows: For each sample a, a
multinomial distribution, θ , is sampled from the Dirichlet distribution, Dir(α). Then,
for each gene, g, a process k is drawn from the distribution θ with probability θk. The
expression level of the gene g in sample a, ega, is then sampled from the Gaussian
distribution corresponding to process k, which has the mean µk and variance σk.

The graphical representation of the structure of the model is presented in Figure 3.3.

3.2.1.3.1 Parameter estimation In general, the Bayesian models, such as LPD,
work with observed data D and a set of parameters, H which are unknown (or hidden)
and need to be estimated. In our case, the set of parameters is H = {α,µ,σ ,θ}, where
µ denotes the set of parameters µgk and σ , the set σgk. When fitting a model to a given
observed dataset D, we are interested in estimating the values for the parameters H

for which the posterior probability p(H|D), that is the probability of parameters given
the data, is maximised. The maximum p(H|D) is usually referred to as the maximum

posterior (MAP).
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Figure 3.3 A schematic illustration of the LPD model, adapted from Rogers et al. [209].
Each circle corresponds to a variable. The empty circles correspond to hidden variables
(variables for which we do not observe the values) and filled circles correspond to
observed variables. The arrows represent conditional dependencies between variables.

In order to estimate the MAP, Bayes’ rule can be employed. Bayes’ rule specifies
that:

p(H|D) =
p(D|H)p(H)

p(D)
. (3.1)

The factor p(D|H) is known as the likelihood, and represents the likelihood of the data
given the parameters, while p(H) is the prior, which, intuitively, encodes any prior
knowledge (or belief) about the data, before seeing it.

We are interested in finding H for which the posterior probability is maximised, and
therefore we can ignore the denominator from the above equation, as it does not depend
on H. Following from this, we say that:

p(H|D) ∝ p(D|H)p(H), (3.2)

meaning that the MAP is proportional with the product between the likelihood and the
prior.

If no prior belief is held about the data, we say that we have an uninformative (or

uniform) prior, and we consider the probability p(H) constant across H. In this case,
finding the MAP solution is equivalent with finding the maximum likelihood (MLE)

solution (the values of H for which the likelihood p(D|H) is maximised).
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Depending on the nature of the data, and the type of model used, there are many
approaches for finding the global or local maximum likelihood solutions. However, a
big issue with the MLE is that often it leads to over-fitting. Over-fitting refers to training
a model which fits too tightly to the training data, and which does not work well on any
new data. One way of dealing with this issue is to perform cross-validation, a technique
in which a proportion of samples are held out in turn and then used to check if the
model trained on the rest of samples has a good generalisation power.

In a Bayesian setting, however, the over-fitting problem can be solved by defining
suitable informative (non-uniform) priors. This means that instead of using uniform
distributions for the priors, we specify prior distributions that reflect our belief about the
expected form of the parameters. Using the informative priors together with likelihood,
leads to maximum posterior solutions (MAP).

LPD provides implementations for both MLE and MAP solutions. In our analysis,
the MLE approach is very useful in determining the optimal number of processes, as
we will illustrate later. The MAP solution, also helps in determining the number of
processes, but, more importantly, it is the approach used for setting the final model
parameters and classifying the samples.

3.2.1.3.2 The MLE solution For the MLE solution, the likelihood can be expressed
as:

p(D|µ,σ ,α) =
A

∏
a=1

∫
θ

p(a|µ,σ ,θ)p(θ |α)dθ , (3.3)

where A is the number of samples. As the log function is a monotonous increasing
function, finding the maximum likelihood is equivalent with finding the maximum
log-likelihod, defined as logp(D|H). In practice, it is usually easier to estimate the
maximum log-likelihood. Expanding from the above likelihood definition, the log-
likelihood for each sample, a, can be expressed as:

logp(a|µ,σ ,α) = log
∫

θ

{
G

∏
g=1

K

∑
k=1

N (ega|k,µgk,σgk)

}
p(θ |α)dθ , (3.4)

where N denotes the normal distribution.
The presence of the summation over k inside the logarithm, makes the the log-

likelihood intractable for exact parameter calculation. There are, however, several
parameter approximation techniques, that can be employed. In the implementation we
used, provided by Rogers et al. [209], the parameters have been estimated using the
Bayesian variational inference framework.
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Two sets of variational parameters, Qkga anf γak, are introduced in order to estimate
a lower bound [212], for the log-likelihood. Informally, a lower bound is a function that
approximates the log-likelihood function, and which is mathematically guaranteed to be
lower or equal with the log-likelihood at any point. The lower bound is introduced as it
can be more easily maximised, and its maximums usually provide good approximations
for the model parameters. The variational parameters above are defined as:

Qgka =
N (ega|k,µgk,σgk)exp{ψ(γak)}

∑
K
k=1 N (ega|k,µgk,σgk)exp{ψ(γak)}

, (3.5)

where ψ(x) is the digamma function, and:

γak = αk +
G

∑
g=1

Qkga. (3.6)

Using the variational parameters, the model parameters can be iteratively computed
as:

µgk =
∑

A
a=1 Qgkaega

∑
A
a′=1 Qgka′

(3.7)

σ
2
gk =

∑
A
a=1 Qgka(ega −µgk)

2

∑
A
a′=1 Qgka′

. (3.8)

and:
αnew = αold −H(αold)

−1g(αold), (3.9)

where H(x) is a Hessian matrix and g(x) is a gradient, both described in Rogers et al.
[209], αnew is the updated value of the Dirichlet α parameter and αold is value of α

obtained at the previous iteration.

3.2.1.3.3 The MAP solution As we described previously, informative priors for the
parameters can be introduced, in order to avoid the over-fitting problems, that can occur
in the MLE estimations. The informative priors reflect our beliefs about the form of the
parameters. For example, if for a dataset for which the expression level of each gene
has been normalised across samples to a normal distribution with mean 0 and variance
1, we can assume that the parameter µgk (which represents the mean expression level
of a gene, g, in process k) comes from a normal distribution N (0,σµ). This encodes
our prior belief the bulk of genes are not expected to be differentially expressed in a
given process, and only some, i.e. the outliers from this distribution, will be have a
process-specific distribution.
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Similarly, we can assume that the variance parameters, σ2
gk will tend to be close to

1. We can also design the prior over the variance parameter σ2
gk such way that we make

sure that the variances will never be 0, as it would make the Gaussians collapse into a
single point, leading to numerical instability and model over-fitting.

Therefore the following priors over the parameters are set to:

p(µgk) ∝ N (0,σµ) (3.10)

and:

p(σ2
gk) ∝ exp

{
− s

σ2
gk

}
, (3.11)

which specifies that the µgk come from a normal distribution and that σ2
gk come from an

(improper) exponential distribution, which have the desired properties. The quantities
σµ and s are called hyper-parameters. In full Bayesian models the hyper-parameters are
treated the same as the other parameters of the model and estimated together with them.
LPD, however, is what we call an Empirical Bayes model, which means a model for
which the hyper-parameters are estimated independently, using the data at hand. The
estimated values for the parameters are then provided for the model parameter training.

Introducing informative priors, changes the equations for the MAP estimation of
µgk and σ2

gk parameters, as follows:

µgk =
σ2

µ ∑
A
a=1 Qgkaega

σ2
gk +σ2

µ ∑
A
a′=1 Qgka′

, (3.12)

σ
2
gk =

∑
A
a=1 Qgka(ega −µgk)

2 +2s

∑
A
a′=1 Qgka′

. (3.13)

The other equations remain the same a for the MLE solution.

3.2.1.3.4 The LPD algorithm As we can see above, the update equations for vari-
ational parameters Qgka and γak are inter-dependent with the model parameters. The
variational parameters depend on the model parameters, and also the model parameters
depend on the variational parameters. In order to estimate both sets of parameters, an
iterative update procedure, similar to the EM algorithm, can be employed.

More specifically, each of these parameters are initialised to suitable starting values.
The µgk parameters are set to the average expression of the gene g across all samples in
the datasets, the variances σ2

gk are set to the variance of gene g across all samples, the
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values for α are all set to 1, while the values for the γak parameters are initialised to a
positive random number.

The values of the hyper-parameters σµ are always set to 0.1 as it has been empirically
determined that they have a negligible effect on the results [209]. The other hyper-
parameter, s, however, seems to have a strong effect on the performance and needs
to be carefully chosen [209]. One of the ways of doing it is to estimate the 10-fold
cross-validation likelihood of the model for various values of s and to choose the value
for which the maximum likelihood is obtained. We will illustrate this aspect in more
detail in Chapter 5.

Having set the values for the hyper-parameters and the initial values for the parame-
ters, an iterative two-step update procedure is performed, similar to the E and M steps
in the EM-algorithm. In the first step the values of the variational parameters Qgka and
γak are updated, as described by Equations 3.5 and 3.6, based on the current values of
the other parameters. In the second step the values for µgk, σ2

gk and α are updated, as
indicated by Equations 3.7, 3.8 and 3.9 for the MLE solutions and by Equations 3.10,
3.11 and 3.9 for the MAP solution. The second steps uses the values of the variational
parameters estimated in the first step. This iterative algorithm is guaranteed to converge
after a finite number of iterations [210].

In the end the parameters µgk and σgk will describe the distribution of the expression
level of the gene g in process k. In our analysis, based on these estimates, we can
describe the genetical characteristics of each subtype of prostate cancer. We can, for
example, identify which genes are up-regulated or down-regulated in a given process,
or we can see if different subtypes of prostate cancer result in similar or different
expression profiles.

Another very important set of results are the values for γak, which are approximations
of the mixture distribution, θk. For each sample, a, the value of γak indicates an estimated
contribution of the process k to the expression profile of the sample (Figure 3.4).

3.2.1.3.5 Choosing LPD parameters The MLE approach is a simpler version of
the LPD model, which, given a dataset and the number of processes believed to underlay
the data, is able to estimate for each sample the contribution of each process to its
observed expression. However if the number of processes given as input to the model
is larger than the number of processes inherent in the data, the model can fail to find
the best representation for each process. It is said that the model overfits the data.
Conversely, if the number of processes provided to the model is lower than the real
number of processes, the model also can fail to find a good representations of the data.
In this case it is said that the model underfits the data.
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Figure 3.4 An illustration of the LPD classification on a prostate cancer dataset. The
γak values obtained after fitting the MAP version of an LPD model with 5 processes to
a prostate cancer dataset, that will be described in detail later. Each horizontal panel,
denoted LPD1, to LPD5, correspond to one of the 5 LPD processes. For each panel, k,
corresponding to the LPD process k, the x-axis represent samples 1 ≤ a ≤ A, while the
y-axis represents the estimated value for γak. The values of γak have been normalised
such that, for a given sample a, 0 ≤ γak ≤ 1 and ∑

K
k=1 γak = 1.



3.2 Machine learning 52

The MAP model, on the other hand, is slightly more elaborate than the MLE version.
Besides the number of processes, it incorporates several additional parameters, which, if
suitably chosen, protect the model from overfitting. We note, however, that the additional
parameters do not prevent the model from underfitting. Numerical experiments [209]
have indicated that, amongst the additional parameters, one in particular needs to be
carefully chosen, while the others are set to some predefined values, as they have little
impact on the results. This is the parameter s, described in Section 3.2.1.3, which is the
prior for the variances σgk. Throughout the remainder of this chapter we will refer to
this parameter as sigma.

The MAP version is more suitable for performing the final classification of the data,
as in general it gives better solutions than the MLE model, as we will illustrate later.
However, it needs to be provided with two parameters, the number of processes and a
parameter which we denote sigma - the s parameter in Section 3.2.1.3.4. In order to
estimate them, a MAP model needs to be trained for each of possible combination of
the two parameters. More specifically, for each of the two parameters we set a range of
values which are probable to be satisfactory for the model and, for each combination
of values, we fit a model. The model that fits the best, i.e. the model that yields the
maximum hold-out log-likelihood estimate, is then chosen for the final classification.

However, LPD is a quite computationally intensive method. In our evaluations, for
example, an average performance computer needs around 24 hours to fit a single LPD
model an a dataset of 300 samples. Therefore, varying both parameters in the same
time is computationally difficult, due to large number of models that need to be fit.

A more efficient approach to deal with to this issue is to split the choice of parameters
into two steps. First, we employ the MLE model to estimate the number of processes,
as it does not need the sigma parameter. Once the number of processes is chosen, it is
easier to determine the value of sigma alone, using the MAP model.

More specifically, the first step consists in determining the number of processes
underlying each dataset by fitting a MLE model for different choices of the number
of processes. In our case, we assumed that each dataset can have between 2 and 15
inherent processes. For each of these numbers we calculate the hold-out log-likelihood
of the MLE model, which gives an indication about how well the model fits the data.
We then select the number of processes at which the log-likelihood peaks.

Once we determined the number of processes, the second step consists in choosing a
suitable value for the sigma parameter. The MAP model can be used for this undertaking.
More specifically, we set a range of possible values for sigma. Then, for each value in
the range we fit a MAP model. As before, we choose the value of sigma for which we
obtain the maximum hold-out log-likelihood.
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For a more robust choice of the parameters that are to be used for the final model,
a third step can be derived. At this stage, as we have found a satisfactory value for
sigma, we can fit a MAP model to all possible number of processes (2-15 in our case)
to see how this compares to the MLE estimation. As sigma prevents the MAP model
from over-fitting, but not from under-fitting, we would expect to see an increase of the
likelihood up to a point, at which the MAP model does not under-fit the data anymore.
After this point we would expect the likelihood to remain at about the same level, as the
model is prevented by sigma to over-fit.

The step three can be useful to validate the number of processes chosen at step one.
The process at which the MAP likelihood reaches the plateau indicates the probable
number of processes inherent in the data.

3.2.2 Supervised learning methods

3.2.2.1 Random forests

We base the discussion in this subsection on the work of Breiman [213] and Breiman
and Cutler [214].

The random forests algorithm is an ensemble classification method. Ensemble classi-
fication methods, also referred to as meta-classifiers, classify objects by aggregating the
results of a collection (ensemble) of independent predictors. The aim of meta-classifiers
is to obtain a more accurate classification than the component classifiers alone.

Random forests work by growing an ensemble of decision trees (a supervised
classification technique that we will briefly describe below). Each tree provides a
classification of a new sample. Informally, it is said that each tree votes for a class. The
sample is assigned to the class that obtains most votes.

3.2.2.1.1 Decision trees Decision trees are a supervised classification method that
work by organising a set of attributes (features) in a rooted tree structure. Each non-leaf
node represents one or several attributes being tested. Each branch represents the
outcome of the test, while the leaf nodes represent the class labels. An illustration is
shown in Figure 3.5. The decision tree determines if a day is suitable for playing tennis,
based on three weather characteristics: outlook, humidity and wind.

In the case of decision trees, a new object is classified by evaluating its attributes
using the rules encoded by the tree. The evaluation starts with the root note. At each
non-leaf node, one ore several attributes are tested. Depending on the value of the
attributes being tested on each node, the evaluation continues on one of the branches,
until it reaches a leaf node. The leaf node in which the classification stops represents the



3.2 Machine learning 54

Outlook

Humidity WindYes

Yes No

Sunny Rain
Overcast

Yes No

Normal High StrongWeak

Figure 3.5 Example of a decision tree. The elliptic nodes represent the attribute being
tested. The square nodes represent the class label. Adapted from Mitchell et al. [215].

class to which the object is assigned. For example, a day characterised by rainy outlook,
high humidity and weak wind is classified as suitable for tennis (Figure 3.5). This
decision is made by first evaluating the attribute in the root node, i.e. the outlook. In
this particular case the outlook is rain, therefore the classification continues on the right
branch. Next, the wind attribute is evaluated. It has the value weak, thus the evaluation
continues on the left branch. That branch leads to a leaf node labelled Yes, indicating
that the day is suitable for tennis.

3.2.2.1.2 Random forests algorithm Given a dataset set with N samples, each one
with M attributes, random forests build each of their decision trees as follows:

1. N samples are selected, at random, with replacement, which will be used as
training set for growing the tree;

2. from the list of M attributes, m << M attributes are selected at random;

3. using the m attributes and the N samples a decision tree is constructed.

One of the key features of random forests is the selection with replacement of the
training samples, used in the construction of each tree. When sampling N times with
replacement from a set of N samples, some samples are selected more than once, while
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about a third of samples are not selected at all [216]. The collection of samples not
selected is referred to as oob (out-of-bag) data and is used by random forests to calculate
an unbiased classification error estimate. This is important as, by using the oob error
rate, there is no need to perform cross-validation, as is the case with most supervised
classification algorithms. The oob error is also used to calculate variable importances,
i.e. a measure which tells how important a variable is for the overall classification.

The error rate of random forest depends on two aspects: the correlation between
the trees and the strength of trees. The correlation estimate measures how similar are
the classifications on average yielded by each pair of trees, across all samples in the
dataset. Intuitively this tells if the trees output redundant classifications. Strength, on
the other hand, tells how accurately each tree is classifying. Decreasing correlation and
increasing strength lead to the decrease of error rate.

Both correlation and strength increase when the m parameter (also referred to as the
mtry parameter - the number of attributes sampled for each tree) increases. Therefore,
when using random forest it is important to choose a value for mtry that gives a good
trade-off between strength and correlation. The default value for this parameter is

√
M

for classification, and M/3 for regression. Another important parameter is the number
of decision trees to grow (the ntree parameter). If too few trees are grown, the model
might underfit the data. The default value for ntree is 500.

Random forests can be adapted to handle imbalanced datasets, i.e. datasets for
which there is a significant difference in the size of classes. This is an issue for the
classification algorithms as usually they try to optimize the overall error rate. Most of
the times this will keep the error for the larger classes low, while letting the error of the
small classes, which contributes little to the overall error, to be high.

For random forests there are two commonly used techniques for addressing this
problem. One is to assign class weights inversely proportional to the class size, which
are then used to weigh the contribution of the samples to the overall error. The other
approach is to use stratified sampling, i.e. an equal number of samples is drawn from
each class, regardless of the class size. This can be achieved by either over-sampling
the smaller classes or down-sampling the larger classes.

3.2.3 Logistic regression

Regression models are some of the most popular techniques used for modelling the
relationship between a continuous or discrete outcome (target) and a set of predictors.
Depending on the types of the outcome and the predictor variables, different types of
regression analysis are suitable. For example, linear regression is useful in modelling a
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continuous outcome variable as a linear combination of the predictors, while the logistic

regression, which we will discuss next, based on Cox [217], is useful in modelling a
binary target variable as a linear combination of a set of predictors.

Given a set of N mutually independent target random variables, Y1,Y2, ...,YN taking
the values 0,1 and a set of N vectors X1,X2, ...,XN , where each vector Xi is a set of
K predictor variables, Xi = (Xi1,Xi2, ...,XiK), the logistic regression is concerned with
modelling the relationship between θi = P(Y = 1) and the set of predictors Xi.

Since θi is a probability, and therefore takes values in the interval [0,1], its direct
representation as a linear combination of predictors is unsuitable, as the linear combina-
tions generally result in values in the interval (−∞,∞). However, the values of θi can
be mapped in the interval (−∞,∞) using a link function. There are several functions
that can be used for this transformation, but the one most commonly used is the logit

function, defined as:

logit(p) = log
(

p
1− p

)
(3.14)

Using the logit function, the logistic regression models the relationship between the
outcome variable and predictors as:

logit(θi) = log
(

θi

1−θi

)
= α +

K

∑
k=1

βkXik, (3.15)

which is the logarithm of the odds ratio (log odds ratio, for short). The parameters
β1,β2, ...,βK are the regression coefficients, which describe how the log odds ratio
modify with an unit increase in the corresponding predictor variable, and α is an
intercept. By exponentiating the log odds ratio we obtain the odds ratio (OR), which
is another measure very often used to describe the association between an outcome of
interest and the predictors.

For a fitted model, given an instance of the predictors, the probability of the classes
can be calculated as:

p(Yi = 1) = θi =
exp{α +∑

K
k=1 βkXik}

1+ exp{α +∑
K
k=1 βkXik}

, (3.16)

or:
p(Yi = 0) = 1−θi =

1
1+ exp{α +∑

K
k=1 βkXik}

. (3.17)
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3.3 LASSO

Shrinkage (regularization) methods are a form of penalising over-complex regression
models by imposing restriction on the coefficients, forcing them to take lower values.
One of the most popular shrinkage methods is the LASSO (least absolute shrinkage and
selection operator) technique proposed by Tibshirani [218].

The LASSO technique imposes restrictions on the regression coefficients, such that
only the coefficients corresponding to the most informative variables for the outcome
are set to values different from 0, while the coefficients corresponding to less useful or
redundant variables are set to 0. A reduced set of variables can improve the prediction
accuracy, and also offers an easier interpretation of the model by selecting only a few
variables Tibshirani [218].

LASSO is essentially a form of feature selection and can be applied to a wide range
of models such as linear regression, logistic regression and the Cox model, which we
will present later.

As presented in Friedman et al. [219], the LASSO technique can be incorporated
in the estimation of the parameters of logistic regression. Given a logistic regression
model with the predictor vectors X ∈ Rp and response variable Y = {0,1}, defined as:

P(Y = 1|X = x) =
1

1+ exp{α + xT β}
, (3.18)

the parameters α ∈R and β ∈Rp can be estimated by optimizing the objective function:

min
α,β

−

[
1
N

N

∑
i=1

yi(α + xT
i β )− log(1+ exp{α + xT

i β})

]
+λ ||β ||1 (3.19)

where the term in square brackets corresponds to the original log-likelihood of the
logistic regression and the term λ ||β ||1 corresponds to the LASSO regularization term.
The factor ||β ||1 of the LASSO regularization term corresponds to the L1-norm of a
p-dimensional vector β = (β1,β2, ...,βp), defined as ∑

p
i=1 |βi|.

The scalar λ ≥ 0 is a tuning parameter that controls the amount of shrinkage that is
applied to the coefficients. When λ = 0, no coefficients are forced to 0. As λ increases,
the number of coefficients forced to 0 increases.

The value for λ needs to be separately determined and supplied to the model.
The most common approach in choosing it is to evaluate the k-fold cross validation
prediction error at various values of λ and to select the value that provides the lowest
cross-validation error.
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3.4 Principal component analysis (PCA)

This section is based on Chapter I of Jolliffe [220]. Dimensionality reduction refers
to that geometric technique that takes as input data into a multidimensional space and
maps it to a lower dimensional space. Usually this mapping is irreversible, as during
the conversion phase some features of the data are lost. Dimensionality reduction has
many applications, the most common ones being the visualisation of the data in two or
three dimensions and the extraction of the most informative features from data.

One of the most commonly used dimensionality reduction techniques is principal

component analysis or PCA, for short. The main objective of PCA is to take data in
a high dimensional space (i.e. a dataset containing objects with many attributes) and
to map it to a lower dimensionality space, while retaining as much of the variance
as possible. This is done by transforming the input set of variables to a new, smaller
set of variables, which are linear combinations of the original variables. The new
set of variables, referred to as principal components, are uncorrelated and are sorted
decreasingly by the amount of variance from the original data which they explain.
The first principal component contains the maximum amount of variance that can be
projected into one direction (not necessarily parallel to the axes), the second principal
component contains the next highest amount of variation, and so on.

Mathematically, the principal components correspond to the eigenvectors of the co-
variance matrix, Σ, of the original data. Briefly, given a dataset containing n-dimensional
objects, with the directions x1,x2, ...,xn, the covariance matrix, Σ is a n×n matrix, that
describes the spread of data and the direction in which the it is spread. Each component
Σi j = cov(xi,x j) = E

[
(xi −E [xi])(x j −E

[
x j
]
)T ], describes the covariance of variables

xi and x j, while the components Σii = var(xi) = E
[
(xi −E [xi])(xi −E [xi])

T ] describe
the variance of the components xi, where E denotes expected value.

Given a general square matrix A, a vector v⃗ is called eigenvector if A⃗v = λ v⃗, where
λ is a scalar called, eigenvalue. Eigenvectors and eigenvalues come in pairs. For a
square matrix n×n, there are n pairs of eigenvectors and eigenvalues. By convention
eigenvectors are scaled, without loss of generality, so that they have length 1.

In the particular case of covariance matrices, the eigenvectors are orthogonal (per-
pendicular to each other) and point to the directions in which the data is most spread,
while the eigenvalues are non-negative and are proportional to the variance of data in
the direction indicated by the corresponding eigenvector. Therefore, the first princi-
pal component analysis corresponds to the pair of eigenvectors/eigenvalues with the
maximum eigenvalue, the second component to the second largest eigenvalues and so
on.
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Intuitively, PCA projects the data on the directions indicated by the first k principal
components, where k is the number of dimensions in which the data is to be mapped,
which is less than or equal to the number of dimensions of the original data. We illustrate
in Figure 3.6 the PCA decomposition of a synthetic dataset obtained by sampling points
from two bivariate normal distributions with means (3, 3) and (6, 6) and covariance

matrix Σ =

[
1 0.4

0.4 1

]
. We note that the original points are linearly separable. In

Figure 3.6b the PCA is applied on the original data and the resulting data is projected
on both principal components. We note that in this case all correlations between data
points are preserved, due to the fact that the number of principal components equals the
number of original dimensions and therefore they explain all the variance in data. The
only transformation is the translation of the points into a new coordinate system with
the x-axis corresponding to the first principal component and the y-axis corresponding
to the second principal components. In Figure 3.6d the PCA transformed data is
projected on the first principal component. Because the points have been projected on
the dimension with maximum variance the structure of the original data is preserved.
After this transformation the points from the two distributions are still separable. In
Figure 3.6c the original points have been projected in one dimension, without being
PCA transformed. Because the projection is not optimal, some useful information from
the y-axis has been lost and the points are not separable anymore.

3.5 Survival analysis

The information presented in this section and its subsections is based on Chapters 1-6
of Kleinbaum and Klein [221].

Survival analysis is a set of statistical techniques concerned with studying data for
which the outcome of interest is the time until an event occurs. In medical research
some examples of common outcomes of interest include time to biochemical recurrence
of the disease (this is the outcome of interest in our analysis), time to death, length of
stay in the hospital, and time until a transplant is made. In practice, irrespective of the
endpoint of the study, for simplicity, the time until the event occurs is referred to as
survival time, while the occurrence of the event of interest is referred to as failure.

Usually, the participants in a study are monitored for a period of time, following
some initial state of interest such as the date of diagnosis or the date of surgery (as is
the case in our analysis). Some patients will experience failure during the observation
period, but some will not. The patients who do not experience failure in the period
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Figure 3.6 An illustration of PCA on a synthetic set of points: a) circles and crosses
correspond to the sampled points from the two bivariate distributions, while the red
and green arrow correspond to the direction of eigenvectors and the length of the arrow
corresponds to the magnitude of the eigenvalues; b) PCA in which we project the data
on both principal components; c) the projection of the original 2-dimensional points
on the x dimension; d) PCA in which the data has been projected on the first principal
component.
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in which they are monitored are said to be censored at the last time they were under
observation. The patients could still experience failure at some unknown point.

One important assumption when working with censored data, is that the censoring
is a random effect that is not correlated with the outcome of interest.

There are four main reasons why censoring occurs: (i) the person does not experience
failure before the end of the study, (ii) the person is lost to follow-up, (iii) the person
withdraws at some point from the study, (iv) the person dies before the end of the study
(if death is not the outcome of interest).

3.5.1 Kaplan-Meier (KM) survival curves

One way of modelling survival data is through the Kaplan-Meier (KM) survival curves,
which are a representation of the survival probability as a function of time. Survival
probability, denoted as S(t), represents the probability that a participant survives past
the time t (denoted P(T > t)). Theoretically the time t can take values between 0 and
∞, while S(t) takes values between 1 when t = 0, and decreases towards 0 when t tends
to ∞. In practice, however, we work with an estimate of this function denoted Ŝ(t( j))

(Figure 3.7), which is a step-function, rather than a smooth curve, due to the finite
number of patients in a study. This makes the function remain constant in the intervals
between two consecutive failure times in the dataset. Also, because the time t is never
infinite, the function might not decrease all the way to 0.
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Figure 3.7 The KM plot corresponding to the Ŝ(t( j)) function calculated for the data in
Table 3.1. The thin crosses represent time at which an observation has been censored.
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We illustrate how the Ŝ(t( j)) function is estimated using an example dataset from
Kleinbaum and Klein [221], presented in Table 3.1. The first column, t( j), contains
the distinct time points at which failures occurred, sorted increasingly. The time can
be counted using different time scales (hours, weeks, months, etc.) starting from an
initial time of interest, which can be, for example, the date of diagnosis, or the date of
surgery. However, it is important that the time is calculated in the same way for all the
participants in the study. For the sake of illustration we consider that in this example
the time is expressed in weeks since the initial event.

Table 3.1 Example of survival data, represented in a layout suitable for the computation
of the KM curves: t(j) represents the survival time, nj represents the number of persons
in the risk set, mj the number of failures at each distinct time point and qj represents
the number of persons censored at each time point.

t(j) nj mj qj Ŝ(t(j))

0 21 0 0 1
6 21 3 1 1×18/21 = .8571
7 17 1 1 .8571×16/17 = .8067

10 15 1 2 .8067×14/15 = .7529
13 12 1 0 .7529×11/12 = .6902
16 11 1 3 .6902×10/11 = .6275
22 7 1 0 .6275×6/7 = .5378
23 6 1 5 .5378×5/6 = .4482

>23 0 - - -

The second column, n j represents the number of patients still in the study at time
t( j), including the patients that failed at time t( j). The patients still in the study at a
specific time are referred to as the risk set. The third column, m j, represents the number
of patients that failed at time t( j), while the fourth column, q j represents the number of
observations censored starting from time t( j), up to, but not including t( j+1). We note
that the first row, corresponding to week 0, is included even though there are no failures
at that time. This row is always included because there might exist observations that
were censored before the earliest failure time.

As described earlier, the function Ŝ(t( j)) represents the survival probability past time
t( j). This probability can be expressed as product of two factors:

Ŝ(t( j)) = Ŝ(t( j−1))×P(T > t( j)|T ≥ t( j)), (3.20)
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The first factor represents the probability surviving past the previous failure, while
the second factor represents the probability of surviving past the time t( j), given survival
to at least time t( j).

The probability of surviving past time 0 is always 1. As we can see in the second
row of the Table 3.1, there are 3 patients failing at the earliest failure time, t( j) = 6,
out of the total of 21 patients. This gives a probability of surviving past week 6 of
18/21 = .8571. The next failure time is t( j) = 7. We note that besides the 3 patients
that failed at week 6, there is another observation censored between week 6 and week 7
(Table 3.1, row 2, column 4). This reduces the size of the risk set to 17. Out of the 17
patients remaining in the risk set, 1 fails at week 7. This means that the probability of
surviving past week 7 conditioned on surviving to at least week 7 is 16/17, while the
probability of survival past week 6 is .8571. The multiplication of these two factors
gives the probability of surviving past week 7, which is .8571×14/15 = .8067. The
algorithm is repeated until no patients are left in the risk set.

3.5.2 Log-rank test

One of the main aims of the survival analysis is to assess if the KM survival curves cor-
responding to two or more groups of participants to a study are statistically significantly
different, i.e. that they have significantly different rates of failure. It is for example
important to know if a group of patients that are given a treatment have a significantly
better outcome that the patients on placebo, or to know if the patients with a subtype of
cancer are likely to develop recurrence at a faster rate than other patients.

The log-rank test is one of the most commonly used statistical tests that tests the
hypothesis that several survival curves are statistically equivalent. It is essentially a
version of χ2 test that uses as test criterion a statistic based on the overall comparison
of the KM curves.

The log-rank statistic is based on the difference between the observed and expected
cell counts of each category, where categories represent the ordered failure times in the
dataset. In Table 3.2 we present an example taken form Kleinbaum and Klein [221],
containing the observations of 42 leukaemia patients, split into two groups, group 1
corresponding to 21 patients in placebo and group 2 corresponding to 21 patients on
treatment. The data is ordered on the time of failure, t( j). The columns ni j represent the
risk set size of group i at time t( j), while columns mi j represent the number of failed
patients from the group i at time t( j). The columns mi j represent the observed failures
for each category. The expected cell counts from columns ei j represent the expected
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failures for group i at time t( j) and are computed as:

ei j =

(
ni j

∑i ni j

)
×∑

i
mi j, (3.21)

which is the proportion of subjects in group i at time t( j) multiplied by the total number
of failures at time t( j).

Table 3.2 An illustration of the steps involved in computation of the log-rank statistic.

Risk set O E O−E

j t(j) n1j n2j m1j m2j e1j e2j m1j − e1j m2j − e2j

1 1 21 21 0 2 (21/42)×2 (21/42)×2 −1.00 1.00
2 2 21 19 0 2 (21/40)×2 (19/40)×2 −1.05 1.05
3 3 21 17 0 1 (21/38)×1 (17/38)×1 −0.55 0.55
4 4 21 16 0 2 (21/37)×2 (16/37)×2 −1.14 1.14
5 5 21 14 0 2 (21/35)×2 (14/35)×2 −1.20 1.20
6 6 21 12 3 0 (21/33)×3 (12/33)×3 1.09 −1.09
7 7 17 12 1 0 (17/29)×1 (12/29)×1 0.41 −0.41
8 8 16 12 0 4 (16/28)×4 (12/28)×4 −2.29 2.29
9 10 15 8 1 0 (15/23)×1 (8/23)×1 0.35 −0.35

10 11 13 8 0 2 (13/21)×2 (8/21)×2 −1.24 1.24
11 12 12 6 0 2 (12/18)×2 (6/18)×2 −1.33 1.33
12 13 12 4 1 0 (12/16)×1 (4/16)×1 0.25 −0.25
13 15 11 4 0 1 (11/15)×1 (4/15)×1 −0.73 0.73
14 16 11 3 1 0 (11/14)×1 (3/14)×1 0.21 −0.21
15 17 10 3 0 1 (10/13)×1 (3/13)×1 −0.77 0.77
16 22 7 2 1 1 (7/9)×2 (2/9)×2 −0.56 0.56
17 23 6 1 1 1 (6/7)×2 (1/7)×2 −0.71 0.71

Total 0 0 9 21 19.26 10.74 -10.26 10.26

The computations of log-rank statistic uses the sum of observed failures minus
expected failures, i.e. Oi −Ei = ∑ j(mi j − ei j), depicted in the last two columns of the
last row of the Table 3.2. The log-rank statistic for two groups is computed as:

Log-rank statistic =
(Oi −Ei)

2

Var(Oi −Ei)
, (3.22)

where i represents one of the groups. It does not matter which of the two groups
is selected as they yield exactly the same results. The calculation of the log-rank
statistic for more than three groups can be extended by generalizing the above equation.
However we will not get into further details.

Having computed the statistic, a p-value for the test can be easily derived, as the
log-rank statistic is approximately χ2 with G−1 degrees of freedom, where G is the
number of groups.
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3.5.3 Cox proportional hazards (PH) model

The survival time for an observation might be influenced by more than one variable.
For example, in our study, besides the assignment of patients to a more aggressive
subgroup, other factors could also significantly influence survival, such as the Gleason
grade or pathological stage. One might be interested in accounting for these factors
when studying the effect of a variable of interest.

The Cox proportional hazards (PH) model [222] is one of the most popular statistical
models for performing multivariate survival analysis. It is a regression model designed
to investigate simultaneously the effects of several explanatory variables on the survival
time.

The use of the Cox PH model can achieve three main aims: (i) to test if a variable is
a statistically significant factor that influences survival, after adjusting for the effects
of other covariates; (ii) to provide a point estimate, called hazard ratio, that describes
how the survival is impacted when the value of a variable changes; (iii) and to provide a
confidence interval for the hazard ratio.

Central to the Cox PH model is a function, called the hazard function, defined as:

h(t,X) = h0(t)exp

{
p

∑
i=1

βiXi

}
, (3.23)

where X = (X1,X2, ...,Xp) is a set of p explanatory variables and (β1,β2, ...,βp) are a
set of p coefficients corresponding to them. This function models the hazard rate of
an individual with a specific set of values for the explanatory variables as a function of
time. The right side of the above equation has two factors. The first one, h0(t), called
the baseline hazard function, is only a function of time (it does not involve any X).
Intuitively, it explains how the hazard changes as a function of time prior to considering
the explanatory variables (the hazard function equals the baseline hazard when all Xs

are 0). The second factor is a function of explanatory variables, which does not involve
the time. It is basically the exponential of a linear combination of the explanatory
variables.

For a given dataset, the parameters (β1,β2, ...,βp) of the model can be estimated
using a partial maximum-likelihood approach. The estimated parameters will be further
denoted as (β̂1, β̂2, ..., β̂p).

The hazard ratio describes the hazard rate of one individual with a specific instance of
the explanatory variables, relative to another one with another instance of the explanatory
variables. Using the above definition for the hazard function, the hazard ratio can be
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easily computed for two set of instances, X∗ and X , of the explanatory variables as:

ĤR =
ĥ(t,X∗)

ĥ(t,X)
= exp

{
p

∑
i=1

β̂i(X∗
i −Xi)

}
. (3.24)

Following from the above equation, the formula exp
{

β̂i

}
gives the hazard ratio

corresponding to the explanatory variable Xi, after adjusting for the effect of other
covariates. Informally, this hazard ratio tells us what are the odds of experiencing faster
failure with every one unit increase in the value of Xi, after adjusting for the effects of
the other covariates. In the case of categorical variables, the hazard ratio gives the odds
of experiencing faster failure for individuals from one category, relative to a baseline
category, after adjusting for other covariates.

In Table 3.3 we illustrate an example of multivariate analysis performed on a prostate
cancer dataset, which we will describe later, using the Cox PH model. We assess the
influence of a binary variable of interest, denoted as DESNT/non-DESNT, on the survival
time, after adjusting for the effects of three dichotomised covariates (Pathological Stage,
Gleason grade and PSA). The values in the second column represent the hazard ratios
for each variable, while the values in the second and third column represent the 95%
confidence intervals for the hazard ratios. The values in the fourth column represent
the p-values that indicate if each covariate is significantly associated with the survival
time. We note that for the variable of interest, the hazard ratio is 3.8041, indicating
that the odds of experiencing failure is almost four times higher in the patients from
the DESNT group, compared to the patients in the non-DESNT group. As indicated in
the last column, this is the only variable significantly associated with the survival time
(p-value ≤ 0.05), after correcting for the effects of the other covariates.

Table 3.3 An illustration of the Cox regression model on a prostate cancer dataset, where
we assess the influence of the binary variable DESNT/non-DESNT, adjusting for the
effects of three dichotomised covariates (Pathological Stage, Gleason grade and PSA).

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 p-value

Non-DESNT/DESNT 3.8041 1.889 7.661 0.000183
Path Stage: T1-T2/T3-T4 1.6947 0.8409 3.415 0.14014
Gleason: ≤ 7/ > 7 2.0393 0.9881 4.209 0.05392
PSA: ≤ 10/ > 10 1.9233 0.9753 3.793 0.059042
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3.5.3.1 Cox PH model assumption and testing that assumption

The validity of the Cox PH model depends on the assumption that the hazard ratio is
constant over time, or alternatively, that the hazard for one individual is proportional to
the hazard for any other individual over time, referred to as the PH assumption. This
implies that the effect of the explanatory variables is constant in time, i.e. that the
variables are time-independent.

There are three approaches to check if the PH assumption is met: (i) graphical, (ii)
goodness of fit and (iii) the use of time-dependent variables. We will briefly discuss
each one next.

3.5.3.1.1 Graphical approaches For graphical approaches, there are two informa-
tive plots that can help determining if the PH assumption is respected. The first type of
plot is the log-log survival plot. Log-log plots are built based on the Cox model survival

function, which is closely related to the hazard function, and is defined as:

S(t,X) = [S0(t)]
exp{∑

p
i=1 βiXi} , (3.25)

where S0(t) is a baseline survival function. Taking −ln [−ln S], we obtain the log-log

survival curves:

− ln [−ln S(t,X)] =−
p

∑
i=1

βiXi − ln [−ln S0(t,X)] . (3.26)

When considering two individuals X1 =(X11,X12, ...,X1p) and X2 =(X21,X22, ...,X2p),
taking the difference between their log-log survival curves, we obtain:

− ln [−ln S(t,X1)] =−ln [−ln S(t,X2)]+
p

∑
i=1

βiXi. (3.27)

Following from the above equation, if we plot the log-log survival curves as a
function time, we should obtain two parallel curves, as the term ∑

p
i=1 βiXi is independent

of time. If the curves converge, or intersect, it suggests that the PH assumption is not
respected. We present two example of two log-log survival curves taken from our data
in Figure 3.8a,c.

The second graphical approach is to build observed vs. expected survival curves
for each category of a variable. If the PH assumption is met, the observed vs. expected
survival curves should be "close" to each other. The observed survival curves are plotted
using the KM approach, while for the expected curves we fit a Cox model with only
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Figure 3.8 The use of graphical approaches in verifying the PH assumption for a
variable (PSA) for which the assumption is valid (a,b), and for a variable (stage) for
which the assumption is not valid (c,d): a) the log-log survival curves corresponding
to the two levels of the PSA variable; b) the observed vs. the expected survival curves
corresponding to the two levels of the PSA variable; c) the log-log survival curves
corresponding to the two levels of the stage variable; d) the observed vs. the expected
survival curves corresponding to the two levels of the stage variable. Note that in the
first case the log-log survival curves are approximately parallel, while the observed vs.
expected curves are close to each other, suggesting that the PH assumption is met. In
the second case the log-log survival curves converge and also the lower observed curve
departs from the expected curve.
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one predictor, i.e. the variable being assessed. We present two examples of observed vs.
expected survival plots in Figure 3.8b,d.

A big drawback of the graphical approaches is the subjectivity involved in determin-
ing how "parallel", or "close" are the survival curves.

3.5.3.1.2 The goodness of fit approach (GOF) The GOF approach has the advan-
tage that it provides a statistical way of assessing the PH assumption for a specific
variable.

One of the most commonly used GOF approaches is based on Schoenfeld residuals
[223]. Briefly, for each individual that experiences failure at time t, a Schoenfeld
residual at time t is calculated for each covariate. When the PH assumption is met, the
Schoenfeld residuals corresponding to the examined variable should be uncorrelated
with the survival time. Therefore, to test the PH assumption of a variable, a statistical
test that tests the null hypothesis that the correlation between the Schoenfeld residuals
and survival time is 0 is performed.

The GOF approach provides a more objective way of testing the PH assumption. On
the other hand, graphical approaches are useful in determining the underlying causes
of departure from the PH assumption. Thus, it is generally recommended to use both
procedures when evaluating the PH assumption

3.5.3.1.3 The use of a time-dependent variable Another approach to test the
PH assumption of a variable is to incorporate in the Cox model an interaction term
between the variable being assessed and time. Then it is tested if the interaction term is
significantly associated with the outcome. If it is significant, this suggests that the PH
assumption is not respected, i.e. that the variable is time-dependent.

More specifically, we extend the Cox model for a predictor X to include a term
that is the product of the predictor with a function of time, g(t). This yields the hazard
function:

h(t,X) = h0(t)exp{βX +δX ×g(t)} (3.28)

When δ = 0, the hazard function of this extended model reduces to its form in the
basic version of the Cox PH model, suggesting that the PH assumption is met.
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3.5.4 The extended Cox model for time-dependent variables

As shown earlier, the Cox model can be extended to include both time-dependent
variables and time-independent covariates. The new hazard function takes the form:

h(t,X) = h0(t)exp

{
p1

∑
i=1

βiXi +
p2

∑
i=1

δiXi(t)

}
, (3.29)

where (X1,X2, ...,Xp1) represent the time-independent covariates with coefficients
(β1,β2, ...,βp1), X1(t),X2(t), ...,Xp2(t) represent the time-dependent covariates, with
coefficients (δ1,δ2, ...,δp2). This leads to the definition of the hazard ratio for to sets of
covariates, X∗ and X, defined as:

ĤR = exp

{
p1

∑
i=1

β̂i(X∗
i −Xi)+

p2

∑
i=1

δ̂i(X∗
i (t)−Xi(t))

}
. (3.30)

In the extended Cox model the PH assumption is no longer satisfied. However,
an important assumption of the extended model is that the effect of a time-dependent
variable Xi(t) at time t depends only on the value of the variable measured at time t, not
later or earlier.

3.6 Pathway analysis

One of the major challenges in the experiments that produce lists of genes that have dif-
ferent properties between two conditions (such as genes that are differentially expressed,
or which exhibit different proportions of mutations and fusions between two condi-
tions) is to extract information about their biological functionality. For this purpose
several bioinformatical approaches have been developed. One of the most common tech-
nique, known as over-representation analysis, or pathway analysis for short, identifies
over-represented categories of genes that share a similar function [224].

Pathway analysis relies on existing gene annotation databases, such as Gene ontol-
ogy (GO) [225, 226], Kyoto encyclopaedia of genes and genomes (KEGG) [227] and
Reactome [228, 229], that contain information about genes and gene products, together
with the relationships between them. The GO database organises the functionalities into
three domains: cellular components, molecular functions and biological process. Of par-
ticular interest for the current project is the biological process domain, which provides
information about the processes involved in the functioning of cells, tissues, organs and
organisms. KEGG and Reactome store manually curated biological pathways.
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For each functional category (pathway, process) in the database the background

frequency is compared with the sample frequency [230]. The background frequency
is the number of genes annotated in the category, relative to the entire background set
of genes (all the genes in the database) [230]. The sample frequency is the number
of genes in the input set annotated to that category [230]. A statistical test (usually
a χ2 test) which assess the null hypothesis that the sample frequency is equal to
the background frequency, with the alternative hypothesis that the pathway genes
are under/over-represented in the input list of genes, is then performed. Since an
independent test is performed for each pathway, the resulting p-values are usually
adjusted for multiple comparisons.

3.7 Discussion

In this chapter we have presented the main computational and statistical approaches
used in this thesis. We will illustrate in Chapter 5 how the LPD model has been used
to identify several group of patients with distinct gene expression profile. We will
also show how this classification compares to other unsupervised machine learning
techniques presented here, such as k-means and hierarchical clustering. We will also
illustrate the use of the random forest and LASSO techniques introduced here to generate
a gene expression signature.

The survival analysis models described in this chapter will be used in Chapter 4 and
Chapter 5 to illustrate the association between the groups of patients identified by the
machine learning algorithms and their clinical outcome. The pathway analysis will be
used to link sets of genes identified by the methods presented in Chapter 4 and Chapter
5 to the biological functionality.



Chapter 4

Identification of transcriptional
alteration candidates using exon
microarrays

4.1 Summary

Chromosomal rearrangements, read-through transcription and several other mechanisms
can disrupt the normal expression of some genes, which can, in turn, lead to the devel-
opment and progression of cancer. The identification of such events can improve the
understanding of cancer and can help the development of new management strategies.

In this chapter we present a novel technique for identifying genes potentially in-
volved in aberrant transcriptional events in prostate cancer, using the data provided by
the exon microarrays. We describe in detail how our method works and how it compares
with other existing methods developed for this purpose.

We also illustrate our new technique on three prostate cancer datasets. In these
datasets our method identifies alterations in many genes previously involved in chro-
mosomal rearrangements and read-through transcription, as well as several other novel
candidates. As the datasets we analysed provide linked clinical data, we have been able
to correlate some known and novel candidates with the clinical outcome of patients.

4.2 Background

Chromosomal rearrangements are a class of complex mutations, that result in changes
in the structure and the number of chromosomes. Many times the chromosomal rear-
rangements ligate together components from two or more separate genes, resulting in
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events called gene fusions. Gene fusions, in turn, can generate chimeric transcripts with
important roles in cancer progression. For example, the recurrent translocation known
as the Philadelphia chromosome, which occurs in around 90% of chronic myelogenous
leukaemia cases, results in the BCR-ABL1 gene fusion, which encodes a hybrid protein
that causes the uncontrollable multiplication of cancer cells [231].

Chromosomal rearrangements can also result in the disruption of genes with key
roles in the cell. One such example is the recurrent deletion in prostate cancer of region
p23 of chromosome 10, which causes the inactivation of PTEN, a tumour suppressor
gene [57].

Additionally, it is well established that alterations in transcript splicing are associated
with cancer development and several mechanism of alteration have been observed
including trans-splicing (also known as read-through transcription) [232], and the use of
alternative transcription start sites [233]. Trans-splicing refers to the formation of hybrid
transcript, resulted from the juxtaposition of some exons from two consecutive genes
through a transcriptional process that does not involve chromosomal rearrangements
[234]. One such example is the fusion transcript SLC45A3-ELK4 observed in prostate
cancer [232].

In prostate cancer the TMPRSS2-ERG fusion occurs in 40-55% of prostate cancers
[32, 127–131]. The fusion is an early event in the development of prostate cancer, as it is
found in a high percentage of HGPIN (high-grade prostatic intraepithelial neoplasia - a
precursor of prostate cancer) [136], but is insufficient to induce the formation of prostate
cancer on its own [137]. Also, it seems to contribute to cell invasion and migration
[136]. However, the usefulness of TMPRSS2-ERG fusions as a biomarker in predicting
clinical outcome is controversial. A number of studies reported an association between
the TMPRSS-ERG fusions and poor outcome [138–140], but others found no association
[33–35].

Often gene fusions, read-through transcription and gene truncations alter the normal
expression of transcripts, leading to different expression patterns along the exons of
a given gene. This is the case with the TMPRSS2-ERG fusion in prostate cancer.
TMPRSS2 is an androgen regulated gene, and hence is highly expressed in prostate
cancer. The fusion of the 5’ regions of TMPRSS2 to the 3’ domain of ERG disrupts the
normal expression of both genes. ERG is normally expressed at much lower levels than
TMPRSS2. After fusion the exons located after the breakpoint, toward the 3’ end, which
are translocated at the TMPRSS2 locus, become expressed at higher levels, relative to
the exons located before the breakpoints. Conversely, the 3’ exons of TMPRSS2 which
are either deleted or translocated to a less expressed locus, can become less expressed
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compared to the exons before the breakpoint, which remain regulated by the TMPRSS2

promoter.
This concept can be generalised to fusions resulting from rearrangement or read-

through transcription of two genes that in normal conditions have quite different ex-
pression levels. In the less expressed gene, the exons located towards the 3’ end, after
the breakpoint, are expressed more highly than the exons towards the 5’ end, as they
become regulated by the promoter of the more highly expressed gene. Conversely, for
the more highly expressed gene, the expression level of the translocated exons can
decrease.

Besides these events, there might be many other mechanisms, such as alternative
splicing (the use of alternative transcription start sites), that can result in a different
expression pattern of the exons towards the 5’ and 3’ ends of a gene.

We can identify these alterations with the help of exon microarrays. As the microar-
rays measure the expression level of most exons in the human genome, we can study if
there is a shift in their expression along a gene. Several examples of possible scenarios
in which the events described above can result in jumps are presented in Figure 4.1. The
fusion of two genes resulted from balanced chromosomal rearrangements represented
in Figure 4.1a, trans-splicing (Figure 4.1b) and truncation (Figure 4.1c) can all result in
the expression patterns presented in Figure 4.1d.

For simplicity, throughout the remainder of this thesis we will refer to the shifts in
the expression of the exons within a gene, such as the patterns illustrated in the right
panels of Figure 4.1d, as jumps. The shifts that result in a higher expression of the
exons after the breakpoints, such as the one in the bottom area of the panel, will be refer
to as step-up jumps. While the opposite pattern will be referred to as step-down jumps.
Also, we will refer to the genes which exhibit such jumps as candidates.

The established techniques for the identification of gene fusions, such as RT-PCR,
FISH or RNA-seq, can probably identify fusions and other abnormalities more ac-
curately than the methods based on exon microarray data, such as the one we will
present here. However, the biological techniques such as RT-PCR or FISH, require
an experiment for each gene in each sample. Therefore they are more suitable for the
validation of a limited list of target genes, rather than genome-wide discovery of the
fusions. Also, as each experiment is labour intensive, it is quite difficult to obtain a
number of samples suitable for correlation with clinical data, especially if the fusions
appear at a low frequency. RNA-seq on the other hand, has the advantage of a more
reliable identification of fusions and also can be used for genome-wide identification
of fusions. However, it is a relatively new technology, and currently there are few
large-cohort RNA-seq datasets with associated long-term follow-up data.
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Figure 4.1 Examples of transcriptional alterations that can lead to different expression
levels of the exons within a gene: a) gene fusion resulting from balanced translocation;
b) trans-splicing; c) gene truncation; d) the resulting expression patterns.
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The identification of fusion candidates using exon microarray data has the advantage
that it can be applied genome-wide, in large existing datasets, with long term follow-up
data. However, we acknowledge that it does not provide a definitive validation of the
transcriptional abnormalities, and the identified candidate genes need to be further
characterised using established methods. This is also true for the fusion candidates
identified with RNA-seq data.

4.2.1 Previous approaches

High-density microarrays such as the Affymetrix GeneChip® Human Exon 1.0 ST Arrays

(exon microarrays) were initially designed for the study of different isoforms of genes
generated by alternative splicing. Later, Jhavar et al. [235] suggested that exon-level
analysis using exon microarrays could also be useful to detect gene fusions candidates.
The approach was focused solely on detecting TMPRSS2-ERG fusions in prostate
cancer, and was restricted to the detection of ERG alterations. In this approach, the core
probesets corresponding to ERG exons were normalised to a reference sample by taking
the log2 ratio relative to the corresponding probesets in a reference sample. When
more than one probeset mapped to an exon, the median value was taken. In order to
determine which samples exhibit ERG jumps, two t-tests were used. One tested whether
exons 2 and 3 (there are no core probesets mapping to exon 1) had a significantly lower
expression than the exons 4-11, while the second t-test assessed whether the expression
of exons 4-11 is greater than 0. The second test is based on the fact the log2 ratio should
distribute the exons of the non-fused samples around 0.

The analysis was based on 27 malignant samples and 3 non-malignant epithelial
samples. Out of the 27 cancer samples, 15 samples were discovered to have significant
jumps, all confirmed by RT-PCR analysis. Out of the remaining 12 samples that did not
express significant jumps, TMPRSS2-ERG fusions were found by the RT-PCR analysis
in two samples.

Lin et al. [236] used exon microarray profiling to confirm the presence of the EML4-

ALK fusions in non–small cell lung cancer and, additionally, to discover it in breast
and colorectal cancer. The approach was more general than the method of Jhavar et al.
[235]. Starting from core probesets, the intensities of each probeset were normalised
to a standard normal distribution across samples. For each sample in a given gene, the
probesets were ordered by their genomic position. A Student’s t-statistic comparing
the intensity distribution of the exons before and after the putative breakpoint was then
computed. A given sample was considered as expressing jumps in the given gene and
sample if the maximum t-statistic was above a pre-defined threshold. Subsequently
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the fusion candidates were filtered using several criteria, leading to a list of candidates
amongst which there was the ALK gene.

Li et al. [237] profiled lung cancer samples using exon microarrays, using a tech-
nique similar to Lin et al. [236], based on t-statistics, to identify a list of about 1,000
candidate genes. From this list, the genes encoding kinases (a class enzymes with
critical role in many pathways) were targeted, as the kinases are known to be the most
common oncogenic drivers [237]. One of the fusion candidates from the kinase family
was the RET gene. Further biological validation identified that the jumps in RET gene
were generated by the CCDC6-RET fusion.

Giacomini et al. [238] presented a study spanning multiple cancers. They present
two approaches for detecting gene fusion candidates. One of them was designed to detect
fusion candidates using exon microarrays. As in previous approaches, the probesets
were centred using a log2 ratio. The fusion candidates were then identified using a
Student’s t-test at every putative breakpoint, similar to Lin et al. [236]. The method
was successful, as several known fusions, including BCR-ABL1, FIP1L1-PDGFRA and
NPM1-ALK, were identified. Also, the analysis revealed a set of novel fusion partners
including ROS1, SLC1A2, RAF1, EWSR1 and CLTC.

Wang et al. [239] presented a score-based method that led to the discovery of the
HEY1-NCOA2 fusion in sarcoma. The probes were normalized to a consistent scale, as
in the previous approaches. Then, the fusion candidate genes were identified using a
model that took into account two scores.

The first one was based on a z-score, computed as:

z_score =
si −µ

σ
, (4.1)

where si represents the expression of a given probeset in the sample i, µ corresponds
to the mean of signal of the probeset in all samples, excepting the sample i, while σ

represents the standard deviation. The second score, based on the ranking of the signal
levels for a probeset, was computed as:

p_score = log
(

ri

1− ri

)
(4.2)

where ri = rank(si)/N.
For a given gene in a given sample, the above two probeset-level scores were

aggregated to obtain two gene-level scores, computed as:
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FS1 = max
k

[
mean(z_scorek+1, ...,z_scoreK)−mean(z_score1, ...,z_scorek)√

1/k−1/(K − k)

]
, (4.3)

and:

FS2 = max
k

[
mean(p_scorek+1, ..., p_scoreK)−mean(p_score1, ..., p_scorek)√

1/k−1/(K − k)

]
,

(4.4)
where k < K represents the index of the exon in the gene.

A non-linear logistic regression model that models the fusion outcome as a function
of the scores FS1 and FS2, was defined using the formula:

f usion.outcome ∼ FS1 +FS2 +FS1 ∗FS2. (4.5)

The logistic model was fitted to a training dataset for which the fusion status of two
genes was known. Based on the trained model and the FS scores, a list of candidate
genes was identified. The list was further reduced using several criteria, leading to a
short set of candidates, amongst which was NCOA2. Using RACE (Rapid amplification
of cDNA ends) and other biological approaches, the fusion partner HEY 1 was identified
and confirmed.

4.2.2 Motivation for our method

All the above methods are based on the same general approach. The probesets from exon
microarray are mapped to their corresponding exons and normalised across samples,
in order to centre them around 0. Next, a detection method that identifies jumps in
the expression intensities of the exons towards the 3’ end, relative to the expression of
the exons towards the 5’ end is applied to a set of genes. Usually a list of hundreds
or even thousands of fusion candidate genes is generated by this approach. The list is
subsequently filtered using various criteria, leading to a small set of candidates which
are then analysed using wet-lab techniques that can confirm the fusion and identify the
fusion partners.

There are two main types of detection methods: t-test based approaches ([235–238])
and the score based method of Wang et al. [239]. The t-test approaches are mainly based
on applying t-tests at the positions of putative breakpoint, comparing the distribution of
expression levels of the exons before and after the breakpoint. For a given gene in a
given sample the maximum t-statistic/minimum p-value gives the probable position of
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a breakpoint. The gene is considered fused in the given sample if the t-statistic or the
p-value meet a certain threshold. The score based approach of Wang et al. [239], on the
other hand, combines two scores in a non-linear logistic regression model. The model
is trained on known fusions, and afterwards is used to identify novel fusion candidates.

Given the success of the above methods, we decided to apply the same general
approach, but using a novel method, to identify fusion candidates in several prostate
cancer exon microarray datasets with linked clinical data. Our main purpose was to
identify in the list of candidates several genes for which the jumps are correlated with
the clinical outcome of the patients, hoping to identify biomarkers with potential to
predict aggressive prostate cancer.

4.3 Materials

4.3.1 Datasets

The analysis was based on three prostate cancer microarray datasets that will be further
referred to as ICR, Cambridge and MSKCC.

The ICR and Cambridge datasets are part of the same project, referred to as Can-
cerMap, and have been created using fresh prostate cancer specimens obtained from a
systematic series of patients who had undergone prostatectomy at the Royal Marsden
NHS Foundation Trust and Addenbrooke’s Hospital, Cambridge, UK. The relevant local
Research Ethics Committee approval was obtained for this study. Frozen prostate slices
were collected [240] and RNAs were prepared as described previously [235, 241] in
two centres: Institute of Cancer Research (ICR) from London, UK and CRUK Institute,
Cambridge, UK. Expression profiles were determined using 1.0 Human Exon ST arrays
(Affymetrix, Santa Clara, CA, USA). The microarrays were processed at The Pater-
son Institute for Cancer Research, Manchester, UK, according to the manufacturer’s
instructions.

The ICR dataset contains 124 microarrays, from 81 patients and the Cambridge
dataset contains 111 microarrays from 73 patients. For each sample there is only one
corresponding microarray experiment, but for each patient there may be up to 4 samples,
containing variable amounts of normal, stromal and tumour tissue.

The ICR and Cambridge datasets were generated using the same protocol for
choosing patients and collecting clinical data. This minimises the risk of systematic
biases in the clinical data. However, since the RNA samples were extracted in different
centres, there are dataset-specific effects in the microarrays.
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For the first part of the analysis we decided to process each dataset separately. The
micorarrays have been preprocessed and candidates have been identified independently
for each dataset. However, in the second part of the analysis, when we correlated the
candidates with the clinical data, we merged the results obtained for ICR and Cambridge
and clinical data in a larger dataset, referred to as CancerMap, as we will describe later.

The MSKCC dataset, published in Taylor et al. [242], is publicly available on
the GEO repository under accession GSE21032. The submission consists of exon
microarrays, CGH arrays and miRNA arrays. We restricted our analysis to the subseries
GSE21034 containing 370 Affymetrix Human Exon 1.0 ST Array experiments. The
exon microarrays were generated in duplicates from 185 RNA sources. Some of the
samples correspond to benign and tumour primary prostate tissue obtained from prostate
cancer patients that underwent prostectomy at Memorial Sloan-Kettering Cancer Center
(MSKCC), USA. Other samples come from prostate cancer metastatic tissues, and some
other come from four prostate cancer cell-lines (VCaP, PC3, LNCaP and DU145) or
two LNCaP derived xenografts.

A summary of the datasets is presented in Table 4.1.

Table 4.1 Dataset description.

Nr. Microarrays Tumour Benign Stroma
Total Unique Total Unique Total Unique Total Unique

ICR 124 81 107 72 15 7 2 2
Cambridge 111 73 102 65 9 8 0 0

MSKCC 370 185 262 131 58 29 0 0

Metastatic Cell-line Xenografts
Total Unique Total Unique Total Unique

ICR 0 0 0 0 0 0
Cambridge 0 0 0 0 0 0

MSKCC 38 19 8 4 4 2

4.3.2 Clinical data for survival analysis

In the ICR and Cambridge datasets, there might be up to four samples per patient,
extracted from tissue that contained variable amounts of tumour, tissue and stroma.
In order to perform a meaningful survival analysis, for each dataset we restricted
the survival analysis to one microarray per patient. We considered that the observed
expression profile of samples is proportionally influenced by the percentage of each
type of tissue. Therefore, for each patient we selected the sample with the highest
percentage of tumour tissue, as we considered them to be the most informative about the
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cancer-specific expression profile. The amounts of tumour, benign and stromal tissue
for each sample are presented in Supplementary Table A.1.

For the MSKCC dataset, there are exactly two technical replicates from the same
RNA samples for each patient. Thus, in this case one of the replicates was selected at
random.

As the ICR and Cambridge and datasets are relatively small datasets, we merged
the clinical data for the ICR and Cambridge samples into a larger dataset, denoted
CancerMap, to increase the statistical power of the correlations between the jumps
and clinical outcome. CancerMap contains 254 unique samples. The summary of the
clinical data corresponding to the two datasets, MSKCC and CancerMap, is presented
in Table 4.2.

For a large proportion of samples from the ICR and Cambridge datasets we have
the confirmation of the ERG fusion status, through a FISH “break-apart” analysis (a
wet laboratory technique that can identify if the 5’ and 3’ ends of a gene are separated).
We can hence use this information to evaluate the performance of the methods which
aim to identify fusion candidates using exon microarrays.

4.3.3 Probeset selection

The exon microarray probesets have been designed to measure the expression of every
known or putative exon in the human genome. They have been divided into five
confidence categories, i.e. core, extended, full, free, and ambiguous (Table 2.3), based
on the quality of transcriptional evidence available at the date of microarray design (mid
2000s).

A common practice when working with exon microarrays is to restrict the analysis
only to the core probesets, as they are believed to be the highest confidence probesets.
However, since 2003 (when the exon microarrays were designed), several genome
assemblies have been released, which have gradually improved the gene annotations.
Many probesets that were included in the extended or full categories because they
corresponded to genes or isoforms for which at the time there was not enough reliable
biological evidence or which were predicted only by bioinformatical approaches, have
been since confirmed.

This means that the probesets in the extended and full category might be useful to
gather as much information as possible about the updated gene annotations. Therefore
we decided to keep in the analysis all the probesets from core, extended and full
categories.
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Table 4.2 Clinical summaries for the MSKCC and CanerMap datasets.

MSKCC CancerMap

count % count %

Pathological Gleason score
6 41 31.30% 35 25.60%
3 + 4 54 41.20% 75 54.80%
4 + 3 22 16.80% 17 12.40%
8 8 6.10% 3 2.20%
9 7 5.30% 7 5.10%
NA 1 0.70% 0 0%

Pathological Stage
T1C 0 0% 1 0.70%
T2A 9 6.90% 5 3.60%
T2B 47 35.90% 1 0.70%
T2C 29 22.10% 45 32.90%
T2X 0 0% 22 16.00%
T3A 28 21.40% 47 34.30%
T3B 10 7.60% 14 12.20%
T3C 2 1.50% 0 0%
T4 6 4.60% 2 1.50%

PSA
<4 22 16.80% 8 5.90%
4<PSA<10 78 59.60% 89 64.90%
10<PSA<20 20 15.20% 33 24.00%
>20 10 7.70% 4 2.90%
NA 1 0.70% 3 2.20%

Age at diagnosis
Median 57.99 61
Mean 58.03 60.11
IQR 53.53-62.11 56-65
Range 37.3-83 21-74

Follow-up (months)
Median 46.49 56
Mean 48.19 52.27
IQR 27.73-61.44 39-64
Range 1.38-149.2 1-129

BCR
Failures 27 20.60% 35 25.60%
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4.3.4 Pre-processing

For each dataset the analysis began from the raw signal intensity data, represented
in CEL file format [243]. Briefly, after the labelled RNA tissue is hybridised on the
microarray, a laser excites the fluorescent dye and a scanner measures the luminosity of
each spot on the microarray, resulting in an image file [244]. For a microarray probe
there are several corresponding pixels on the resulting image. The probe intensity is
then estimated by aggregating the luminosities of the corresponding pixels. A CEL files
stores for each probe the estimated probe intensity, its standard deviation, the number
of pixels used to estimate the intensity and few other useful features.

The raw signal intensities need to be normalised in order to mitigate the technical
effects introduced during the microarray processing. For normalisation we used the
RMA algorithm (Section 2.6.2.1), implemented in the Affymetrix Power Tools (APT)
software package [245]. APT is a cross-platform open-source command line program
developed by Affymetrix for the analysis of Affymetrix GeneChip® arrays, including
exon microarrays.

Besides the normalised probeset estimates, the RMA analysis implemented in
APT also produces for each probeset in each sample a DABG (detected above the
background) estimate, which indicates if the probeset is measuring any expression in
the given samples. The DABG estimate is essentially the p-value of a t-test which
assesses the hypothesis that the probeset intensity comes from the same distribution as
the intensities of a set of anti-genomic probesets. Anti-genomic probesets are probesets
which do not align to any human genome sequence and therefore any observed intensity
is expected to be generated by background noise.

A common practice when working with microarrays is to exclude the probesets that
are not detected above the background in a predefined proportion of samples. We did
not follow this practice as sometimes the few samples in which the probe is detected
above the background might carry relevant information. However, we paid attention to
this aspect when we evaluated the fusion candidates, as we will discuss in the second
part of this chapter.

4.3.5 Quality assessment

APT also reports several quality assessment metrics useful in flagging outlier microar-
rays. In this analysis we used the positive controls vs. negative controls area under

the curve (AUC) and the mean of the absolute deviation (MAD) of the residuals from
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the median metrics, described in Section 2.6.3. For brevity we will refer to these two
metrics as positive vs. negative AUC and MAD of the residuals respectively.

Outlier values for these statistics indicate that the quality of the data on chips might
by influenced by non-specific effects, introduced during RNA processing or microarray
handling. An important issue with this approach is that there is no objective way of
deciding whether an array is an outlier or not. In our case, for each of the three datasets
we plotted the values of the two metrics (y-axis) across microarrays (x-axis) (Figure 4.2).
We visually inspected these plots and flagged as outlier the microarrays that exhibit
spikes in the values of at least one of the above two metrics.
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Figure 4.2 QA plots for the a) ICR, b) Cambridge and c) MSKCC datasets. The blue
points correspond to the positive vs. negative AUC values for a given microarray, while
the red points correspond to the MAD of the residuals values. The points annotated
with the ∗, # and $ symbols correspond to outlier values of the metrics.

For the ICR and Cambridge datasets (Figure 4.2a and Figure 4.2b respectively) it
seems that there is no major spike, suggesting an acceptable quality for all microarrays.

For the MSKCC dataset we detected at least 6 microarrays that seem to spike,
which are annotated on the plot with the ∗, # and $ symbols. We note that the 6 outlier
microarrays correspond in fact to three pairs of replicates, taken from three different
patients. The points annotated with the ∗ symbol correspond to the pair of replicates
coming from a primary tumour sample, while the points annotated with # and $ symbols
correspond to two pairs of replicates taken from the metastatic samples of two patients.
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We note that in all three pairs of microarrays, the metric values are consistent
between the replicates, suggesting that any observed effects are unlikely to be generated
by chip-related issues, but rather because of possible RNA quality issues or biological
differences.

The MAD of the residuals values annotated with ∗ and # are larger than other
microarrays, suggesting that a large number of probes are behaving differently than
predicted by the RMA model. However, the positive vs. negative AUC seem to be
normal. For the pair of microarrays annotated with $, on the other hand, the positive vs.
negative AUC values seem slightly lower than the rest, while the MAD of the residuals
are normal, suggesting that the probes behave as expected. Both the MAD of the
residuals and positive vs. negatives AUC metrics are sensitive to the RNA quality [187],
but only one or the other metric shows abnormal values. This observation suggests that
the RNA quality is also unlikely to be the cause of differences.

We also note that two out of three pairs of microarrays correspond to metastatic
tissue which can have a significantly different expression profile compared to the
primary tissue [246, 247]. Thus, if many genes are differently expressed, the MAD of
the residuals value can be significantly influenced, leading to the observed effects. Also
the positive vs. negative AUC metric is sensitive to tissue type [187]. This suggests that
some large scale expression differences might influence the above two metrics.

We, therefore, decided to keep all 6 samples in the analysis, as we do not have
enough evidence supporting the hypothesis that the microarrays are technically biased.
It seems rather that the differences are caused by some sort of biological difference,
which might be useful for better understanding the behaviour of cancer.

4.3.6 Annotation

The human genome project [248] was finalised in mid 2000s and provided the complete
DNA sequence of the human. However, having the complete DNA sequence is not
enough to determine which areas of the genome are transcribed and to predict with
certainty the structure of genes. Projects such as Ensembl [249], RefSeq [250], and
UCSC [251] each created their own version of human genome annotation databases,
which store information about genes, transcripts and their relationships. These databases
are constantly updated, as the amount of biological evidence increases and as the
prediction methods improve.

The Ensembl, RefSeq and UCSC databases have a large number of genes in common
(approx. 22,000 [252]), but also contain a large number of unique genes. For example,
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Ensembl has around 33,000 genes not found in UCSC, nor in RefSeq. RefSeq has
around 950 genes not found in the other databases and UCSC has around 5500 [252].

In order to maximise the number of genes analysed, we selected the Ensembl
annotations, as it is the database with the largest number of genes. More specifically,
we used the Ensembl release 76, based on the human genome assembly GRCh38
(GENECODE 20), released in August 2014. In this Ensemble there are available 58,640
gene ids.

For a each gene we aimed to select only the probesets that correspond to regions
likely to be transcribed, i.e. exons. The probesets corresponding to the intronic regions
carry no information about expression and, therefore, would have just added to the
noise. For a given gene we aligned all the gene transcripts, as illustrated in Figure 4.3
and determined all the maximal continuous regions covered by the exons of at least
one transcript. We also mapped the probesets to their corresponding genomic positions
using the R package annmap [253]. We next excluded all probesets not lying entirely
within the continuous regions determined by exons, resulting in a final set of probesets
that was used for the downstream analysis.

Transcript 1

Transcript 2

Transcript 3

Mapping probesets

Selected probesets

Figure 4.3 The selection of probesets for a given gene.



4.4 Methods 87

4.4 Methods

4.4.1 The jump detection method

4.4.1.1 Normalisation

The signal intensities of probesets within a gene can be quite variable even in normal
genes, due to alternative splicing, different probeset affinities or other effects, non-
related to fusions or other RNA abnormalities. The resulting variances can make
the identification of jumps in expression described in Section 4.2 quite difficult, as
illustrated in Figure 4.4a,c.
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Figure 4.4 The effects of normalisation relative to a reference sample on the TMPRSS2
gene: a) a normal TMPRSS2 gene before normalisation; b) the same normal TMPRSS2
gene after normalisation; c) a fused TMPRSS2 gene before normalisation; d) the same
fused TMPRSS2 gene after normalisation;

In order to mitigate the influence of these effects, all methods for identification
fusion candidates using exon microarrays, presented in Section 4.2.1, normalise the
signal intensities of probesets to a consistent scale.

We identified in the literature two main approaches commonly used to normalise
the probesets. The first method transforms the signal intensities of a given probeset to a
standard normal distribution across samples [236], while the second method normalises
the signal intensity of a given probeset relative to a reference intensity [235].

Although the first method, based on scaling the intensities of probesets to mean 0
and standard deviation 1 across samples, although worked well in initial tests, it was
impacted by how many samples had an altered within-gene expression. If, for example,
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there are many samples for which a recurrent fusion leads to the under expression of
the exons towards the 3’ of a given gene, the scaling of probesets across all samples
makes some samples falsely exhibit a step-up jump, when in fact they have a normal
expression. This led us to use the other method, based on normalisation to a reference,
which we will describe next, as it is independent on the number of samples with altered
expression.

All our three datasets contain several normal tissue samples, which are less likely to
contain chromosomal rearrangements or other abnormalities. Therefore, we supposed
that for these samples the differences in probeset intensities for a given gene are
generated by alternative splicing, different probesets affinities, noise or other possible
effects, that occur in normal conditions. Also, we also made the assumption that these
effects are approximately constant between samples. This means that we assume that
different isoforms of a gene are expressed in the same proportions across samples,
and also that the probeset affinities are constant. However we acknowledge that these
assumptions might not always hold.

For a given probeset in a given dataset, we calculated a reference intensity, using only
the normal samples. We then used the reference intensity to normalise the intensities
of the probeset in all samples in the dataset. More specifically, given a dataset with N

normal samples and P probesets, and a probeset p with the signal intensities xpn,1 ≤
n ≤ N, we estimated the reference intensity of the probeset p as:

rp = median
1≤n≤N

(xpn). (4.6)

We then normalised the intensity of each probeset in each sample in a given dataset
by computing the log ratio, relative to the corresponding reference intensity. Given the
probeset p with the intensity xp, we calculated its normalised intensity, yp, as:

yp = log2

(
xp

rp

)
. (4.7)

We note that, for a probeset, the resulting normalised intensities take values close
to 0 when the probeset intensity is similar to the reference intensity, it takes positive
values if the probeset intensity is larger than the reference intensity and negative if it is
smaller.

In Figure 4.4 we illustrate the effect of the normalisation on the TMPRSS2 gene in a
prostate cancer which does not harbour the TMPRSS2-ERG fusion and respectively on
a prostate cancer with the TMPRSS2-ERG fusion. In Figure 4.4a we depict the probeset
intensities of the non-fused TMPRSS2, and in Figure 4.4c we depict the probeset
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intensities in the fused TMPRSS2 genes. We note that in both cases the probeset
intensities are highly variable and that it is quite difficult to distinguish any jumps in the
fused gene. The jump becomes more clear after normalisation. The normalised probeset
intensities of the non-fused gene are all very closely distributed around 0 (Figure 4.4b),
while for the fused gene we notice a step-down jump starting with the fourth probeset
(Figure 4.4d).

4.4.1.2 Candidate identification

As shown earlier there are two main approaches when it comes to identifying jumps
using exon microarrays, namely the method of Jhavar et al. [235], based on a walking
Student’s t-test which determines the position where the t-statistic comparing the
distribution of probesets before and after takes the maximum value, and the method of
Wang et al. [239] based on fitting a non-linear regression model to two scores.

In our preliminary attempts we implemented both methods and tried to estimate their
performance on our datasets. As we will describe later, the t-test based method performs
reasonable well, while the Wang et al. [239] method does not seem to generalize very
well on validation data. We developed a novel method based on step functions, which
will be presented next and which performs at least as well as these two methods.

As discussed in Section 4.2, gene fusions can result in jumps in the expression of
the exons located after the breakpoint. We tried to verify this assumption on genes most
commonly fused in prostate cancer, such as TMPRSS2, ERG, ETV1 and even the less
common ETV4. The ERG gene, with validated fusion status in the ICR and Cambridge
datasets was particularly useful for this purpose.

In all these genes we identified jumps in the expression, similar to those illustrated
in Figure 4.5b,d,f. TMPRSS2 exhibits step-down jumps, which is what we would expect
to observe as the exons of TMPRSS2 located after the breakpoint are either deleted or
translocated to a less transcribed locus. On the other hand, ERG shows step-up jumps,
probably generated by the translocation of the exons after the breakpoint to a much
more transcribed locus. We also observed the expected step-up patterns in the ETV4

gene.
To programatically identify such jumps, we developed an approach based on fitting

a step function to the points determined by the probesets intensities from each gene. A
step function is a function f : [a,b)→R for which there exists a sequence a= a0 < a1 <

a2 < ... < an = b such that the function f is constant for each interval [ai,ai+1). Given
a sent of points P = {p | p ∈R2}, a step function can be fitted to P by minimizing some
error measure, e.g. the maximum vertical distance, d(P, f ) =max{d(p, f )|p∈ P} [254],
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Figure 4.5 Example of samples without jumps (a, c, e) and with jumps (b, d, f) in genes
commonly involved in fusions in prostate cancer, namely TMPRSS2, ERG and ETV4.
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or the sum of squared distances ∑p∈P d(p, f )2 [255], where d((x,y), f ) = | f (x)− y|, or
some other error function.

In our case we need a step function with two intervals, the first one corresponding
to the probesets before the putative breakpoint and second one corresponding to the
probesets after the putative breakpoint. We consider the value of the step function of each
interval as corresponding to the average intensity of the probesets in the interval. More
specifically, given a gene for with P probesets, ordered by their 5’ to 3’ genomic position,
their corresponding normalised intensities yp,1 ≤ p ≤ P and the putative breakpoint
occurring after probeset k,1 ≤ k < P, we define the step function step : [1,P]→ R, as:

step(x) =

{
µl, x ∈ [1,k]

µr, x ∈ (k,N],

where µl =
∑

k
p=1 yp

k and µr =
∑

N
p=k+1 yp

N−k+1 .
We tried to determine if the two levels of the step function which best fits a given

gene in a given sample reflects a jump in the probeset intensities. We designed a
measure (score) aimed to reflect how “well-defined” the step function is and then to
consider the gene as a fusion candidate if the score was above a predefined threshold.

A “well-defined” step function would be a function for which the step levels are as
far apart as possible and for which the probesets intensities have a minimum variance
around the corresponding levels. However, the probesets of different genes seems to
exhibit different amounts of noise (Figure 4.5). For some genes, such as TMPRSS2, the
intensities of probesets seem to exhibit little variation around a certain level, while for
others, such as ERG, the variations are larger. Some other genes, such as ETV4 seem to
have an intermediary amount.

We therefore derived a score that takes values close to 0 when there are no jumps
in the intensities and which increases as the distance between step levels increases or
the variance of the probeset intensities around the step levels decreases. As before,
we consider a gene with P probesets, ordered by their 5’ to 3’ genomic position, their
corresponding normalised intensities yp,1 ≤ p ≤ P and the putative breakpoint that
occurs after probeset k,1 ≤ k < P. A score calculated as:

l_score(k) = log

 ∑
k
p=1(yp−µr)

2

k
∑

k
p=1(yp−µl)2

k

 , (4.8)

corresponds to the log ratio of two quantities. The numerator is the average distance of
the probesets to the left of the breakpoint relative to the level, µr, of probesets to the right
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of the breakpoint. It increases as the magnitude of jump increases. The denominator
corresponds to the average distance of the probesets to the left of the breakpoint relative
to their mean, i.e. the variance. The log ratio increases as the variance decreases. The
resulted log-ratio takes values between 0 and ∞, as the numerator is always greater or
equal than the denominator, and increases as the distance between the levels of the step
functions increases or as the variance decreases, which is exactly what we need.

Analogously, we can compute a score for the probesets to the right of breakpoint,
defined as:

r_score(k) = log

 ∑
P
p=k+1(yp−µl)

2

P−k+1
∑

P
p=k+1(yp−µr)2

P−k+1

 , (4.9)

The score at a given position k is the defined as:

score(k) = min

{
l_score(k)

r_score(k)
. (4.10)

We then determine the position of the putative breakpoint as the probeset for which
we obtain the maximum score, that is:

breakpoint = argmax
1≤k<P

(score(k)) (4.11)

and the score of the gene in a given sample is defined as:

step_score = score(breakpoint). (4.12)

We will further refer to this score as the step score. As we illustrate in Section 4.5.1, we
determined a threshold for the step score above which we consider the step function as
reflecting a jump in the expression of the exon of a given gene in a given sample. Also,
for simplicity, we will refer the method that detects jumps based on the step sore as the
step method.

For a big proportion of the 58,640 genes annotated initially there are less than five
probesets mapping to their exonic regions. For these genes it is difficult to distinguish
the jumps, as there is not enough data to reliably determine if the intensities of probesets
located on either side of the putative breakpoint have a step-like shape. Hence, for our
analysis we considered only the 19,202 genes for which we could map at least five
probesets.
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4.4.1.3 Additional criteria for reducing false positives

The exon microarray data is quite noisy and there are several recurrent cases when
the step method identifies jumps that are either generated by noise or by chance. Also
sometimes the jumps identified are not consistent with a transcriptional alteration. We
illustrate several such examples in Figure 4.6.

In Figure 4.6a, there is an example of a step-up jump identified in C1GALT1. As
the gene has relatively few probesets, the small jump seems to be generated by chance.
In Figure 4.6b, the data coming from the BRWD3 gene is very noisy and it seems that
the jump is the result of noise in the data.

In Figure 4.6c the intensities of all probesets (corresponding to BPIFB1), except the
first probeset, are distributed around 0, suggesting normal expression. In the case of a
transcriptional alteration we would expect the probes after the breakpoint to be over
or underexpressed. Therefore, this kind of jump is inconsistent with a transcriptional
alteration.
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Figure 4.6 Examples when the step method identifies jumps that are either generated by
noise or inconsistent with a transcriptional alteration in: a) C1GALT1, b) BRWD3 and
c) BPIFB1.

As the step score is not enough for detecting such cases, we considered three
additional criteria:

1. a non-parametric statistical test that assesses if the probesets before and after the
breakpoint come from the same distribution;
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2. a non-parametric statistical test that verifies if the mean of probesets after the
breakpoint is significantly different than 0;

3. the magnitude of the jump, i.e. the distance between the two levels of the step
function.

The first two criteria are based on the detection method of Jhavar et al. [235]. The
Jhavar et al. [235] method used a t-test that assesses if the probesets before and after
the breakpoint have different distributions and another t-test that verifies if the mean
of probesets after the breakpoint is significantly different than 0. However, the t-test
makes the assumptions that the points come from a normal distribution. Our initial
normality tests on a set of randomly selected genes indicated that this is usually not the
case. Therefore we chose to perform two non-parametric tests instead, which test the
same hypotheses, but do not make the normality assumption.

For assessing the first criterion we performed a two sample Mann-Whitney U
independence test [256], which tests the hypothesis that two populations come from the
same distribution, without making the normality assumption. For the second criterion
we used the sign median test, which assesses the hypothesis that the median of a general
distribution equals a specified value.

Furthermore, for a given gene we adjusted the p-values of the both statistical tests
for multiple comparisons across samples using the false discovery rate (FDR) correction
[257] at a 5% level. The criteria were considered met if the adjusted p-values were
below 0.05.

The third criteria concerns the distance between the two levels of the step function
described in Section 4.4.1.2. We imposed this criterion met if the distance was above a
specific threshold.

The first criterion was designed with the purpose of filtering out the candidate
genes for which the jumps are most likely generated by chance due to small number
of probesets and noise in the data, such as the cases illustrated in Figure 4.6a,b. The
second criterion was created for cases such as the one presented in Figure 4.6c. Because
the first criterion is quite stringent, and sometimes genes with few exons have large
jumps we introduced the third criterion, that can help detecting such cases. A jump
detected by the step method is considered a candidate for transcriptional alterations if it
meets at least two of the three criteria.
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4.4.1.4 The final method

We integrated the three criteria presented in Section 4.4.1.3 with the step method
described in Section 4.4.1.2 to obtain a final step method, which was used for screening
the data.

We classified a gene in a given sample as a candidate for transcriptional abnormali-
ties if the step score was above a determined threshold and, additionally, at least two of
the three criteria were met. We will refer to this method as the final step method.

4.4.2 Genomic plots

To help visualise the mapping between jumps and their position along the gene tran-
scripts, we built plots such as the one presented in Figure 4.7. In the top panel we
illustrate a representative jump for the candidate gene (AZGP1 in this case), where the
probesets are numbered increasingly starting from 5’ end of the genes. In the bottom
panel we represent a gene model, created by aligning all the gene transcripts annotated
in Ensembl, using a version of the GenomeGraph R package [258].

In the middle panel, the vertical lines correspond to the positions where the probesets
align to the gene model. We note that for a given exon there might be none, one or
several probesets aligning to it. Each read line links the intensities of two consecutive
probesets in a sample with jumps in a given dataset (MSKCC in this case). The
black horizontal line links the average intensities of each probeset across samples. For
simplicity, we will refer to plots such as this one as genomic plots.

4.4.3 Survival analyses

On the candidate genes identified by the method described in the previous section we
performed a survival analysis, aiming to identify candidates for which the samples with
jumps have a faster (or slower) time to biochemical recurrence compared with samples
without jumps.

For the survival analysis we considered only primary tumour samples coming from
unique patients, chosen as described in Section 4.3.2. For each candidate gene in each
dataset we performed a log-rank test (Section 3.5.2), testing if the patients which exhibit
step-up have a significantly different time to BCR relative to the patients who do not
show jumps. In each dataset we adjusted the log-rank p-values for multiple comparisons
using the FDR method, at a 5% level.
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Figure 4.7 Genomic plot depicting the mapping of the jumps to the FKBP5 gene model.
In the top panel we depict a representative step-down jump. In the middle panel, the
vertical lines correspond to the position where the probesets align to the gene model.
Each read line links the intensities of two consecutive probesets in a sample with
step-down jumps. In the bottom panel it is represented the gene model.
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4.4.4 Correlation of jumps with metastasis

We also tested whether the genes which exhibit jumps are significantly over-represented
(or under-represented) in the metastatic samples relative to primary prostate samples.

Since the CancerMap lacks metastatic samples, we restricted this analysis only to the
MSKCC dataset. For each candidate gene we performed a Pearson’s χ2 independence
test, testing the hypothesis that the jumps are proportionally distributed in the metastatic
samples and the primary tissues (the normals and primary tumours), with the alternative
hypothesis that in the metastatic samples the jumps of a given gene are under or over-
represented.

We then adjusted the χ2 p-values for multiple comparisons using the Benjamini-
Hochberg (FDR) method at a 5% level. We considered that a candidate gene is associ-
ated with the metastatic samples if its corresponding FDR adjusted χ2 p-value was less
than 0.05.

4.4.5 Pathway analysis

For the lists of candidates with jumps significantly associated with the clinical outcome
we performed pathway analysis (Section 3.6), with the purpose of identifying biological
pathways for which the component genes are over/under-represented in the list.

For each set of candidates we performed an independent analysis using all pathways
annotated in Gene Ontology (GO) [225] (from which we used the biological processes
ontology), Kyoto Encyclopedia of Genes and Genomes (KEGG) [227] and Reactome
[259]. The analyses have been performed using the clusterProfiler R package [260].
We adjusted the resulting p-values for multiple comparisons using the FDR method at a
5% level. We considered that a pathway is over/under-represented in a set of genes if its
corresponding FDR adjusted p-value was less than 0.05.

4.4.6 Known fusion candidates

We further focused our analysis on the candidate genes significantly associated with
time to BCR (Section 4.4.3) and metastasis (Section 4.4.4) which have been previ-
ously associated with fusions in prostate cancer, but which have not necessarily been
associated with clinical outcome.

We obtained a set of prostate cancer-specific fusions, that have been experimentally
validated, from several studies ([32, 54, 136, 261–263]). The fusions are the result of
wide range of mechanisms. Some of them derive from well-established chromosomal
aberrations such as translocations or deletions, but others, like for example several
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fusions obtained from Pflueger et al. [263], are the result of read-through transcription
events. As described previously, the read-through transcription is a process which
results in chimeric transcripts containing sequences from two adjacent genes.

Also, some of the fusions we retrieved from Baca et al. [54] are the effect of the
relatively newly discovered complex translocation mechanism, called chromoplexy,
which involves more than two genes which simultaneously cleave and rejoin the wrong
ends, resulting in a chain of gene fusions. Several chromoplexy-caused fusions reported
by Baca et al. [54], such as ERG-PADI6, YIPF1-TMPRSS2 and ARHGEF3-TMPRSS2,
are quite unusual, as the ERG gene which is usually a 3’ partner, appears to be the driver
genes, or TMPRSS2, the usual 5’ participant, is fused as the 3’ partner.

We separated the 5’ fusion partners, from the 3’ ones. For the 5’ fusion participants
we correlated the step-down jumps with the clinical data, while for the 3’ participants we
correlated the step-up jumps. Genes that were reported as 5’, but also 3’ partners, have
been included in both lists of partners, and therefore have been screened for step-up but,
also for step-down jumps. The two lists are available in the Supplementary Tables A.2
and A.3 and contain 55 and respectively 45 genes.

4.5 Step method tuning

4.5.1 Step score threshold

For the step score (Section 4.4.1.2) we need to set a threshold above which to consider
that the step method identifies a jump. For this purpose, we evaluated the step scores of
the ERG gene in samples with fusion status confirmed by FISH, from the ICR dataset.
Based on this we selected a threshold which minimises the classification error. We then
validated the threshold on the step scores of the ERG genes in the Cambridge dataset.

More specifically, we trained a logistic regression model (Section 3.2.3) on the ICR
dataset, for which we consider the FISH fusion status as the target variable and the step
score as the only predictor variable. The logistic model resulting after estimating the
parameters is:

log
(

p(FISH = “ f used′′)

p(FISH = “non− f used′′)

)
= 1.288 · step_score−2.992. (4.13)

The coefficient corresponding to step score, the only predictor variable, is positive
(1.288), which indicates a positive association between the step score and the odds of
the sample being fused. A positive log odds ratio for a given step score indicates that
the score is more likely to correspond to a sample with confirmed FISH fusion, while a
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negative score indicates the opposite. Therefore, we can find a threshold above which
the step score would yield positive log odds ratios. This can be easily determined by
solving the inequality:

1.288 · step_score−2.992 ≥ 0 =⇒ step_score ≥ 2.32, (4.14)

which yields the threshold 2.32.

4.5.2 Performance of the step score

In this section we evaluate the step method and compare it to the other two methods,
i.e. t-test based method and the method of Wang et al. [239]. For this evaluation we
considered the step method presented in Section 4.4.1.2, before applying the additional
criteria described in Section 4.4.1.3.

The t-test method (Section 4.2.1) classifies a gene as a candidate if the t-statistic
is above a predefined threshold. In order to estimate the t-statistic threshold, we
took the same approach we took in deriving the threshold for the step score in our
method, described in Section 4.5.1. As previously, we fitted to the the ICR dataset a
logistic model with the t-statistic as the only predictor. The logistic model indicated the
threshold 6.13 for the t-statistic.

The Wang et al. [239] method, classifies genes based on a non-linear logistic
regression of two scores (Section 4.2.1). The regression coefficients were also estimated
using the FISH fusion status of ERG, as the other two methods.

For each of these three models, we estimated the performance on the training dataset
(ICR) and the validation dataset (Cambridge) (Figure 4.8).

The step method obtained a classification accuracy of 83.33% on the training dataset
and an AUC for the ROC curve of 0.83, which outperforms the t-test method (accuracy
76.85% and AUC 0.76 ), and also the method of Wang et al. [239] (accuracy 70.37%
and AUC 0.7).

On the test dataset the step method obtained the exactly the same classification
accuracy and AUC as the t-test method (82.35% and respectively 0.86), and clearly
outperformed the Wang et al. [239] method, which seems to perform quite poorly on
the test dataset (accuracy 57.84% and AUC 0.64).

These results suggest that the step method and the t-test perform reasonable well
on the training data and also seem to generalise well on new datasets. One limitation
in this comparison is that it has only been performed on the ERG gene. Due to lack
of additional validation data, we can not objectively assess how well the step method
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Figure 4.8 Classification performance of the three methods on the ICR dataset (a-c) and
Cambridge dataset (d-f): a) the performance of the step method on the ICR dataset;
b) the performance of the t-test method on the ICR dataset; c) the performance of the
Wang et al. [239] method on the ICR dataset; d) the performance of the step method
on the Cambridge dataset; e) the performance of the t-test method on the Cambridge
dataset; f) the performance of the Wang et al. [239] method on the Cambridge dataset;
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performs on other genes. However, jumps are identified in all the common fusion
candidates in prostate cancer, such as TMPRSS, ETV1, and even ETV4 in all datasets,
giving indication that the method works on other genes as well.

We further investigated the reasons why our method misclassified some samples. We
visually inspected each misclassified sample trying to determine if any noticeable jumps
are exhibited. Of course, this procedure is subjective and prone to biases. However, we
were just aiming to obtain some rough estimation of what causes the misclassification,
to better understand the behaviour of our method and to assess how the jumps are
correlated with the fusion status.

In the ICR dataset, out of 11 false negatives, we estimate that in around 9 samples
the probeset intensities do not show any jump, as it can be seen in Supplementary
Figure A.1. Furthermore, in the Cambridge dataset none of the 11 false negatives seems
to exhibit any jump either (Supplementary Figure A.2). Regarding the false positives,
out of 7 false positives in the ICR dataset, in at least 4 we discovered some noticeable
jumps (Supplementary Figure A.3), while the rest have some visible jumps, although
not as well-defined. Similarly in the Cambridge dataset, where out 7 false positives, at
least 5 have jumps in the expression (Supplementary Figure A.4).

The main cause of misclassification seems to be the imperfect correlation between
the fusion status identified with the FISH break-apart assays and the presence of the
jumps. We estimate, based on the above data, that for the ERG gene around 20% of
times the fusions do not result in jumps. We expect for driver genes, such as TMPRSS2,
the percentage to be even larger, because of the expression of the other copy of the gene
might reduce the magnitude of the jump.

4.5.3 Additional criteria threshold

The third criterion presented in Section 4.4.1.3, concerning the distance between the
step levels, also needs a threshold above which we consider the criterion met. We
determined this threshold using the same approach based on logistic regression, as the
one described in Section 4.5.1. In more detail, we fitted a logistic regression model on
the ICR dataset, usind a single predictor variable - the distance between the two levels
of the step function, and using as outcome variable the FISH fusions status.

As before, based on the model coefficients (5.978 for the coefficient corresponding
to jump magnitude and -1.415 for the intercept) we calculated the threshold value,
which is 0.24.
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4.5.4 Performance of the final step method

We evaluated the performance of the final step method (Section 4.4.1.4) on the ERG

gene in samples with FISH confirmed fusion status. For this method we cannot calculate
ROC curves, as the final method produces discrete outputs. However, we have been
able to estimate the accuracy, which we compared with the initial step method, to make
sure that after introducing the criteria the detection power of the method is not affected.

On the ICR dataset the accuracy increased from 83.33% to 84.25%, as one of the
false positives was removed. On the Cambridge dataset, for which we estimated that all
false positive occur exclusively because the fusion does not result in jumps, the accuracy
slightly decreased from 82.35% to 81.37%, as another false negative was produced.

This method was further used for genome-wide screening of genes, in order to
identify candidates for transcriptional abnormalities.

4.6 Candidate genes

We used the step method described in Section 4.4.1.4, to screen for jumps in all genes
with more than five probesets, from each of the three datasets (ICR, Cambridge and
MSKCC). As the ICR and Cambridge datasets are relatively small (aprox. 120 samples
each) and the transcriptional abnormalities can be quite rare, we combined the screening
results from the ICR and Cambridge into a larger dataset, referred to as CancerMap.

We restricted the analysis only to candidates with jumps in at least 1% of samples.
In the CancerMap dataset we identified 4,839 genes that exhibit step-up jumps in at
least 1% of samples. In the MSKCC we identified 5,690 step-up candidates. For
the candidates with step-down jumps, the numbers are similar. For CancerMap we
identified 4,332 candidates with step-down jumps and for MSKCC we found 4,889.
Histograms depicting the frequency of jumps in these fusion candidates is presented in
Supplementary Figure A.5.

4.6.1 Top candidates

In Supplementary Tables A.4 and A.5 we present the top 200 candidates in CancerMap
and respectively MSKCC, sorted descending by the number of samples in which they
exhibit step-up jumps. ERG gene is in the top 20 candidates in both datasets. In
CancerMap it is 16th (Supplementary Table A.4) with jumps in 92 (39.3%) samples. In
MSKCC it is the 10th (Supplementary Table A.5) candidate with jumps in 96 (25.9%)
samples.
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Other ETS family candidates are identified at lower frequencies. ETV1 shows jumps
in 16 (6.8%) samples in CancerMap and 28 (7.5%) samples in MSKCC. ETV4 shows
jumps in 4 (1.7%) samples in CancerMap and in 4 (1.08%) samples in MSKCC, while
for ETV5 we identify jumps in 6 (2.5%) samples in CancerMap and 12 (3.24%) in
MSKCC. Moreover, we identify jumps in FLI1, which is a ETS family gene recently
reported as being involved in fusions in prostate cancer [264]. We identify jumps in 18
(7.6%) samples in CancerMap and 12 (3.2%) samples in MSKCC.

In Supplementary Tables A.6 and A.7 we present the top 200 candidates in Can-
cerMap and respectively MSKCC, sorted descending by the number of samples in
which they exhibit step-down jumps. TMPRSS2 is in the top 20 candidates in MSKCC,
with 82 (22.1%) jumps. In CancerMap is is only the 160th, as it shows jumps in 37
(15.8%) samples.

4.6.2 Candidates in common

Most candidate genes are detected in both datasets. As it can be seen in Figure 4.9a,
more than three quarters of the step-up candidates (3,802) are in common between
the two datasets. Similarly, 3,216 step-down candidates are in common (Table 4.3,
Figure 4.9b).

a bMSKCC
CancerMap

10171868 3822

MSKCCCancerMap

11161683 3216

Figure 4.9 Number of genes in common between the CancerMap and MSKCC datasets
which exhibit: a) step-up jump; b) step-down jumps.
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Table 4.3 Top 10 candidates with the largest number of step-up jumps and respectively
step-down jumps in common between CancerMap and MSKCC.

Step-up candidates

CancerMap MSKCC
Gene count % count %

TDRD1 135 57.69 120 32.43
C1QTNF3-AMACR 145 61.97 66 17.84
CRISP3 115 49.15 92 24.86
TMEM178A 98 41.88 96 25.95
ERG 92 39.32 96 25.95
F5 108 46.15 80 21.62
LUZP2 120 51.28 68 18.38
GCNT1 113 48.29 66 17.84
PLA2G7 64 27.35 114 30.81
SLC38A11 75 32.05 102 27.57

Step-down candidates

CancerMap MSKCC
Gene count % count %

OLFM4 112 47.86 140 37.84
KRT23 81 34.62 94 25.41
SYNM 74 31.62 100 27.03
CHRDL1 72 30.77 92 24.86
TP63 90 38.46 70 18.92
ANPEP 94 40.17 62 16.76
SELE 86 36.75 60 16.22
PTGS2 69 29.49 76 20.54
MME 65 27.78 76 20.54
MYBPC1 40 17.09 100 27.03
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4.6.3 Survival analyses

We performed survival analyses, as described in Section 4.4.3, on the candidate genes
identified by the step method, aiming to ascertain if the presence of the jumps can
predict a faster (or slower) biochemical recurrence rate.

4.6.3.1 Step-up candidates

The starting points in this survival analysis were the 3,822 genes that exhibit step-up
jumps in CancerMap and also in MSKCC (Section 4.6.2). For each gene we performed
a log-rank test, assessing if the samples with step-up jumps have different BCR outcome,
compared to those without. Then, we adjusted the p-values for multiple corrections
using the FDR method, at 5% level.

For CancerMap we identified 213 step-up candidates (Supplementary Table A.8)
with log-rank p-value below 0.05, before FDR adjustment. After adjustment, only 52 of
these candidates remained significant. In MSKCC, we identified 138 step-up candidates
(Supplementary Table A.9) with significant p-values, of which 17 were significant after
FDR adjustment. None of the 52 significant candidates in CancerMap is in common
with the 17 significant candidates in MSKCC.

4.6.3.2 Step-down candidates

We performed the same analysis as in the previous section, but for the 3,216 candidates
with step-down jumps in common between CancerMap and MSKCC. For each gene
in each dataset we performed a log-rank test, assessing if the samples with step-down
jumps have different BCR outcome, compared to those without. Then, we adjusted the
p-values for multiple corrections using the FDR method, at 5% level.

In this case, the log-rank test identified 356 candidates with log-rank p-values less
than 0.05, before correction, in CancerMap (Supplementary Table A.10) and 594 in
MSKCC (Supplementary Table A.11). After adjusting for multiple comparisons, we
obtained 76 significant candidates in CancerMap and respectively 308 in MSKCC. Of
these 9 genes were in common (Table 4.4). The KM plots corresponding to these genes
are presented in Supplementary Figures A.6-A.14.

4.6.3.3 Known fusion partners

The step method identified step-up jumps in 17 out of the 45 known 3’ participants
(Supplementary Table A.3; Section 4.4.6), in both CancerMap and MSKCC. The
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Table 4.4 Fusion candidates with step-down jumps correlated with time to BCR in
CancerMap and MSKCC.

Gene Symbol Gene ID CancerMap adj. p-value MSKCC adj. p-value

AKAP7 ENSG00000118507 3.65 ·10−5 4.27 ·10−13

ALDH3A2 ENSG00000072210 2.48 ·10−3 9.26 ·10−4

ARMCX1 ENSG00000126947 1.87 ·10−8 4.76 ·10−5

ASPA ENSG00000108381 3.61 ·10−2 8.68 ·10−4

DIXDC1 ENSG00000150764 4.06 ·10−3 2.80 ·10−3

HSDL2 ENSG00000119471 3.05 ·10−3 2.34 ·10−2

LRCH2 ENSG00000130224 3.99 ·10−2 5.07 ·10−4

PI15 ENSG00000137558 3.05 ·10−3 2.01 ·10−2

VAT1 ENSG00000108828 3.48 ·10−2 3.717 ·10−2

survival analysis however failed to identify any genes significantly associated with the
time to BCR (Supplementary Table A.12).

The step method also identified 17 jumps in the 55 known 5’ partners (Supplemen-
tary Table A.2; Section 4.4.6). None of the 17 candidates is correlated with the time
to BCR in both datasets (Supplementary Table A.13). The survival analysis identified
significant association in the MSKCC dataset for YIPF1 (adjusted log-rank p-value
2.37 ·10−4), but the results have not been reproduced in the CancerMap dataset. Con-
versely, the log-rank p-value corresponding to the AZGP1 was significant in CancerMap
(adjusted log-rank p-value 2.28 ·10−2), but not in MSKCC.

4.6.4 Correlation with the metastatic samples

We also correlated the step-up and respectively step-down jumps with the metastasis,
as described in Section 4.4.4. As presented there, this analysis is based solely on the
MSKCC dataset, as CancerMap does not contain any metastatic samples.

4.6.4.1 The step-up candidates

For this analysis the starting point was the 5,690 genes with step-up jumps in MSKCC
dataset (Section 4.6). 79 candidates were significantly associated with metastasis (FDR
adjusted χ2 p-value < 0.05, Supplementary Table A.14).

4.6.4.1.1 AR The top step-up candidate is the AR (androgen receptor) gene. We
identified step-up jumps in this gene in 7/19 unique metastatic samples, and 1/160
unique primary tissues (FDR adjusted χ2 p-value 1.05 · 10−7) in AR. Most putative
breakpoints for AR occur between the probesets 1 and 2 (Supplementary Figure A.15).
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The first probeset maps to a region included in an alternative first exon for the
transcripts ENST00000612452 and ENST00000396044, but which is spliced out in
the other transcripts. The observed step-up jumps could therefore be explained by
alternative splicing. If some of the transcripts that splice out the region where the first
probeset maps are over-expressed in some samples, the resulting expression pattern
would resemble the jumps we observe.

4.6.4.1.2 Pathway analysis On the list of 79 candidates we performed a pathway
analysis (Section 4.4.5), to determine if genes involved in biological pathways with
possible role in cancer are over-represented in the list of candidates. In the GO database,
the pathway analysis identified 141 over-represented pathways. The top 10, with the
lowest p-value are presented in Table 4.5. Also, 20 pathways annotated in the Reactome
database are over-represented (of which top ten are presented also in the Table 4.5). In
KEGG, only one pathway, containing genes involved in the cell cycle is over-represented
(Table 4.5).

We note that most pathways identified in all three databases are related to cell cycle
processes, which are known to be involved in prostate cancer progression. For example,
the Prolaris [38] test predicts aggressive prostate cancer based on the expression of 31
cell cycle progression genes.

4.6.4.2 The step-down candidates

We also performed metastatic correlation on the 4,889 step-down candidates in MSKCC
dataset. We found 548 genes that show step-down jumps associated with the metastatic
sample in the MSKCC dataset. The top 200 genes, with the lowest χ2 p-values
are presented in Supplementary Table A.15. Further investigations are necessary to
determine the source of these jumps.

4.6.4.2.1 Pathway analysis We performed a pathway analysis (Section 4.4.5) on
the top 200 candidates. The analysis on the GO database identified over 300 significant
pathways, of which the top 10 pathways, with the lowest p-values, are presented in
Table 4.6. The analysis on the Reactome database identified three significant pathways,
also presented in Table 4.6. The analysis did not identify any significant pathway in the
KEGG database.

We note that both analyses identified the muscle contraction and extracellular matrix
organization pathways. These pathways have also been identified as associated with
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Table 4.5 The top pathways from the GO, Reactome and KEGG databases, over-
represented in the set of 79 step-up candidates.

GO

ID Description Count χ2 p-val Adj. p-val

GO:0000278 mitotic cell cycle 22 7.48 ·10−12 1.31 ·10−8

GO:1903047 mitotic cell cycle process 20 1.76 ·10−11 1.54 ·10−8

GO:0000280 nuclear division 16 7.39 ·10−11 4.31 ·10−8

GO:0007059 chromosome segregation 12 1.36 ·10−10 5.34 ·10−8

GO:0051301 cell division 17 1.52 ·10−10 5.34 ·10−8

GO:0048285 organelle fission 16 1.91 ·10−10 5.58 ·10−8

GO:0007067 mitotic nuclear division 14 2.69 ·10−10 6.72 ·10−8

GO:0007049 cell cycle 25 8.83 ·10−10 1.93 ·10−7

GO:0044772 mitotic cell cycle phase transi-
tion

13 1.56 ·10−8 2.88 ·10−6

GO:0098813 nuclear chromosome segrega-
tion

9 1.71 ·10−8 2.88 ·10−6

Reactome

ID Description Count χ2 p-val Adj. p-val

68877 Mitotic Prometaphase 7 1.58 ·10−6 3.15 ·10−4

1640170 Cell Cycle 13 3.1 ·10−6 3.15 ·10−4

69278 Cell Cycle, Mitotic 11 1.65 ·10−5 1.12 ·10−3

2514853 Condensation of Prometaphase
Chromosomes

3 3.08 ·10−5 1.56 ·10−3

2500257 Resolution of Sister Chromatid
Cohesion

5 1.9 ·10−4 6.91 ·10−3

69481 G2/M Checkpoints 4 2.16 ·10−4 6.91 ·10−3

1538133 G0 and Early G1 3 2.38 ·10−4 6.91 ·10−3

195258 RHO GTPase Effectors 7 3.86 ·10−4 8.92 ·10−3

68886 M Phase 7 3.96 ·10−4 8.92 ·10−3

69620 Cell Cycle Checkpoints 5 7.31 ·10−4 1.33 ·10−2

KEGG

ID Description Count χ2 p-val Adj. p-val

hsa04110 Cell cycle 7 6.77 ·10−6 7.72 ·10−4
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aggressive prostate cancer in an independent analysis, that we will describe in the next
chapter.

4.6.4.3 Correlation of the known fusion partners with metastasis

None of the 45 known 3’ fusion partners in Supplementary Table A.3 is in the list of 79
step-up candidates significantly correlated with the metastasis (Section 4.6.4.1).

On the other hand, 7 out of the 55 known 5’ fusion partners (Supplementary
Table A.2) are significantly associated with metastasis (Table 4.7), namely AZGP1,
which also is significant in the survival analysis on CancerMap, FOXP1, PTEN, FKBP5,
ALG5, TMPRSS2 and KLK2.

We focused our analysis on several of these candidates. We tried to determine if the
positions at which we identify jumps are consistent with the fusion breakpoints reported
in literature. We also verified where possible if the step-down jumps are correlated with
the jumps in their know fusion partners, as we describe next.

4.6.4.3.1 AZGP1 The AZGP1 gene is the top candidate with an FDR adjusted p-
value of 2.31 ·10−11 (Table 4.7), generated by the over-representation of the step-down
jumps of this gene in the metastatic samples. More specifically, we identified step-down
jumps in 12/19 unique metastatic samples and only 7/160 primary prostate samples. The
jumps are always occurring after the first exon (marked with a red arrow in Figure 4.10).

Pflueger et al. [263] report a read-through transcription involving the exons 1-2 of
AZGP1 and the exon 1 of GJC3, an adjacent gene, located 50 kilobases downstream, on
the same strand. The read-through transcription has been also identified by Nacu et al.
[265], which found several paired RNA-seq reads spanning the exon 2 of AZGP1 and
exon 2 of GJC3. The position at which the gene is reported fused is represented with a
blue arrow.

We note that the position where the jump starts is not matching with the position
of the reported breakpoints. We also note that the DABG p-values (Section 4.3.4)
corresponding to the first probeset are above 0.05 in all samples, suggesting that the
probeset is not functional. As the probeset is not functional, it will have a constant
intensity across samples, while the intensities of the other probesets will vary according
to the expression of the exons they align to. This might explain the generation of the
jumps as the ones described above.

The GJC3 gene has only two exons, which are too few for the step method be able
to identify jumps.
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Table 4.6 The top pathways from the GO and Reactome databases over-represented in
the set of 200 step-down candidates.

GO

ID Description Count χ2 p-val Adj. p-val

GO:0009888 tissue development 48 1.4 ·10−11 2.97 ·10−8

GO:0048731 system development 81 1.89 ·10−11 2.97 ·10−8

GO:0048856 anatomical structure develop-
ment

89 5.52 ·10−11 5.79 ·10−8

GO:0008150 biological process 179 3.01 ·10−10 2.36 ·10−7

GO:0006936 muscle contraction 18 4.18 ·10−10 2.62 ·10−7

GO:0009653 anatomical structure morpho-
genesis

58 8.5 ·10−10 4.45 ·10−7

GO:0003012 muscle system process 19 1.31 ·10−9 5.53 ·10−7

GO:0030154 cell differentiation 70 1.48 ·10−9 5.53 ·10−7

GO:0007275 multicellular organismal devel-
opment

83 1.58 ·10−9 5.53 ·10−7

GO:0048869 cellular developmental process 72 4.43 ·10−9 1.3 ·10−6

GO:0044707 single-multicellular organism
process

102 4.87 ·10−9 1.3 ·10−6

GO:0048468 cell development 48 4.95 ·10−9 1.3 ·10−6

GO:0044767 single-organism developmental
process

90 8.6 ·10−9 2.08 ·10−6

GO:0007155 cell adhesion 37 1.87 ·10−8 3.97 ·10−6

GO:0032502 developmental process 90 1.9 ·10−8 3.97 ·10−6

GO:0022610 biological adhesion 37 2.09 ·10−8 4.1 ·10−6

GO:0030198 extracellular matrix organiza-
tion

18 3.38 ·10−8 6.14 ·10−6

GO:0043062 extracellular structure organiza-
tion

18 3.52 ·10−8 6.14 ·10−6

GO:0032501 multicellular organismal pro-
cess

102 4.29 ·10−8 7.1 ·10−6

GO:0031589 cell-substrate adhesion 15 2.01 ·10−7 3.17 ·10−5

Reactome

ID Description Count χ2 p-val Adj. p-val

397014 Muscle contraction 11 3.2 ·10−10 9.71 ·10−8

445355 Smooth Muscle Contraction 7 5.29 ·10−8 8.02 ·10−6

1474244 Extracellular matrix organiza-
tion

11 2.91 ·10−4 2.94 ·10−2



4.6 Candidate genes 111

AZGP1 (ENSG00000160862)
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Figure 4.10 Genomic plot depicting the mapping of the jumps to the AZGP1 gene model.
In the top panel we depict a representative step-down jump. In the middle panel, the
vertical lines correspond to the position where the probesets align to the gene model,
while each read line links the intensities of two consecutive probesets in a sample with
step-down jumps. The red arrows represent the position of the putative breakpoints, i.e.
the position where the step-down jumps occur. The number underneath the red arrow
represents the number of putative breakpoints identified at that position. The blue arrow
indicates the position where the gene breakpoint have been reported in the literature.
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Table 4.7 The 5’ known fusion participants whose down-step jumps are significantly
correlated with the metastasis in the MSKCC dataset. The Mechanism column specifies
the mechanism reported to have produced the fusion in the source paper (chromosomal
rearrangement or read-through transcription). The columns χ2 p-value and Adj. p-val
indicate the χ2 p-value and respectively the FDR-adjusted p-value. The Mets column
indicates the number of step-down in the metastatic samples. The Primary column
indicates the number of jumps in the primary tissue samples.

Gene Symbol Mechanism χ2 p-val. Adj. p-val. Mets Primary

AZGP1 read-through 7.98 ·10−14 2.3 ·10−11 12/19 7/160
FOXP1 rearrangement 2.56 ·10−6 8.91 ·10−5 5/19 2/160
PTEN rearrangement 1.56 ·10−5 4.35 ·10−4 8/19 11/160
FKBP5 rearrangement 4.2 ·10−4 6.87 ·10−3 8/19 16/160
ALG5 rearrangement 1.85 ·10−3 2.27 ·10−2 4/19 4/160
TMPRSS2 rearrangement 4.62 ·10−3 4.23 ·10−2 9/19 27/160
KLK2 rearrangement 4.72 ·10−3 4.23 ·10−2 4/19 5/160

4.6.4.3.2 FOXP1 For FOXP1 we identified step-down jumps in 5/19 unique metastatic
samples and 2/160 primary tissue samples (FDR adjusted χ2 p-value 8.91 ·10−5). The
breakpoints are occurring at various positions, marked with red arrows in the Fig-
ure 4.11.

The fusions involving the exons 1-11 of FOXP1 and exons 5-12 of ETV1 have been
previously reported by Hermans et al. [266]. Also fusions between FOXP1 and MIPEP

[267] and DMPK [54] have been found. We marked the position of the confirmed
breakpoints in these fusions with blue arrows. We note that some of the breakpoints
identified by our method seem to be consistent with the confirmed fusions.

We also tried to determine if the step-down jumps in FOXP1 are correlated with
step-up jumps in its known fusion partners, namely ETV1, MIPEP and DMPK. For
DMPK we do not detect any jump, while for ETV1 none of the 14 step-up jumps we
identify is overlapping with the step-down jumps in FOXP1. For MIPEP, we identify
2/20 step-up jumps matching with the step-down jumps of FOXP1, but which are not
significantly correlated (χ2 p-value 0.2072).

4.6.4.3.3 PTEN We identified step-down jumps in PTEN in 8/19 metastatic samples
and 11/160 (FDR adjusted χ2 p-value 4.35 ·10−4). The jumps start at different probesets,
such as 3, 7, 10, 14, as illustrated in Figure 4.12.

PTEN-PLCE1 fusions, involving exon 1 of PTEN and exon 30 of PLCE1 have been
reported by Baca et al. [54]. The probesets 1-8 align to exon 1 an therefore most of
the breakpoints are consistent with the reported PTEN-PLCE1 fusions. However, none
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Figure 4.11 Genomic plot depicting the mapping of the jumps to the FOXP1 gene
model. In the top panel we depict several representative step-down jumps. In the middle
panel, the vertical lines correspond to the position where the probesets align to the gene
model. Each read line links the intensities of two consecutive probesets in a sample
with step-down jumps. The red arrows represent the position of the putative breakpoints,
i.e. the position where the step-down jumps occur. The numbers underneath the red
arrows represent the number of putative breakpoints identified at that position. The blue
arrows represent the positions of breakpoints reported in the literature. In the bottom
panel it is represented the gene model.
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of the 12 step-up jumps identified in PLCE1 occur in samples with PTEN step-down
jumps.

4.6.4.3.4 FKBP5 FKBP5 exhibits step-down jumps in 8/19 metastatic samples and
16/160 primary samples (FDR adjusted χ2 p-value 6.87 ·10−3). The step jumps occur
at various positions along the gene, as illustrated with red arrows in Supplementary
Figure A.16.

For FKBP5, Pflueger et al. [263] discovered four variants of the triple TMPRSS2-

FKBP5-ERG fusion, that is a fusion transcript that contains the exon 1 or exons 1-4
of TMPRSS2, exon 8, or exons 8-9 of FKBP5 and exons 5-13 of ERG. The positions
of exons 8 and 9 are depicted with blue arrows Supplementary Figure A.16. As the
fusion is quite complex, it is difficult to predict the expected expression pattern across
the exons. Most of the jumps occur before exons 8-9, which would be consistent with
an early interruption of the gene expression.

We correlated the step-down jumps in FKBP5 with the step-up jumps in ERG

and step-down jumps in TMPRSS2. The step-up jumps in ERG are almost mutually
exclusive with the step-downs in FKBP5. Out of 49 unique samples that exhibit step-up
jumps in ERG and 24 unique samples that show step-down samples in FKBP5, only 2
samples are in common. We performed a χ2 with the null hypothesis that the step-up
jumps in ERG and step-down jumps in FKBP5 occur independently, with the alternative
hypothesis that the jumps are dependent, which yielded a marginally insignificant
p-value (0.055).

Another χ2 test, testing the correlation between the step-down jumps in FKBP5 with
the step-down jumps in TMPRSS2 produced a very low p-value (1.63 ·10−5), suggesting
a strong association between the step-down jumps in the two genes. 14/24 FKBP5

step-down jumps occur in samples with step-down jumps in TMPRSS2 as well.

4.6.4.3.5 TMPRSS2 TMPRSS2 step-down jumps are over-represented in the metastatic
samples (χ2 p-value 4.62 ·10−3). 9/19 of metastatic samples exhibit step-down jumps
and 27/133 primary samples exhibit it.

The most common TMPRSS2-ERG fusion is between exon 1 of TMPRSS2 and exon
4 of ERG, occurring in about 44% of fusion positive samples, and TMPRSS2 exon
1 with ERG exon 5, in 4% of cases [135]. Besides there are several other variants,
found with a lower frequency, such as T1-E2 (that is exon 1 of TMPRSS2 and exon 2
of ERG), T4-E4, T4-E5, T5-E4, T5-E5, T2-E5, T1-E3, T2-E2, T2-E4, T3-E4, T1-E6,
T1-E3,5 (that is TMPRSS2 exon 1 with ERG exon 3 and 4 - exon 4 being spliced out),
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Figure 4.12 Genomic plot depicting the mapping of the jumps to the PTEN gene model.
In the top panel we depict several representative step-down jumps. In the middle panel,
the vertical lines correspond to the position where the probesets align to the gene model.
Each read line links the intensities of two consecutive probesets in a sample with step-
down jumps. The red arrows represent the position of the putative breakpoints, i.e. the
position where the step-down jumps occur. The numbers underneath the red arrows
represent the number of putative breakpoints identified at that position. The blue arrows
represent the positions of breakpoints reported in the literature. In the bottom panel it is
represented the gene model.
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T1-E2,3,4,6, T1-E3a4 (an alternative exon 3 of ERG is used), T1-E3b, and T1-E3c
[126].

We mapped these breakpoints to our data and, as can be seen in Figure 4.13 and
Supplementary Figure A.19, most of them are in agreement with our predictions. There
are, however, some discrepancies in TMPRSS2, as we identify jumps after the first two
probesets of TMPRSS2, which, to our knowledge, are not documented breakpoints.
Moreover, the exons corresponding to these probes do not even appear in the UCSC
annotation of TMPRSS2, which starts at the exon where our third probeset maps.
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Figure 4.13 Genomic plot depicting the mapping of the jumps in CancerMap (top panel)
and MSKCC (middle panel) to the TMPRSS2 gene model. In the two top panels, the
vertical lines correspond to the position where the probesets align to the gene model,
while each read line links the intensities of two consecutive probesets in a sample with
step-down jumps. The red arrows represent the position of the putative breakpoints, i.e.
the position where the step-down jumps occur. The numbers underneath the red arrows
represent the number of putative breakpoints identified at that position. The blue arrows
represent the positions of breakpoints reported in the literature. In the bottom panel it is
represented the gene model.
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4.7 Discussion

Here we presented a novel approach for the identification of fusion candidates based on
exon microarrays. In the first part of this chapter we described the background and the
motivation that lead us to develop the method. We then described in detail the approach
and how it compares with other existing approaches. Based on the experimentally
validated data on ERG gene, available in two datasets we found indications that our
method performs at least as good as the existing methods and that it can be extended on
new datasets. However, due to limited amount of validation data, we could not assess
how well the method generalises to genes other than ERG, which has been used for
training the model parameters. We could just get some indirect indications that the
method works on other datasets, by identifying candidate genes known to be involved
in fusions in prostate cancer.

We applied the method on several prostate cancer datasets in which we have been
able to discover jumps in known fusion partners, such as TMPRSSS2, ERG and ETV1,
ETV4 and ETV5. The analysis, however, produced thousands of candidates. We tried to
prioritise the candidates that show correlation between the jumps and the time to BCR
or metastatic samples.

The survival analysis did not identify any candidates with step-up jumps robustly
associated with the BCR time. The survival analysis on the step-down candidates, on
the other hand, found nine candidates correlated with the time to BCR in MSKCC and
also in CancerMap. Further analyses are required for establishing the cause of jumps in
these candidates.

The correlation between metastatic samples and jumps, identified 79 step-up candi-
dates and respectively 548 step-down candidates with statistically significant correla-
tions in MSKCC. A weakness of this analysis is that it is based only on the MSKCC
dataset, as CancerMap does not contain metastatic samples.

Nonetheless, the pathway analysis revealed that the candidates associated with
metastasis are involved in key pathways in prostate cancer progression. Up to 25
candidates in the list of 79 candidates for which the step-up jumps are associated with
the metastasis are involved in cell cycle processes. The expression of these genes seems
to be correlated with the proliferation of tumours [171]. Cell cycle genes are at the base
of the Prolaris test. Therefore a more in depth study of the jumps in these genes, might
reveal useful information regarding aggressive prostate cancer.

Also many step-down candidates are involved in the muscle contraction and extra-
cellular matrix organization pathways. As we will show in the next chapter, we have
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been able to identify an aggressive subtype of prostate cancer which is characterised by
the down-regulation of the genes involved in these processes.

It is still not clear to us why for the known fusion partners the jumps do not
always match with the previously reported fusion locations. One possibility is that the
breakpoints occur at previously unreported positions.

4.7.1 Candidates discussion

4.7.1.1 AR

AR plays a key role in the male sexual development and it is also crucial for the
development and the progression of prostate cancer [268]. It is also a therapeutical
target in prostate cancer. The hormone therapy aims to block the androgens and the AR,
which initially stops the progression of cancer. However, after a while the expression
of AR increases again or AR acquires mutations, which make it unresponsive to anti-
androgens, leading to the progression of the disease to the castrate resistant prostate
cancer(CPRC) stage [268], and from there to metastasis.

As AR is a key gene in prostate cancer, its structure and function have been inten-
sively studied. Despite frequent mutations being reported, to our knowledge it has not
been reported as being fused, especially at such a high frequency (jumps in approx. 5%
of samples).

In the light of these observations, it is highly unlikely that the step-up jumps we
are identifying are produced by fusions. It seems rather that the observed jumps are
generated by alternative splicing, as the first probeset maps to a region that is sometimes
spliced out.

4.7.1.2 AZGP1

AZGP1 is a gene involved in the processing of lipids, located on the arm p of the
chromomsome 7, on the “-” strand. Henshall et al. [269] indicated that low levels of
AZGP1 are an independent predictor for clinical recurrence of prostate cancer (HR
4.8, 95% CI 2.2 - 10.7) and of metastasis (HR 8.0, 95% CI 2.6 - 24.3). The results
have been confirmed in subsequent studies [270–273]. Low levels of AZGP1 seem
to also predict the relapse in positive surgical margins localised prostate cancer [273],
early biochemical recurrence [272], and are strongly associated with TMPRSS2-ERG

fusions, PTEN deletions, Gleason score, pathological stage and positive node status
[272]. Furthermore, decreased expression of AZGP1 was also associated with poor
prognosis in other types of cancer, such as gastric cancer [274].
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In our analysis the jumps seem to be the product of a non-functional probeset
that yields constant intensities across samples, while the functioning probesets are
down-regulated in the metastatic samples, as previously reported [269].

4.7.1.3 FOXP1

FOXP1 is a tumour suppressor gene [275]. The 3p13 region, where FOXP1 and several
other genes, including GPR27, PROK2, GXYLT2, EIF4E3, EIF3E4, RYBP and SHQ1,
are located is affected by recurrent deletions in prostate cancer [242]. The deletions
are highly correlated with the TMPRSS2-ERG positive prostate cancer [242] and also
linked to advanced stage (p-value < 0.0001), high Gleason (p-value = 0.0125) and early
PSA recurrence (p-value < 0.0001) [276].

A large cohort study of [276] identified FOXP1 deletions in 17% of prostate cancer.
Of these, around 3% are partial deletions of either 3’ or 5’ end of FOXP1. We note that
the 3’ deletions have the potential to result in jumps. Also, and in around 2% of cases
FOXP1 is involved in translocations [276], as a 5’ partner for fusions involving ETV1

[266], MIPEP [267] and DMPK [54], which can also result in the step-down jumps.
Since the deleted region 3p13, spans several other genes, besides FOXP1, we tried to

assess if there is also a significant under-expression of these genes in the samples where
FOXP1 exhibits jumps, which would be consistent with a deletion of the region. In brief,
for the genes reported to be involved in the deletions of 3p13, namely FOXP1, GPR27,
GXYLT2, EIF4E3, EIF4E4, RYBP and SHQ1 genes we estimated the expression level
in each sample, by averaging the intensities of all the probesets. For the PROK2 and
EIF3E4 we could not asses the expression levels, as they were not annotated in our data.

For each of these genes we performed a Mann-Whitney U independence test,
assessing the hypothesis that the expressions of these genes in samples with FOXP1

jumps vs. no-jumps come from the same distribution, with the alternative hypothesis,
that the distributions are different. As depicted in Supplementary Figure A.17, the
p-values are highly significant for FOXP1 (2.94 ·10−9), GXYLT2 (6.72 ·10−7), EIF4E3

(2.35 ·10−6), RYBP (2.09 ·10−4) and SHQ1 (2.94 ·10−2), while it is not significant only
in GPR27 (0.37). This suggests that a significant proportions of the observed jumps
might be generated by some form of chromosomal deletion.

4.7.1.4 PTEN

We identify step-down jumps in PTEN in around 10% of MSKCC samples. PTEN is
a tumour suppressor gene located on the arm q23.3 of chromosome 10. It negatively
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regulates the PIK3/Akt pathway, which has an important role in controlling, among
other things, cell growth, cell proliferation and apoptosis [57].

Deletions of 10q23 are one of the most common events in prostate cancer, along
with TMPRSS2-ERG fusions, being reported in 30-60% of adenomacarcinomas, of
which 10-30% are homozygous deletions [145–149], with a higher frequency in CPRC
(deletions in 77% of samples and homozygous deletions in 43% [150]). The functional
loss of PTEN might also be induced by several events such as point mutations, reported
in around 16% of prostate cancers [143, 144], and methylation. However fusions of
PTEN have been very rarely reported.

Inactivation of PTEN in general is linked to progression of prostate cancer and
significantly worse survival outcome [151, 152], while homozygous deletions are as-
sociated with much faster biochemical recurrence [147]. There is also a significant
association between PTEN loss and TMPRSS2-ERG fusions. In one study all samples
with PTEN deletions also harboured TMPRSS2-ERG fusions [149]. It has been hy-
pothesised that the interaction between PTEN deletions and TMPRSS2-ERG fusions
prostate is a significant driver for prostate cancer development and progression [153].
Bismar et al. [153] suggested that initial hemizygous loss of PTEN would promote
genomic instability and facilitate gene fusions, leading to the formation of prostate
cancer. Subsequent PTEN homozygous loss, would trigger further progression, to the
invasive disease.

We tried to see if the genes flanking the 10q23.3 region often deleted, namely
BMPR1A and FAS [277], exhibit low-expression in samples where PTEN exhibits down-
step jumps, consistent with a deletion of the region. As presented in Supplementary
Figure A.18, there seems to be a strong association between the step-down jumps
and the under-expression of all three genes. Mann-Whitney tests yielded very low
p-values, namely 1.83 · 10−18 for PTEN, 2.3 · 10−9 for BMPR1A and 9.63 · 10−5 for
FAS, suggesting deletions of 10q23.3 in many samples with step-down jumps in PTEN.

4.7.1.5 FKBP5

The FKBP5 gene seems to have important roles in cancer progression and drug re-
sistance. FKBP5 is an androgen-regulated gene which is a therapeutic target in the
hormone therapy [278, 279]. Also, low levels of FKBP5 have been associated with
increased activity of the AKT pathway, with important roles in cancer proliferation, and
decreased chemosensitivity [280].

In our analysis the step-down in FKBP5 are highly correlated with step-down in
TMPRSS2 and marginally significantly correlated with the step-up jumps in ERG. The
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jumps seem to be consistent with previous reported triple fusions involving simul-
taneously TMPRSS2, FKBP5 and ERG. However further validations are required to
elucidate the source of the jumps.

4.7.1.6 TMPRSS2

TMPRSS2 is an androgen-regulated gene located on chromosome 21, highly expressed
in prostate [133]. The fusions involving TMPRSS2 and a member of ETS family is the
most common genomic alteration in prostate cancer.occur very frequently in prostate
cancers. The most common fusion is the TMPRSS2-ERG fusion, which occurs in
40-55% of prostate cancers [32, 127–131].

The TMPRSS2-ERG gene fusions seem to be an early event in the development
of prostate cancer. It is found in a high percentage of HGPIN [136], but seem to be
insufficient to induce the formation of prostate cancer by their own [137]. Also, the
overexpression of ETS genes seems to contribute to cell invasion and migration [136].

The usefulness of TMPRSS2-ETS fusions as a biomarker in predicting the clinical
outcome is controversial. A number of studies reported an association between the
TMPRSS-ERG fusions and poor outcome [138–140]. However some other studies found
no association [33–35].

The step-down jumps we identified in TMPRSS2 do not seem to be significantly
associated with the time to BCR (log-rank p-values 0.59 in MSKCC and 0.22 in
CancerMap). However they are significantly correlated with metastasis (χ2 p-value
4.62 ·10−3) in MSKCC.

4.7.2 Conclusions

The analysis of these candidates suggests that in some cases, such as for TMPRSS2 and
FKBP5, the jumps are consistent with previously reported fusions. For other candidates,
such as PTEN and FOXP1, the step-down jumps are associated with known deletions,
while for others, such as AR, the jumps might be explained by alternative splicing.
Further analysis is necessary for confirming these hypotheses.

The concordance between these results and the previous findings in the field, suggest
that amongst the many candidates produced by the step method, some might reflect alter-
ations generated by real biological processes. This is also supported by the statistically
significant associations with the clinical outcomes in some candidates.

Furthermore, the pathway analysis suggests possible important roles in cancer for
some of the novel candidates identified by our method. Therefore additional analyses
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on the top candidates might unravel important alterations in genes with key roles in
aggressive prostate cancer.



Chapter 5

Latent process decomposition (LPD)

5.1 Summary

A critical problem in the clinical management of prostate cancer is that it is highly
heterogeneous. Accurate prediction of individual cancer behaviour is therefore not
achievable at the time of diagnosis leading to substantial overtreatment. It remains an
enigma that, in contrast to many other cancer types, stratification of prostate cancer
based on unsupervised analysis of global expression patterns has not been possible.

In this chapter we apply a Bayesian unsupervised technique called Latent Process
Decomposition (LPD) to identify a common prostate cancer process (subtype), desig-
nated DESNT, in five different prostectomy datasets. DESNT cancers are characterized
by down-regulation of a core set of 45 genes, many encoding proteins involved in the
cytoskeleton machinery, ion transport and cell adhesion. For four datasets with linked
PSA failure data following prostatectomy, assignment to DESNT predicted very poor
outcome relative to non-DESNT patients.

Additionally, the analysis of a set of prostate cancers annotated in The Cancer
Genome Atlas failed to reveal links between DESNT cancers and the presence of any
particular class of genetic mutation, including ETS gene status. However, the correlation
of the expression of the core set of 45 down-regulated genes in the DESNT cancers
with methylation data, suggest possible roles of epigenetic changes in DESNT.

We also describe the derivation of a 20 gene signature which can predict with
high accuracy DESNT membership. This approach simplifies the technical analysis
necessary to determine if a new cancer is part of the DESNT subtype, which makes it
suitable for clinical use.
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5.2 Background

A common method for the diagnosis of prostate cancer is the measure of prostate
specific antigen (PSA) in blood. However, as many as 50-80% of PSA-detected prostate
cancers are biologically irrelevant, that is, even without treatment, they would never
have caused any symptoms [18–20].

Prostate cancer is highly heterogeneous and accurate prediction of individual
prostate cancer behaviour at the time of diagnosis is not currently possible. Imme-
diate radical treatment for all cases has been a common approach. The overtreatment
has a considerable impact on the quality of life and also leads to serious risks of
treatment-related complications. Around 10-15% of the patients who undergo radical
prostectomy, for example, report urinary incontinence and up to 70% have erectile
problems [30]. It has been also reported that there were surgery-related complications
such as infections, respiratory and cardiac problems in about 20-25% of patients who
underwent surgery [84, 85].

A large number of prognostic biomarkers have been proposed for the stratification of
prostate cancer, including many expression signatures. However, the signature based on
expression profiling have been derived in a supervised fashion by comparing aggressive
and non-aggressive cancers [40, 281, 282], or by selecting genes with specific biological
functions [38, 283, 284]. Despite the important roles that these biomarkers could bring
into a better management of the disease, they fail to define clear molecular subtypes of
the diseases.

In contrast to other cancer types, such as breast cancer, stratification of prostate
cancer based on unsupervised analysis of global expression patterns has not been
possible so far. Our hypothesis was that the identification of robust subtypes has been
unsuccessful because the commonly used, general purpose unsupervised methods,
such as hierarchical clustering and k-means, are too simplistic to account for the high
intra-tumoural heterogeneity of prostate cancer.

To address this issue, we employed a more realistic mathematical modelling of bulk-
cell transcriptome data. More specifically, we used a Bayesian technique called Latent
Process Decomposition (LPD) to deconvolute the heterogeneity of prostate cancer, and
to identify intrinsic molecular subtypes, in a completely unsupervised fashion.
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5.3 Materials

5.3.1 Datasets

We initially worked on five prostate cancer microarray datasets denoted MSKCC,
CancerMap, CamCap, Stephenson and Klein. Later, we obtained an additional RNA-
seq dataset, that we will refer to as TCGA.

The MSKCC and CancerMap datasets have been obtained as described in Sec-
tion 4.3.1. In brief MSKCC has been downloaded from the GEO repository, while
the CancerMap has been obtained by merging two smaller datasets, denoted ICR and
Cambridge.

MSKCC is the only dataset that contains samples generated from metastatic tissue,
cell-lines and xenografts. For consistency with the other datasets, for the current analysis
we dropped all 50 samples which were not from primary tumour or normal prostate and
performed the analyses on the remaining 320 samples.

The CamCap dataset is the result of combining two Illumina HumanHT-12 V4.0

expression beadchip (bead microarray) datasets, publicly available on GEO, under ac-
cession GSE70768 and GSE70769, published by Ross-Adams et al. [241], comprising
of 199 and 94 microarrays respectively. The first dataset, GSE70768, consists of 186
radical prostectomy samples and 13 TURP (transurethral resection of the prostate) sam-
ples. As GSE70768 is the only dataset containing TURP samples, for consistency with
the other datasets, we have removed them in our analyses. Out of the 186 prostectomy
samples, 113 come from primary tumour samples and the rest of 73 are matched benign
samples from a subset of patients. GSE70769 contains only 94 primary tumour samples.
CamCap and CancerMap datasets have 40 patients in common and therefore are not
independent datasets.

The Stephenson dataset [285] contains 89 Affymetrix U133A human gene arrays,
from patients with clinically localised prostate cancer treated with radical prostectomy.
Out of 89 samples, 78 are from primary tumour and 11 from non-malignant prostate
tissue.

The fifth dataset which we refer to as Klein, published by Klein et al. [286], is
available in GEO under accession GSE62667. It consists of 182 formalin-fixed and
paraffin-embedded (FFPE) primary tumour samples analysed with Affymetrix Human

Exon 1.0 ST Arrays. Unlike the other datasets presented so far, the Klein dataset does
not provide clinical data.

The TCGA dataset is produced by The Cancer Genome Atlas (TCGA) Research
Network and is freely available on TCGA Data Portal. From this portal we downloaded
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a set of RNA-seq (Illumina HiSeq 2000) data generated from 376 fresh-frozen primary
prostate tissue samples, from 333 patients who underwent prostectomy. 333 samples
have been extracted from tumour tissue and 43 have been obtained from the non-
malignant adjacent prostate tissue of some of the 333 patients.

An appealing feature of the TCGA data is that for all 333 tumour samples and
30/46 normal samples there is also available DNA methylation data, obtained using the
Illumina Infinium HumanMethylation 450K platform, which provides 485,777 probes,
most of them mapping to CpG sites. Also, for the TCGA samples we were able to
obtain from The Cancer Genome Atlas Research Network [287] the ETS fusion status in
all the malignant samples, and the mutations and deletions status of the most commonly
mutated genes in prostate cancers.

A summary of the datasets are presented in Table 5.1.

Table 5.1 Summary of the prostate cancer datasets used in the LPD analysis. For each
dataset we present the total number of microarrays used in the analysis, the number
of unique patients, the number of primary tumour samples, the number of primary
samples from unique patients, the number of benign samples, the number of benign
samples from unique patients, an indication if the dataset provides linked clinical data,
the platform used to generate the data and the source from where the data has been
retrieved.

Nr. Samples Primary tumour Benign
Total Unique Total Unique Total Unique

MSKCC 320 160 262 131 58 29
CancerMap 235 154 209 137 24 17
CamCap 280 207 207 207 73 73
Stephenson 89 89 78 78 11 11
Klein 182 182 182 182 0 0
TCGA 376 333 333 333 43 43
TCGA (methyl) 363 333 333 333 30 30

Follow-up Tissue Platform Citation

MSKCC Y FF Affymetrix Exon 1.0 ST [242]
CancerMap Y FF Affymetrix Exon 1.0 ST NA
CamCap Y FF Illumina HT12 v4 BeadChip [241]
Stephenson Y FF Affymetrix U133A [285]
Klein N FFPE Affymetrix Exon 1.0 ST [286]
TCGA Y FF Illumina HiSeq 2000 [287]
TCGA (methyl) NA FF Illumina Infinium 450K [287]
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5.3.2 Clinical data

Five datasets have associated follow-up data, namely MSKCC, CancerMap, CamCap,
Stephenson and TCGA. MSKCC, CancerMap and CamCap may contain several ma-
lignant samples from the same patient. In analyses that do not depend on clinical
correlations, such as the LPD clustering, we used all the samples available for each
dataset. However, for the clinical correlations, or other analyses that are sensitive to
over-representation of samples, we used only one sample per patient.

In the CamCap and CancerMap datasets, there are up to four samples per patient,
extracted from tissue that contained variable amounts of tumour, benign tissue and
stroma. For each patient we selected the sample with the highest percentage of tumour
tissue. In the MSKCC dataset there are exactly two technical replicates from the same
RNA samples for each patient. For the MSKCC dataset we selected at random one of
the two replicates.

For all five datasets with linked follow-up data, the endpoint for clinical outcome is
time to biochemical recurrence (BCR), calculated from the time of radical prostectomy.
The clinical summaries of the five datasets are presented in Table 5.2.

5.3.3 Microarray pre-processing

5.3.3.1 MSKCC, CancerMap and Klein

We normalised the three exon microarray datasets, MSKCC, CancerMap and Klein
using the RMA algorithm [180], described in Section 2.6.2.1. The RMA algorithm back-
ground corrected, quantile normalised and summarised the data to produce gene-level
estimates. For performing this task we used the Affymetrix Expression Console soft-
ware package [288], which normalised the core probesets and annotated the summarised
genes to the UCSC Human Genome 19 (hg19). The effect of the RMA normalisation is
depicted in Supplementary Figure B.1. We note that the normalisation seems to bring
the intensities of all microarrays to relatively similar levels.

The quality assessment of the MSKCC dataset and the two datasets that make-up
the CancerMap datasets has been discussed at length in Section 4.3.5. In brief, the
overall quality of the microarrays is good and, even though few microarrays exhibit
outlier for one of the two quality metrics we calculated, there is no strong evidence for
removing any microarray.

The overall quality of the Klein dataset seems to be lower compared with the other
two datasets, MSKCC and CancerMap. In the case of the MSKCC and CancerMap data
the AUC values are around and above 0.8 (Figure 4.2). For Klein, the same values are
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Table 5.2 Clinical summaries for the MSKCC, CancerMap, CamCap, Stephenson and
TCGA datasets.

MSKCC CancerMap CamCap Stephenson TCGA

Gleason
4 0 0 0 1 0
5 0 0 2 0 0
6 41 35 35 15 27
3+4 54 75 102

43
116

4+3 22 17 40 61
8 8 3 13 10 42
9 7 7 11 9 84
10 0 0 1 0 3
Unknown 1 0 3 0 0

Stage
T0 0 0 1 0 0
T1c 0 1 0 34 0
T2a 9 5 7 16 9
T2b 47 1 36 19 7
T2c 29 45 27 7 112
T2x 0 22 13 0 0
T3a 28 47 94 2 111
T3b 10 14 24 0 83
T3c 2 0 0 0 0
T4 6 2 2 0 6
Tx 0 0 3 0 5

PSA (ng/mL)
<4 22 8 11 8 NA
4<PSA<10 78 89 136 42 NA
10<PSA<20 20 33 47 17 NA
>20 10 4 8 11 NA
Unknown 1 3 5 0% NA

Age (years)
Median 57.99 61 62 61.1 61.59
Mean 58.03 60.11 60.55 60.6 61.2
IQR 53.53-62.11 56-65 56-73 56.75-65.50 56.40-66.53
Range 37.3-83 21-74 41-73 44.9-72.7 43.52-76.88

Follow-up (months)
Median 46.49 56 36.59 60.35 33.29
Mean 48.19 52.27 39.98 50.56 52.31
IQR 27.73-61.44 39-64 17.36-59.9 16.68-72.02 10.85-74.55
Range 1.38-149.2 1-129 0.36-103.4 1.40-105.7 0.08-378.4

BCR
Failures 27 35 64 38 40
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around 0.7-0.75 (blue points in the Supplementary Figure B.2). Also, the estimates for
the MAD of the residuals, depicted with red dots in Supplementary Figure B.2, vary
greatly across the microarray.

The poorer quality of the Klein data was expected given that the samples come
from formalin-fixed paraffin-embedded tissues, which usually yield lower quality DNA,
compared to fresh-frozen tissues, which have been used for the MSKCC and CancerMap
datasets [188]. However, for the analysis we have used all the samples available in the
Klein dataset, as none of them seems to produce hugely different estimates for the two
metrics, compared with the other samples in the dataset.

5.3.3.2 CamCap

The NCBI GEO portal provides readily normalised data for the two datasets, GSE70768
and GSE70769, that make up the CamCap dataset. We therefore retrieved the normalised
datasets, pre-processed as described in Ross-Adams et al. [241]. In brief, the data we
downloaded has been previously log-transformed and quantile normalised using the
beadarray R package [289]. The batch effects in each dataset have been mitigated using
the ComBat algorithm, implemented in the R package sva [290]. We annotated the
probes to UCSC hg19 using illuminaHumanv4.db R annotation package [291].

The bead arrays probes can be divided into three categories perfect, bad and no

match [292]. In line with Ross-Adams et al. [241], we restricted the down-stream
analysis only to perfect probes, as the probes from the other two categories have poor
quality [292].

5.3.3.3 Stephenson

For the Stephenson dataset we only had access to the normalised data, as described
in Stephenson et al. [285]. We annotated the Stephenson dataset to hg19, using the
hgu133a.db R annotation package [293].

5.3.3.4 TCGA transcriptome

For the TCGA dataset we downloaded the level 3 data [294], generated using the
Illumina HiSeq 2000 sequencing platform, processed to obtain raw counts using the
RSEM algorithm [295], and annotated to UCSC hg19. We further normalised the raw
count data using the Variance stabilizing transformation algorithm implemented in the
DESeq2 R package [296].
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5.3.3.5 TCGA methylation

For the methylation TCGA dataset we downloaded the level 3 data, which contains
for each probe in each sample a beta value. Beta values take values between 0 and 1,
proportional with the level of methylation measured by the probe [297]. Informally,
the beta value corresponds to the percentage of methylation of the area assessed by the
probe. For this dataset no further pre-processing was required, as the data was annotated
to UCSC hg19.

5.3.3.6 Batch effect removal

Two of our datasets, CancerMap and CamCap, have been created by merging in each
case two independent smaller datasets. The CancerMap data has been built by merging
the ICR and Cambridge datasets, while CamCap is the result of the combination of
GSE70768 and GSE70769 series. The microarray normalisation algorithms, such
as RMA, normalise the samples in a dataset relative to each other. However, even
though the differences between the microarrays within a given dataset are mitigated, the
microarrays from independent datasets are usually not comparable. This can be seen in
Figure 5.1a,c. We can see that the boxplots corresponding to samples from different
datasets are at different levels.

To mitigate the dataset-specific effects we employed the ComBat algorithm, im-
plemented in the sva R package [290]. ComBat transformed the intensities of probes
from different samples to the same distribution across datasets. As it can be seen in Fig-
ure 5.1b and d, the resulted boxplots are at consistent levels across datasets, suggesting
comparable expression levels of the samples generated in different centres.

5.4 Methods

5.4.1 Latent process decomposition (LPD)

We presented a technical description of LPD in Section 3.2.1.3. To summarize the
aspects presented there, we note that LPD is a hierarchical Bayesian model that can
perform probabilistic clustering of microarray data. This means that LPD allows objects
to have partial membership to more than one cluster, reflecting the fact that a given
object can share some characteristics with a group of objects, but in the same time it
can share other characteristics with a different group of objects.

In the context of prostate cancer we assume that a cluster represents a biological
processes that leads to a certain expression pattern. As prostate cancer is a highly
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Figure 5.1 The effects of ComBat normalisation on the CancerMap and CamCap
datasets: a) the CancerMap dataset before ComBat, b) the CancerMap dataset after
ComBat, c) the CamCap dataset before ComBat, d) the CamCap dataset after Combat.
Each boxplot corresponds to the distribution of intensities of genes in one sample. Due
to limited space on page, only every fourth sample in each dataset has been plotted.
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heterogeneous disease, and often several foci are present in the same sample [23], it
is possible that several distinct processes are simultaneously present and are jointly
contributing to the expression profile of a given sample.

LPD determines for each process an expression profile, that describes the expected
expression level of each gene due to the process. Then, for a given sample it estimates
how well the expression profile of each process is reflected in the expression levels of
the genes in the sample. Alternatively, we say that LPD determines the contribution of
each process to the expression profile of a sample.

The contributions, denoted γak (gamma) in Section 3.2.1.3, where a is a samples and
k is a process, are quantified as a number between 0 and 1, with 1 representing exclusive
contribution of the process to the expression of a sample and 0 no contribution. For a
given sample, the sum of gammas corresponding to all processes should sum to 1.

LPD can also be used to objectively estimate the number of processes present in a
given set of samples, as we will illustrate below. Furthermore, the expression profiles
of the processes can be analysed, in order to determine if different processes produce
similar expression patterns, or to identify the characteristics of each process, such as
the differentially expressed genes.

5.4.2 LPD parameters

LPD comes in two version, the maximum likelihood (MLE) model and the maximum
posterior (MAP) model. As we described in Section 3.2.1.3.5, both models are necessary
for choosing the LPD parameters. However, as we will show later, once the LPD
parameters are chosen, the MAP version is more suitable for the final classification.

In short, the MAP version of LPD, used for the final classification, needs two
parameters: the number of processes underlying the data and a parameter denoted sigma

(Section 3.2.1.3.5). The selection of parameters is a three step process:

• Step 1: the number of processes underlying the data is estimated using the MLE
model. The log-likelihood of the MLE model is calculated for various choices for
the number of processes. In our case we tried every possible choice in the range
2-15 processes. The choices for the number of processes that produce the highest
log-likelihoods are considered suitable;

• Step 2: suitable values for sigma are chosen using the MAP model. Sigma needs
to be set to small negative values. Similar to Rogers et al. [209], we tried the
following values: -0.01, -0.05, -0.1, -0.2, -0.3, -0.5, -0.75, -1, and -2. Using the
number of processes estimated at step 1, the log-likelihood of the MAP model
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is calculated for each of the above values. The sigma values which produce the
highest log-likelihoods were chosen;

• Step 3: the choices for the number of processes determined at step 1 are validated
using the MAP model. More specifically, for each number of processes in the
range 2-15 the log-likelihood of the MAP model is calculated. The number of
processes at which the likelihood reaches a plateau is considered suitable.

LPD can give slightly different solutions on different restarts. This is due to the fact
that some of the variables inside the LPD model are initialised with random values, that
can lead to the convergence of the algorithm to different local maxima. For a robust
choice of the parameters we restarted the LPD algorithm 100 times and calculated the
mean log-likelihood.

5.4.3 Survival analyses

5.4.3.1 Univariate survival analysis

For the survival analyses we considered only primary tumour samples coming from
unique patients, chosen as described in Section 5.3.2. For comparing the survival
outcomes of two or more groups of patients we calculated a Kaplan-Meier (KM)
survival curve for each group (Section 3.5.1). Then, we performed a log-rank test
(Section 3.5.2), that assess the null hypothesis that all groups have similar KM survival
curves, with the alternative hypothesis that at least one group has a different survival
curve. For this analysis we used time to biochemical recurrence (BCR) as endpoint
(Section 2.5.6.3).

5.4.3.2 Multivariate survival analysis

For multivariate survival analyses we used the Cox PH model (Section 3.5.3). We
employed the multivariate analysis to assess if two groups of patients have significantly
different failure times after adjusting for the effect of clinical predictors (Gleason grade
at prostectomy, pathological stage and PSA level at diagnosis).

In order to apply the Cox model we stratified the Gleason score into Gleason ≤ 7
and Gleason > 7. Probably a more suitable stratification would be to split the Gleason
score into Gleason ≤ 3+4 and Gleason ≤ 4+3, as it seems to be a significant outcome
difference between the two scores [92–95]. However, the Stephenson dataset, does not
provide this information. Therefore, in order to keep the multivariate analysis constant
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across datasets, we chose 7 as the threshold for stratification. We also split the stage in
stage = T 1/T 2 and stage = T 3/T 4 and PSA levels in PSA ≤ 10 and PSA > 10.

5.4.4 Expression profile correlation

To investigate if two groups of samples have similar expression patterns for a given set
of genes, we performed an expression profile correlation. For each group we calculate
the mean expression level of each gene in the gene set, across the samples in the group.
For simplicity, we will refer to the average expression levels of a set of genes in a group
of samples as the expression profile of the group.

To determine if the groups have similar expressions patterns, we calculate the
Pearson’s correlation between the expression profiles. In order to give each gene the
same contribution to the correlation, we select only one probeset for each gene. Most of
genes have a single probeset anyway, but for those which have more than one probeset
in a given dataset, we select a probeset at random. Before calculating the average
expression of each group, we scale the expression levels of each gene to mean 0 and
standard deviation 1 across all samples. This transformation was necessary to bring
each gene to a comparable level.

5.4.5 Differential expression

To determine the differentially expressed genes between two groups of samples we
used linear models implemented in the limma package [298], which is a commonly
used method for differential expression analysis. In brief, limma fits a linear model for
each gene, similarly to computing a t-test which verifies if the gene is differentially
expressed between two conditions. The main difference is that limma uses some
shrinkage methods, such as empirical Bayes, to borrow information across genes, and
hence makes the results more robust.

The linear models produce a p-value for each gene, corresponding to the null
hypothesis that the gene has similar expression levels in the two groups, with the
alternative hypothesis that the gene is differentially expressed. The resulted p-values
were adjusted for multiple testing using false discovery rate (FDR) at 1% level.

5.4.6 Pathway analysis

For the sets of genes differentially expressed between two groups we performed pathway
analysis (Section 3.6), with the purpose of identifying biological pathways for which
the component genes are over/under-represented in the set of genes.
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For each gene set we performed an independent analysis using all pathways an-
notated in Gene Ontology (GO) [225] (from which we used the biological processes
ontology), Kyoto Encyclopedia of Genes and Genomes (KEGG) [227] and Reactome
[259]. The analyses have been performed using the clusterProfiler R package [260].
We adjusted the resulting p-values for multiple comparisons using the FDR method at a
5% level. We considered that a pathway is over/under-represented in a set of genes if its
corresponding FDR adjusted p-value was less than 0.05.

5.4.7 Hierarchical clustering

We also performed a hierarchical clustering on our data to see if we could reproduce
the LPD results. As described in Section 3.2.1.1, the hierarchical clustering needs a
similarity measure that describes how the distance between two samples is calculated,
and also a proximity measure, that specifies how the distance between two clusters is
estimated.

We considered the distance between two samples as being 1− corr, where corr is
the Pearson’s correlation. This similarity measure takes value 0 when the expression of
two samples is perfectly correlated, and 2 when they are perfectly inversely correlated.
As a proximity measure the complete link was used, which is the default proximity
measure provided by R. The complete link, computes the distance between two clusters
as the maximum distance between any point from one cluster to any point from the other
cluster. To remove the variation across genes, in each dataset we scaled the expressions
of every gene to mean 0 and variance 1 across samples.

5.4.8 Random forests

We describe the random forests algorithm in Section 3.2.2.1. In this analysis we used
the random forests implementation from the randomForest R package [299].

The default random forest algorithm implemented in this packages tries to minimise
the overall error rate. This approach leads to balanced class errors when the size of the
two classes used for training is about the same. When one class is over-represented,
however, the model becomes biased towards that class, resulting in higher classification
errors in the smaller class. In our analysis we had to work with imbalanced classes. To
correct for imbalances, we down-sampled the larger class.

The random forest models were trained using 10001 decision trees and the default
mtry parameter (the square root of the total number of features).
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5.4.9 LASSO

To perform feature selection, we used the LASSO logistic regression model described in
Section 3.3. In brief, LASSO is a form of feature selection that, given a regression model,
imposes restrictions on its coefficients, such that only the coefficients corresponding
to the most informative variables for the classification are set to values different from
0. The coefficients corresponding to less useful or redundant variables are set to 0 and
therefore the variables are removed from the analysis. In this analysis we used the
glmnet R package [219].

As LASSO can give slightly different responses at different restarts, in order to ob-
tain robust results we restarted the algorithm 100 times. At each iteration we performed
a 10-fold cross validation to select the λ parameter (Section 3.3) which gives the lowest
cross-validation error. The selected λ was then used to fit the LASSO and select the
non-zero coefficients. For the classification we used genes that have been selected by
the LASSO algorithm in at least 25 restarts.

5.4.10 Methylation analysis

We also performed a methylation analysis with the purpose of identifying differentially
methylated regions. Differentially methylated regions (DMR) are essentially adjacent
CpG sites that are differentially methylated between two conditions [300]. For this
analysis we used an implementation available in the methyAnalysis R package [301].

The methylation analysis implemented in this package works with M-values, instead
of beta-values, which are available in our data. An M-value is computed as the log-
ratio between the methylated and unmethylated probe [297], while the beta-values are
obtained by performing a logistic transformation of the M-values. Therefore, we could
convert the beta-values back to M-values via a logit transformation, as described in Du
et al. [297].

The methyAnalysis package considers only probes for which the difference in the
average M-values in two groups is larger than 1. For all these probes, a t-test is
performed and the resultant p-values are adjusted using the FDR correction.

A region is considered differentially methylated if the majority of probesets in the
region are differentially methylated. In the default implementation of the methyAnalysis

packages, two probes are considered part of the same DMR if the distance between
them is less than 2,000 base-pairs.
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5.5 LPD analysis

We performed an independent LPD analysis (Section 5.4.1), on each of the five mi-
croarray datasets, namely MSKCC, CancerMap, CamCap, Stephenson and Klein. We
included in the analysis all the samples available in the dataset, including duplicates
from the same patient. Therefore, we analysed all 320 samples in the MSKCC dataset,
the 235 samples in CancerMap, 280 in CamCap, 89 in Stephenson and 182 in Klein.

5.5.1 Data preparation

Following the normalisations and annotations described in Section 5.3.3, we obtained
for each dataset an expression matrix. The columns correspond to samples, and the
rows correspond to probesets that estimate the expression level of a gene. The values in
the matrix represent the normalised expressions for a probeset in a sample. For most
genes there is only one probeset which measure its expression. However, some genes
might have more than one probesets estimating its expression. Also the number of
probesets (and the number of genes) varies depending on the microarray platform used
for generating each datasets. The exon microarrays datasets (MSKCC, CancerMap
and Klein) measure the expression of 17,868 probesets, mapping to 17,320 unique
gene symbols. For the CamCap dataset there are 34,476 probesets mapping to 19,412
symbols and Stephenson contains 22,283 probesets mapping to 12,500 gene symbols.

Genes that have little variance across samples are of little interest for classification as
they usually do not have discriminative power. Moreover, although LPD scales linearly
with the number of genes and number of samples [209], for large datasets, such as
MSKCC, which contains 320 samples, using a large number of genes is computationally
prohibitive.

Previous applications of LPD on cancer datasets used the 500 genes which exhibit
the highest variance across samples [209, 302]. The LPD classification led to good
results in each case, suggesting that, in general, around 500 genes should contain enough
information for the model to work well.

In line with previous LPD analyses, we selected the top 500 probesets that exhibit
the highest variance across the samples in the MSKCC dataset. To keep the analysis
consistent and comparable between datasets, we tried to use a similar set of probesets for
the other datasets. However, as our datasets have been created using several microarray
and RNA-seq platforms, and different platforms provide different probes, we could not
find a direct mapping between the probesets across platform. We, therefore, determined
the corresponding probesets by checking if they map to the same gene symbol.
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As for some platforms some genes might have more than one corresponding probe-
sets and for some genes there might not be any probe, the number of probes selected
for LPD is slightly different across the datasets. For the exon microarrays (MSKCC,
CancerMap and Klein), the top 500 probesets are mapping to 489 unique gene symbols
(Supplementary Table B.1). When mapping back the 489 gene symbols to the probesets
provided by exon microarray platform we obtain 507 probesets, as there are 7 extra
probesets that are not in the top 500 probeset by variance, but map to the same gene
symbol as some of the probesets in the top 500. For the CamCap, we identified 483
probes mapping to the reference set of genes and for Stephenson there are 609 probesets.

5.5.2 Choosing LPD parameters

We derived the LPD parameters in three steps, as described in Section 5.4.2. In the
first step, for each of the five datasets (MSKCC, CancerMap, Stephenson, CamCap
and Klein), for each possible number of processes we calculated the log-likelihoods
corresponding to 100 restarts of the MLE model. We represent the resulting average
MLE log-likelihoods as a function of the number of processes in Figure 5.2 (the red
curves). We note that for the MSKCC the processes in the range 6-10 have similar
likelihoods, suggesting that any choice would be satisfactory. After 10 processes, the
likelihood begins to decrease, giving an indication that the model starts to over-fit the
data. We set 8 as the number of processes, as this seems to be the peak value. Similarly,
for CancerMap we select 8 processes, for Stephenson we choose 3 processes, for Klein
5 processes and for CamCap 6.

In the second step, we tried to determine suitable values for sigma. For each choice
of sigma we run the LPD algorithm 100 times with different seeds and calculated the
average log-likelihood. The average log-likelihoods of the MAP model as a function
of sigma are presented in Supplementary Figure B.3. For MSKCC we chose the peak,
-0.5. Similarly, for CancerMap we selected -0.5, for Stephenson -0.75, for Klein -0.3
and for CamCap -0.05.

Then, we performed the third step, which consists in evaluating the log-likelihood
of the MAP model for various number of processes, using as input the values for sigma
determined at step two (the blue curves in Figure 5.2). We observe that when choosing
small number of processes MAP curves and MLE curves are at lower, similar, levels,
suggesting that both models underfit the data. As we increase the number of processes,
curves raise, with MAP curve increasing at a faster rate. As the approximative number
of processes inherent in the data is reached, the MLE likelihoods start to decrease,
while the MAP likelihoods tend to slow down the increase and most of the times reach
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Figure 5.2 The log-likelihood (vertical axis) versus number of processes (horizontal
axis) using the MLE solution (lower curve) and the MAP solution (upper curve) for
each dataset. The points represent the average likelihood of 100 LPD restarts. For each
point we also plot the error bars corresponding to the distribution of the likelihoods
obtained in the LPD restarts. For the MLE model the peak in likelihood indicates the
number of processes to use. For the MAP model the likelihood rises to a plateau after
which no further gain is to be made, indicating the maximum number of processes that
should be used.
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a plateau. In every case the MAP curves are above the MLE curves, suggesting that
the MAP model is fitting the data better and, therefore, is more suitable for the final
classification.

It is still not clear to us why for the MSKCC and CancerMap dataset the MAP
likelihood do not reach a plateau even after 15 processes, given that the corresponding
MLE estimates suggest up to 10 processes, but more likely 7-8. Given this behaviour,
we decided to continue the analysis with 8 processes, as predicted by the MLE curve.
The MAP curve in the Stephenson elbows at 3 processes, which is also the number
of processes we determined using the MLE curves, suggesting a good choice of the
parameter. For Klein and CamCap it is less obvious the exact number of processes at
which the MAP curve reaches a plateau. We considered that the previous choices, of 5
and respectively 6 processes are consistent with the MAP curves, and therefore there is
no reason for updating them.

To summarise the above discussion, for each dataset we selected two sets of pa-
rameters to be used for the classification of samples described in the next section. For
MSKCC and CancerMap we set the number of processes to 8 and the value of sigma to
-0.5, for Stephenson we selected 3 processes and sigma -0.75, for Klein 5 processes and
sigma -0.3, while for CamCap we decided to use 6 processes and -0.05 for sigma.

5.5.3 LPD classification

We employed the LPD algorithm to produce an unsupervised classification of the
samples in each of the five datasets (MSKCC, CancerMap, CamCap, Stephenson and
Klein). As LPD is not a deterministic algorithm, i.e. for the same settings for the
parameters and input data it can give distinct results at different restarts of the algorithm,
we repeated the LPD analysis 100 times for each dataset.

In Figure 5.3 we illustrate the results obtained for one of the 100 LPD runs on the
MSKCC dataset. We note in particular the LPD1 process, enclosed in the red box. This
process has high contributions to the expressions profile of a large group of high risk
samples (the bulk of mainly green samples on the left). This indicates an association
between the LPD1 process and poor outcome, which we will explore in more detail
later. For the moment we just note that if we assign each sample to the process with the
highest contribution to its expression profile, the high risk samples are over-represented
in the LPD1 process (χ2 p-value 4.12 ·10−6).

We also note that the LPD7 process has high contributions in a group of benign
samples, suggesting a non-malignant nature for this process. The χ2 test, assessing
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if the benign samples are over-represented in the LPD7 process, is highly significant
(p-value 3.71 ·10−13).
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Figure 5.3 An illustration of the LPD classification on the MSKCC dataset. Each
horizontal panel, denoted LPD1 to LPD8, correspond to one of the 8 LPD processes.
For each panel, the x-axis represent samples, while the y-axis represents the contribution
of the process to the expression of each sample. The colours correspond to the ICGC
risk categories defined in Section 2.5.5.5, which indicate the risk of recurrence following
prostectomy by taking into account several clinical indicators.

In CancerMap we have been able to identify a process with high contributions to
the expressions of a group of mainly high and medium risk samples (the LPD5 process
in Supplementary Figure B.4). The high and medium risk samples are over-represented
in the group of samples to which the LPD5 has highest contributions (χ2 p-value
5.81 ·10−3).
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In CamCap we have also found a process with high contributions to the high risk
samples (LPD6 in Supplementary Figure B.5, χ2 p-value 1.8 · 10−2). Moreover for
CamCap there are two processes, LPD3 and LPD4, who contribute to the expression of
mainly benign samples. The p-values of the χ2 test assessing if the normal samples are
over-represented in these two process are 7.96 ·10−12 and 4.06 ·10−10 respectively.

For the Stephenson dataset the clinical data does not contain some of the clinical
indicators necessary for the estimation of the ICGC risk category and therefore the
pathological stage is used as proxy. We note that the LPD2 group does not have high
contributions in any of the benign tissue samples, suggesting a possible malignant
characteristic of the process (Supplementary Figure B.6).

For the Klein dataset (Supplementary Figure B.7), the clinical associations are not
available. However, we will illustrate later how some of these processes relate to the
processes in the other datasets.

5.6 Survival analyses

The LPD results suggest that in each dataset with associated clinical data some processes
might contribute to poorer outcomes. To further study these assumptions we performed
survival analyses. However, the survival analysis requires each sample to be exclusively
assigned to a group. LPD, on the other hand, produces a probabilistic association of
a sample to several processes. To convert the probabilistic to exclusive association,
we assigned each sample to the process with the highest contribution to its expression
profile.

For each of the four datasets with linked clinical data (MSKCC, CancerMap, Cam-
Cap and Stephenson) we performed both univariate and multivariate survival analyses,
as described in Section 5.4.3, using BCR as endpoint. Our main aim was to determine
if the membership of samples to certain LPD processes is a significant predictor for the
time to BCR and if the membership to an LPD group is an independent predictor for
the time to BCR, after correcting for the effects of other covariates, such as the Gleason
grade, PSA and pathological stage.

5.6.1 Univariate survival analysis

For each of the 100 LPD restarts in each dataset, we calculated the Kaplan-Meier (KM)
survival curves. Then, to assess if the KM survival curves are statistically different, we
performed a log-rank test (Section 5.4.3.1).
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5.6.1.1 Choosing representative runs

Some samples can change LPD membership in different runs, which can lead to slightly
different survival curves and log-rank estimates. This is illustrated in Figure 5.4. A way
of dealing with this variability is to select an average LPD run, which does not produce
extreme log-rank p-values and to consider it as representative for a given dataset. We
decided to plot the distribution of the log-rank p-values across runs (Supplementary
Figure B.8), and selected the run for which the p-value is closest to the mode of the
distributions, depicted with dashed vertical lines. For the Klein dataset, as there is no
clinical data, we selected at random one of the 100 runs. The LPD plots corresponding
to the representative runs in each dataset in Figure 5.5.
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Figure 5.4 KM plots obtained at different LPD runs on the Stephenson dataset. The
number of cancers in each group is indicated in the bottom right corner of each Kaplan-
Meier plot. The number of patients with PSA failure is indicated in parentheses.
Between two distinct LPD runs, one sample changed membership from LPD1 group, to
LPD2 and, also, LPD1 and LPD3 exchanged one sample (the number of failures in the
LPD3 changed, even if the number of samples in the group remained the same). This
lead to a decrease of the log-rank p-value from 7.18 ·10−4 to 1.08 ·10−4.

5.6.1.2 Univariate survival analysis results

For each dataset, the log-rank p-values corresponding to the representative run are quite
low (4.88 ·10−3 for MSKCC, 1.57 ·10−5 for CancerMap, 1.75 ·10−4 for Stephenson
and 6.27 · 10−3 for CamCap), suggesting that, for all datasets, the LPD groups have
statistically different BCR failure outcomes (Figure 5.6).
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Figure 5.5 The LPD classification on the the representative runs. Each horizontal panel
corresponds to a LPD process. For each panel, the x-axis represent samples, while the
y-axis represents the contribution of the process to the expression of the sample. The
colours correspond to the ICGC risk categories defined in Section 2.5.5.5. Duplicated
samples from from the same patient were removed, as described in Section 5.3.2.
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Figure 5.6 KM plots for the representative runs in MSKCC, CancerMap, Stephenson
and CamCap datasets. The number of cancers in each group is indicated in the bottom
right corner of each Kaplan-Meier plot. The number of patients with PSA failure
is indicated in parentheses. The processes surrounded by red boxes are the DESNT
processes.
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For the LPD1 group in the MSKCC dataset (Figure 5.5a), for which most of the
samples are in the ICGC high risk category, the corresponding survival curve (the red
curve in Figure 5.6a) is lower than all other survival curves. Similarly, the LPD5 process
in Figure 5.5b, corresponding to a group of samples with intermediate and high ICGC
risk categories in the CancerMap dataset seems to have also an worse outcome (the
orange curve in Figure 5.6b). Also, for the Stephenson dataset, the LPD2 processes,
which is not contributing in high proportions to any normal samples (Figure 5.5d), has
a low survival curve, as depicted in Figure 5.6c - the blue curve. And finally, one of the
two poor outcome groups in the CamCap dataset (the yellow curve in Figure 5.6d), is
the LPD6 process is Figure 5.5d, which contribute mainly to the expression profile of
high risk samples. For convenience, in each dataset, we will refer to the group that is
associated with higher risk category and poorer BCR free survival as the DESNT group.

So far we have determined that the DESNT groups seem to have a worse clinical
outcome. However, the log-rank test allows us to test the null hypothesis that the
survival curves of all groups are the same, with the alternative hypothesis that at least
one group has a different survival curve compared to the other groups.

To determine if indeed the DENT cancers have a significantly worse BCR prognosis,
for each dataset we merged all the non-DESNT groups into one group and recalculated
the survival curves and the log-rank p-values for only two groups, DESNT and non-
DESNT (Figure 5.7). For the MSKCC dataset the log-rank p-value testing the null
hypothesis that the DESNT and non-DESNT groups have similar survival curves is
2.65 ·10−5, indicating a statistically significant worse prognosis for the DESNT patients.
In line with this result, the log-rank test for all the other datasets, suggest statistically
significant BCR failure prognosis for the DESNT cancers (log-rank p-value 2.98 ·10−8

for CancerMap, 4.28 ·10−5 for Stephenson, and 1.22 ·10−3 for CamCap).

5.6.2 Multivariate survival analysis

Having determined that the DESNT group is a significant predictor of BCR, we tried
also to assess the hypothesis that it is also an independent predictor of recurrence. More
specifically, we tried to verify if after adjusting for the effect of other clinical factors, the
DESNT membership continues to be a statistically significant predictor of recurrence.
For each dataset we performed a multivariate survival analysis using the Cox PH model
(Section 5.4.3.2).



5.6 Survival analyses 147

a b

c d

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of months

B
C

R
 fr

ee
 s

ur
vi

va
l

LPD: DESNT: 17 (9)
LPD: Non−DESNT: 114 (18)

Log−rank p−value: 2.65×10−5

MSKCC

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of months

B
C

R
 fr

ee
 s

ur
vi

va
l

LPD: DESNT: 24 (19)
LPD: Non−DESNT: 54 (19)

Log−rank p−value: 4.28×10−5

Stephenson

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of months

B
C

R
 fr

ee
 s

ur
vi

va
l

LPD: DESNT: 21 (10)
LPD: Non−DESNT: 184 (54)

Log−rank p−value: 1.22×10−3

CamCap

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of months

B
C

R
 fr

ee
 s

ur
vi

va
l

LPD: DESNT: 10 (8)
LPD: Non−DESNT: 125 (25)

Log−rank p−value: 2.98×10−8

CancerMap

Figure 5.7 KM plots for the DESNT and non-DESNT groups in the representative runs
in MSKCC, CancerMap, Stephenson and CamCap. The number of cancers in each
group is indicated in the bottom right corner of each Kaplan-Meier plot. The number of
patients with PSA failure is indicated in parentheses.
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5.6.2.1 Cox PH assumptions

As described in Section 3.5.3.1, the Cox model is a non-parametric test, as it does not
make any assumption about the shape of the survival curves. However, it depends on a
very important assumption, namely that the hazard ratio is constant over time (the PH
assumption).

For each dataset, we evaluated the PH assumption for every covariate used in the
Cox PH model. The assumption seems to be respected for all cases, excepting for
the pathological stage in the MSKCC dataset (Figure 5.8). Starting with month 35,
the observed survival curve of the patients with Pathological Stage T3/T4 in MSKCC
reaches a plateau. After this time none of the patients with stage T3/T4 experiences
failure. The expected curve, on the other hand predicts a constant decrease of in the
survival odds after this time, in line with the trend before 35 weeks. This suggests that in
this case the stage is not a time-independent predictor, but rather has different behaviours
for different time intervals. This observation is supported by the Figure 5.8b, as the log-
log curves come closer, instead of remaining parallel. Moreover, the Schoenfeld p-value
is below 0.03, bringing statistical evidence that the PH assumption is not respected in
this case.
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Figure 5.8 Evaluation of the PH assumption for the pathological stage variable in the
MSKCC dataset using: a) log-log survival curves corresponding to stage T1/T2 and
stage T3/T4.; b) the observed vs. expected survival curves corresponding to stage T1/T2
and stage T3/T4. Note that the log-log survival curves converge and also the lower
observed curve departs from the expected curve.

We solved this issue, by modelling the stage in the MSKCC as a time-dependent
covariate, which was then incorporated together with the other covariates into an
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extended Cox model. The pathological stage was split into two time intervals, 0−35
months and > 35 months, for which the Cox model calculated different hazard ratios.

5.6.2.2 Multivariate survival analysis results

For each dataset, the extended Cox PH models was constructed using DESNT mem-
bership, the discretised Gleason score (≤ / > 7), the PSA (≤ / > 10) and the stage
(T1-T2/T3-T4) (Figure 5.9, Supplementary Table B.2). For each variable the hazard
ratio gives the odds of experiencing faster failure for individuals from one category,
relative to the baseline category, after adjusting for other covariates. Values significantly
greater than 1 suggest positive association of the category with the time to failure and
values significantly lower than 1 indicate a negative association.

For example in MSKCC, the Gleason score >7 has a hazard ratio of 5.1 (95% CI
1.9-13.9). The HR is significantly greater than 1 (p-value 1.12 · 10−3), suggesting a
strong association of high Gleason grade with the odds of experiencing faster failure,
after adjusting for the effect of other covariates. Also the HR for the T3-T4 stage is a
significant independent predictor of recurrence in the first 35 months (HR 5.5, 95% CI
1.7-17.6, p-value 3.77 ·10−3), but not after 35 months (HR 0.5, 95% CI 0.06-4.531, p-
value 5.59 ·10−1). For the MSKCC dataset the DESNT membership is not a significant
predictor, after adjusting for the effect of other covariates. Even though the HR is 1.67,
due to relatively low number of samples in the DESNT category (17/131 samples), the
95% CI is wide (0.59-4.65) and therefore the p-value is not significant (0.327).

For the other three datasets the DESNT membership is a significant independent
predictor of recurrence (CancerMap: HR 4.29, 95% CI 1.6-11.4, p-value 3.66 ·10−3;
Stephenson: HR 3.80, 95% CI 1.88-7.66, p-value 1.83 ·10−4; CamCap: HR 2.25, 95%
CI 1.08-4.66).

As the DESNT group is a relatively small group and, as in the case of MSKCC,
the statistical analysis produces quite large confidence intervals, we performed a meta-
analysis across multiple datasets. The purpose was to assess if, overall, the DESNT
membership is an independent predictor of BCR.

We therefore merged the covariates used for the Cox model (DESNT membership,
Gleason, PSA and stage) from three datasets (MSKCC, CancerMap and Stephenson) to
obtain a larger set of samples. The CamCap dataset was not included because it shares
many samples with CancerMap and therefore it is not an independent dataset. This
lead us to obtaining a set of 344 unique samples, out of which 51 are in the DESNT
group (17 from MSKCC, 10 from CancerMap and 24 from Stephenson), on which we
performed again the multivariate analysis. In this multivariate analysis, we included
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Figure 5.9 The Cox hazard ratios. The positions of the orange points on the x-axis
corresponds to the Cox hazard ratios for each covariate. The blue lines represent the
confidence intervals.
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an additional covariate, the dataset from which each sample comes. This variable was
introduced with the purpose of adjusting for any dataset-specific imbalances in the
covariates. For all the covariates included in this analysis the Cox PH assumption was
valid.

The DESNT membership is the highest significant predictor of BCR recurrence,
after adjusting for the effect of other covariates (HR 3.51, 95% CI 2.19-5.62, p-value
1.61 · 10−7) (Figure 5.9e). It outperforms the other two significant predictors, the
Gleason score (HR 3.09, 95% CI 1.87-5.10, p-value 1 ·10−5) and the stage (HR 1.91,
95% CI 1.26-2.91, p-value 2.34 ·10−3).

These result suggest that the DESNT membership is a recurrence predictor, inde-
pendent of the Gleason grade, PSA and the pathological stage.

5.7 Correlations between process expression profiles

To verify that the DESNT processes from different datasets are related to each other, we
investigated if their expression profiles are correlated, as described in Section 5.4.4. A
correlation of the expression profiles of two DESNT groups from two different datasets
would indicate a common DESNT process in the two datasets.

As presented in Figure 5.10, the correlations are high between every possible pair
of DESNT groups. Moreover we found that the LPD5 group in the Klein dataset
(Supplementary Figure B.7) is highly correlated with all the other DESNT groups
(Pearson’s correlation 0.595 - 0.753). We considered the LPD5 Klein group a DESNT
group as well.

We illustrate in Supplementary Figure B.9a-c the correlation of the expression
profile of the DESNT group in MSKCC with: a) the expression profile of the LPD7
group in MSKCC (Figure 5.5a), which contains only benign samples, b) the LPD4
process in CamCap (Figure 5.5c), containing mainly normal samples and c) the LPD1
process in Stephenson (Figure 5.5d), which contains most of the normal samples. As all
three processes contain benign samples, we assume a non-aggressive nature for them.
We note that DESNT process is inversely correlated with all these processes (Pearson’s
correlation -0.64, -0.62 and -0.62). Also, for control, we present in Supplementary
Figure B.9d-f, several examples of correlations of the expression profile of the MSKCC
DESNT group with the expression profiles of various other LPD groups, which contain
heterogeneous risk samples (Pearson’s correlation < 0.25).
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Figure 5.10 Correlations of expression profiles between cancers assigned to the DESNT
process in each of the datasets MSKCC, CancerMap, Stephenson and Klein. Data from
the 500 probes used in LPD are represented and ten possible comparisons are shown.
The expression levels of each gene have been normalised across all samples to mean 0
and standard deviation 1.
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5.8 Differentially expressed genes

Here we identify a set of genes that are constantly differentially expressed in DESNT
relative to non-DESNT cancers, as described in Section 5.4.5. For this analysis we
considered all probesets available, as it is possible that genes which have not been
included in the list of 500 genes used for LPD training to be discriminative for the
DESNT group as well.

For a more robust analysis, we used all 100 LPD restarts for each dataset. For each
of the 100 LPD runs, we identified a list of genes differentially expressed in DESNT.
We then selected only the genes that have been identified as differentially expressed in
at least 80 of the 100 LPD runs.

6,395 differentially expressed genes were identified in MSKCC, 1,062 in Can-
cerMap, 195 in Stephenson, 1,270 in Klein and 644 in CamCap. We intersected the
resulting lists of genes corresponding to MSKCC, CancerMap, Stephenson and Klein
(Figure 5.11). Again, we did not also include CamCap in the analysis as it is not
independent to CancerMap. The intersection resulted in 45 genes in common between
MSKCC, CancerMap, Stephenson and Klein datasets. We will further refer to this set
of genes as the LPD DESNT signature.

StephensonKlein

MSKCCCancerMap

494 4785

330

81

8

1014

106 28

8

28

70

1

015

45

Figure 5.11 Venn diagram illustrating the intersection of differentially expressed genes
in the MSKCC, CancerMap, Klein and Glinsky datasets.

All 45 genes are under-expressed in the DESNT group and at least 16 genes have
been previously reported as methylated or down-regulated in prostate cancer or other
cancers (Supplementary Table B.3). Many of these genes have also been linked to
development and progression of various types of cancer. For example, FBLN1 is a
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gene hyper-methylated in many type of cancer, including bladder, colorectal, cutaneous
and tongue carcinoma [303, 304]. We also note that 38/45 of the identified genes are
also differentially expressed in the CamCap, which has not been used for deriving the
signature (Supplementary Table B.3).

5.9 Pathway analysis

We wished to identify a list of biological pathways for which the component genes are
significantly under/over-represented in the set of 45 genes from the LPD DESNT signa-
ture. The identification of pathways significantly associated with the 45 genes signature,
might unravel the biological mechanisms behind the DESNT process. We performed
the pathway analysis as described in Section 5.4.6, using the Gene Ontology (GO) [225]
(from which we used the biological processes ontology), Kyoto Encyclopedia of Genes
and Genomes (KEGG) [227] and Reactome [259].

We identified over 200 GO biological processes over-represented in the LPD DESNT
signature. The top 20 are presented in Supplementary Table B.4. For the KEGG database
we found nine over-represented pathways (Supplementary Table B.5) and for Reactome
we identified nine pathways as well (Supplementary Table B.6).

For the KEGG database the top five pathways over-represented in the set of 45
genes are the muscle contraction pathway, focal adhesion, adherens junction, regulation
of actin cytoskeleton and leukocyte transendothelial migration pathways (Figure 5.12a).
In Reactome muscle contraction pathway is again one of the top five pathways, to-
gether with RHO GTPases activate PAKs, cell-extracellular matrix interactions and cell
junction organization (Figure 5.12b). In the GO database we also identified muscle con-
traction pathway, together with wound healing and anatomical structure morphogenesis
(Figure 5.12c).

We are very grateful to Prof. Dylan Edwards, from the School of Biological Sciences,
UEA, who performed an independent assessment of the possible molecular functions
of the 45 genes in the LPD DESNT signature. He identified that many of the proteins
encoded by these 45 genes are components of the cytoskeleton or regulate its dynamics,
while others are involved in focal adhesion and ion transport (Supplementary Table B.7).
Also, he provided a brief description of the possible role of these genes in the progression
of prostate cancer, which we reproduce here:

“Several signature genes encode proteins that are components of the actin cytoskele-

ton or which regulate its dynamics, including ACTA2, ACTG2, ACTN1, CNN, FLNA,

ILK, ITGA5, LMOD1, MYLK, PALLD, VCL, CALD1, CDC42EP3, PDLIM1, SVIL,
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a b

c

Figure 5.12 Cnet plots depicting the results of the pathway analysis on a) KEGG b)
Reactome and c) GO databases. The multicolour circles correspond to the top five
pathways, with the smallest p-values. The size of the circles is inversely proportional to
the p-value. The small yellow circles represent genes. The edges between genes and
pathways denote the involvement of gene in pathway.
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TNS1, TPM1, TPM2. In particular, actomyosin contractility is highlighted by the pres-

ence of myosin light chain kinase (MLCK) and myosin light chain-9 (MYL9) and other

molecules such as α-actinin (ACTN1), tensin (TNS1) and calponin (CNN1). Increased

malignancy may correlate with increased cell migratory behaviour, which in turn may

reflect the deployment of particular types of cell adhesion and cytoskeletal machinery.

A high dependency on actomyosin contractility is recognised as a hallmark of amoe-

boid movement [305], and since this aspect is down-regulated in the poor prognosis

signature, it would seem less likely to be the mode of migration employed.

However, also noteworthy are important focal adhesion components such as inte-

grin α5 (ITGA5), vinculin (VCL) and integrin-linked kinase (ILK), which would be

expected to be involved in mesenchymal type migration. It is thus possible that the

gene signature favours a collective migration phenotype, typified by maintenance of

E-cadherin mediated cell-cell adhesion mechanisms [306].

There are several signature genes (eg. ACTA2, CNN1, LMOD1) that encode proteins

primarily expressed in smooth muscle cells or myofibroblasts, which is an indication of

an altered tumour-stromal environment.

In the attached table (i.e. Supplementary Table B.7) I have also highlighted genes

that are important as ion channels (important in intracellular Ca homeostasis, which in

turn will affect actomyosin contractility). Also too there are a few transcription factors

and an RNA binding protein that will affect translation, thus there could be diverse

downstream changes in genetic programmes as a result of the down-regulation of these

genes. However, it is hard to predict the consequences here.”

5.10 Intersection of LPD DESNT genes with published
signatures

In this section we examined whether any of our 45 genes have been previously included
in other prognostic signatures for prostate cancer.

We collected the signatures published in previous work on prostate cancer, namely
Long et al. [307], Glinsky et al. [308], Planche et al. [309], Bismar et al. [310], Cuzick
et al. [38], Ramaswamy et al. [311], Agell et al. [312], Bibikova et al. [313], Ross-
Adams et al. [241], Wu et al. [314], Singh et al. [315], Rajan et al. [316], Erho et al.
[40], Irshad et al. [317], Ramos-Montoya et al. [283], Sharma et al. [318], Knezevic
et al. [175], Lalonde et al. [319], Yu et al. [320], Varambally et al. [282] and You et al.
[284]. We then determined the genes in common between every pair of signatures,
including the LPD DESNT signature (Figure 5.13).
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Figure 5.13 Relationship between the genes in different poor prognosis signatures
for human prostate cance and the DESNT classification, represented as a circos plot.
Sectors correspond to signatures, the numbers on each sector denote the number of
genes in each signature. Links to the 45 commonly down-regulated genes are shown in
brown.

The LPD DESNT signature shares 11/45 genes with other signatures, namely:

• TPM2 in common with the commercial test Oncotype Dx;

• ACTG2, CNN1, MYLK shared with Ramaswamy et al. [311];

• FLNA and ITGA5 in common with Bismar et al. [310];

• MYLK and PPAP2B also in Bibikova et al. [313];

• CLU and GPX3 shared with Irshad et al. [317];
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• ACTA2 also in Lalonde et al. [319];

• ETS2 in common with Planche et al. [309].

5.11 Comparison with traditional clustering methods

We tried to assess if other commonly used unsupervised classification methods, such as
hierarchical clustering and the k-means algorithm on the PCA reduced data, would be
able to robustly identify the DESNT group. In each case we tried to reproduce the LPD
analysis as closely as possible. For each dataset we used exactly the same set of probes
we used for LPD and, also, the same set of samples as in the LPD analysis, i.e. all the
samples available. Then, for survival analysis we removed the duplicates from the same
patient, as before.

5.11.1 Hierarchical clustering

The hierarchical clustering of MSKCC and CancerMap, performed as described in
Section 5.4.7, revealed that the DESNT samples (Figure 5.14) do not cluster together.

We further tried to determine if the hierarchical clustering provides an alternative
classification, that identifies groups of patients with different clinical outcomes. From
the structure of the dendrograms it is not straight forward to objectively infer the number
of clusters. Therefore, we decided to use the likely number of clusters identified with the
help of LPD, namely eight for both datasets. For each dataset, we cut the dendrograms
starting from the top until we obtained eight groups. The resulting groups are presented
in Supplementary Figure B.10a,b, and include all the samples in the dataset, including
the duplicates.

The survival analysis (Supplementary Figure B.10c, d) fails to identify any signifi-
cant association between these groups and the time to BCR (log-rank p-values 0.98 for
MSKCC and 0.22 for CancerMap).

These results, suggests that hierarchical clustering does not manage to robustly
identify the DESNT group, or any other group of samples with poor outcome.

5.11.2 PCA and k-means

We also evaluated how the k-means algorithm (Section 3.2.1.2) performs in robustly
detecting the DESNT group, or other poor outcome groups. Before applying k-means,
we transformed the data, using principal component analysis (PCA), as described in
Section 3.4, to reduce the dimensionality and make the data easier to visualise.
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Figure 5.14 Hierarchical clustering on the MSKCC and CancerMap datasets. The
colours represent LPD groups. The samples labelled with red (LPD1 in the top panel
and LPD5 in the bottom panel) correspond to the DESNT groups.
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We applied PCA on the same set of probes used for LPD classification, from all
samples in each dataset. For each dataset, we used the first two principal components,
which account for the following percentages of variance in the data: MSKCC - 39.6%,
CancerMap - 32.9%, CamCap - 18.9%, and Stephenson 27.7%.

On the PCA transformed data, we then applied the k-means clustering, using for
each dataset the same number of clusters as for LPD, i.e. 8 for MSKCC and CancerMap,
6 for CamCap and 3 for S6

The output for the k-means clustering depends on the initialization of the centromers
and, therefore, different runs can yield different result. As previously, we restarted
the algorithm 100 times and chose one representative run. However, the variance in
classification of the samples is much lower than LPD. For the MSKCC dataset all
runs but one yielded the same output, for the CancerMap 82 runs produced the same
classification and for CamCap and Stephenson we obtained the same results every time.
Therefore, for MSKCC we chose one of the 99 classifications that give the same result,
for CancerMap one of the 82 equivalent results, while for CamCap and Stephenson one
of the 100 runs.

For MSKCC (Figure 5.15a,b) the k-means clustering assigns the DESNT samples
to two clusters (C4 and C5) together with other samples. The survival analysis did not
identify any statistical significant association (log-rank p-value 0.32).

For CancerMap (Figure 5.15c,d), the DESNT samples are also included in two
clusters (C5 and C6). The survival analysis in this case suggests that at least one
group has significantly different outcomes (log-rank p-value 7.46 ·10−4). Therefore we
performed a log-rank test for each of the 8 clusters, testing if the group has significantly
worse outcome than the rest of the samples taken together. The yellow group (C6),
which contains four of the ten DESNT samples, is the only cluster with statistical
significant association with time to BCR (log-rank p-value 1.92 ·10−5).

The k-means clustering on Stephenson (Figure 5.15e,f) yielded good correlation
with DESNT. All DESNT cancers have been clustered together in a group that contained
several other non-DESNT samples. The survival analysis also indicates that there are
groups with worse outcome (log-rank p-value 9.32 ·10−4). The cluster which includes
the DESNT samples has a log-rank p-value of 2.31 ·10−4.

Finally, in CamCap the DESNT samples are split between three clusters. No group
was associated with poor outcome (log-rank p-value 0.32).

The k-means clustering does not seem to consistently identify the DESNT group, as
in only one in four datasets (Stephenson), it has been able to group the DESNT cancers
together. Moreover, k-means does not consistently identify poor prognosis groups (only
in two of four datasets).
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Figure 5.15 PCA analysis, followed by k-means analysis on a) MSKCC, c) CancerMap,
e) Stephenson and g) CamCap, along with the corresponding survival analysis (b, d, f,
h). The round points correspond to non-DESNT samples, while the triangular points
correspond to DESNT samples. The colours represent k-means clusters.
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5.12 Predictive signature for DESNT

With the help of LPD we have been able to define a common process, designated
DESNT, in patients from five prostate cancer datasets, which leads to a significantly
poorer clinical outcome. In this section we develop a way of predicting DESNT
membership, which could indicate a poorer outcome, on new, individual samples,
suitable for a clinical setting.

One way of doing this would be to examine the expression profile of the 500 genes
in the new sample. The expression profile would need to be normalised relative to a
reference dataset. Then, one can verify if the LPD model, trained on the reference
dataset, is the main contributor to the expression of the genes in the sample. If the
DESNT is the main contributor, the sample is considered a member of the DESNT
group.

However, the set of 500 genes is quite large for a prognostic signature and not
necessarily specific for the DESNT classification. The existing predictive signatures
for different types of cancer use relatively small panels of genes, specific for the
classification at hand. For examples in breast cancer the Mammaprint test [15] uses
a panel of 70 genes to identify poor prognosis groups, while in prostate cancer the
commercially available tests use panels of 31 cell-cycle progression genes (Prolaris
[38]), 12 genes (Oncotype DX [39]) and 22 genes (Dechipher [40]). Therefore, in line
with the other tests, we tried to find a set of genes, as small as possible, specific for
DESNT, that can robustly predict if a new sample is in the DESNT group.

We assessed if a set of genes would be robust in predicting the DESNT membership
by training a supervised machine learning model (a random forest classifier) on one
dataset and evaluating his performance on all the other datasets.

5.12.1 Data preparation

Five of our datasets (MSKCC, CancerMap, CamCap, Stephenson and Klein) come from
three different microarray platforms and TCGA has been generated from RNA-seq data.
Each microarray platform uses different probes for measuring the expression of genes,
while the RNA-seq estimates the expression of gene from the number of reads mapping
to the transcripts.

Depending on the platform, the expression of a gene may or may not be measured
on a given platform. Also, for a gene there might be a variable number of probesets
available on each platform. Additionally, the gene expression levels are not globally
comparable in samples from different platforms, and even across different datasets
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generated with the same platform, without mitigating the platform-specific and even
dataset-specific differences, as we will illustrate shortly.

As we were planning to use the same random forest model on data from different
datasets, which might provide different sets of features, on different scales, we worked
on bringing the data to a compatible level. We kept only the probes corresponding to
genes measured on all microarray platforms, namely, Affymetrix Human Exon 1.0 ST,
Affymetrix U133A, Illumina HumanHT-12 V4.0 and the genes for which the expression
has been estimated in all samples from the TCGA dataset. Also, when more than one
probeset was available for a gene, we kept only one of them, chosen at random. This
resulted in 10,444 probesets corresponding to 10,444 genes in common between all
platforms.

As illustrated in Figure 5.16a, the distribution of intensities of probesets in different
datasets is quite variable. To make them comparable we applied the ComBat algorithm
[290] implemented in the sva R package. The algorithm corrected the dataset-specific
effects across the data (Figure 5.16b).
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Figure 5.16 Distribution of intensities of probesets across samples from all six dataset
datasets a) before and b) after ComBat. Boxes represent samples and colours represent
datasets. Note that due to limited space only every other sixth sample in the datasets
has been plotted.

For obtaining unbiased evaluations of the performance, we also removed all the
duplicated samples from the same patient, as in the previous analyses.
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5.12.2 LPD DENST predictive signature

In our first attempt of deriving a robust predictive signature for the DESNT group,
we assessed how well the LPD DESNT signature, containing 45 genes (Section 5.8),
performs in classifying the DESNT group.

Random forests [213], described in Section 3.2.2.1, have been successfully used
before for clinical classifiers, such as, for example, in the commercial prostate cancer
test Dechipher [40]. We, therefore, trained a random forest model which learned how
to discriminate DESNT cancers from non-DESNT cancers using the expression level of
the 45 genes in the LPD DESNT signature.

The proportion of samples in the DESNT group is relatively low. In MSKCC there
are 17/160 (10.6%) unique samples in the DESNT group, in CancerMap 11/154 (7.1%),
in CamCap 21/207 (10.1%), in Stephenson 24/89 (26.9%) and in Klein 42/182 (23.06%).
Not taking into account this imbalance would lead to a very low sensitivity when training
the model. Therefore, we corrected for class imbalance, by down-sampling the larger
class (Section 5.4.8).

We trained a random forest model on the MSKCC dataset and tested its performance
on the other datasets, namely, CancerMap, CamCap, Stephenson and Klein. As it
can be seen in Figure 5.17, the validation AUC of the ROC curve is always high
(0.9112-0.9821) indicating good separation of the two classes. However, even though
the sensitivity is relatively good (85.71%-100%), the specificity can get as low as 65%
(CamCap).

5.12.3 RF DESNT predictive signature

The LPD DESNT signature performs well in identifying DESNT cancers, but it is
not specific enough for this purpose. To improve the specificity of classification, we
constructed an alternative signature.

We set as a starting point all the genes identified as differentially expressed in
DESNT, in at least two of the five datasets. There are in total 1,496 differentially
expressed in at least two of the five dataset (MSKCC, CancerMap, CamCap, Stephenson
and Klein).

To reduce this list, we used the LASSO logistic regression model, described in
Section 5.4.9. LASSO shrank the regression coefficients of most of the genes to 0,
selecting on average only 20 genes with non-zero coefficients. The variation between
different restarts of LASSO was very small. After 100 runs, LASSO selected a total of
30 distinct genes, of which some have been selected in just 1-2 runs. To obtain a robust
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Figure 5.17 The performance of the random forest model using the LPD DESNT
signature on a) the training dataset, MSKCC and the validation datasets b) CancerMap,
c) Stephenson, d) Klein, e) CamCap. The samples have been assigned to the class with
the highest number of votes from the decision trees.
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set of predictor genes, we imposed a threshold of minimum 25 runs in which a gene
needs to be selected by the LASSO model. Using this strategy, we obtained a list of 20
genes (Table 5.3). For the rest of the analysis we will refer to this 20 genes signature as
the RF DESNT signature.

Table 5.3 The 20 genes that have been selected by LASSO logistic regression. The
second column contains the variable importances estimated by the random forest
classifier, trained on MSKCC.

Gene Variable importance

DST 2.208882
CHRDL1 1.820796
THSD4 1.585727
GSTM4 1.568462
CYP27A1 1.450209
ACTG2 1.371804
RND3 1.280383
PLEKHA6 0.688459
SP100 0.669480
PARM1 0.643371
ZNF532 0.573341
ALDH2 0.528605
DLG5 0.467959
WDR59 0.461952
LDHB 0.418893
CDK6 0.330462
MME 0.268322
S100A13 0.236298
MSRA 0.228337
EPHX2 0.198256

Then, we trained a new random forest model to classify the DESNT cancers based
on the expression of the 20 genes panel that make up the RF DESNT signature. As
before, we trained the model the MSKCC dataset and tested its performance on the
other datasets. We also adjusted for imbalances by down-sampling the larger class. The
performance of classification using the RF DESNT signature improved compared to
the LPD DESNT signature (Figure 5.18). The AUC of the ROC curves is in the range
0.937-0.9942, suggesting very good separation of the classes. The sensitivity remained
high 78.5%-100% and the specificity increased to 82.7%-95.3%.

In the end, as the classifier seems to produce good results on training and validation
data, we further used it to classify the samples from the TCGA dataset, that have not
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Figure 5.18 The performance of the random forest model using the RF DESNT signa-
ture on a) the training dataset, MSKCC and the validation datasets b) CancerMap, c)
Stephenson, d) Klein, e) CamCap. The samples have been assigned to the class with
the highest number of votes from the decision trees.
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been used in the previous analyses at all. The random forest model classified 81/333
(24.3%) samples as DESNT.

The differential expression analysis identified that all 45 genes in the LPD DESNT
signature are significantly down-regulated in the group of samples classified as DESNT
cancers in the TCGA dataset, suggesting that random forest identified a group of
DESNT cancers.

5.12.4 Survival analysis

We repeated the univariate and multivariate survival analysis, in order to determine if
the membership to the DESNT group identified by the random forests classifier is a
significant predictor of recurrence. For clarity we will refer to this group as the RF

DESNT group, while for the rest of the samples we will refer to as the RF non-DESNT

group.
Additional to the previous survival analysis, described in Section 5.6, we performed

multivariate analysis on the TCGA dataset. All the covariates used in the multivariate
analysis, namely the RF DESNT membership, Gleason grade and the pathological stage,
satisfy the PH assumption for the TCGA dataset (Schoenfeld residuals p-values: 0.51, 1
and respectively 0.151). For this dataset we could not obtain the PSA levels at diagnosis.
And, since we cannot exactly reproduce the multivariate analysis performed in the other
datasets, we opted for splitting the Gleason grade into ≤/> 3+4, for a better stratification
of the samples that are available.

The results of the both analyses are presented in Figure 5.19, while in the Supple-
mentary Table B.8 we include the full results for the multivariate analysis.

The univariate survival analysis produced statistically significant associations with
the time to BCR in all five datasets for which we have clinical data (MSKCC: log-rank
p-value 1.86 · 10−3; CancerMap: log-rank p-value 4.8 · 10−4; Stephenson: log-rank
p-value 1.73 ·10−4; CamCap: log-rank p-value 1.61 ·10−5; TCGA: log-rank p-value
1.86 ·10−4).

The multivariate analysis identified the RF DESNT membership as independent
predictor of recurrence in all datasets, except MSKCC (MSKCC: HR 1.29, 95% CI 0.49-
3.4, p-value 6.05 ·10−1; CancerMap: HR 2.51, 95% CI 1.19-5.25, p-value 1.45 ·10−2;
Stephenson: HR 3.37, 95% CI 1.71-6.672, p-value 4.56 · 10−4; CamCap: HR 2.87,
95% CI 1.67-4.93, p-value 1.31 ·10−4; TCGA: HR 2.1145, 95% CI 1.09-4.08, p-value
2.59 ·10−2).
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Figure 5.19 Analysis of outcome for DESNT cancers identified by RF classification.
KM plots for the a) MSKCC, b) CancerMap, c) Stephenson, d) CamCap and e) TGCA
datasets. For each dataset the cancers assigned to DESNT using the 20 gene RF
classifier are comparing to the remaining cancers. The number of cancers in each group
is indicated in the bottom right corner of each plot. The number of cancers with PSA
failure is indicated in parentheses. Multivariate analyses results are depicted for the f)
MSKCC, g) CancerMap, h) Stephenson, i) CamCap and j) TCGA datasets.
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5.12.5 Correlation between the RF DESNT groups

We also investigated if the expression profiles of the samples in the RF DESNT groups
are correlated across datasets, as in the case of LPD DESNT groups. To obtain results
comparable with the previous correlation analysis (Section 5.7), we considered all the
probesets (from the total of 10,444 with which we worked in this part of the analysis)
that are mapping to the top 500 genes that have been used for the LPD analysis.

We calculated Pearson’s correlation between every pair of RF DESNT expression
profiles from MSKCC, CancerMap, CamCap, Stephenson, Klein and TCGA as pre-
sented in Section 5.4.4. Between every pair of RF DESNT groups there is a quite high
correlation (Figure 5.20). The lowest correlation, between CamCap and MSKCC is
0.665, and the highest, between TCGA and CamCap is 0.846. We note in particular that
the RF DESNT group in TCGA is very highly correlated with all RF DESNT groups in
the other datasets (Pearson’s correlation 0.731-0.846), confirming that the random forest
classifier identifies for TCGA a DESNT group, which is similar to the other DESNT
groups in the other datasets.

5.13 Correlation of DENST group with gene mutations

We next compared the frequency of ETS fusion status, ETS genes overexpression,
mutations, and homozygous deletions in commonly altered genes in prostate cancers
[287], between RF DESNT and RF non-DESNT cancers in the TCGA dataset. Also
we compared the ERG gene rearrangement status in CancerMap, determined using the
FISH break-apart assays, between RF DESNT and RF non-DESNT samples.

None of the ETS genes has statistically different alteration (fusion or overexpression)
frequency in RF DESNT compared to RF non-DESNT in TCGA (ERG χ2 p-value 0.29,
ETV1 χ2 p-value 0.32, ETV4 χ2 p-value 0.83, FLI1 χ2 p-value 0.51). When the four
ETS genes are taken together, the alteration frequencies are again not correlated with RF
DESNT membership (χ2 p-value 0.13). The frequency of ERG fusions in CancerMap
is not significantly different between RF DESNT and RF non-DESNT cancers either
(χ2 p-value 0.26).

We compared the mutations and the homozygous deletions of the genes presented
in Figure 5.21 between RF DESNT and RF non-DESNT cancers. No gene shows
significant correlation between mutations (Supplementary Table B.10) or homozygous
deletions (Supplementary Table B.11) and RF DESNT membership. When we com-
bined together the mutation and homozygous deletion status for each gene, TP53,
BRCA2 and CDK12 yielded significant unadjusted χ2 p-values (3.84 ·10−3, 2.07 ·10−2,
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Figure 5.20 Correlations between the expression profiles of every possible pair of RF
DESNT groups from the MSKCC, CancerMap, Stephenson, CamCap, Klein and TCGA
datasets. The expression levels of each probesets have been normalised across all
samples to mean 0 and standard deviation 1.
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and respectively 4.19 · 10−2; Supplementary Table B.12). However after adjusting
for multiple comparisons using FDR correction at 5% level, none of the genes re-
mained significant (FDR adjusted χ2 p-values 8.45 ·10−2, 2.28 ·10−1, and 3.07 ·10−1

respectively).
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Figure 5.21 Comparison of genetic alterations in RF DESNT and RF non-DESNT
cancers in the TCGA dataset. The types of genetic alteration are shown for each gene
(mutations, fusions, deletions, and overexpression). Clinical parameters including
biochemical recurrence (BCR) are represented at the bottom together with groups for
iCluster, methylation, somatic copy number alteration (SCNA) and mRNA clusters
[287].

5.14 Methylation analysis

As described in Section 2.4.3, the CpG methylation is an epigenetic alteration that
can play important roles in cancer development. Therefore, we further investigated if
methylation might play a role in the underexpression of the core 45 genes in the LPD
DESNT signature.

We performed a differential methylation analysis (Section 5.4.10) on the set of
1,122 probes mapping to the 45 genes in the LPD DESNT signature with the purpose at
identifying differentially methylated regions between RF DESNT and RF non-DESNT
groups. The analysis identified 77 differentially methylated probes, corresponding to 24
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out of the 45 core genes, shown in Supplementary Table B.9. These probes correspond
to 43 differentially methylated regions (Supplementary Table B.13).

In Figure 5.22, we present a heatmap illustrating the beta-values of the 77 differ-
entially methylated probes. As it can be seen in the right panel, most of the probes
are hyper-methylated in the RF DESNT group relative to the non-DESNT tumours
(middle-panel) and also the normal samples (left panel).

To investigate if the hyper-methylation (and also hypo-methylation) plays a role in
the expression levels of the genes, for each of the 77 differentially methylated probe
we calculated the Pearson’s correlation between the beta-value of each sample and the
expression level of the corresponding gene in the sample (Supplementary Table B.14).

For many genes the hyper-methylation of the corresponding probes (not necessarily
probes from the promoter region) is strongly inversely correlated with the expression
levels, and, conversely, the hypo-methylation is directly correlated with the expression
levels. In particular, all probes corresponding to GSTP1 are highly inversely corre-
lated with the expression (Pearson’s correlation between -0.72 and -0.87). Similarly
for SPG20 (Pearson’s correlation between -0.7 and -0.74) and PDLMIM1 (Pearson’s
correlation -0.75). In fact with few exceptions, most probes yield correlations above 0.5
or below -0.5, suggesting strong associations between methylation and expression.

The results are consistent with the possible involvement of the methylation in the
underexpression of the core 45 genes, and suggest a possible role of epigenetic changes
in the progression of prostate cancer. However, further work needs to be performed to
elucidate this hypothesis.

5.15 Discussion

In this chapter we presented the application of LPD to prostate cancer transcriptome
datasets, which has revealed the existence of a novel poor prognosis category of prostate
cancer common across all prostatectomy datasets examined. The robust nature of
DESNT cancers is supported by their detection in data generated using several different
platforms (Illumina HT12 v4 BeadChip arrays, RNA-seq, Affymetrix arrays) and from
both frozen and formalin fixed material.

The DESNT cancers are characterised by a core set of 45 down-regulated genes,
many of them with role in cytoskeleton machinery, ion transport and cell adhesion.
Our observations also provide clues about possible mechanisms of development of
aggressive disease. For example, the down-regulation of genes determining cytoskeleton
structure and involved in focal adhesion in these cancers would argue against the contri-
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Figure 5.22 Heatmap corresponding to the differentially methylated probes. The rows
represent probes, the columns represent samples and the colours correspond to the
beta values. The left panel corresponds to benign samples, the middle panel to RF
non-DESNT samples and the right panel to the RF DESNT samples.
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butions of amoeboid-type movement and mesenchymal migration, but is consistent with
involvement of the collective migration phenotype in determining cancer aggression.

The involvement of 11 of the 45 core genes in other prostate cancer signatures,
including one gene in common with the commercial test Oncotype Dx, supports the
association of the DESNT cancers with the aggressive behaviour. This is even more
astonishing as the 45 genes have been selected in a completely unsupervised fashion,
without using any previous knowledge or clinical data.

As, the core set of 45 genes does not have enough specificity for predicting the
DESNT cancers, we derived an alternative set of 20 predictive genes. Using random
forest classification, these 20 genes provided high specificity and sensitivity for predict-
ing that individual cancers were DESNT in both the MSKCC training dataset and in
four validation datasets. For the three validation datasets (Stephenson, CancerMap and
CamCap) with linked PSA failure data the predicted cancer subgroup exhibited poorer
clinical outcome in both univariate and multivariate analyses, in agreement with the
results observed using LPD.

When random classification was applied to RNA-seq data from 333 prostate cancers
from TCGA, which have not been used previously in the analysis, a cancer patient
subgroup was identified that was confirmed as DESNT based on: (i) demonstration of
overlaps of differentially expressed genes between DESNT and non-DESNT cancers
with the core down-regulated gene set (45/45 genes), (ii) its poorer clinical outcome
compared to non-DESNT patients and (iii) correlations of gene expression levels with
DESNT cancer groups in other datasets.

Using information from TCGA we failed to find correlations between assignment
as a RF DESNT cancer and the presence of specific genetic mutations. Of particular
note there was no correlation to ETS gene status. A lack of correlation between DESNT
cancers and ERG gene rearrangement, determined using the FISH break-apart assay,
was confirmed using CancerMap samples. These observations are consistent with
the lack of correlation between ERG status and clinical outcome [267]. Since ETS

alterations, found in around half of prostate cancer [32, 127–131], are considered to
be an early step in prostate cancer development [136] it is likely that changes involved
in the generation of DESNT cancer represent a later event that is common to both
ETS-positive and ETS-negative cancers.

For DESNT cancers some of the core down-regulated genes exhibited altered levels
of CpG gene methylation compared to non-DESNT cancers suggesting a possible role
in controlling gene expression. This hypothesis is supported by the inverse correlations
between the methylation strength and expression levels of the targeted genes. Further
supporting this idea, for 16 of the 45 core genes, epigenetic down regulation in human
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cancer has been previously reported including six genes in prostate cancer (CLU,
DPYSL3, GSTP1, KCNMA1, SNAI2, and SVIL). CpG methylation of five of the genes
(FBLN1, GPX3, GSTP1, KCNMA1, TIMP3) has previously been linked to cancer
aggression.

Classification of a cancer as DESNT, when used together with standard clinical
indicators (stage, Gleason score, PSA) should significantly enhance the ability to
identify patients whose cancers will progress. In turn this will allow the targeting of
radical therapies such as radiotherapy and surgery to aggressive disease avoiding the
side effects of treatment, including impotence, in men with non-aggressive disease.



Chapter 6

Conclusions and future work

In this thesis we have presented two projects developed for the purpose of identifying
biomarkers that could help distinguish aggressive prostate cancer from indolent cancer.
We now summarise our findings and indicate some potential directions to carry on this
work.

6.1 The identification of transcriptional alterations us-
ing exon microarrays

In our first approach we analysed data from exon microarrays with the purpose of
identifying transcriptional alterations. We then identified a list of candidate genes,
that exhibit transcriptional alterations that are correlated with the time to BCR and
metastasis.

The results yielded by this approach are promising. We identified several genes
with possible transcriptional abnormalities associated with aggressive disease. Of these,
some are known to be involved in fusions and some are possible novel fusion candidates
or genes involved in other abnormal transcription events, such as trans-splicing.

However, this approach has some shortcomings. One of the most important short-
comings is that exon microarrays do not provide enough information to determine
the nature of the alterations. It is impossible to tell if the alterations are generated by
fusions, other types of alterations or non-biological artefacts. Also, for fusions and
trans-splicing events the fusion partner cannot be identified.

Another issue is that jumps in the expression of the exons are not always correlated
with fusions or other alterations. Many times fusions do not result in jumps and
jumps are not always the result of fusions. Even if jumps are generated as result of
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transcriptional abnormalities, sometimes they are very small. This makes it difficult to
distinguish them from noise in the data.

We set the parameters of our model so that we obtain an optimal classification on
genes with known fusion status. However, because the jumps generated by real fusions
are sometimes quite small, we needed to set very relaxed detection thresholds. This led
to the identification of a large number of candidates. Despite our efforts of reducing
this number by introducing additional filtering criteria, we still obtained thousands of
candidate genes.

The correlation of the breakpoints predicted by our method and the breakpoints
reported in the literature gives us confidence that at least some candidates are generated
by transcriptional abnormalities. However, our method, in line with the other methods
developed for this purpose, only shortlists a set of candidates. These candidates need to
be further validated using established methods, such as FISH and qt-PCR. Alternatively,
RNA-seq analysis of the candidates could help confirming that they are involved in
abnormal events.

In terms of the jump detection method per se, we are content with the performance
obtained. In our evaluation, it performs at least as well as previous methods. Our
investigation on the ERG gene concluded that in the overwhelming majority of cases
the method could distinguish between samples with jumps and samples without. Most
of the misclassification was caused by discordance between jumps and fusions.

As for the practical relevance of the results, many of the novel step-up candidates
correlated with metastasis are involved in cell cycle progression, known to be associated
with aggressive prostate cancer. Also many of the step-down candidates are involved
in the muscle contraction pathway and actin cytoskeleton, which are associated withe
DESNT cancers. Moreover, many of these candidates, such as SORBS1, VCL, ACTG2,
CALD1 and TPM2, are also found in the list of core down-regulated genes in DESNT.
If they are proven to be involved in fusions or other events, it might enhance our
knowledge about the formation of DESNT cancers and the progression of prostate
cancer.

6.2 The DESNT group

In the second project we analysed six transcriptome datasets, generated from radical
prostectomy samples. We applied a Bayesian model, called LPD, to robustly identify a
group of aggressive cancers designated DESNT. We then developed a random forest
model that, using a set of 20 genes, can predict the DESNT membership.
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This is the first time that a robust genetic subtype associated with a poor outcome
has been reported for prostate cancer. This is an important stepping stone in defining ho-
mogeneous subtypes of prostate cancer and a significant progress towards personalised
management of the disease.

One of the results we can not totally explain is the variable number of processes
underlying each dataset. This number varies between three and eight. The most probable
cause is the size of the dataset. For the smallest dataset, Stephenson, LPD suggests
three processes. For an intermediary size datasets, such as Klein, which contains 182
samples LPD suggests five processes, while for large ones, such as MSKCC, CancerMap
and CamCap, with over 200 samples, LPD indicates 6-8 processes. For the smaller
datasets the LPD does not have enough information to characterise all the processes
and therefore merges together the most similar ones. We will further explore this aspect
in the next section.

The current direction of a lot of prostate cancer research, and cancer research in
general, is to study globally the genetic alterations found in tumour, and to try to
understand cancer based on the effect of mutations on key pathways. Despite the
incontestable gains that this strategy has brought into our understanding of cancer, it
might not always explain the behaviour of the disease. A less explored area, but one
which has gained momentum lately, is the study of epigenetic alterations. These seem
to have strong effects on cancer development. In our analysis the DESNT cancers do
not seem to show any correlation with ETS gene fusions, mutations or copy number
alterations. They do, however, show strong correlation with CpG methylation patterns.
A possible involvement of epigenetic alterations in the heterogeneity of prostate cancer
might explain why, after many years of intense research, no genetic or set of genetic
alterations is able to define robust subtypes of prostate cancer.

Besides the potential practical application, this analysis also underlines the im-
portance of using more specialised techniques for modelling biological data. Taylor
et al. [242] when produced the MSKCC dataset, tried unsuccessfully to identify poor
prognosis groups using hierarchical clustering. In our attempts we have also failed
to produce a clustering that robustly identifies the DESNT group or other aggressive
subgroups using either hierarchical clustering or k-means. The progress was made
when we employed LPD, which, due to a more realistic modelling of the biological
data, which can take into account the cancer heterogeneity, is able to find meaningful
classifications where other methods fail.
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6.3 Future work on the transcriptional alterations project

We now present possible directions of research that could be pursued in continuation of
the work presented in Chapter 3.

6.3.1 RNA-seq validation for the candidates

Exon microarrays give indications of expression alterations within a gene. However,
the candidate genes need to be validated using supplementary data.

All studies that have discovered fusion candidates using exon microarrays validated
them using biological techniques, such as break-apart FISH or RT-qPCR. As some
of the tissue used for generating the CancerMap dataset is still available, biologists
could go back and verify some of the candidates using these techniques. The alterations
associated with recurrence or metastasis would be a good starting point in this analysis.

Alternatively, some of the tissues could be sequenced using paired-end sequencing.
Software packages such as Tophat Fusion [321] could be used to identify paired reads
that align to different genes, indicating fusions, trans-splicing or alternative splicing.
The abnormal transcription events identified by RNA-seq, could then be used to validate
the candidates. This approach would be more efficient than the biological validation,
as it provides genome-wide results, allowing for more candidates to be simultaneously
evaluated.

6.4 Future work on the LPD approach

We now present some possible directions of research that could be pursued in continua-
tion of the LPD work presented in this thesis.

6.4.1 The development of a clinical test

As DESNT cancers have a poor outcome, it would be useful to develop a test that could
be used in clinical practice to predict the DESNT membership. An assignment of a
new cancer to DESNT would be an indication of poor outcome. However, there are
many challenges that need to be considered when transferring these findings to clinical
practice.

First of all, it has to be decided at what phase along the clinical management strategy
this test is suitable. Is it suitable for predicting progression at diagnosis, based on
biopsy samples? Is it applicable for predicting recurrence and progression following
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prostatectomy, based on samples obtained from the resected prostate? Is it suitable for
both phases?

All six datasets that we have worked on have been generated from radical prostec-
tomy samples and the end point available was biochemical recurrence. Since we have
been able to train a model that used the 20 gene RF DESNT signature to predict the
DESNT membership in five other datasets, we are confident that the test can be reliable
when transferred to predict recurrence in clinical practice.

However, only around 35% of men with BCR progress to metastasis [117]. It would
be therefore interesting to analyse what is the role of DESNT membership in predicting
metastasis and cancer-specific mortality. The Dechipher test, for example, was proven
to distinguish patients with BCR that progressed to metastasis from patients with BCR
that did not progress to metastasis [21, 322]. If it is shown that DESNT can distinguish
patients that progress to metastasis from those who do not, it might lead to an improved
selection of the management disease strategy and the patients with good outcome can
be spared the adverse effects of androgen-deprivation therapy.

At least as important as predicting recurrence, would be for the DESNT test to be
able to indicate aggressive prostate cancer at the time of diagnosis. This could lead to a
better stratification of the patients and reduce overtreatment. It is therefore necessary to
validate the DESNT test on data generated from biopsy samples.

Besides the practical aspects, it is also important to consider the technical challenges
involved in building such a test. Probably the most important two questions are: (i) what
approach should be taken to determine DESNT membership and (ii) what technology
should be used for measuring the expression level of genes.

To determine DESNT membership there are at least two possible approaches. One
of them would be to consider a reference dataset, for which the DESNT membership
of all samples is known. Then, for new samples, the expression levels of the top 500
genes used for LPD would be measured and normalised to the same level as the rest of
the samples in the reference dataset. As LPD produces an expression profile for each
process, these expression profiles could be compared with the expression profile of the
new sample. If the DESNT process is a significant contributor to the expression of the
sample, it could be considered that the sample is a DESNT cancer.

The other approach would be to use a random forest classifier that can predict the
DESNT memberships using a set of specific genes, such as the RF DESNT signature.
This model would be trained on the reference dataset. Then the new sample, suitably
normalised, would be classified by the model.

As for the technology used, there are currently two main approaches used in the
existing gene expression biomarkers. Some biomarkers, such as Mammaprint [15] and
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Dechipher [40] use microarrays for detecting expression of the genes, while others such
as Prolaris [38] and Oncotype DX [39] use RT-qPCR. With the development of the
next-gen sequencing, RNA-seq might also be a suitable technology for the quantification
of gene expression.

RT-qPCR and microarrays produce relatively concordant results in assessing the
gene expression [323]. Microarray and RNA-seq technologies seem to produce similar
results as well [324, 325]. Moreover, in our analysis we have been able to apply the
models trained on microarray data to a RNA-seq dataset. Taken together these results
suggest that either technology is suitable for developing a test.

However, RT-qPCR and custom made arrays are suitable for a small number of genes,
while genome-wide microarrays and RNA-seq tests provide information about not only
the genes useful for classification, but other potentially useful genes as well. This
additional data can be collected into large sets of samples, that can further help improve
our understanding of cancer. For example, the GenomeDx Biosciences company, which
produces the Dechipher test (based on exon microarrays), collects whole-genome
transcriptome data from patients that are using the Dechipher test and creates large
databases of samples with clinically annotations. As a proof of usefulness of this
approach, You et al. [284] published a study based on over 4,000 samples of which
many were obtained from the Dechipher database.

In terms of cost, a PCR based test would be less expensive and easy to run in a
hospital. Whole transcriptome on the other hand might be more expensive, and, also,
would require a more complex set-up.

6.4.2 The characterisation of other LPD groups

In this thesis we prioritised the study of the DESNT group, as it has invariably shown
poor prognosis. However, LPD provides description of the other processes involved in
prostate cancer. Besides the DESNT cancers, there are other processes that are highly
correlated across datasets.

In Figure 6.1 we present an overall image of how the LPD processes identified in
the representative LPD runs relate to each other. To obtain this image we considered
all LPD groups identified in all six datasets, including the TCGA dataset (for which
we calculated a LPD decomposition into four processes, of which one proved to be
a DESNT group). We therefore worked with 34 processes (eight from MSKCC and
CancerMap, six from CamCap, five from Klein, four from TCGA and three from
Stephenson). Between each possible pair of processes we calculated a distance based
on the correlation between the expression profiles of the two processes, as described
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in Section 5.7. In this way we obtained a distance matrix. Using the multidimensional
scaling (MDS) technique [326], we converted the distance matrix to a two dimensional
representation of the relation between all LPD processes.
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Figure 6.1 The relationship between LPD processes. Each vertex corresponds to an LPD
process. The red vertices correspond to the DESNT processes, while the yellow ones
correspond to the non-DESNT processes. The distance between vertices is inversely
proportional to the correlation between the expression profile of the groups which they
represent.

The MDS decomposition suggests 3 main clusters of related processes (the groups
of processes surrounded by red, blue and green ellipses). One of them, the green one,
might contain two subclusters, depicted with dashed green lines. For simplicity, we will
refer to these clusters as the red, blue and green clusters.

6.4.2.1 The red cluster

The red cluster, contains all the DESNT groups. Additionally it contains four non-
DESNT groups, each one from a different dataset (CamCap LPD1, CancerMap LPD4,
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MSKCC LPD6 and Klein LPD4). None of these groups exhibits poor prognosis
(log-rank p-value: CancerMap LPD4 p=0.24, CamCap LPD1 p=0.61, MSKCC LPD6
p=0.4).

Despite the overall similarity between these groups and DESNT, the fact that
LPD separated them from DESNT suggests some critical underlying differences. One
hypothesis would be that the samples in these groups are in process of progressing
to DESNT, but, have not acquired some key alterations which make them behave
aggressively yet, as the DESNT cancers do.

Another hypothesis is that there are three big types of prostate cancer, represented
by the red, blue and green clusters (or four if we consider the two green subclusters as
two separate types). Each of these three types contains distinct subtypes, with different
behaviour. The red cluster might contain at least two subtypes of cancer. One of them
is DESNT and the other one a non-aggressive subtype.

The differences between the DESNT groups and the non-DESNT groups in the red
cluster, which contain indolent cancers, might hold the key to what makes the DESNT
cancers aggressive. As LPD has been able to find that these subtypes are similar, but at
the same time different, the top 500 genes used for LPD would be a good starting point
in this line of enquiry.

6.4.2.2 The blue and green clusters

The blue cluster contains, amongst other processes, the MSKCC LPD7 process (which
contains only benign samples), the CamCap LPD3 process, also containing many benign
samples and the Stephenson LPD1 process, which contains benign samples too. The
presence of these groups in the blue cluster suggests an expression profile closer to the
normal prostate tissue.

However, in this cluster there is another set of processes, such as CamCap LPD5,
CancerMap LPD6 and MSKCC LPD8, which contain a mixture of benign samples and
high risk samples. Of these, CamCap LPD5 has significantly poor outcome (log-rank
p-value 0.036). In fact, the CamCap LPD5 is the only non-DESNT group that exhibits
significantly poor prognosis in all datasets. The other two groups CancerMap LPD6 and
MSKCC LPD 8 do not exhibit poor prognosis (log rank p-values 0.57 and respectively
0.22).

The green cluster shows a clear separation between two sets of processes. How-
ever, further analysis is required for determining the differences between these sets of
processes.
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6.4.3 The use of improved versions of LPD

The main motivation for choosing the LPD model proposed by Rogers et al. [209] in our
analysis was the fact that our team had previously used it successfully for classifying
breast cancer data [302]. We therefore hypothesised that it could yield good results for
prostate cancer as well, which we consider it did.

However, several other versions of the LPD model have been developed. One of
them, proposed by Ying et al. [327], uses the same specifications for the model, but an
improved framework for parameter estimation (model fitting). Instead of the standard
variational Bayes (VB) method, used in Rogers et al. [209], this new version uses the
marginalised variational Bayes (MVB) framework [327, 328]. In essence, the idea
behind these two approaches is the same, namely to estimate a lower bound for the
likelihood function described in Section 3.2.1.3. The main difference between them is
the strategy used for deriving the lower bound. It can be shown mathematically that
the strategy behind MVB offers better solutions [327]. Also numerical experiments
confirmed this aspect [327].

A further improvement of the LPD model has been proposed by Masada et al.
[329]. This method improves the model solutions by using a new parameter estimation
framework designated MVB+, based on the MVB method. In addition to previous
approaches, this solution allows for the model hyperparameteres (such as the sigma
parameter described in Sections 5.5.2 and 3.2.1.3) to be re-estimated, during model
training.

Besides the fact that it produces even better model fittings than the MVB model
[329], this approach also simplifies the choice of initial model parameters. As described
in Sections 5.5.2, we estimate the initial LPD parameters in three steps. In this new
approach there is no need for steps one and two anymore. The sigma is now intrinsically
determined and we only need to estimate the number of processes underlying the data.

Another very appealing feature of the MVB and MVB+ approaches is the run time.
The authors of the MVB+ approach claim that fitting this version of LPD with 10
processes to a dataset of 286 samples and 17,816 genes took only 174 minutes on an
average performance computer [329]. This time is about 10% larger than for the MVB
approach [329]. However, compared to the version of LPD we used in our analysis
this is a significant improvement. For a dataset of 320 samples and only 500 genes we
needed around 24 hours to fit an LPD model with 8 processes.
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6.4.4 The application of LPD on other types of cancer

LPD has been previously used to describe four subgroups of breast cancer, two with
good outcome and two with poor outcome [302]. In our analysis we have also been
able to use LPD to describe a poor prognosis molecular subtype of prostate cancer. As
LPD proved its utility in the study of two different types of cancer, it might be useful in
studying other types of cancer, especially now that large-scale microarray and RNA-seq
data is available.

One type of cancer that could probably benefit from a profiling using LPD is
colorectal cancer. Colorectal cancer, as prostate cancer, is a highly heterogenous disease
[330]. In the past few years several groups reported unsupervised classification that
lead to the definition of molecular subtypes of colorectal cancer [331–338]. However,
the results are dissimilar [330]. One of the possible reasons could be that six out of the
eight studies [331–336] employed hierarchical clustering for identifying the subtypes.
As our data suggests, hierarchical clustering, despite its widespread use, might not be
suitable for genetic profiles. Only two other studies [337, 338] used a more advanced
method, namely the non-negative matrix factorization (NMF) [339].

Recently, Guinney et al. [330] aggregated the data from several sources obtaining a
set of 4,151 samples which were normalised to the same scale. Six of the above models
[332–335, 337, 338] were independently applied on the set of samples. They produced
six different classifications, predicting between three to six subtypes of colorectal cancer.
The results were then aggregated to produce a consensus classification of colorectal
into four subtypes.

As there it is a wealth of data available (over 4,000 samples), and the results
produced so far have been quite heterogeneous, it would be interesting to see if LPD
could produce a robust identification of different subtypes.

6.5 Conclusions

In this thesis we identified several possible transcriptional alterations that, if validated,
can lead to a better understanding of aggressive prostate cancer. Also we identified
a robust subtype of cancer, denoted DESNT. Classification of a cancer as DESNT,
when used together with standard clinical indicators (stage, Gleason score, PSA) should
significantly enhance the ability to identify patients whose cancers will progress. In
turn this could allow the targeting of radical therapies such as radiotherapy and surgery
to aggressive disease avoiding the side effects of treatment, including impotence, in
men with non-aggressive disease.
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methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer.
Molecular Cancer Research, 12(8):1112–1127, 2014.

[345] Julia Ciampa, Meredith Yeager, Laufey Amundadottir, Kevin Jacobs, Peter Kraft,
Charles Chung, Sholom Wacholder, Kai Yu, William Wheeler, Michael J Thun,
et al. Large-scale exploration of gene–gene interactions in prostate cancer using a
multistage genome-wide association study. Cancer Research, 71(9):3287–3295,
2011.

[346] Jing-Dong Zhou, Dong-Ming Yao, Ying-Ying Zhang, Ji-Chun Ma, Xiang-Mei
Wen, Jing Yang, Hong Guo, Qin Chen, Jiang Lin, and Jun Qian. GPX3 hyper-
methylation serves as an independent prognostic biomarker in non-m3 acute
myeloid leukemia. American Journal of Cancer Research, 5(5):1786, 2015.

[347] Hua Zhao, Jingyi Li, Xin Li, Chao Han, Yi Zhang, Lili Zheng, and Mingzhou
Guo. Silencing GPX3 expression promotes tumor metastasis in human thyroid
cancer. Current Protein and Peptide Science, 16(4):316–321, 2015.

[348] Leonel Maldonado, Mariana Brait, Myriam Loyo, Lauren Sullenberger, Kevin
Wang, Sarah B Peskoe, Eli Rosenbaum, Roslyn Howard, Antoun Toubaji, Roula
Albadine, et al. GSTP1 promoter methylation is associated with recurrence in
early stage prostate cancer. The Journal of Urology, 192(5):1542–1548, 2014.

[349] JJH Eijsink, A Lendvai, V Deregowski, HG Klip, G Verpooten, L Dehaspe,
GH de Bock, H Hollema, W van Criekinge, E Schuuring, et al. A four-gene
methylation marker panel as triage test in high-risk human papillomavirus posi-
tive patients. International Journal of Cancer, 130(8):1861–1869, 2012.

[350] Donkena Krishna Vanaja, Mathias Ehrich, Dirk Van den Boom, John C Cheville,
R Jeffrey Karnes, Donald J Tindall, Charles R Cantor, and Charles YF Young.
Hypermethylation of genes for diagnosis and risk stratification of prostate cancer.
Cancer Investigation, 27(5):549–560, 2009.

[351] Lu Chen, Liping Su, Jianfang Li, Yanan Zheng, Beiqin Yu, Yingyan Yu, Min
Yan, Qinlong Gu, Zhenggang Zhu, and Bingya Liu. Hypermethylated FAM5C
and MYLK in serum as diagnosis and pre-warning markers for gastric cancer.
Disease markers, 32(3):195–202, 2012.

[352] Silvia Esposito, Marco V Russo, Irma Airoldi, Maria Grazia Tupone, Carlo
Sorrentino, Giulia Barbarito, Serena Di Meo, and Emma Di Carlo. SNAI2/Slug
gene is silenced in prostate cancer and regulates neuroendocrine differentiation,
metastasis-suppressor and pluripotency gene expression. Oncotarget, 6(19):
17121, 2015.

[353] GE Lind, RI Skotheim, MF Fraga, VM Abeler, M Esteller, and RA Lothe. Novel
epigenetically deregulated genes in testicular cancer include homeobox genes
and SCGB3A1 (HIN-1). The Journal of Pathology, 210(4):441–449, 2006.



References 218

[354] Kim Andresen, Kirsten Muri Boberg, Hege Marie Vedeld, Hilde Honne, Pe-
ter Jebsen, Merete Hektoen, Christopher A Wadsworth, Ole Petter Clausen,
Knut EA Lundin, Vemund Paulsen, et al. Four DNA methylation biomarkers in
biliary brush samples accurately identify the presence of cholangiocarcinoma.
Hepatology, 61(5):1651–1659, 2015.

[355] Hai-Ning Chen, Kefei Yuan, Na Xie, Kui Wang, Zhao Huang, Yan Chen, Qianhui
Dou, Min Wu, Edouard C Nice, Zong-Guang Zhou, et al. PDLIM1 stabilizes
the e-cadherin/β -catenin complex to prevent epithelial–mesenchymal transition
and metastatic potential of colorectal cancer cells. Cancer Research, 76(5):
1122–1134, 2016.

[356] Jiang-Liu Yu, Ping Lv, Jing Han, Xin Zhu, Lian-Lian Hong, Wang-Yu Zhu, Xin-
Bao Wang, Yi-Chen Wu, Pei Li, and Zhi-Qiang Ling. Methylated TIMP-3 DNA
in body fluids is an independent prognostic factor for gastric cancer. Archives of
Pathology and Laboratory Medicine, 138(11):1466–1473, 2014.
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Appendix A

Supplementary data for Chapter 4

Sample Patient FISH
rearr.

Benign Stroma Tumour

TB08.0234_v1 TB08.0234 80 20 0
TB08.0234_v3 TB08.0234 80 20 0
TB08.0262_v3 TB08.0262 N 0 38 75
TB08.0268_v3 TB08.0268 N 15 78 5
TB08.0271_v1 TB08.0271 N 33 68 10
TB08.0311_v2 TB08.0311 Y 5 70 33
TB08.0311_v3 TB08.0311 Y 15 73 10
TB08.0327_v1 TB08.0327 Y 19 46 30
TB08.0341_v1 TB08.0341 50 50 0
TB08.0341_v5 TB08.0341 N 25 40 25
TB08.0359_v16 TB08.0359 40 60 0
TB08.0359_v2 TB08.0359 N 20 70 0
TB08.0368_v14 TB08.0386 Y 35 60 0
TB08.0429_v7 TB08.0429 29 69 3
TB08.0489_v5 TB08.0489 44 56 0
TB08.0489_v13 TB08.0489 Y 40 40 30
TB08.0501_v8 TB08.0501 N 7 58 33
TB08.0519_v14 TB08.0519 Y 3 23 75
TB08.0533_v6 TB08.0533 N 10 40 50
TB08.0588_v1 TB08.0588 Y 10 50 40
TB08.0589_v1 TB08.0589 N 8 54 36
TB08.0589_v2 TB08.0589 N 0 0 10
TB08.0589_v4 TB08.0589 N 15 85 0
TB08.0589_v5 TB08.0589 N 0 83 8
TB08.0598_v12 TB08.0598 N 5 45 45
TB08.0609_v11 TB08.0609 Y 18 66 15
TB08.0667_v9 TB08.0667 N 19 40 40
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TB08.0667_v6 TB08.0667 30 70 0
TB08.0689_v14 TB08.0689 Y 28 33 40
TB08.0689_v15 TB08.0689 Y 20 10 70
TB08.0689_v2 TB08.0689 Y 24 53 21
TB08.0689_v8 TB08.0689 N 20 48 33
TB08.0691_v13 TB08.0691 Y 5 43 50
TB08.0716_v18 TB08.0716 N 15 85 0
TB08.0719_v11 TB08.0719 N 5 43 50
TB08.0731_v13 TB08.0731 Y 15 83 3
TB08.0816_v2 TB08.0816 Y 18 63 18
TB08.0817_v14 TB08.0817 N 18 46 34
TB08.0848_v10 TB08.0848 Y 10 55 35
TB08.0869_v4 TB08.0869 Y 0 0 5
TB08.0869_v6 TB08.0869 Y 0 80 15
TB08.0869_v7 TB08.0869 Y 5 73 15
TB08.0870_v18 TB08.0870 N 10 70 8
TB08.0872_v2 TB08.0872 Y 10 68 20
TB08.0877_v19 TB08.0877 Y 25 35 40
TB08.0879_v11 TB08.0879 Y 25 65 5
TB08.0884_v2 TB08.0884 N 60 40 0
TB08.0927_v5 TB08.0927 N 15 65 20
TB08.0943_v7 TB08.0943 N 10 90 0
TB08.0958_v12 TB08.0958 Y 18 23 55
TB08.0958_v13 TB08.0958 Y 28 28 45
TB08.0973_v9 TB08.0973 N 15 60 23
TB08.0978_v7 TB08.0978 N 0 75 20
TB08.0978_v8 TB08.0978 N 10 40 45
TB08.0978_v9 TB08.0978 N 3 66 29
TB08.0986_v2 TB08.0986 Y 30 65 38
TB08.0987_v6 TB08.0987 N 6 43 49
TB08.0993_v12 TB08.0993 Y 34 61 4
TB08.0997_v6 TB08.0997 20 80 0
TB08.0999_v11 TB08.0999 N 30 33 30
TB08.0999_v2 TB08.0999 Y 25 48 48
TB08.1015_v10 TB08.1015 Y 5 15 78
TB08.1015_v11 TB08.1015 Y 5 18 78
TB08.1015_v9 TB08.1015 Y 1 44 50
TB08.1019_v1 TB08.1019 Y 20 70 10
TB08.1019_v14 TB08.1019 Y 19 68 10
TB08.1019_v15 TB08.1019 Y 30 48 20
TB08.1019_v2 TB08.1019 Y 0 0 30
TB08.1026_v17 TB08.1026 N 5 13 78
TB08.1044_v7 TB08.1044 N 18 65 40
TB08.1053_v5 TB08.1053 Y 5 43 48
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TB08.1063_v16 TB08.1063 Y 5 40 50
TB08.1063_v8 TB08.1063 N 19 48 31
TB08.1083_v3 TB08.1083 Y 11 54 33
TB08.1116_v2 TB08.1116 Y 16 69 15
TB08.1116_v3 TB08.1116 Y 3 40 56
TB08.1116_v9 TB08.1116 Y 18 53 30
TB08.1159_v2 TB08.1159 Y 50 50 0
TB08.0601_v16 TB08.601 30 60 NA
TB09.0217_v16 TB09.0217 Y 3 30 63
TB09.0217_v7 TB09.0217 N 33 40 28
TB09.0219_v13 TB09.0219 N 15 75 10
TB09.0219_v2 TB09.0219 Y 29 60 11
TB09.0219_v21 TB09.0219 Y 10 33 57
TB09.0219_v8 TB09.0219 N 14 80 4
TB09.0238_v12 TB09.0238 N 20 80 0
TB09.0238_v18 TB09.0238 Y 10 40 50
TB09.0238_v5 TB09.0238 N 5 50 25
TB09.0272_v6 TB09.0272 Y 5 45 65
TB09.0272_v7 TB09.0272 N 20 45 35
TB09.0295_v2 TB09.0295 N 5 25 70
TB09.0413_v11 TB09.0413 N 10 35 68
TB09.0413_v8 TB09.0413 N 15 80 5
TB09.0443_v3 TB09.0443 Y 18 80 2
TB09.0443_v8 TB09.0443 N 0 35 65
TB09.0448_v8 TB09.0448 N 15 53 33
TB09.0462_v7 TB09.0462 Y 13 80 8
TB09.0471_v11 TB09.0471 Y 20 60 20
TB09.0504_v4 TB09.0504 N 10 40 50
TB09.0550_v15 TB09.0550 Y 3 38 55
TB09.0606_v3 TB09.0606 N 15 61 18
TB09.0706_v5 TB09.0706 Y 6 36 54
TB09.0720_v19 TB09.0720 Y 5 73 23
TB09.0721_v14 TB09.0721 N 13 75 10
TB09.0721_v15 TB09.0721 Y 30 68 3
TB09.0725_v9 TB09.0725 N 5 25 68
TB09.0774_v1 TB09.0774 Y 15 85 0
TB09.0774_v15 TB09.0774 N 35 55 10
TB09.0850_v2 TB09.0850 Y 5 90 5
TB09.0962_v13 TB09.0962 N 15 60 23
TB09.0962_v16 TB09.0962 Y 5 18 75
NP1 ICR_38 N NA NA NA
NP10 ICR_47 N NA NA NA
NP11 ICR_50 N NA NA NA
NP12 ICR_58 N NA NA NA
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NP14 ICR_35 N NA NA NA
NP15 ICR_65 N NA NA NA
NP16 ICR_69 N NA NA NA
NP17 ICR_51 N 35 65 0
NP18 ICR_66 N 15 85 0
NP19 ICR_73 N 25 75 0
NP2 ICR_37 N 65 35 0
NP20 ICR_57 N 40 60 0
NP21 ICR_56 N 5 95 0
NP4 ICR_47 N 45 50 0
NP5 ICR_59 N 75 25 0
NP8 ICR_34 N NA NA NA
NP9 ICR_54 N NA NA NA
PRC140 ICR_68 Y 35 55 10
PRC101 ICR_44 Y 40 20 40
PRC102 ICR_34 N 20 20 60
PRC103 ICR_43 N 60 15 20
PRC105 ICR_54 N 25 30 45
PRC106 ICR_54 N 35 50 15
PRC109 ICR_49 Y 0 40 60
PRC10 ICR_28 Y NA NA NA
PRC110 ICR_49 Y 2 50 55
PRC111 ICR_49 N 50 25 20
PRC112 ICR_60 N 60 30 NA
PRC113 ICR_63 N 10 15 70
PRC114 ICR_41 Y 30 30 40
PRC115 ICR_41 Y 40 30 30
PRC116 ICR_17 Y 30 20 50
PRC117 ICR_17 Y 50 20 20
PRC118 ICR_50 N 3 6 90
PRC119 ICR_59 Y 45 25 30
PRC11 ICR_22 Y 5 35 60
PRC122 ICR_17 Y 70 27 3
PRC123 ICR_40 N 50 30 5
PRC124 ICR_61 N 40 40 20
PRC125 ICR_40 N 5 50 45
PRC126 ICR_48 Y 0 25 70
PRC127 ICR_48 Y NA 30 50
PRC128 ICR_55 Y 60 25 15
PRC129 ICR_55 Y 2 25 70
PRC12 ICR_4 0 10 85
PRC130 ICR_58 N 0 25 70
PRC133 ICR_35 N 0 10 90
PRC134 ICR_35 N 50 50 0
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PRC135 ICR_68 Y 5 35 60
PRC136 ICR_71 N 0 30 70
PRC137 ICR_65 N 15 55 30
PRC138 ICR_69 N 5 35 60
PRC139 ICR_69 N 0 30 70
PRC13 ICR_25 Y 35 40 25
PRC141 ICR_67 Y 5 35 60
PRC142 ICR_73 N 50 50 0
PRC143 ICR_57 Y 35 60 5
PRC144 ICR_45 Y 0 30 70
PRC145 ICR_56 N 40 55 5
PRC146 ICR_70 N 38 60 2
PRC147 ICR_70 Y 35 60 5
PRC148 ICR_39 N 25 40 35
PRC149 ICR_72 N 35 60 5
PRC14 ICR_2 N 50 50 0
PRC150 ICR_53 Y 30 40 30
PRC151 ICR_64 N 10 40 50
PRC152 ICR_33 N 25 60 15
PRC153 ICR_33 N 30 50 20
PRC154 ICR_1 N 0 35 65
PRC155 ICR_62 N 5 30 65
PRC156 ICR_74 Y 0 50 50
PRC157 ICR_8 N 0 15 85
PRC158 ICR_80 N 0 30 70
PRC159 ICR_79 N 20 40 40
PRC15 ICR_7 N 50 50 0
PRC160 ICR_76 N 5 20 75
PRC161 ICR_80 N 10 30 60
PRC162 ICR_81 Y 20 30 50
PRC163 ICR_73 N 20 30 50
PRC164 ICR_3 Y 35 25 40
PRC165 ICR_36 Y 40 30 30
PRC166 ICR_19 Y 10 25 65
PRC167 ICR_78 Y 5 25 70
PRC168 ICR_77 Y 0 30 70
PRC169 ICR_75 Y 20 70 10
PRC16 ICR_23 40 60 0
PRC17 ICR_6 Y 50 40 10
PRC18 ICR_25 NA NA NA
PRC19 ICR_27 0 95 5
PRC1 ICR_20 Y 25 30 45
PRC20 ICR_82 Y 35 50 15
PRC21 ICR_82 Y 45 40 15
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PRC22 ICR_24 60 40 0
PRC23 ICR_26 60 40 0
PRC24 ICR_12 Y 25 45 30
PRC25 ICR_29 Y 30 45 35
PRC26 ICR_30 N 20 65 15
PRC27 ICR_13 15 35 50
PRC28 ICR_15 55 40 5
PRC29 ICR_18 N 50 35 15
PRC2 ICR_2 Y 60 30 10
PRC30 ICR_22 Y NA NA NA
PRC31 ICR_14 95 0 5
PRC32 ICR_21 50 45 5
PRC34 ICR_5 N 40 60 0
PRC35 ICR_5 Y 40 60 0
PRC36 ICR_12 Y 50 45 5
PRC38 ICR_11 Y 25 60 15
PRC39 ICR_32 30 60 10
PRC3 ICR_7 Y 20 30 50
PRC40 ICR_20 Y 0 30 70
PRC42 ICR_10 Y 50 45 5
PRC45 ICR_14 60 40 0
PRC4 ICR_9 Y 35 40 25
PRC5 ICR_16 Y 47 50 3
PRC6 ICR_23 10 10 80
PRC7 ICR_10 50 0 50
PRC8 ICR_23 10 10 80
PRC9 ICR_31 35 35 30
ST1 ICR_48 Y 0 100 0
ST2 ICR_46 N 0 100 0
ST3 ICR_52 N 5 95 0
ST4 ICR_66 N 0 100 0
ST5 ICR_76 N 0 100 0

Table A.1 The break-apart FISH status and the percentages for each tissue type in the
CancerMap samples used for clinical correlation.
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5’ partner AR Citation Rearr.

ACSL3 Y Tandefelt et al. [136] Y
AK311452 N Pflueger et al. [263] N
ALG5 N Pflueger et al. [263] Y
ARHGEF3 Y Baca et al. [54] Y
ATP1A4 N Baca et al. [54] Y
AX747630 N Maher et al. [262] Y
AZGP1 Y Pflueger et al. [263] N
BRAF N Baca et al. [54] Y
C15ORF21 Y Tandefelt et al. [136] Y
CANT Y Tandefelt et al. [136] Y
CDKN1A Y Pflueger et al. [263] Y
CSMD2 N Baca et al. [54] Y
DDX5 N Tandefelt et al. [136] Y
EIF4E2 N Maher et al. [262] Y
ERG N Baca et al. [54] Y
ESRP1 N Pflueger et al. [263] Y
EST14 Y Tandefelt et al. [136] Y
FKBP5 Y Pflueger et al. [263] Y
FOXP1 N Tandefelt et al. [136] Y
GSK3B N Baca et al. [54] Y
HARS2 Y Pflueger et al. [263] N
HERPUD1 Y Maher et al. [262] Y
HERV-K_22q11.23 Y Tandefelt et al. [136] Y
HERVK17 Y Tandefelt et al. [136] Y
HJURP N Maher et al. [262] Y
HNRPA2B1 N Tandefelt et al. [136] Y
KIF2A N Baca et al. [54] Y
KLK2 Y Tandefelt et al. [136] Y
LMAN2 Y Pflueger et al. [263] Y
LMBR1 N Baca et al. [54] Y
MIER2 N Pflueger et al. [263] Y
MIPOL1 N Pflueger et al. [263] Y
NDRG1 Y Tandefelt et al. [136] Y
NUP35 N Baca et al. [54] Y
NXPH1 N Baca et al. [54] Y
OR15E2 N Barros-Silva et al. [261] Y
PDZRN3 Y Baca et al. [54] Y
PTEN Y Baca et al. [54] Y
RC3H2 N Pflueger et al. [263] Y
SLC45A3 Y Pflueger et al. [263] Y/N
SMG5 N Pflueger et al. [263] N
ST6GALNAC6 N Pflueger et al. [263] N
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STRN4 N Pflueger et al. [263] Y
TBC1D12 N Baca et al. [54] Y
TIA1 Y Maher et al. [262] Y
TMPRSS2 Y Tomlins et al. [32] Y
TNPO1 N Pflueger et al. [263] Y
UBTF Y Barros-Silva et al. [261] Y
USP10 N Maher et al. [262] Y
VMAC N Pflueger et al. [263] N
XKR4 N Baca et al. [54] Y
YIPF1 N Baca et al. [54] Y
ZDHHC7 N Maher et al. [262] Y
ZNF649 N Pflueger et al. [263] N
ZNF772 N Pflueger et al. [263] N

Table A.2 Known 5’ fusion partners in prostate cancer. The AR column indicates if the
gene is androgen regulated, as determined based on the ARGDB database [340]. The
Rearr. column indicates if the gene is involved in rearrangements (Y) or read-through
transcriptions (N).

3’ partner Citation Rearr.

ABCB9 Pflueger et al. [263] Y
AK094188 Pflueger et al. [263] N
Ak1 Pflueger et al. [263] N
AP3S1 Pflueger et al. [263] Y
BRAF Pflueger et al. [263] Y
CAPS Pflueger et al. [263] N
CD9 Pflueger et al. [263] Y
CYP2A6 Baca et al. [54] Y
DGKB Pflueger et al. [263] Y
DIRC2 Maher et al. [262] Y
ELK4 Pflueger et al. [263] Y/N
ERG Tomlins et al. [32] Y
ETV1 Tomlins et al. [32] Y
ETV4 Tandefelt et al. [136] Y
ETV5 Tandefelt et al. [136] Y
FAF1 Baca et al. [54] Y
FKBP5 Pflueger et al. [263] Y
FLI1 Tandefelt et al. [136] Y
FOXP1 Baca et al. [54] Y
GJC3 Pflueger et al. [263] N
GPSN2 Pflueger et al. [263] Y
GUCY2C Baca et al. [54] Y
HJURP Maher et al. [262] Y
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IKBKB Pflueger et al. [263] Y
INPP4A Maher et al. [262] Y
LYN Baca et al. [54] Y
MLL3 Baca et al. [54] Y
NRF1 Baca et al. [54] Y
PADI6 Baca et al. [54] Y
PAQR6 Pflueger et al. [263] N
PDE4D Baca et al. [54] Y
PIGU Pflueger et al. [263] Y
PLCE1 Baca et al. [54] Y
PRKG1 Baca et al. [54] Y
RAF1 Pflueger et al. [263] Y
RGS3 Pflueger et al. [263] Y
RSRC2 Pflueger et al. [263] Y
SLC14A2 Baca et al. [54] Y
SURF4 Baca et al. [54] Y
TBL1XR1 Baca et al. [54] Y
TMPRSS2 Baca et al. [54] Y
VN1R1 Pflueger et al. [263] N
ZDHHC7 Maher et al. [262] Y
ZMAT2 Pflueger et al. [263] N
ZNF577 Pflueger et al. [263] N

Table A.3 Known 3’ fusion partners in prostate cancer. The Rearr. column indicates if
the gene is involved in rearrangements (Y) or read-through transcriptions (N).
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Figure A.1 The false negatives of the step method for the ERG gene in the ICR dataset.
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Figure A.2 The false negatives of the step method for the ERG gene in the Cambridge
dataset.
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Figure A.3 The false positives of the step method for the ERG gene in the ICR dataset.
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Figure A.4 The false positives of the step method for the ERG gene in the Cambridge
dataset.
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Figure A.5 Histograms depicting the distribution of percentages of samples in which
the jumps are identified.

Rank Gene Gene ID Count Percent.

1 C1QTNF3-AMACR ENSG00000273294 145 61.97
2 GABRB3 ENSG00000166206 145 61.97
3 ARHGEF26 ENSG00000114790 135 57.69
4 TDRD1 ENSG00000095627 135 57.69
5 LUZP2 ENSG00000187398 120 51.28
6 CRISP3 ENSG00000096006 115 49.15
7 GCNT1 ENSG00000187210 113 48.29
8 NEK5 ENSG00000197168 112 47.86
9 F5 ENSG00000198734 108 46.15
10 KCNC2 ENSG00000166006 104 44.44
11 ACSM3 ENSG00000005187 102 43.59
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12 AMACR ENSG00000242110 101 43.16
13 BEND4 ENSG00000188848 100 42.74
14 TMEM178A ENSG00000152154 98 41.88
15 NETO2 ENSG00000171208 94 40.17
16 ERG ENSG00000157554 92 39.32
17 GPR160 ENSG00000173890 89 38.03
18 ZNF385B ENSG00000144331 87 37.18
19 GLYATL1 ENSG00000166840 83 35.47
20 TMEM150C ENSG00000249242 83 35.47
21 TGM3 ENSG00000125780 82 35.04
22 EPCAM ENSG00000119888 81 34.62
23 F2R ENSG00000181104 80 34.19
24 TOX3 ENSG00000103460 78 33.33
25 GAA ENSG00000273259 76 32.48
26 ZYG11A ENSG00000203995 76 32.48
27 PANK3 ENSG00000120137 75 32.05
28 PDE3B ENSG00000152270 75 32.05
29 SLC38A11 ENSG00000169507 75 32.05
30 TRPM4 ENSG00000130529 75 32.05
31 RP11-597D13.9 ENSG00000248429 74 31.62
32 TAF1D ENSG00000166012 74 31.62
33 AGPAT5 ENSG00000155189 73 31.20
34 ABCC4 ENSG00000125257 72 30.77
35 LRRIQ1 ENSG00000133640 72 30.77
36 SLC5A1 ENSG00000100170 72 30.77
37 DNAH8 ENSG00000124721 71 30.34
38 HSPA8 ENSG00000109971 69 29.49
39 ZSCAN12 ENSG00000158691 67 28.63
40 CASD1 ENSG00000127995 66 28.21
41 GNAI1 ENSG00000127955 66 28.21
42 MBOAT2 ENSG00000143797 66 28.21
43 NCALD ENSG00000104490 66 28.21
44 BANK1 ENSG00000153064 65 27.78
45 DSC2 ENSG00000134755 65 27.78
46 FNIP2 ENSG00000052795 65 27.78
47 SLITRK4 ENSG00000179542 65 27.78
48 GNE ENSG00000159921 64 27.35
49 PLA2G7 ENSG00000146070 64 27.35
50 TMEM45B ENSG00000151715 64 27.35
51 CHRM3 ENSG00000133019 63 26.92
52 EFCAB13 ENSG00000178852 63 26.92
53 MYB ENSG00000118513 63 26.92
54 PPM1E ENSG00000175175 63 26.92
55 FMN1 ENSG00000248905 62 26.50
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56 SCIN ENSG00000006747 62 26.50
57 SNHG3 ENSG00000242125 62 26.50
58 STK19 ENSG00000204344 61 26.07
59 AGTR1 ENSG00000144891 60 25.64
60 HPN ENSG00000105707 60 25.64
61 SLC26A4 ENSG00000091137 60 25.64
62 ATP8A2 ENSG00000132932 59 25.21
63 C5orf30 ENSG00000181751 59 25.21
64 DICER1 ENSG00000100697 59 25.21
65 PPP1R9A ENSG00000158528 59 25.21
66 KIAA0101 ENSG00000166803 58 24.79
67 PIK3R2 ENSG00000268173 58 24.79
68 TMEM181 ENSG00000146433 58 24.79
69 TOP2A ENSG00000131747 58 24.79
70 UAP1 ENSG00000117143 57 24.36
71 CNTNAP2 ENSG00000174469 56 23.93
72 NPR3 ENSG00000113389 56 23.93
73 TMC5 ENSG00000103534 56 23.93
74 DMRTA1 ENSG00000176399 55 23.50
75 NEFL ENSG00000277586 55 23.50
76 PGM2L1 ENSG00000165434 55 23.50
77 PSD3 ENSG00000156011 55 23.50
78 ABHD14A-ACY1 ENSG00000114786 54 23.08
79 ATP8A1 ENSG00000124406 54 23.08
80 CADM2 ENSG00000175161 54 23.08
81 CSTF3 ENSG00000176102 54 23.08
82 ECT2 ENSG00000114346 54 23.08
83 SFRP4 ENSG00000106483 54 23.08
84 SLC9A2 ENSG00000115616 54 23.08
85 SPON2 ENSG00000159674 54 23.08
86 GAS5 ENSG00000234741 53 22.65
87 GUCY1B3 ENSG00000061918 53 22.65
88 KCNN2 ENSG00000080709 53 22.65
89 MARC1 ENSG00000186205 53 22.65
90 CADM1 ENSG00000182985 52 22.22
91 CHRNA5 ENSG00000169684 52 22.22
92 GXYLT1 ENSG00000151233 52 22.22
93 TAF4B ENSG00000141384 52 22.22
94 TMEM26 ENSG00000196932 52 22.22
95 TUSC3 ENSG00000104723 52 22.22
96 WT1 ENSG00000184937 52 22.22
97 FAM111B ENSG00000189057 51 21.79
98 GATA6 ENSG00000141448 51 21.79
99 NBN ENSG00000104320 51 21.79
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100 NET1 ENSG00000173848 51 21.79
101 PIGW ENSG00000277161 51 21.79
102 PPAT ENSG00000128059 51 21.79
103 REPS2 ENSG00000169891 51 21.79
104 SLC43A1 ENSG00000149150 51 21.79
105 SLCO1A2 ENSG00000084453 51 21.79
106 ST8SIA6 ENSG00000148488 51 21.79
107 TMEM106C ENSG00000134291 51 21.79
108 TTK ENSG00000112742 51 21.79
109 AC005062.2 ENSG00000243004 50 21.37
110 CCDC110 ENSG00000168491 50 21.37
111 ENTPD5 ENSG00000187097 50 21.37
112 HOOK1 ENSG00000134709 50 21.37
113 RP11-115D19.1 ENSG00000251095 50 21.37
114 SLC26A5 ENSG00000170615 50 21.37
115 AGR2 ENSG00000106541 49 20.94
116 FAM3D ENSG00000198643 49 20.94
117 OPRK1 ENSG00000082556 49 20.94
118 PRR16 ENSG00000184838 49 20.94
119 DNAH5 ENSG00000039139 48 20.51
120 EIF4A2 ENSG00000156976 48 20.51
121 FAM57A ENSG00000167695 48 20.51
122 MCMDC2 ENSG00000178460 48 20.51
123 PDLIM5 ENSG00000163110 48 20.51
124 POPDC3 ENSG00000132429 48 20.51
125 RMI1 ENSG00000178966 48 20.51
126 SLCO1B3 ENSG00000257046 48 20.51
127 DDX43 ENSG00000080007 47 20.09
128 DNAH14 ENSG00000185842 47 20.09
129 KHDRBS3 ENSG00000131773 47 20.09
130 MAP2K6 ENSG00000108984 47 20.09
131 NAALADL2 ENSG00000177694 47 20.09
132 NCL ENSG00000115053 47 20.09
133 RAPGEF4 ENSG00000091428 47 20.09
134 THBS4 ENSG00000113296 47 20.09
135 TRNT1 ENSG00000072756 47 20.09
136 CDK19 ENSG00000155111 46 19.66
137 CLGN ENSG00000153132 46 19.66
138 DDX60L ENSG00000181381 46 19.66
139 DNMBP ENSG00000107554 46 19.66
140 GALNT3 ENSG00000115339 46 19.66
141 HTATSF1 ENSG00000102241 46 19.66
142 LYZ ENSG00000090382 46 19.66
143 PIAS2 ENSG00000078043 46 19.66
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144 RAB3IP ENSG00000127328 46 19.66
145 TMEM209 ENSG00000146842 46 19.66
146 ANKRD32 ENSG00000133302 45 19.23
147 DOPEY2 ENSG00000142197 45 19.23
148 MGAT4A ENSG00000071073 45 19.23
149 NDC1 ENSG00000058804 45 19.23
150 PLA2G2A ENSG00000188257 45 19.23
151 RIMKLA ENSG00000177181 45 19.23
152 THSD7A ENSG00000005108 45 19.23
153 URI1 ENSG00000105176 45 19.23
154 ZNF277 ENSG00000198839 45 19.23
155 AADAT ENSG00000109576 44 18.80
156 CCDC138 ENSG00000163006 44 18.80
157 CRISPLD1 ENSG00000121005 44 18.80
158 DAPK1 ENSG00000196730 44 18.80
159 FBP1 ENSG00000165140 44 18.80
160 MELK ENSG00000165304 44 18.80
161 MSR1 ENSG00000038945 44 18.80
162 SLC9A7 ENSG00000065923 44 18.80
163 SNX16 ENSG00000104497 44 18.80
164 TSPAN8 ENSG00000127324 44 18.80
165 DDX1 ENSG00000079785 43 18.38
166 HGF ENSG00000019991 43 18.38
167 KIAA1324L ENSG00000164659 43 18.38
168 LEMD3 ENSG00000174106 43 18.38
169 LPL ENSG00000175445 43 18.38
170 MGAT2 ENSG00000168282 43 18.38
171 NRCAM ENSG00000091129 43 18.38
172 PAWR ENSG00000177425 43 18.38
173 PHOSPHO2 ENSG00000144362 43 18.38
174 PNN ENSG00000100941 43 18.38
175 PTPRN2 ENSG00000155093 43 18.38
176 RAB4A ENSG00000168118 43 18.38
177 RCN2 ENSG00000117906 43 18.38
178 RP11-296A16.1 ENSG00000262560 43 18.38
179 TMEM2 ENSG00000135048 43 18.38
180 TPD52 ENSG00000076554 43 18.38
181 ANKRD37 ENSG00000186352 42 17.95
182 ARHGAP28 ENSG00000088756 42 17.95
183 CCDC15 ENSG00000149548 42 17.95
184 CCNG1 ENSG00000113328 42 17.95
185 CMPK1 ENSG00000162368 42 17.95
186 FMNL2 ENSG00000157827 42 17.95
187 GNPNAT1 ENSG00000100522 42 17.95
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188 IGJ ENSG00000132465 42 17.95
189 INTS8 ENSG00000164941 42 17.95
190 KIFAP3 ENSG00000075945 42 17.95
191 SCGN ENSG00000079689 42 17.95
192 SEC22C ENSG00000093183 42 17.95
193 SFPQ ENSG00000116560 42 17.95
194 TDO2 ENSG00000151790 42 17.95
195 UNC13B ENSG00000198722 42 17.95
196 ASB5 ENSG00000164122 41 17.52
197 CCT3 ENSG00000163468 41 17.52
198 CENPN ENSG00000166451 41 17.52
199 DAB2 ENSG00000153071 41 17.52
200 DDX58 ENSG00000107201 41 17.52

Table A.4 Top 200 candidates with the largest number of step-up jumps in the Can-
cerMap dataset.

Rank Gene Gene ID Count Percent.

1 OLFM4 ENSG00000102837 122 32.97
2 TDRD1 ENSG00000095627 120 32.43
3 CHRDL1 ENSG00000101938 116 31.35
4 PLA2G7 ENSG00000146070 114 30.81
5 SYNM ENSG00000182253 104 28.11
6 SLC38A11 ENSG00000169507 102 27.57
7 SRD5A2 ENSG00000277893 100 27.03
8 MAN1A1 ENSG00000111885 98 26.49
9 SLC22A3 ENSG00000146477 98 26.49
10 ERG ENSG00000157554 96 25.95
11 TIMP3 ENSG00000100234 96 25.95
12 TMEM178A ENSG00000152154 96 25.95
13 F3 ENSG00000117525 94 25.41
14 HSD17B6 ENSG00000025423 94 25.41
15 CRISP3 ENSG00000096006 92 24.86
16 NR4A2 ENSG00000153234 92 24.86
17 SLC19A2 ENSG00000117479 90 24.32
18 EDNRB ENSG00000136160 88 23.78
19 MYBPC1 ENSG00000196091 88 23.78
20 NPR3 ENSG00000113389 88 23.78
21 PANK3 ENSG00000120137 88 23.78
22 DSC3 ENSG00000134762 86 23.24
23 LTBP1 ENSG00000049323 86 23.24
24 PRKCD ENSG00000163932 86 23.24
25 SLC12A2 ENSG00000064651 86 23.24
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26 TIPARP ENSG00000163659 86 23.24
27 ATF3 ENSG00000162772 84 22.70
28 MME ENSG00000196549 84 22.70
29 PDK4 ENSG00000004799 84 22.70
30 SESN3 ENSG00000149212 84 22.70
31 ATP1B1 ENSG00000143153 80 21.62
32 F5 ENSG00000198734 80 21.62
33 FHL1 ENSG00000022267 80 21.62
34 SPG20 ENSG00000133104 80 21.62
35 TMEM150C ENSG00000249242 80 21.62
36 USP1 ENSG00000162607 80 21.62
37 ZNF655 ENSG00000197343 80 21.62
38 ACSL5 ENSG00000197142 78 21.08
39 ETS2 ENSG00000157557 78 21.08
40 PTGS2 ENSG00000073756 78 21.08
41 CDS1 ENSG00000163624 76 20.54
42 ITGA5 ENSG00000161638 76 20.54
43 SLC36A1 ENSG00000123643 76 20.54
44 CCBL2 ENSG00000137944 74 20.00
45 CFB ENSG00000244255 74 20.00
46 DDX60L ENSG00000181381 74 20.00
47 FBP1 ENSG00000165140 74 20.00
48 LIFR ENSG00000113594 74 20.00
49 SERPINE1 ENSG00000106366 74 20.00
50 ZDHHC17 ENSG00000186908 74 20.00
51 AOX1 ENSG00000138356 72 19.46
52 KCNC2 ENSG00000166006 72 19.46
53 PAMR1 ENSG00000149090 72 19.46
54 SLC39A10 ENSG00000196950 72 19.46
55 TRAM1 ENSG00000067167 72 19.46
56 ALDH1A3 ENSG00000184254 70 18.92
57 BEND4 ENSG00000188848 70 18.92
58 ELF3 ENSG00000163435 70 18.92
59 FADS1 ENSG00000149485 70 18.92
60 KDR ENSG00000128052 70 18.92
61 MAOB ENSG00000069535 70 18.92
62 REST ENSG00000084093 70 18.92
63 SCIN ENSG00000006747 70 18.92
64 TP63 ENSG00000073282 70 18.92
65 CAB39 ENSG00000135932 68 18.38
66 ERLIN1 ENSG00000107566 68 18.38
67 FAM13C ENSG00000148541 68 18.38
68 GNAI1 ENSG00000127955 68 18.38
69 GUCY1A3 ENSG00000164116 68 18.38
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70 INSIG1 ENSG00000186480 68 18.38
71 LUZP2 ENSG00000187398 68 18.38
72 PLA1A ENSG00000144837 68 18.38
73 PTPRC ENSG00000081237 68 18.38
74 RAB27A ENSG00000069974 68 18.38
75 RMST ENSG00000255794 68 18.38
76 RRAGD ENSG00000025039 68 18.38
77 SLC35A3 ENSG00000117620 68 18.38
78 TSPAN8 ENSG00000127324 68 18.38
79 BRWD1 ENSG00000185658 66 17.84
80 C1QTNF3-AMACR ENSG00000273294 66 17.84
81 CASD1 ENSG00000127995 66 17.84
82 CDK8 ENSG00000132964 66 17.84
83 CKAP2 ENSG00000136108 66 17.84
84 CSRP1 ENSG00000159176 66 17.84
85 FAM3B ENSG00000183844 66 17.84
86 GCNT1 ENSG00000187210 66 17.84
87 GUCY1A2 ENSG00000152402 66 17.84
88 KLK11 ENSG00000167757 66 17.84
89 NR4A1 ENSG00000123358 66 17.84
90 PICALM ENSG00000073921 66 17.84
91 SLC26A4 ENSG00000091137 66 17.84
92 SNX25 ENSG00000109762 66 17.84
93 STK17B ENSG00000081320 66 17.84
94 ACSM3 ENSG00000005187 64 17.30
95 AFF3 ENSG00000144218 64 17.30
96 EPB41L5 ENSG00000115109 64 17.30
97 GCNT2 ENSG00000111846 64 17.30
98 IREB2 ENSG00000136381 64 17.30
99 NPTN ENSG00000156642 64 17.30
100 PAPD4 ENSG00000164329 64 17.30
101 RGS1 ENSG00000090104 64 17.30
102 SCUBE2 ENSG00000175356 64 17.30
103 SMARCA1 ENSG00000102038 64 17.30
104 SMC6 ENSG00000163029 64 17.30
105 SYT1 ENSG00000067715 64 17.30
106 TMEM30A ENSG00000112697 64 17.30
107 ZEB1 ENSG00000148516 64 17.30
108 ZNF385B ENSG00000144331 64 17.30
109 ACADSB ENSG00000196177 62 16.76
110 CPM ENSG00000135678 62 16.76
111 DNASE2B ENSG00000137976 62 16.76
112 GALNT3 ENSG00000115339 62 16.76
113 HIPK3 ENSG00000110422 62 16.76
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114 HIVEP1 ENSG00000095951 62 16.76
115 KIAA1324 ENSG00000116299 62 16.76
116 NTN4 ENSG00000074527 62 16.76
117 PDE11A ENSG00000128655 62 16.76
118 PGR ENSG00000082175 62 16.76
119 TSC22D3 ENSG00000157514 62 16.76
120 DSC2 ENSG00000134755 60 16.22
121 FAM169A ENSG00000198780 60 16.22
122 FHL2 ENSG00000115641 60 16.22
123 GMPS ENSG00000163655 60 16.22
124 GPR160 ENSG00000173890 60 16.22
125 IL17RD ENSG00000144730 60 16.22
126 KRT23 ENSG00000108244 60 16.22
127 LEPREL1 ENSG00000090530 60 16.22
128 LTF ENSG00000012223 60 16.22
129 MMP2 ENSG00000087245 60 16.22
130 OGFRL1 ENSG00000119900 60 16.22
131 PAWR ENSG00000177425 60 16.22
132 PPTC7 ENSG00000196850 60 16.22
133 RUFY3 ENSG00000018189 60 16.22
134 SBSPON ENSG00000164764 60 16.22
135 SERINC2 ENSG00000168528 60 16.22
136 ZNF652 ENSG00000198740 60 16.22
137 CALD1 ENSG00000122786 58 15.68
138 CD2AP ENSG00000198087 58 15.68
139 COBLL1 ENSG00000082438 58 15.68
140 COCH ENSG00000100473 58 15.68
141 DMD ENSG00000198947 58 15.68
142 EPT1 ENSG00000138018 58 15.68
143 GTPBP10 ENSG00000105793 58 15.68
144 LDLR ENSG00000130164 58 15.68
145 MBOAT1 ENSG00000172197 58 15.68
146 SGK1 ENSG00000118515 58 15.68
147 SLC5A1 ENSG00000100170 58 15.68
148 SMC4 ENSG00000113810 58 15.68
149 ST8SIA6 ENSG00000148488 58 15.68
150 URI1 ENSG00000105176 58 15.68
151 VAT1 ENSG00000108828 58 15.68
152 ZNF639 ENSG00000121864 58 15.68
153 ACBD3 ENSG00000182827 56 15.14
154 ANTXR2 ENSG00000163297 56 15.14
155 CCNG1 ENSG00000113328 56 15.14
156 CHRNA5 ENSG00000169684 56 15.14
157 CMTM4 ENSG00000183723 56 15.14
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158 CNTN1 ENSG00000018236 56 15.14
159 FBXL5 ENSG00000118564 56 15.14
160 FERMT2 ENSG00000073712 56 15.14
161 FKBP5 ENSG00000096060 56 15.14
162 GCLC ENSG00000001084 56 15.14
163 HNRNPLL ENSG00000143889 56 15.14
164 KL ENSG00000133116 56 15.14
165 NAMPT ENSG00000105835 56 15.14
166 PI15 ENSG00000137558 56 15.14
167 PIGR ENSG00000162896 56 15.14
168 RMI1 ENSG00000178966 56 15.14
169 ROCK2 ENSG00000134318 56 15.14
170 SNX16 ENSG00000104497 56 15.14
171 SPARC ENSG00000113140 56 15.14
172 TMPRSS2 ENSG00000184012 56 15.14
173 TRPC4 ENSG00000133107 56 15.14
174 WDR36 ENSG00000134987 56 15.14
175 ADAM17 ENSG00000151694 54 14.59
176 ARID4A ENSG00000032219 54 14.59
177 CNTNAP2 ENSG00000174469 54 14.59
178 ETNK1 ENSG00000139163 54 14.59
179 FAM117B ENSG00000138439 54 14.59
180 FASTKD2 ENSG00000118246 54 14.59
181 FYTTD1 ENSG00000122068 54 14.59
182 GXYLT1 ENSG00000151233 54 14.59
183 IP6K2 ENSG00000068745 54 14.59
184 ITGB6 ENSG00000115221 54 14.59
185 KATNAL1 ENSG00000102781 54 14.59
186 NCOA7 ENSG00000111912 54 14.59
187 OPRK1 ENSG00000082556 54 14.59
188 PDIA6 ENSG00000143870 54 14.59
189 PIGK ENSG00000142892 54 14.59
190 REV3L ENSG00000009413 54 14.59
191 SELE ENSG00000007908 54 14.59
192 STEAP2 ENSG00000157214 54 14.59
193 STX3 ENSG00000166900 54 14.59
194 TMEM181 ENSG00000146433 54 14.59
195 TMX4 ENSG00000125827 54 14.59
196 TRPC1 ENSG00000144935 54 14.59
197 VGLL3 ENSG00000206538 54 14.59
198 VRK2 ENSG00000028116 54 14.59
199 ACSL1 ENSG00000151726 52 14.05
200 BANK1 ENSG00000153064 52 14.05
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Table A.5 Top 200 candidates with the largest number of step-up jumps in the MSKCC
dataset.

Rank Gene Gene ID Count Percent.

1 OLFM4 ENSG00000102837 112 47.86
2 PROM1 ENSG00000007062 98 41.88
3 ANPEP ENSG00000166825 94 40.17
4 TP63 ENSG00000073282 90 38.46
5 NCOA7 ENSG00000111912 87 37.18
6 SELE ENSG00000007908 86 36.75
7 CFB ENSG00000244255 84 35.90
8 ADD3 ENSG00000148700 82 35.04
9 ATP8B4 ENSG00000104043 81 34.62
10 KRT23 ENSG00000108244 81 34.62
11 TGM4 ENSG00000163810 78 33.33
12 LTF ENSG00000012223 75 32.05
13 GABRP ENSG00000094755 74 31.62
14 SYNM ENSG00000182253 74 31.62
15 CFTR ENSG00000001626 73 31.20
16 ETS2 ENSG00000157557 73 31.20
17 CHRDL1 ENSG00000101938 72 30.77
18 CYP3A5 ENSG00000106258 72 30.77
19 ITGB6 ENSG00000115221 72 30.77
20 LRRC9 ENSG00000131951 72 30.77
21 SLC18A2 ENSG00000165646 72 30.77
22 ACSS3 ENSG00000111058 71 30.34
23 ANXA2 ENSG00000182718 71 30.34
24 CCDC80 ENSG00000091986 70 29.91
25 NRK ENSG00000123572 69 29.49
26 PDE11A ENSG00000128655 69 29.49
27 PTGS2 ENSG00000073756 69 29.49
28 SBSPON ENSG00000164764 69 29.49
29 SCUBE2 ENSG00000175356 69 29.49
30 C1S ENSG00000182326 68 29.06
31 FMO2 ENSG00000094963 67 28.63
32 LEPREL1 ENSG00000090530 67 28.63
33 GCNT2 ENSG00000111846 65 27.78
34 KIAA1210 ENSG00000250423 65 27.78
35 MME ENSG00000196549 65 27.78
36 NRG4 ENSG00000169752 65 27.78
37 TSC22D3 ENSG00000157514 65 27.78
38 DDR2 ENSG00000162733 63 26.92
39 DMD ENSG00000198947 63 26.92
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40 AFF3 ENSG00000144218 61 26.07
41 ITGA8 ENSG00000077943 61 26.07
42 SELP ENSG00000174175 61 26.07
43 NLRP2 ENSG00000022556 60 25.64
44 RARRES1 ENSG00000118849 60 25.64
45 VGLL3 ENSG00000206538 60 25.64
46 CYP4B1 ENSG00000142973 59 25.21
47 KIT ENSG00000157404 59 25.21
48 PGAP1 ENSG00000197121 59 25.21
49 ROCK2 ENSG00000134318 59 25.21
50 ERAP2 ENSG00000164308 58 24.79
51 NPR3 ENSG00000113389 58 24.79
52 ST8SIA6 ENSG00000148488 58 24.79
53 KDR ENSG00000128052 57 24.36
54 CHL1 ENSG00000134121 56 23.93
55 SGK1 ENSG00000118515 56 23.93
56 SRD5A2 ENSG00000277893 56 23.93
57 FHL1 ENSG00000022267 55 23.50
58 LINC00668 ENSG00000265933 55 23.50
59 NR4A1 ENSG00000123358 55 23.50
60 TNRC6C ENSG00000078687 55 23.50
61 C6ORF174 ENSG00000255330 54 23.08
62 FADS1 ENSG00000149485 54 23.08
63 RNF128 ENSG00000133135 54 23.08
64 SAMSN1 ENSG00000155307 54 23.08
65 SOX5 ENSG00000134532 54 23.08
66 CCDC68 ENSG00000166510 53 22.65
67 PRIM2 ENSG00000146143 53 22.65
68 TGFB3 ENSG00000119699 52 22.22
69 ADHFE1 ENSG00000147576 51 21.79
70 ANTXR2 ENSG00000163297 51 21.79
71 DSC3 ENSG00000134762 51 21.79
72 KCTD14 ENSG00000151364 51 21.79
73 RCAN3 ENSG00000117602 51 21.79
74 ZDHHC8P1 ENSG00000133519 51 21.79
75 RMST ENSG00000255794 50 21.37
76 ZNF655 ENSG00000197343 50 21.37
77 ALOX12P2 ENSG00000262943 49 20.94
78 FAM83D ENSG00000101447 49 20.94
79 GBP2 ENSG00000162645 49 20.94
80 LRCH2 ENSG00000130224 49 20.94
81 PRKCD ENSG00000163932 49 20.94
82 STON1-GTF2A1L ENSG00000068781 49 20.94
83 STXBP5L ENSG00000145087 49 20.94
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84 ALDH1A2 ENSG00000128918 48 20.51
85 COCH ENSG00000100473 48 20.51
86 FERMT2 ENSG00000073712 48 20.51
87 HEPH ENSG00000089472 48 20.51
88 TMEM178A ENSG00000152154 48 20.51
89 CCDC178 ENSG00000166960 47 20.09
90 SPG20 ENSG00000133104 47 20.09
91 TLR1 ENSG00000174125 47 20.09
92 ZDHHC17 ENSG00000186908 47 20.09
93 ASPA ENSG00000108381 46 19.66
94 IGSF1 ENSG00000147255 46 19.66
95 MSMO1 ENSG00000052802 46 19.66
96 CALD1 ENSG00000122786 45 19.23
97 COL14A1 ENSG00000187955 45 19.23
98 CPNE4 ENSG00000196353 45 19.23
99 LSAMP ENSG00000185565 45 19.23
100 MAN1A1 ENSG00000111885 45 19.23
101 NNMT ENSG00000166741 45 19.23
102 GREB1 ENSG00000196208 44 18.80
103 ITGA5 ENSG00000161638 44 18.80
104 MYZAP ENSG00000263155 44 18.80
105 PAX9 ENSG00000198807 44 18.80
106 SLC22A3 ENSG00000146477 44 18.80
107 ATF3 ENSG00000162772 43 18.38
108 CLIP4 ENSG00000115295 43 18.38
109 PHACTR4 ENSG00000204138 43 18.38
110 PRKG1 ENSG00000185532 43 18.38
111 RP11-307N16.6 ENSG00000273167 43 18.38
112 SHISA9 ENSG00000237515 43 18.38
113 C2orf88 ENSG00000187699 42 17.95
114 CYP4F11 ENSG00000171903 42 17.95
115 ETS1 ENSG00000134954 42 17.95
116 INSIG1 ENSG00000186480 42 17.95
117 LPAR1 ENSG00000198121 42 17.95
118 NDC80 ENSG00000080986 42 17.95
119 POF1B ENSG00000124429 42 17.95
120 PPARGC1A ENSG00000109819 42 17.95
121 SV2B ENSG00000185518 42 17.95
122 AF131217.1 ENSG00000232855 41 17.52
123 ARHGAP20 ENSG00000137727 41 17.52
124 PDK4 ENSG00000004799 41 17.52
125 PI15 ENSG00000137558 41 17.52
126 PTPLA ENSG00000165996 41 17.52
127 SCNN1A ENSG00000111319 41 17.52
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128 VCAM1 ENSG00000162692 41 17.52
129 ACSL5 ENSG00000197142 40 17.09
130 ATRNL1 ENSG00000107518 40 17.09
131 C3 ENSG00000125730 40 17.09
132 CSRP1 ENSG00000159176 40 17.09
133 DPYS ENSG00000147647 40 17.09
134 GCLC ENSG00000001084 40 17.09
135 MYBPC1 ENSG00000196091 40 17.09
136 SCIN ENSG00000006747 40 17.09
137 SFMBT2 ENSG00000198879 40 17.09
138 SLC14A1 ENSG00000141469 40 17.09
139 SLC2A14 ENSG00000173262 40 17.09
140 SPAG6 ENSG00000077327 40 17.09
141 CELF2 ENSG00000048740 39 16.67
142 CPLX3 ENSG00000213578 39 16.67
143 CRYAB ENSG00000109846 39 16.67
144 INPP4B ENSG00000109452 39 16.67
145 KL ENSG00000133116 39 16.67
146 MR1 ENSG00000153029 39 16.67
147 NOSTRIN ENSG00000163072 39 16.67
148 PLAGL1 ENSG00000118495 39 16.67
149 RAB27A ENSG00000069974 39 16.67
150 RGS1 ENSG00000090104 39 16.67
151 TSC22D1 ENSG00000102804 39 16.67
152 CD38 ENSG00000004468 38 16.24
153 CNTNAP2 ENSG00000174469 38 16.24
154 FREM2 ENSG00000150893 38 16.24
155 MUC13 ENSG00000173702 38 16.24
156 NRXN3 ENSG00000021645 38 16.24
157 ABCB1 ENSG00000085563 37 15.81
158 F13A1 ENSG00000124491 37 15.81
159 HSPA4L ENSG00000164070 37 15.81
160 NTN4 ENSG00000074527 37 15.81
161 PDE1A ENSG00000115252 37 15.81
162 RNF150 ENSG00000170153 37 15.81
163 SYT1 ENSG00000067715 37 15.81
164 TMPRSS2 ENSG00000184012 37 15.81
165 VMP1 ENSG00000062716 37 15.81
166 AKAP7 ENSG00000118507 36 15.38
167 BIRC3 ENSG00000023445 36 15.38
168 CCDC169-SOHLH2 ENSG00000250709 36 15.38
169 COG6 ENSG00000133103 36 15.38
170 F3 ENSG00000117525 36 15.38
171 LMAN1L ENSG00000140506 36 15.38
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172 PAH ENSG00000171759 36 15.38
173 PON1 ENSG00000005421 36 15.38
174 PRKAR2B ENSG00000005249 36 15.38
175 RHOF ENSG00000139725 36 15.38
176 SSBP2 ENSG00000145687 36 15.38
177 ANO4 ENSG00000151572 35 14.96
178 CFB ENSG00000243649 35 14.96
179 GATM ENSG00000171766 35 14.96
180 JAM3 ENSG00000166086 35 14.96
181 LPHN2 ENSG00000117114 35 14.96
182 NAALAD2 ENSG00000077616 35 14.96
183 PDE4B ENSG00000184588 35 14.96
184 RSPO2 ENSG00000147655 35 14.96
185 SOD2 ENSG00000112096 35 14.96
186 ANXA1 ENSG00000135046 34 14.53
187 ATP1B1 ENSG00000143153 34 14.53
188 CAV2 ENSG00000105971 34 14.53
189 CPA6 ENSG00000165078 34 14.53
190 IL7R ENSG00000168685 34 14.53
191 KIAA1324L ENSG00000164659 34 14.53
192 PAPD4 ENSG00000164329 34 14.53
193 PDE4D ENSG00000113448 34 14.53
194 RP11-624L4.1 ENSG00000259345 34 14.53
195 SGIP1 ENSG00000118473 34 14.53
196 SLC16A5 ENSG00000170190 34 14.53
197 SYNE1 ENSG00000131018 34 14.53
198 ARG2 ENSG00000081181 33 14.10
199 CLGN ENSG00000153132 33 14.10
200 GPX8 ENSG00000164294 33 14.10

Table A.6 Top 200 candidates with the largest number of step-down jumps in the
CancerMap dataset.

Rank Gene Gene ID Count Percent.

1 OLFM4 ENSG00000102837 140 37.84
2 TDRD1 ENSG00000095627 134 36.22
3 MYBPC1 ENSG00000196091 100 27.03
4 SYNM ENSG00000182253 100 27.03
5 ATF3 ENSG00000162772 96 25.95
6 C1QTNF3-AMACR ENSG00000273294 94 25.41
7 KRT23 ENSG00000108244 94 25.41
8 PLA2G7 ENSG00000146070 94 25.41
9 CHRDL1 ENSG00000101938 92 24.86
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10 F3 ENSG00000117525 92 24.86
11 TIMP3 ENSG00000100234 92 24.86
12 EDNRB ENSG00000136160 86 23.24
13 HSD17B6 ENSG00000025423 86 23.24
14 CSRP1 ENSG00000159176 82 22.16
15 TIPARP ENSG00000163659 82 22.16
16 TMPRSS2 ENSG00000184012 82 22.16
17 SLC22A3 ENSG00000146477 80 21.62
18 SLC38A11 ENSG00000169507 80 21.62
19 FAM3B ENSG00000183844 76 20.54
20 MAN1A1 ENSG00000111885 76 20.54
21 MME ENSG00000196549 76 20.54
22 PTGS2 ENSG00000073756 76 20.54
23 RMST ENSG00000255794 76 20.54
24 CPM ENSG00000135678 74 20.00
25 GCNT1 ENSG00000187210 74 20.00
26 KIAA1324 ENSG00000116299 74 20.00
27 MAOB ENSG00000069535 74 20.00
28 SESN3 ENSG00000149212 74 20.00
29 SRD5A2 ENSG00000277893 74 20.00
30 LUZP2 ENSG00000187398 72 19.46
31 ZNF655 ENSG00000197343 72 19.46
32 FHL1 ENSG00000022267 70 18.92
33 LIFR ENSG00000113594 70 18.92
34 PI15 ENSG00000137558 70 18.92
35 TP63 ENSG00000073282 70 18.92
36 ACSL5 ENSG00000197142 68 18.38
37 DDX60L ENSG00000181381 68 18.38
38 DSC3 ENSG00000134762 68 18.38
39 PTPRC ENSG00000081237 68 18.38
40 ROCK2 ENSG00000134318 68 18.38
41 SLC39A10 ENSG00000196950 68 18.38
42 ZDHHC17 ENSG00000186908 68 18.38
43 AFF3 ENSG00000144218 66 17.84
44 PDIA6 ENSG00000143870 66 17.84
45 PRKCD ENSG00000163932 66 17.84
46 PUM2 ENSG00000055917 66 17.84
47 SLC12A2 ENSG00000064651 66 17.84
48 SLC35A3 ENSG00000117620 66 17.84
49 SNX25 ENSG00000109762 66 17.84
50 ACSM3 ENSG00000005187 64 17.30
51 ATP1B1 ENSG00000143153 64 17.30
52 ETS2 ENSG00000157557 64 17.30
53 INSIG1 ENSG00000186480 64 17.30
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54 PDK4 ENSG00000004799 64 17.30
55 SLC14A1 ENSG00000141469 64 17.30
56 TC2N ENSG00000165929 64 17.30
57 TMEM150C ENSG00000249242 64 17.30
58 TSPAN8 ENSG00000127324 64 17.30
59 ACADL ENSG00000115361 62 16.76
60 ANPEP ENSG00000166825 62 16.76
61 ANTXR2 ENSG00000163297 62 16.76
62 CRISP3 ENSG00000096006 62 16.76
63 FERMT2 ENSG00000073712 62 16.76
64 LDLR ENSG00000130164 62 16.76
65 MORF4L1 ENSG00000185787 62 16.76
66 NR4A1 ENSG00000123358 62 16.76
67 PANK3 ENSG00000120137 62 16.76
68 PDE11A ENSG00000128655 62 16.76
69 SLC19A2 ENSG00000117479 62 16.76
70 STEAP2 ENSG00000157214 62 16.76
71 THSD7A ENSG00000005108 62 16.76
72 TSC22D3 ENSG00000157514 62 16.76
73 ZEB1 ENSG00000148516 62 16.76
74 ALDH1A1 ENSG00000165092 60 16.22
75 ALDH1A3 ENSG00000184254 60 16.22
76 CALD1 ENSG00000122786 60 16.22
77 CDS1 ENSG00000163624 60 16.22
78 FAM135A ENSG00000082269 60 16.22
79 IREB2 ENSG00000136381 60 16.22
80 LPHN2 ENSG00000117114 60 16.22
81 MMP2 ENSG00000087245 60 16.22
82 NR4A2 ENSG00000153234 60 16.22
83 SELE ENSG00000007908 60 16.22
84 SPARCL1 ENSG00000152583 60 16.22
85 VPS26A ENSG00000122958 60 16.22
86 BEND4 ENSG00000188848 58 15.68
87 CNN1 ENSG00000130176 58 15.68
88 CNTN1 ENSG00000018236 58 15.68
89 EPHA3 ENSG00000044524 58 15.68
90 LY75-CD302 ENSG00000248672 58 15.68
91 RGS1 ENSG00000090104 58 15.68
92 SMARCA1 ENSG00000102038 58 15.68
93 SPG20 ENSG00000133104 58 15.68
94 TMEM178A ENSG00000152154 58 15.68
95 USP1 ENSG00000162607 58 15.68
96 WWTR1 ENSG00000018408 58 15.68
97 ACSL1 ENSG00000151726 56 15.14
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98 ATL3 ENSG00000184743 56 15.14
99 GNAI1 ENSG00000127955 56 15.14
100 NTN4 ENSG00000074527 56 15.14
101 NUP205 ENSG00000155561 56 15.14
102 PLA1A ENSG00000144837 56 15.14
103 SLC30A9 ENSG00000014824 56 15.14
104 SRPRB ENSG00000144867 56 15.14
105 ATP2B4 ENSG00000058668 54 14.59
106 CAB39 ENSG00000135932 54 14.59
107 CAV2 ENSG00000105971 54 14.59
108 CCBL2 ENSG00000137944 54 14.59
109 CPNE4 ENSG00000196353 54 14.59
110 DDX1 ENSG00000079785 54 14.59
111 EPCAM ENSG00000119888 54 14.59
112 FASTKD2 ENSG00000118246 54 14.59
113 GALNT3 ENSG00000115339 54 14.59
114 IL1R1 ENSG00000115594 54 14.59
115 KLK11 ENSG00000167757 54 14.59
116 MFSD8 ENSG00000164073 54 14.59
117 NFKBIZ ENSG00000144802 54 14.59
118 PDE4B ENSG00000184588 54 14.59
119 RAB27A ENSG00000069974 54 14.59
120 SLC36A1 ENSG00000123643 54 14.59
121 SPARC ENSG00000113140 54 14.59
122 STX3 ENSG00000166900 54 14.59
123 VRK2 ENSG00000028116 54 14.59
124 WDR36 ENSG00000134987 54 14.59
125 WEE1 ENSG00000166483 54 14.59
126 ACADSB ENSG00000196177 52 14.05
127 ACTG2 ENSG00000163017 52 14.05
128 ANXA1 ENSG00000135046 52 14.05
129 AOX1 ENSG00000138356 52 14.05
130 BRWD1 ENSG00000185658 52 14.05
131 COL14A1 ENSG00000187955 52 14.05
132 DDR2 ENSG00000162733 52 14.05
133 EPB41L5 ENSG00000115109 52 14.05
134 EPT1 ENSG00000138018 52 14.05
135 FADS1 ENSG00000149485 52 14.05
136 FAM169A ENSG00000198780 52 14.05
137 GPR160 ENSG00000173890 52 14.05
138 GUCY1A2 ENSG00000152402 52 14.05
139 GUCY1A3 ENSG00000164116 52 14.05
140 LTBP1 ENSG00000049323 52 14.05
141 MAOA ENSG00000189221 52 14.05
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142 NDRG1 ENSG00000104419 52 14.05
143 NPTN ENSG00000156642 52 14.05
144 PALLD ENSG00000129116 52 14.05
145 PARVA ENSG00000197702 52 14.05
146 RABGGTB ENSG00000137955 52 14.05
147 SFRP4 ENSG00000106483 52 14.05
148 SGK1 ENSG00000118515 52 14.05
149 SLC17A5 ENSG00000119899 52 14.05
150 SMC6 ENSG00000163029 52 14.05
151 STON1 ENSG00000243244 52 14.05
152 TMX4 ENSG00000125827 52 14.05
153 TRAM1 ENSG00000067167 52 14.05
154 TRIM29 ENSG00000137699 52 14.05
155 ADD3 ENSG00000148700 50 13.51
156 CLHC1 ENSG00000162994 50 13.51
157 CLIP4 ENSG00000115295 50 13.51
158 CWH43 ENSG00000109182 50 13.51
159 DCTD ENSG00000129187 50 13.51
160 DES ENSG00000175084 50 13.51
161 ENDOD1 ENSG00000149218 50 13.51
162 FHL2 ENSG00000115641 50 13.51
163 FYTTD1 ENSG00000122068 50 13.51
164 GREB1 ENSG00000196208 50 13.51
165 LEPREL1 ENSG00000090530 50 13.51
166 NAMPT ENSG00000105835 50 13.51
167 NFIB ENSG00000147862 50 13.51
168 OMA1 ENSG00000162600 50 13.51
169 PHF6 ENSG00000156531 50 13.51
170 PICALM ENSG00000073921 50 13.51
171 SMAD4 ENSG00000141646 50 13.51
172 TAF1B ENSG00000115750 50 13.51
173 TMEM181 ENSG00000146433 50 13.51
174 ABCC4 ENSG00000125257 48 12.97
175 ACBD3 ENSG00000182827 48 12.97
176 AZGP1 ENSG00000160862 48 12.97
177 DSC2 ENSG00000134755 48 12.97
178 EDNRA ENSG00000151617 48 12.97
179 ERLIN1 ENSG00000107566 48 12.97
180 F2R ENSG00000181104 48 12.97
181 FBP1 ENSG00000165140 48 12.97
182 FBXL5 ENSG00000118564 48 12.97
183 FKBP5 ENSG00000096060 48 12.97
184 GBP2 ENSG00000162645 48 12.97
185 GCNT2 ENSG00000111846 48 12.97
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186 HIPK3 ENSG00000110422 48 12.97
187 HNRNPLL ENSG00000143889 48 12.97
188 ITGA1 ENSG00000213949 48 12.97
189 ITGA5 ENSG00000161638 48 12.97
190 KCNC2 ENSG00000166006 48 12.97
191 KIAA1033 ENSG00000136051 48 12.97
192 MAP1B ENSG00000131711 48 12.97
193 MBOAT2 ENSG00000143797 48 12.97
194 NR3C1 ENSG00000113580 48 12.97
195 PDE8B ENSG00000113231 48 12.97
196 PTBP3 ENSG00000119314 48 12.97
197 RAB3B ENSG00000169213 48 12.97
198 RABEP1 ENSG00000029725 48 12.97
199 RBM27 ENSG00000091009 48 12.97
200 SLC30A4 ENSG00000104154 48 12.97

Table A.7 Top 200 candidates with the largest number of step-down jumps in the
MSKCC dataset.

Gene Log-rank p-val FDR adj. p-val

DEPDC1B 5.55 ·10−16 6.99 ·10−13

KIF15 5.55 ·10−16 6.99 ·10−13

TF 5.55 ·10−16 6.99 ·10−13

BUB1 1.94 ·10−12 1.84 ·10−9

PSMA3 1.02 ·10−9 7.67 ·10−7

PDK4 1.86 ·10−8 1 ·10−5

SLC22A23 1.86 ·10−8 1 ·10−5

UBAP2L 1.59 ·10−7 7.48 ·10−5

MEGF9 1.97 ·10−7 8.27 ·10−5

KIF14 2.76 ·10−7 1.03 ·10−4

SYCP2 4.55 ·10−7 1.03 ·10−4

BTBD8 6.29 ·10−7 1.03 ·10−4

CNOT2 6.29 ·10−7 1.03 ·10−4

DDHD2 6.29 ·10−7 1.03 ·10−4

DPP8 6.29 ·10−7 1.03 ·10−4

HNRNPDL 6.29 ·10−7 1.03 ·10−4

HTATIP2 6.29 ·10−7 1.03 ·10−4

MAPK8 6.29 ·10−7 1.03 ·10−4

NCOR1 6.29 ·10−7 1.03 ·10−4

SLBP 6.29 ·10−7 1.03 ·10−4

TUBE1 6.29 ·10−7 1.03 ·10−4

VPS4B 6.29 ·10−7 1.03 ·10−4

ZC3H14 6.29 ·10−7 1.03 ·10−4



252

LRIG2 7.28 ·10−7 1.15 ·10−4

PCNT 5.55 ·10−6 8.38 ·10−4

POFUT1 1.3 ·10−5 1.82 ·10−3

ZNF217 1.3 ·10−5 1.82 ·10−3

RACGAP1 1.6 ·10−5 2.16 ·10−3

GTPBP10 1.95 ·10−5 2.54 ·10−3

EXO1 2.08 ·10−5 2.62 ·10−3

GFM2 2.94 ·10−5 3.58 ·10−3

PRPF40A 3.14 ·10−5 3.69 ·10−3

MYBL2 3.22 ·10−5 3.69 ·10−3

RPL6 7.44 ·10−5 8.26 ·10−3

FBN1 1.29 ·10−4 1.32 ·10−2

KIF5C 1.29 ·10−4 1.32 ·10−2

PDE9A 1.29 ·10−4 1.32 ·10−2

CENPP 1.6 ·10−4 1.59 ·10−2

RGS5 1.81 ·10−4 1.75 ·10−2

ZKSCAN1 1.87 ·10−4 1.76 ·10−2

CTC.360G5.8 2.21 ·10−4 2 ·10−2

ATP6V0A2 2.22 ·10−4 2 ·10−2

GSR 2.54 ·10−4 2.23 ·10−2

FAM65B 3 ·10−4 2.57 ·10−2

CPNE4 3.38 ·10−4 2.84 ·10−2

KLHDC3 3.56 ·10−4 2.86 ·10−2

NNT 3.56 ·10−4 2.86 ·10−2

EPHA3 4.45 ·10−4 3.43 ·10−2

SREK1IP1 4.45 ·10−4 3.43 ·10−2

ZNF614 4.54 ·10−4 3.43 ·10−2

BUB1B 6.62 ·10−4 4.82 ·10−2

TP53 6.64 ·10−4 4.82 ·10−2

IFT88 7.13 ·10−4 5.08 ·10−2

DHX57 8.06 ·10−4 5.64 ·10−2

PRKAR1A 8.4 ·10−4 5.77 ·10−2

PLCL1 8.67 ·10−4 5.84 ·10−2

SKA3 1.12 ·10−3 7.4 ·10−2

ARID5B 1.18 ·10−3 7.68 ·10−2

ERBB2 1.23 ·10−3 7.84 ·10−2

CHEK1 1.35 ·10−3 8.49 ·10−2

CPNE1 1.41 ·10−3 8.74 ·10−2

C1R 1.47 ·10−3 8.92 ·10−2

MBNL1 1.56 ·10−3 9.32 ·10−2

ASPM 1.61 ·10−3 9.49 ·10−2

ADAMTS18 1.78 ·10−3 1.03 ·10−1

TGM4 1.8 ·10−3 1.03 ·10−1

FBXL17 1.84 ·10−3 1.04 ·10−1
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SMARCD2 1.88 ·10−3 1.04 ·10−1

GOSR1 2.01 ·10−3 1.08 ·10−1

BBS10 2.06 ·10−3 1.08 ·10−1

ETAA1 2.06 ·10−3 1.08 ·10−1

ZNF561 2.06 ·10−3 1.08 ·10−1

SNAP25 2.25 ·10−3 1.16 ·10−1

MTHFD1L 2.4 ·10−3 1.22 ·10−1

MCM3 2.47 ·10−3 1.23 ·10−1

SGOL1 2.47 ·10−3 1.23 ·10−1

PARPBP 2.61 ·10−3 1.28 ·10−1

MROH7.TTC4 2.72 ·10−3 1.3 ·10−1

UBE2T 2.72 ·10−3 1.3 ·10−1

KCNJ3 2.76 ·10−3 1.3 ·10−1

HNRNPM 2.92 ·10−3 1.36 ·10−1

CDCA7 3.12 ·10−3 1.43 ·10−1

FANCB 3.18 ·10−3 1.43 ·10−1

AFF1 3.19 ·10−3 1.43 ·10−1

CDC6 3.27 ·10−3 1.44 ·10−1

PRC1 3.29 ·10−3 1.44 ·10−1

CDC25A 3.63 ·10−3 1.56 ·10−1

CENPU 3.64 ·10−3 1.56 ·10−1

ANLN 3.68 ·10−3 1.56 ·10−1

NCAPG2 3.81 ·10−3 1.6 ·10−1

SNAP91 4.35 ·10−3 1.8 ·10−1

ESCO2 4.67 ·10−3 1.92 ·10−1

OSBPL10 4.98 ·10−3 2.02 ·10−1

SLC10A7 5.25 ·10−3 2.11 ·10−1

CXorf22 5.56 ·10−3 2.21 ·10−1

POLQ 5.92 ·10−3 2.31 ·10−1

DTWD1 5.98 ·10−3 2.31 ·10−1

NTNG1 6.05 ·10−3 2.31 ·10−1

RPN1 6.05 ·10−3 2.31 ·10−1

DKC1 6.88 ·10−3 2.6 ·10−1

ATP12A 7.14 ·10−3 2.67 ·10−1

PRAME 7.5 ·10−3 2.75 ·10−1

BEND3 7.5 ·10−3 2.75 ·10−1

ACADM 7.73 ·10−3 2.78 ·10−1

SPATA20 7.73 ·10−3 2.78 ·10−1

C11orf73 8.11 ·10−3 2.87 ·10−1

BLOC1S5.TXNDC5 8.12 ·10−3 2.87 ·10−1

NCAPG 8.36 ·10−3 2.91 ·10−1

GIGYF1 8.4 ·10−3 2.91 ·10−1

PKP2 8.66 ·10−3 2.94 ·10−1

NUP133 9.04 ·10−3 2.94 ·10−1
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SRP72 9.05 ·10−3 2.94 ·10−1

RAP1A 9.33 ·10−3 2.94 ·10−1

DACT1 9.35 ·10−3 2.94 ·10−1

IL13RA1 9.35 ·10−3 2.94 ·10−1

MYADM 9.35 ·10−3 2.94 ·10−1

PKN1 9.35 ·10−3 2.94 ·10−1

RP11.216L13.19 9.35 ·10−3 2.94 ·10−1

UFSP2 9.35 ·10−3 2.94 ·10−1

ZWINT 9.35 ·10−3 2.94 ·10−1

FMR1 9.88 ·10−3 3.08 ·10−1

HPRT1 1.01 ·10−2 3.12 ·10−1

CSK 1.03 ·10−2 3.15 ·10−1

CPHL1P 1.05 ·10−2 3.2 ·10−1

CENPI 1.06 ·10−2 3.2 ·10−1

ATG3 1.07 ·10−2 3.2 ·10−1

RGS11 1.08 ·10−2 3.22 ·10−1

EGLN3 1.12 ·10−2 3.29 ·10−1

OSGEPL1 1.15 ·10−2 3.36 ·10−1

TRAF5 1.21 ·10−2 3.52 ·10−1

SON 1.22 ·10−2 3.52 ·10−1

XYLB 1.23 ·10−2 3.52 ·10−1

TRPM8 1.24 ·10−2 3.53 ·10−1

SYPL1 1.27 ·10−2 3.57 ·10−1

JADE3 1.28 ·10−2 3.58 ·10−1

HPS3 1.34 ·10−2 3.73 ·10−1

TRAC 1.42 ·10−2 3.92 ·10−1

ITPR3 1.5 ·10−2 4.09 ·10−1

SPAG1 1.52 ·10−2 4.14 ·10−1

SLC25A30 1.58 ·10−2 4.26 ·10−1

UBAP2 1.7 ·10−2 4.55 ·10−1

NOX4 1.71 ·10−2 4.56 ·10−1

CSDE1 1.9 ·10−2 5.01 ·10−1

PDHA1 1.99 ·10−2 5.17 ·10−1

QPCT 1.99 ·10−2 5.17 ·10−1

TGFB3 2.01 ·10−2 5.17 ·10−1

DLGAP5 2.04 ·10−2 5.17 ·10−1

RFX6 2.05 ·10−2 5.17 ·10−1

METTL17 2.06 ·10−2 5.17 ·10−1

RIOK2 2.06 ·10−2 5.17 ·10−1

ONECUT2 2.21 ·10−2 5.47 ·10−1

VWDE 2.21 ·10−2 5.47 ·10−1

MTUS2 2.22 ·10−2 5.47 ·10−1

HDAC9 2.23 ·10−2 5.47 ·10−1

HTT 2.25 ·10−2 5.48 ·10−1
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RAD18 2.27 ·10−2 5.49 ·10−1

BIRC5 2.3 ·10−2 5.52 ·10−1

CHORDC1 2.31 ·10−2 5.53 ·10−1

RORC 2.43 ·10−2 5.78 ·10−1

ZBTB16 2.48 ·10−2 5.85 ·10−1

NDUFAF6 2.52 ·10−2 5.9 ·10−1

GREB1 2.58 ·10−2 6.01 ·10−1

TNRC6C 2.66 ·10−2 6.16 ·10−1

CCNA2 2.68 ·10−2 6.17 ·10−1

KIF18A 2.77 ·10−2 6.33 ·10−1

F5 2.9 ·10−2 6.59 ·10−1

PRR16 2.92 ·10−2 6.59 ·10−1

BRCA1 3.06 ·10−2 6.84 ·10−1

NKTR 3.06 ·10−2 6.84 ·10−1

NR5A2 3.09 ·10−2 6.85 ·10−1

ATXN3 3.13 ·10−2 6.88 ·10−1

JAG1 3.13 ·10−2 6.88 ·10−1

EBNA1BP2 3.19 ·10−2 6.96 ·10−1

GUCY1A3 3.23 ·10−2 7.01 ·10−1

SHCBP1 3.33 ·10−2 7.17 ·10−1

FAM76B 3.34 ·10−2 7.17 ·10−1

YES1 3.37 ·10−2 7.18 ·10−1

ADSL 3.45 ·10−2 7.31 ·10−1

APEH 3.47 ·10−2 7.31 ·10−1

MUC3A 3.5 ·10−2 7.34 ·10−1

CNTN4 3.54 ·10−2 7.39 ·10−1

SMARCA1 3.66 ·10−2 7.55 ·10−1

ZNF76 3.66 ·10−2 7.55 ·10−1

SHISA9 3.83 ·10−2 7.83 ·10−1

DCAF13 3.84 ·10−2 7.83 ·10−1

CENPN 3.97 ·10−2 8 ·10−1

CFB 4 ·10−2 8 ·10−1

VHL 4.03 ·10−2 8 ·10−1

TMC5 4.03 ·10−2 8 ·10−1

ZSCAN12 4.09 ·10−2 8 ·10−1

CCNE2 4.11 ·10−2 8 ·10−1

ELMO1 4.11 ·10−2 8 ·10−1

ELMSAN1 4.11 ·10−2 8 ·10−1

MKX 4.11 ·10−2 8 ·10−1

DUS4L 4.2 ·10−2 8.09 ·10−1

ZNF566 4.2 ·10−2 8.09 ·10−1

OSGIN2 4.24 ·10−2 8.12 ·10−1

TGDS 4.32 ·10−2 8.19 ·10−1

GPR75.ASB3 4.34 ·10−2 8.19 ·10−1
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ZNF229 4.34 ·10−2 8.19 ·10−1

Table A.8 Top 200 step-up candidates significantly associated with the time to BCR in
the CancerMap dataset, sorted by the log-rank p-value.

Gene Log-rank p-val FDR adj. p-val

PAPPA2 0 0
STRIP2 0 0
SLC29A1 1.44 ·10−15 1.76 ·10−12

MGA 4.88 ·10−15 4.46 ·10−12

DAB1 8.56 ·10−13 6.26 ·10−10

ARHGAP19.SLIT1 1.14 ·10−10 4.64 ·10−8

DIAPH3 1.14 ·10−10 4.64 ·10−8

LINC00535 1.14 ·10−10 4.64 ·10−8

USP6NL 1.14 ·10−10 4.64 ·10−8

DGKH 1.64 ·10−7 6 ·10−5

ASPN 3.97 ·10−6 1.32 ·10−3

SRGAP1 1.51 ·10−5 4.6 ·10−3

KIAA1467 7.31 ·10−5 1.93 ·10−2

TTN.AS1 7.4 ·10−5 1.93 ·10−2

LPL 1.71 ·10−4 3.91 ·10−2

PDLIM5 1.78 ·10−4 3.91 ·10−2

LOXL2 1.82 ·10−4 3.91 ·10−2

NRP2 2.59 ·10−4 5.27 ·10−2

SEPT8 3.92 ·10−4 7.47 ·10−2

LEPR 4.09 ·10−4 7.47 ·10−2

PTER 4.92 ·10−4 7.82 ·10−2

ST18 4.92 ·10−4 7.82 ·10−2

ZNF274 4.92 ·10−4 7.82 ·10−2

CR2 5.96 ·10−4 8.59 ·10−2

VLDLR 6.02 ·10−4 8.59 ·10−2

PARPBP 6.11 ·10−4 8.59 ·10−2

PSMA1 7.05 ·10−4 9.55 ·10−2

ATF3 8.33 ·10−4 1.09 ·10−1

SOX5 1.08 ·10−3 1.21 ·10−1

ENTPD3 1.12 ·10−3 1.21 ·10−1

INHBA 1.12 ·10−3 1.21 ·10−1

MYO10 1.12 ·10−3 1.21 ·10−1

P4HTM 1.12 ·10−3 1.21 ·10−1

ZFAT 1.12 ·10−3 1.21 ·10−1

PLCB4 1.25 ·10−3 1.29 ·10−1

THBS4 1.27 ·10−3 1.29 ·10−1

NEU3 1.42 ·10−3 1.4 ·10−1



257

ARHGEF3 1.76 ·10−3 1.68 ·10−1

NAALADL2 1.8 ·10−3 1.68 ·10−1

SLC22A15 1.88 ·10−3 1.72 ·10−1

C5orf30 2.22 ·10−3 1.96 ·10−1

RFX2 2.25 ·10−3 1.96 ·10−1

ONECUT2 2.82 ·10−3 2.4 ·10−1

ACACA 3.51 ·10−3 2.92 ·10−1

C12orf29 3.85 ·10−3 2.93 ·10−1

EIF3B 3.85 ·10−3 2.93 ·10−1

LSM14B 3.85 ·10−3 2.93 ·10−1

TRMT10A 3.85 ·10−3 2.93 ·10−1

HMGCLL1 3.99 ·10−3 2.98 ·10−1

CENPP 4.16 ·10−3 3.04 ·10−1

IDH3A 4.5 ·10−3 3.21 ·10−1

FAP 4.56 ·10−3 3.21 ·10−1

TFAM 4.91 ·10−3 3.33 ·10−1

C3orf14 4.92 ·10−3 3.33 ·10−1

CAPN5 5.26 ·10−3 3.5 ·10−1

GALNTL6 5.73 ·10−3 3.67 ·10−1

NXPE1 5.73 ·10−3 3.67 ·10−1

PCDHGA1 6.2 ·10−3 3.91 ·10−1

PGC 6.42 ·10−3 3.98 ·10−1

CDH10 6.83 ·10−3 4.1 ·10−1

IMMP1L 6.87 ·10−3 4.1 ·10−1

DNAH8 7.01 ·10−3 4.1 ·10−1

PTPRZ1 7.06 ·10−3 4.1 ·10−1

ALDH9A1 7.32 ·10−3 4.18 ·10−1

MAP3K5 7.58 ·10−3 4.27 ·10−1

ABCC11 7.76 ·10−3 4.3 ·10−1

RERG 9.88 ·10−3 5.39 ·10−1

GDF15 1.1 ·10−2 5.77 ·10−1

PLEKHA1 1.11 ·10−2 5.77 ·10−1

PNN 1.11 ·10−2 5.77 ·10−1

PDE9A 1.12 ·10−2 5.77 ·10−1

COL21A1 1.19 ·10−2 6.05 ·10−1

BLOC1S5.TXNDC5 1.22 ·10−2 6.11 ·10−1

TGDS 1.33 ·10−2 6.55 ·10−1

RFWD2 1.34 ·10−2 6.55 ·10−1

WDR7 1.4 ·10−2 6.72 ·10−1

TOP2A 1.52 ·10−2 7.22 ·10−1

MAN1A2 1.62 ·10−2 7.51 ·10−1

MRAS 1.62 ·10−2 7.51 ·10−1

LIFR 1.68 ·10−2 7.7 ·10−1

BTBD2 1.86 ·10−2 7.71 ·10−1
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ELP4 1.86 ·10−2 7.71 ·10−1

FANCB 1.86 ·10−2 7.71 ·10−1

FLT3 1.86 ·10−2 7.71 ·10−1

RASGRP1 1.86 ·10−2 7.71 ·10−1

RP11.26J3.4 1.86 ·10−2 7.71 ·10−1

ZFP1 1.86 ·10−2 7.71 ·10−1

ZHX3 1.86 ·10−2 7.71 ·10−1

PTPN21 1.89 ·10−2 7.77 ·10−1

CAND1 2.03 ·10−2 8.19 ·10−1

CAPN6 2.04 ·10−2 8.19 ·10−1

ARHGEF26 2.08 ·10−2 8.27 ·10−1

NR4A1 2.14 ·10−2 8.42 ·10−1

NLRP9 2.3 ·10−2 8.95 ·10−1

AMOTL1 2.46 ·10−2 9.09 ·10−1

ADAMTS18 2.48 ·10−2 9.09 ·10−1

METTL25 2.55 ·10−2 9.09 ·10−1

UNC5D 2.57 ·10−2 9.09 ·10−1

FAM171B 2.58 ·10−2 9.09 ·10−1

C1orf116 2.63 ·10−2 9.09 ·10−1

COPB2 2.74 ·10−2 9.09 ·10−1

FZD4 2.88 ·10−2 9.09 ·10−1

SELP 3.07 ·10−2 9.09 ·10−1

TM9SF1 3.14 ·10−2 9.09 ·10−1

NCOA2 3.18 ·10−2 9.09 ·10−1

ANKRD10 3.22 ·10−2 9.09 ·10−1

EED 3.22 ·10−2 9.09 ·10−1

FAT1 3.22 ·10−2 9.09 ·10−1

CALD1 3.3 ·10−2 9.09 ·10−1

RFC3 3.35 ·10−2 9.09 ·10−1

CASP9 3.35 ·10−2 9.09 ·10−1

SYT16 3.38 ·10−2 9.09 ·10−1

GLYATL1 3.41 ·10−2 9.09 ·10−1

ASAH1 3.44 ·10−2 9.09 ·10−1

ELF3 3.53 ·10−2 9.09 ·10−1

SLC25A45 3.55 ·10−2 9.09 ·10−1

PPIP5K2 3.72 ·10−2 9.09 ·10−1

CTSA 3.76 ·10−2 9.09 ·10−1

TLR3 3.81 ·10−2 9.09 ·10−1

PHLPP2 3.84 ·10−2 9.09 ·10−1

TAF1D 3.84 ·10−2 9.09 ·10−1

PSMF1 3.98 ·10−2 9.09 ·10−1

TMEM245 4 ·10−2 9.09 ·10−1

JAG1 4.09 ·10−2 9.09 ·10−1

SKA3 4.09 ·10−2 9.09 ·10−1
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SETD7 4.19 ·10−2 9.09 ·10−1

NSF 4.23 ·10−2 9.09 ·10−1

ACTR3 4.27 ·10−2 9.09 ·10−1

TRPM4 4.3 ·10−2 9.09 ·10−1

STAM2 4.56 ·10−2 9.09 ·10−1

ZAK 4.66 ·10−2 9.09 ·10−1

BTAF1 4.7 ·10−2 9.09 ·10−1

CDH2 4.72 ·10−2 9.09 ·10−1

GSTK1 4.82 ·10−2 9.09 ·10−1

ARID5B 4.89 ·10−2 9.09 ·10−1

RRAGB 4.89 ·10−2 9.09 ·10−1

TPH1 4.91 ·10−2 9.09 ·10−1

RUNX1 5 ·10−2 9.09 ·10−1

Table A.9 The step-up candidates significantly associated with the time to BCR in the
MSKCC dataset, sorted by the log-rank p-value.

Gene Log-rank p-val FDR adj. p-val

AR 0 0
C15orf38.AP3S2 0 0
COPB1 0 0
NFS1 0 0
NPNT 0 0
FUBP3 5.55 ·10−16 1.98 ·10−13

LRIG1 5.55 ·10−16 1.98 ·10−13

THNSL2 5.55 ·10−16 1.98 ·10−13

TMEM220 5.55 ·10−16 1.98 ·10−13

TNFSF12.TNFSF13 1.02 ·10−13 3.29 ·10−11

ARMCX1 6.43 ·10−11 1.88 ·10−8

REPS2 8.7 ·10−11 2.33 ·10−8

ST6GAL1 1.02 ·10−9 2.51 ·10−7

ZSCAN20 6.33 ·10−9 1.45 ·10−6

MTMR12 1.01 ·10−7 2.17 ·10−5

AKAP7 1.82 ·10−7 3.65 ·10−5

SDC2 4.07 ·10−7 7.68 ·10−5

CREB3L2 4.39 ·10−7 7.83 ·10−5

RIN2 4.63 ·10−7 7.83 ·10−5

UST 1.33 ·10−6 2.14 ·10−4

TRIQK 1.5 ·10−6 2.3 ·10−4

PCM1 3.24 ·10−6 4.72 ·10−4

MON1B 3.38 ·10−6 4.72 ·10−4

SATB1 3.87 ·10−6 5.18 ·10−4

PDZRN4 4.4 ·10−6 5.66 ·10−4
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GLIPR2 6.76 ·10−6 8.31 ·10−4

FBXO32 7.17 ·10−6 8.31 ·10−4

KCND3 7.25 ·10−6 8.31 ·10−4

AHNAK2 9.13 ·10−6 1.01 ·10−3

CYFIP1 1.16 ·10−5 1.24 ·10−3

EDNRA 1.88 ·10−5 1.95 ·10−3

ST8SIA6 2.23 ·10−5 2.22 ·10−3

ALDH1A3 2.28 ·10−5 2.22 ·10−3

ALDH3A2 2.63 ·10−5 2.48 ·10−3

NAPEPLD 3.02 ·10−5 2.77 ·10−3

EEF1A1 4.19 ·10−5 3.74 ·10−3

DIXDC1 4.68 ·10−5 4.07 ·10−3

NFIA 5.28 ·10−5 4.37 ·10−3

UBE2K 5.31 ·10−5 4.37 ·10−3

RPS6KA5 8.35 ·10−5 6.7 ·10−3

ACAD8 1.05 ·10−4 8.05 ·10−3

PMEPA1 1.05 ·10−4 8.05 ·10−3

CNTNAP2 1.24 ·10−4 9.3 ·10−3

IGFBP3 1.3 ·10−4 9.46 ·10−3

ERBB2IP 1.75 ·10−4 1.25 ·10−2

ZNF510 1.8 ·10−4 1.26 ·10−2

FAM122B 2.01 ·10−4 1.37 ·10−2

DNAJA2 2.33 ·10−4 1.56 ·10−2

EPHX2 2.91 ·10−4 1.88 ·10−2

C9orf91 2.92 ·10−4 1.88 ·10−2

AMOTL2 2.98 ·10−4 1.88 ·10−2

DES 3.09 ·10−4 1.91 ·10−2

FERMT1 3.59 ·10−4 2.18 ·10−2

LACC1 3.85 ·10−4 2.26 ·10−2

NRG4 3.86 ·10−4 2.26 ·10−2

AZGP1 3.98 ·10−4 2.28 ·10−2

SNAP29 4.1 ·10−4 2.31 ·10−2

FREM2 5.08 ·10−4 2.82 ·10−2

TRAPPC13 5.53 ·10−4 3.01 ·10−2

PI15 5.78 ·10−4 3.06 ·10−2

BEND4 5.81 ·10−4 3.06 ·10−2

HSDL2 5.9 ·10−4 3.06 ·10−2

AFF3 6.54 ·10−4 3.34 ·10−2

NHS 6.99 ·10−4 3.49 ·10−2

VAT1 7.06 ·10−4 3.49 ·10−2

FAM177A1 7.37 ·10−4 3.59 ·10−2

ASPA 7.53 ·10−4 3.61 ·10−2

LRCH2 8.46 ·10−4 4 ·10−2

ME1 8.68 ·10−4 4.04 ·10−2
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PCDHGC5 9.55 ·10−4 4.38 ·10−2

KIAA1324L 9.87 ·10−4 4.47 ·10−2

APLF 1.03 ·10−3 4.58 ·10−2

CDK6 1.06 ·10−3 4.61 ·10−2

ATF7IP2 1.08 ·10−3 4.61 ·10−2

IGSF1 1.08 ·10−3 4.61 ·10−2

ATRN 1.09 ·10−3 4.61 ·10−2

SLC9A2 1.26 ·10−3 5.25 ·10−2

UBLCP1 1.34 ·10−3 5.53 ·10−2

CASP7 1.45 ·10−3 5.91 ·10−2

STIM2 1.49 ·10−3 5.97 ·10−2

INPP4B 1.52 ·10−3 5.98 ·10−2

LSS 1.53 ·10−3 5.98 ·10−2

JPX 1.56 ·10−3 5.98 ·10−2

RNF19B 1.56 ·10−3 5.98 ·10−2

CLVS2 1.6 ·10−3 6.03 ·10−2

MR1 1.62 ·10−3 6.03 ·10−2

TAB3 1.63 ·10−3 6.03 ·10−2

SRPX 1.74 ·10−3 6.34 ·10−2

PTPLA 1.75 ·10−3 6.34 ·10−2

SLC1A1 1.79 ·10−3 6.41 ·10−2

NUDCD1 1.91 ·10−3 6.72 ·10−2

ANXA6 1.92 ·10−3 6.72 ·10−2

ACADL 2.08 ·10−3 7.16 ·10−2

TUBA1A 2.09 ·10−3 7.16 ·10−2

RAB27A 2.12 ·10−3 7.18 ·10−2

FAM188A 2.24 ·10−3 7.51 ·10−2

BHMT2 2.28 ·10−3 7.55 ·10−2

CPPED1 2.36 ·10−3 7.74 ·10−2

NAA25 2.44 ·10−3 7.93 ·10−2

ELOVL7 2.51 ·10−3 7.99 ·10−2

SLC18A2 2.51 ·10−3 7.99 ·10−2

IFIT1 2.54 ·10−3 7.99 ·10−2

JUP 2.6 ·10−3 8.09 ·10−2

NLRP2 2.62 ·10−3 8.09 ·10−2

ECHDC1 2.69 ·10−3 8.1 ·10−2

BECN1 2.72 ·10−3 8.1 ·10−2

RXRA 2.72 ·10−3 8.1 ·10−2

SAFB2 2.72 ·10−3 8.1 ·10−2

ARHGEF9 2.85 ·10−3 8.22 ·10−2

CRNKL1 2.89 ·10−3 8.22 ·10−2

DNAJC24 2.89 ·10−3 8.22 ·10−2

METTL9 2.89 ·10−3 8.22 ·10−2

SRRD 2.89 ·10−3 8.22 ·10−2
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PDS5B 2.94 ·10−3 8.3 ·10−2

CFL2 3.2 ·10−3 8.93 ·10−2

KLF5 3.22 ·10−3 8.93 ·10−2

CD44 3.29 ·10−3 8.95 ·10−2

SH3BGRL 3.29 ·10−3 8.95 ·10−2

IDI1 3.37 ·10−3 9.09 ·10−2

PARP8 3.43 ·10−3 9.2 ·10−2

FUT8 3.55 ·10−3 9.44 ·10−2

PDE11A 3.63 ·10−3 9.56 ·10−2

KANK2 3.73 ·10−3 9.73 ·10−2

ANO5 3.76 ·10−3 9.73 ·10−2

NRK 3.85 ·10−3 9.88 ·10−2

MLLT4 3.87 ·10−3 9.88 ·10−2

CHRDL1 3.99 ·10−3 1.01 ·10−1

FBLN1 4.01 ·10−3 1.01 ·10−1

CYP4X1 4.1 ·10−3 1.02 ·10−1

EIF4E3 4.21 ·10−3 1.04 ·10−1

KLK4 4.28 ·10−3 1.04 ·10−1

PCDHA3 4.28 ·10−3 1.04 ·10−1

LY75.CD302 4.43 ·10−3 1.07 ·10−1

METTL7A 4.51 ·10−3 1.08 ·10−1

ZNF83 4.65 ·10−3 1.11 ·10−1

PIFO 4.8 ·10−3 1.13 ·10−1

RPL31 4.92 ·10−3 1.15 ·10−1

TNC 5.08 ·10−3 1.18 ·10−1

RAB4A 5.22 ·10−3 1.19 ·10−1

LRRC28 5.25 ·10−3 1.19 ·10−1

QSER1 5.25 ·10−3 1.19 ·10−1

AUH 5.27 ·10−3 1.19 ·10−1

BMP4 5.47 ·10−3 1.23 ·10−1

GRAMD1C 5.81 ·10−3 1.3 ·10−1

ABCC1 6.12 ·10−3 1.36 ·10−1

SCUBE2 6.19 ·10−3 1.36 ·10−1

EXOSC7 6.5 ·10−3 1.42 ·10−1

CHN1 6.64 ·10−3 1.44 ·10−1

IDH3A 6.68 ·10−3 1.44 ·10−1

TGFBR1 6.84 ·10−3 1.46 ·10−1

MYOCD 6.99 ·10−3 1.49 ·10−1

STARD4 7.34 ·10−3 1.55 ·10−1

C3AR1 7.54 ·10−3 1.58 ·10−1

TUSC3 7.69 ·10−3 1.6 ·10−1

FZD6 7.84 ·10−3 1.63 ·10−1

CEACAM1 8.38 ·10−3 1.72 ·10−1

CGNL1 8.4 ·10−3 1.72 ·10−1
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GPM6A 8.44 ·10−3 1.72 ·10−1

VAPB 8.52 ·10−3 1.72 ·10−1

KLHL2 8.93 ·10−3 1.77 ·10−1

ARHGAP28 8.95 ·10−3 1.77 ·10−1

TTC8 8.95 ·10−3 1.77 ·10−1

SRD5A2 8.99 ·10−3 1.77 ·10−1

PLAGL1 9.05 ·10−3 1.77 ·10−1

PCDHA10 9.35 ·10−3 1.82 ·10−1

TRPC1 9.5 ·10−3 1.84 ·10−1

RBM4B 9.69 ·10−3 1.86 ·10−1

ANXA1 9.73 ·10−3 1.86 ·10−1

HLA.E 0.999 ·10−2 1.9 ·10−1

CUL4B 1.01 ·10−2 1.9 ·10−1

CRISPLD2 1.01 ·10−2 1.9 ·10−1

SPATA6 1.03 ·10−2 1.91 ·10−1

MAGED2 1.03 ·10−2 1.91 ·10−1

RAPH1 1.04 ·10−2 1.91 ·10−1

RNF111 1.05 ·10−2 1.91 ·10−1

PPP3CB 1.07 ·10−2 1.91 ·10−1

SNTB2 1.07 ·10−2 1.91 ·10−1

STXBP6 1.07 ·10−2 1.91 ·10−1

TMEM68 1.07 ·10−2 1.91 ·10−1

TYMS 1.07 ·10−2 1.91 ·10−1

MATN2 1.08 ·10−2 1.92 ·10−1

ATXN10 1.09 ·10−2 1.92 ·10−1

TNFRSF19 1.09 ·10−2 1.92 ·10−1

TMEM41B 1.11 ·10−2 1.94 ·10−1

RNF145 1.12 ·10−2 1.95 ·10−1

FHOD3 1.14 ·10−2 1.96 ·10−1

LRRC9 1.14 ·10−2 1.96 ·10−1

TRAC 1.16 ·10−2 1.97 ·10−1

DDX42 1.18 ·10−2 2 ·10−1

NQO1 1.19 ·10−2 2.01 ·10−1

SPG20 1.28 ·10−2 2.14 ·10−1

KB.1507C5.2 1.29 ·10−2 2.14 ·10−1

TNFAIP2 1.29 ·10−2 2.14 ·10−1

WWTR1 1.3 ·10−2 2.14 ·10−1

ACAT2 1.3 ·10−2 2.14 ·10−1

C14orf37 1.38 ·10−2 2.26 ·10−1

CAP2 1.39 ·10−2 2.26 ·10−1

IRS2 1.4 ·10−2 2.27 ·10−1

NME7 1.4 ·10−2 2.27 ·10−1

POT1 1.43 ·10−2 2.3 ·10−1
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Table A.10 Top 200 step-down candidates significantly associated with the time to BCR
in the CancerMap dataset, sorted by the log-rank p-value.

Gene Log-rank p-val FDR adj. p-val

AASS 0 0
BMP4 0 0
CD38 0 0
DACT1 0 0
DET1 0 0
IDO1 0 0
KCNAB1 0 0
KIAA1377 0 0
LRMP 0 0
PRELP 0 0
RIN2 0 0
RP11.296A16.1 0 0
SLC25A13 0 0
STK33 0 0
TPH1 0 0
DDX46 2.22 ·10−16 4.03 ·10−14

RAB30 2.22 ·10−16 4.03 ·10−14

AKAP7 1.44 ·10−15 2.48 ·10−13

ANAPC4 4.88 ·10−15 5.8 ·10−13

EPS15 4.88 ·10−15 5.8 ·10−13

FAM179B 4.88 ·10−15 5.8 ·10−13

HKR1 4.88 ·10−15 5.8 ·10−13

MTOR 4.88 ·10−15 5.8 ·10−13

SYDE2 4.88 ·10−15 5.8 ·10−13

TIMMDC1 4.88 ·10−15 5.8 ·10−13

TPP2 4.88 ·10−15 5.8 ·10−13

CLK1 1.97 ·10−13 2.17 ·10−11

PHF14 1.97 ·10−13 2.17 ·10−11

BBIP1 1.14 ·10−10 8.01 ·10−9

C6ORF174 1.14 ·10−10 8.01 ·10−9

CDCA7L 1.14 ·10−10 8.01 ·10−9

ETV1 1.14 ·10−10 8.01 ·10−9

FMR1 1.14 ·10−10 8.01 ·10−9

IL13RA1 1.14 ·10−10 8.01 ·10−9

KLHL2 1.14 ·10−10 8.01 ·10−9

MLLT4 1.14 ·10−10 8.01 ·10−9

MS4A7 1.14 ·10−10 8.01 ·10−9

MSH5 1.14 ·10−10 8.01 ·10−9

PDPR 1.14 ·10−10 8.01 ·10−9
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PER3 1.14 ·10−10 8.01 ·10−9

SLC2A14 1.14 ·10−10 8.01 ·10−9

SLC7A11 1.14 ·10−10 8.01 ·10−9

SNRNP48 1.14 ·10−10 8.01 ·10−9

SRGN 1.14 ·10−10 8.01 ·10−9

TSPAN7 4.71 ·10−10 3.23 ·10−8

TRIM21 2.21 ·10−9 1.49 ·10−7

DEPTOR 3.13 ·10−9 2.06 ·10−7

CNTRL 3.51 ·10−9 2.26 ·10−7

NEDD9 4.14 ·10−9 2.61 ·10−7

EFCAB4B 1.16 ·10−8 7.14 ·10−7

RBM47 1.37 ·10−8 8.28 ·10−7

CD44 1.83 ·10−8 1.09 ·10−6

MTERFD2 3.32 ·10−8 1.9 ·10−6

RSRP1 3.32 ·10−8 1.9 ·10−6

LAMP3 4.01 ·10−8 2.25 ·10−6

LNX1 7.52 ·10−8 4.15 ·10−6

ELP4 1.39 ·10−7 7.53 ·10−6

TUBE1 1.79 ·10−7 9.54 ·10−6

TRMT1L 2.3 ·10−7 1.2 ·10−5

STK19 3.44 ·10−7 1.77 ·10−5

BAZ1A 5.54 ·10−7 2.8 ·10−5

PRPF39 6.99 ·10−7 3.48 ·10−5

ELL2 9.6 ·10−7 4.02 ·10−5

COMMD3 1.01 ·10−6 4.02 ·10−5

GABRE 1.01 ·10−6 4.02 ·10−5

GPAM 1.01 ·10−6 4.02 ·10−5

KIAA0020 1.01 ·10−6 4.02 ·10−5

M6PR 1.01 ·10−6 4.02 ·10−5

MS4A6A 1.01 ·10−6 4.02 ·10−5

NPHP3 1.01 ·10−6 4.02 ·10−5

PCDHGA2 1.01 ·10−6 4.02 ·10−5

RPS13 1.01 ·10−6 4.02 ·10−5

SKIV2L2 1.01 ·10−6 4.02 ·10−5

SLAIN1 1.01 ·10−6 4.02 ·10−5

SNRPA1 1.01 ·10−6 4.02 ·10−5

THOC1 1.01 ·10−6 4.02 ·10−5

ZNF10 1.01 ·10−6 4.02 ·10−5

ZNF112 1.01 ·10−6 4.02 ·10−5

ARMCX1 1.22 ·10−6 4.77 ·10−5

EFEMP1 1.33 ·10−6 5.07 ·10−5

LPAR1 1.33 ·10−6 5.07 ·10−5

DR1 1.73 ·10−6 6.53 ·10−5

SCN7A 2.43 ·10−6 9.05 ·10−5
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FGFR1OP2 2.5 ·10−6 9.19 ·10−5

LDHB 2.85 ·10−6 1.04 ·10−4

STYX 3.1 ·10−6 1.11 ·10−4

DHX36 3.27 ·10−6 1.16 ·10−4

CWC27 4.54 ·10−6 1.59 ·10−4

DMXL1 4.61 ·10−6 1.6 ·10−4

STARD4 4.75 ·10−6 1.63 ·10−4

RASA1 5.04 ·10−6 1.71 ·10−4

SREK1IP1 5.25 ·10−6 1.76 ·10−4

EIF4A2 6.53 ·10−6 2.17 ·10−4

RBM4B 7.38 ·10−6 2.37 ·10−4

ESCO1 7.45 ·10−6 2.37 ·10−4

CYP3A5 7.66 ·10−6 2.37 ·10−4

AHSA1 7.67 ·10−6 2.37 ·10−4

BBX 7.67 ·10−6 2.37 ·10−4

VPS8 7.67 ·10−6 2.37 ·10−4

YIPF1 7.67 ·10−6 2.37 ·10−4

ZBTB11 9.15 ·10−6 2.8 ·10−4

EFTUD2 9.68 ·10−6 2.9 ·10−4

DNAH7 1.01 ·10−5 2.9 ·10−4

GRIA3 1.01 ·10−5 2.9 ·10−4

NQO1 1.01 ·10−5 2.9 ·10−4

RBPMS 1.01 ·10−5 2.9 ·10−4

RGS22 1.01 ·10−5 2.9 ·10−4

IDH1 1.02 ·10−5 2.9 ·10−4

SOS1 1.02 ·10−5 2.9 ·10−4

SLC25A24 1.3 ·10−5 3.64 ·10−4

DAAM1 1.32 ·10−5 3.68 ·10−4

SETD4 1.51 ·10−5 4.16 ·10−4

RAB14 1.77 ·10−5 4.8 ·10−4

ZNF880 1.77 ·10−5 4.8 ·10−4

LRCH2 1.89 ·10−5 5.08 ·10−4

C11orf54 2.19 ·10−5 5.45 ·10−4

CCDC14 2.19 ·10−5 5.45 ·10−4

IMPA1 2.19 ·10−5 5.45 ·10−4

MOCS2 2.19 ·10−5 5.45 ·10−4

MUT 2.19 ·10−5 5.45 ·10−4

NPHP3.ACAD11 2.19 ·10−5 5.45 ·10−4

PSMD5.AS1 2.19 ·10−5 5.45 ·10−4

SMC5 2.19 ·10−5 5.45 ·10−4

ZNF507 2.19 ·10−5 5.45 ·10−4

ZNF655 2.21 ·10−5 5.45 ·10−4

AK9 2.37 ·10−5 5.8 ·10−4

ERC1 2.51 ·10−5 6.11 ·10−4
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CTD.2116N17.1 2.67 ·10−5 6.44 ·10−4

BBS2 2.87 ·10−5 6.88 ·10−4

LIN7C 3.53 ·10−5 8.39 ·10−4

ASPA 3.69 ·10−5 8.69 ·10−4

REV3L 3.85 ·10−5 9 ·10−4

ALDH3A2 3.99 ·10−5 9.26 ·10−4

UBE4A 4.17 ·10−5 9.61 ·10−4

C11orf73 4.42 ·10−5 0.999 ·10−3

KIAA1731 4.42 ·10−5 0.999 ·10−3

PCMTD1 4.47 ·10−5 0.999 ·10−3

SC5D 4.47 ·10−5 0.999 ·10−3

RSU1 5.24 ·10−5 1.15 ·10−3

TIAM1 5.24 ·10−5 1.15 ·10−3

VCAN 5.24 ·10−5 1.15 ·10−3

SLC7A6 5.41 ·10−5 1.18 ·10−3

HERC4 5.56 ·10−5 1.2 ·10−3

PCF11 7.06 ·10−5 1.51 ·10−3

TNFRSF19 7.08 ·10−5 1.51 ·10−3

AHR 7.73 ·10−5 1.63 ·10−3

ACSS3 7.85 ·10−5 1.65 ·10−3

ZNF614 8.11 ·10−5 1.69 ·10−3

TUBA1A 8.88 ·10−5 1.84 ·10−3

CLASP1 9.7 ·10−5 2 ·10−3

TBCCD1 9.96 ·10−5 2.04 ·10−3

ABLIM1 1.15 ·10−4 2.34 ·10−3

HPGD 1.18 ·10−4 2.37 ·10−3

KIAA1586 1.24 ·10−4 2.45 ·10−3

MYO5C 1.24 ·10−4 2.45 ·10−3

NAA16 1.24 ·10−4 2.45 ·10−3

DDX52 1.29 ·10−4 2.53 ·10−3

DMD 1.3 ·10−4 2.53 ·10−3

CSRNP1 1.33 ·10−4 2.58 ·10−3

DIXDC1 1.45 ·10−4 2.81 ·10−3

C12orf29 1.6 ·10−4 3.07 ·10−3

ARSD 1.82 ·10−4 3.3 ·10−3

CCAR2 1.82 ·10−4 3.3 ·10−3

CENPC 1.82 ·10−4 3.3 ·10−3

FGD6 1.82 ·10−4 3.3 ·10−3

IL10RB 1.82 ·10−4 3.3 ·10−3

ITGA2 1.82 ·10−4 3.3 ·10−3

PHACTR2 1.82 ·10−4 3.3 ·10−3

RIPK1 1.82 ·10−4 3.3 ·10−3

RNF180 1.82 ·10−4 3.3 ·10−3

RARS 2.19 ·10−4 3.96 ·10−3
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ZDHHC13 2.46 ·10−4 4.41 ·10−3

TBCK 2.51 ·10−4 4.46 ·10−3

UBE3A 2.51 ·10−4 4.46 ·10−3

ESF1 2.6 ·10−4 4.58 ·10−3

TAF2 2.68 ·10−4 4.71 ·10−3

C12orf4 2.73 ·10−4 4.76 ·10−3

ALG6 3.12 ·10−4 5.42 ·10−3

ZNF271 3.19 ·10−4 5.5 ·10−3

CHRNA5 3.26 ·10−4 5.58 ·10−3

ADAM28 3.31 ·10−4 5.64 ·10−3

AKAP2 3.39 ·10−4 5.75 ·10−3

EDRF1 3.7 ·10−4 6.24 ·10−3

ZNF226 3.72 ·10−4 6.24 ·10−3

IFI16 3.82 ·10−4 6.37 ·10−3

TGM2 4.46 ·10−4 7.4 ·10−3

TCF7L1 4.49 ·10−4 7.41 ·10−3

CREBZF 4.54 ·10−4 7.46 ·10−3

ZFC3H1 4.75 ·10−4 7.75 ·10−3

KIAA0907 4.9 ·10−4 7.95 ·10−3

AMICA1 4.92 ·10−4 7.95 ·10−3

LPCAT2 5.3 ·10−4 8.52 ·10−3

PI4K2B 5.43 ·10−4 8.69 ·10−3

RBBP8 5.98 ·10−4 9.51 ·10−3

CYP20A1 6.12 ·10−4 9.69 ·10−3

PHLPP2 6.3 ·10−4 9.92 ·10−3

LYST 6.42 ·10−4 1.01 ·10−2

APPL1 6.83 ·10−4 1.04 ·10−2

AXL 6.83 ·10−4 1.04 ·10−2

CDK13 6.83 ·10−4 1.04 ·10−2

Table A.11 Top 200 step-down candidates significantly associated with the time to BCR
in the MSKCC dataset, sorted by the log-rank p-value.
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Figure A.6 KM plots for the AKAP7 step-down jumps in a) CancerMap and b) MSKCC.
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Figure A.7 KM plots for the ALDH3A2 step-down jumps in a) CancerMap and b)
MSKCC.
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Figure A.8 KM plots for the ASPA step-down jumps in a) CancerMap and b) MSKCC.
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Figure A.9 KM plots for the ARMCX1 step-down jumps in a) CancerMap and b)
MSKCC.
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Figure A.10 KM plots for the DIXDC1 step-down jumps in a) CancerMap and b)
MSKCC.
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Figure A.11 KM plots for the HSDL2 step-down jumps in a) CancerMap and b) MSKCC.
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Figure A.12 KM plots for the LRCH2 step-down jumps in a) CancerMap and b)
MSKCC.
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Figure A.13 KM plots for the PI15 step-down jumps in a) CancerMap and b) MSKCC.
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Figure A.14 KM plots for the VAT1 step-down jumps in a) CancerMap and b) MSKCC.

3’ partner CancerMap
p-value

CancerMap
p-adj.

MSKCC p-value MKSCC p-adj.

CD9 8.81 ·10−2 9.09 ·10−1 2.25 ·10−1 9.1 ·10−1

PIGU 1.24 ·10−1 9.09 ·10−1 3.87 ·10−1 9.1 ·10−1

FKBP5 2.34 ·10−1 9.09 ·10−1 5.91 ·10−1 9.1 ·10−1

FOXP1 2.84 ·10−1 9.09 ·10−1 5.81 ·10−1 9.1 ·10−1

PDE4D 3.59 ·10−1 9.09 ·10−1 8.57 ·10−1 9.77 ·10−1

FAF1 3.62 ·10−1 9.09 ·10−1 4.46 ·10−1 9.1 ·10−1

ETV1 4.66 ·10−1 9.09 ·10−1 9.75 ·10−2 9.1 ·10−1

ELK4 4.84 ·10−1 9.09 ·10−1 4.33 ·10−1 9.1 ·10−1

ETV5 4.95 ·10−1 9.09 ·10−1 8.72 ·10−1 9.81 ·10−1

LYN 5.81 ·10−1 9.09 ·10−1 8.05 ·10−1 9.65 ·10−1

TMPRSS2 5.99 ·10−1 9.09 ·10−1 7.51 ·10−1 9.53 ·10−1

ZNF577 6.13 ·10−1 9.09 ·10−1 8.73 ·10−1 9.81 ·10−1

PRKG1 6.71 ·10−1 9.09 ·10−1 4.33 ·10−1 9.1 ·10−1

BRAF 6.9 ·10−1 9.09 ·10−1 3.81 ·10−1 9.1 ·10−1

ETV4 7.22 ·10−1 9.09 ·10−1 NA NA
ERG 7.65 ·10−1 9.32 ·10−1 7.16 ·10−1 9.45 ·10−1

FLI1 8.36 ·10−1 9.52 ·10−1 3.76 ·10−1 9.1 ·10−1

Table A.12 Correlation of step-up jumps in known 3’ fusion partners with the time to
BCR.
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5’ partner CancerMap
p-value

CancerMap
p-adj.

MSKCC
p-value

MKSCC
p-adj.

YIPF1 7.67 ·10−6 2.37 ·10−4 1.49 ·10−1 7.51 ·10−1

AZGP1 1.12 ·10−1 4.34 ·10−1 3.98 ·10−4 2.28 ·10−2

FKBP5 3.02 ·10−2 1.87 ·10−1 9.67 ·10−1 9.88 ·10−1

HERPUD1 9.35 ·10−1 9.65 ·10−1 2.29 ·10−2 2.96 ·10−1

DDX5 1.11 ·10−1 4.32 ·10−1 2.63 ·10−1 7.89 ·10−1

KLK2 1.59 ·10−1 5.24 ·10−1 5.79 ·10−1 8.7 ·10−1

ACSL3 3.35 ·10−1 7.14 ·10−1 4.51 ·10−1 8.07 ·10−1

ESRP1 3.67 ·10−1 7.3 ·10−1 5.82 ·10−1 8.7 ·10−1

ERG 3.73 ·10−1 7.33 ·10−1 8.15 ·10−1 9.59 ·10−1

RC3H2 4.59 ·10−1 7.61 ·10−1 2.63 ·10−1 7.89 ·10−1

TMPRSS2 5.99 ·10−1 8.11 ·10−1 2.2 ·10−1 7.72 ·10−1

ALG5 6.51 ·10−1 8.17 ·10−1 6.42 ·10−1 8.87 ·10−1

KIF2A 7.33 ·10−1 8.5 ·10−1 7.54 ·10−1 9.39 ·10−1

PTEN 8.79 ·10−1 9.37 ·10−1 5.13 ·10−1 8.45 ·10−1

NDRG1 8.84 ·10−1 9.4 ·10−1 4.57 ·10−1 8.08 ·10−1

TBC1D12 9.13 ·10−1 9.54 ·10−1 4.15 ·10−1 8.07 ·10−1

HARS2 9.95 ·10−1 9.96 ·10−1 2.49 ·10−1 7.89 ·10−1

Table A.13 Correlation of step-down jumps in known 5’ fusion partners with the time
to BCR.

Gene Symbol χ2 p-val. Adj. p-val. Mets Primary

AR 3.22 ·10−11 1.05 ·10−7 7/19 1/160
HMMR 5.52 ·10−11 1.05 ·10−7 6/19 0/160
INMT.FAM188B 5.52 ·10−11 1.05 ·10−7 6/19 0/160
TOP2A 1.57 ·10−10 1.79 ·10−7 8/19 3/160
TPX2 1.57 ·10−10 1.79 ·10−7 8/19 3/160
ANLN 2.61 ·10−9 2.47 ·10−6 6/19 1/160
RFX6 5.06 ·10−9 4.11 ·10−6 5/19 0/160
CCNB1 5.48 ·10−8 3.9 ·10−5 8/19 6/160
BUB1B 1.91 ·10−7 1.09 ·10−4 5/19 1/160
CDC6 1.91 ·10−7 1.09 ·10−4 5/19 1/160
EZH2 4.44 ·10−7 1.71 ·10−4 4/19 0/160
MCM2 4.44 ·10−7 1.71 ·10−4 4/19 0/160
MEX3A 4.44 ·10−7 1.71 ·10−4 4/19 0/160
MTERFD1 4.44 ·10−7 1.71 ·10−4 4/19 0/160
TTK 4.5 ·10−7 1.71 ·10−4 6/19 3/160
BZW2 2.56 ·10−6 8.58 ·10−4 5/19 2/160
MELK 2.56 ·10−6 8.58 ·10−4 5/19 2/160
LPL 2.74 ·10−6 8.65 ·10−4 6/19 4/160
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CASC5 1.23 ·10−5 2.91 ·10−3 4/19 1/160
CHEK1 1.23 ·10−5 2.91 ·10−3 4/19 1/160
MCMDC2 1.23 ·10−5 2.91 ·10−3 4/19 1/160
NCAPG 1.23 ·10−5 2.91 ·10−3 4/19 1/160
NUF2 1.23 ·10−5 2.91 ·10−3 4/19 1/160
PAK4 1.23 ·10−5 2.91 ·10−3 4/19 1/160
SCGN 1.72 ·10−5 3.92 ·10−3 7/19 8/160
ASAP3 3.73 ·10−5 5.05 ·10−3 3/19 0/160
BIRC5 3.73 ·10−5 5.05 ·10−3 3/19 0/160
COLEC12 3.73 ·10−5 5.05 ·10−3 3/19 0/160
DNAH11 3.73 ·10−5 5.05 ·10−3 3/19 0/160
E2F5 3.73 ·10−5 5.05 ·10−3 3/19 0/160
EXO1 3.73 ·10−5 5.05 ·10−3 3/19 0/160
FOXRED2 3.73 ·10−5 5.05 ·10−3 3/19 0/160
GGTA1P 3.73 ·10−5 5.05 ·10−3 3/19 0/160
GRIN3A 3.73 ·10−5 5.05 ·10−3 3/19 0/160
LINC00476 3.73 ·10−5 5.05 ·10−3 3/19 0/160
PBLD 3.73 ·10−5 5.05 ·10−3 3/19 0/160
PIK3R3 3.73 ·10−5 5.05 ·10−3 3/19 0/160
RITA1 3.73 ·10−5 5.05 ·10−3 3/19 0/160
SEPT3 3.73 ·10−5 5.05 ·10−3 3/19 0/160
SLC17A4 3.73 ·10−5 5.05 ·10−3 3/19 0/160
SPDYA 3.73 ·10−5 5.05 ·10−3 3/19 0/160
TSHR 3.73 ·10−5 5.05 ·10−3 3/19 0/160
SERPINI1 4.12 ·10−5 5.45 ·10−3 6/19 6/160
PTGFR 4.43 ·10−5 5.73 ·10−3 7/19 9/160
ACER3 8.28 ·10−5 1.02 ·10−2 5/19 4/160
SGPP2 8.28 ·10−5 1.02 ·10−2 5/19 4/160
PPFIA2 1.02 ·10−4 1.23 ·10−2 7/19 10/160
ABCC5 1.13 ·10−4 1.27 ·10−2 4/19 2/160
CA13 1.13 ·10−4 1.27 ·10−2 4/19 2/160
NOL4 1.13 ·10−4 1.27 ·10−2 4/19 2/160
TTC21B 1.13 ·10−4 1.27 ·10−2 4/19 2/160
LAMA3 1.17 ·10−4 1.28 ·10−2 6/19 7/160
DAB1 2.8 ·10−4 2.9 ·10−2 5/19 5/160
DEGS1 2.8 ·10−4 2.9 ·10−2 5/19 5/160
SMC2 2.8 ·10−4 2.9 ·10−2 5/19 5/160
DNAH8 4.2 ·10−4 4.27 ·10−2 8/19 16/160
ABHD10 5.58 ·10−4 4.73 ·10−2 4/19 3/160
COPS5 5.58 ·10−4 4.73 ·10−2 4/19 3/160
CYFIP2 5.58 ·10−4 4.73 ·10−2 4/19 3/160
DNAH14 5.58 ·10−4 4.73 ·10−2 4/19 3/160
EEF1A2 5.58 ·10−4 4.73 ·10−2 4/19 3/160
FANCI 5.58 ·10−4 4.73 ·10−2 4/19 3/160
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GPR75.ASB3 5.58 ·10−4 4.73 ·10−2 4/19 3/160
HDAC9 5.58 ·10−4 4.73 ·10−2 4/19 3/160
ATP12A 6.56 ·10−4 4.73 ·10−2 3/19 1/160
CASP6 6.56 ·10−4 4.73 ·10−2 3/19 1/160
CES4A 6.56 ·10−4 4.73 ·10−2 3/19 1/160
CLPTM1 6.56 ·10−4 4.73 ·10−2 3/19 1/160
CXorf22 6.56 ·10−4 4.73 ·10−2 3/19 1/160
FANCB 6.56 ·10−4 4.73 ·10−2 3/19 1/160
KIF14 6.56 ·10−4 4.73 ·10−2 3/19 1/160
LACTB2 6.56 ·10−4 4.73 ·10−2 3/19 1/160
LAMC2 6.56 ·10−4 4.73 ·10−2 3/19 1/160
LRRC31 6.56 ·10−4 4.73 ·10−2 3/19 1/160
NMT2 6.56 ·10−4 4.73 ·10−2 3/19 1/160
NOP56 6.56 ·10−4 4.73 ·10−2 3/19 1/160
RACGAP1 6.56 ·10−4 4.73 ·10−2 3/19 1/160
RP11.26J3.4 6.56 ·10−4 4.73 ·10−2 3/19 1/160
SMARCA5 6.56 ·10−4 4.73 ·10−2 3/19 1/160

Table A.14 Novel candidates exhibiting step-up jumps over-represented in the metastatic
samples.
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Gene Symbol χ2 p-val. Adj. p-val. Mets Primary

CNN1 2.44 ·10−31 1.2 ·10−27 19/19 4/160
DES 3.74 ·10−30 9.17 ·10−27 17/19 2/160
ACTG2 1.68 ·10−28 2.74 ·10−25 17/19 3/160
SORBS1 3.66 ·10−22 4.49 ·10−19 14/19 3/160
TAGLN 1.52 ·10−21 1.49 ·10−18 15/19 5/160
DPP4 3.76 ·10−16 3.07 ·10−13 11/19 3/160
SYNPO2 1.02 ·10−15 7.12 ·10−13 12/19 5/160
FHL1 1.23 ·10−15 7.56 ·10−13 16/19 14/160
PDE5A 1.44 ·10−15 7.86 ·10−13 10/19 2/160
SRD5A2 4.9 ·10−15 2.4 ·10−12 16/19 15/160
CNTN1 6.2 ·10−15 2.76 ·10−12 14/19 10/160
EDNRA 1.02 ·10−14 4.15 ·10−12 12/19 6/160
EPHA3 3.13 ·10−14 1.1 ·10−11 14/19 11/160
CCND2 3.14 ·10−14 1.1 ·10−11 10/19 3/160
PI15 5.4 ·10−14 1.76 ·10−11 15/19 14/160
TRPC4 7.1 ·10−14 2.17 ·10−11 11/19 5/160
AZGP1 7.98 ·10−14 2.3 ·10−11 12/19 7/160
KL 1.28 ·10−13 3.47 ·10−11 9/19 2/160
TRIM29 3.01 ·10−13 7.77 ·10−11 13/19 10/160
MFAP4 4.41 ·10−13 1.08 ·10−10 10/19 4/160
SYNM 4.82 ·10−13 1.12 ·10−10 18/19 26/160
CSRP1 5.58 ·10−13 1.22 ·10−10 16/19 19/160
GALNT12 5.74 ·10−13 1.22 ·10−10 7/19 0/160
CHRDL1 9.45 ·10−13 1.93 ·10−10 17/19 23/160
SPARCL1 1.36 ·10−12 2.67 ·10−10 13/19 11/160
LCP1 4.2 ·10−12 7.91 ·10−10 11/19 7/160
ACADL 5.47 ·10−12 9.58 ·10−10 13/19 12/160
WWTR1 5.47 ·10−12 9.58 ·10−10 13/19 12/160
HSD17B6 1.02 ·10−11 1.68 ·10−9 16/19 22/160
TGFB3 1.03 ·10−11 1.68 ·10−9 8/19 2/160
SLC22A3 4.15 ·10−11 6.56 ·10−9 15/19 20/160
CLMP 5.52 ·10−11 8.44 ·10−9 6/19 0/160
FERMT2 6.49 ·10−11 9.63 ·10−9 13/19 14/160
PGR 1.9 ·10−10 2.58 ·10−8 10/19 7/160
SCN7A 1.9 ·10−10 2.58 ·10−8 10/19 7/160
VCL 1.9 ·10−10 2.58 ·10−8 10/19 7/160
EFEMP1 2.32 ·10−10 2.99 ·10−8 9/19 5/160
ITM2C 2.32 ·10−10 2.99 ·10−8 9/19 5/160
CALD1 5.47 ·10−10 6.88 ·10−8 13/19 16/160
AF131217.1 1.45 ·10−9 1.62 ·10−7 9/19 6/160
HOXA13 1.45 ·10−9 1.62 ·10−7 9/19 6/160
MPPED2 1.45 ·10−9 1.62 ·10−7 9/19 6/160
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PLXDC2 1.45 ·10−9 1.62 ·10−7 9/19 6/160
RNF150 1.45 ·10−9 1.62 ·10−7 9/19 6/160
RIC3 1.53 ·10−9 1.67 ·10−7 8/19 4/160
ATP2B4 1.75 ·10−9 1.87 ·10−7 12/19 14/160
BVES 2.61 ·10−9 2.6 ·10−7 6/19 1/160
IGFBP6 2.61 ·10−9 2.6 ·10−7 6/19 1/160
MEIS1 2.61 ·10−9 2.6 ·10−7 6/19 1/160
MAOB 3.51 ·10−9 3.44 ·10−7 13/19 18/160
GPM6B 3.74 ·10−9 3.6 ·10−7 10/19 9/160
SLC14A1 4.8 ·10−9 4.52 ·10−7 12/19 15/160
EXOSC8 5.06 ·10−9 4.55 ·10−7 5/19 0/160
TNFSF15 5.06 ·10−9 4.55 ·10−7 5/19 0/160
AOX1 5.11 ·10−9 4.55 ·10−7 11/19 12/160
ITGA8 7.25 ·10−9 6.23 ·10−7 9/19 7/160
PGM5 7.25 ·10−9 6.23 ·10−7 9/19 7/160
TP63 8.16 ·10−9 6.89 ·10−7 13/19 19/160
RAB23 9.13 ·10−9 7.58 ·10−7 7/19 3/160
COG3 1.05 ·10−8 8.17 ·10−7 8/19 5/160
RCBTB2 1.05 ·10−8 8.17 ·10−7 8/19 5/160
STARD4 1.05 ·10−8 8.17 ·10−7 8/19 5/160
WLS 1.05 ·10−8 8.17 ·10−7 8/19 5/160
CASP7 2.99 ·10−8 2.22 ·10−6 9/19 8/160
FMOD 2.99 ·10−8 2.22 ·10−6 9/19 8/160
LPAR3 2.99 ·10−8 2.22 ·10−6 9/19 8/160
NR4A1 3.96 ·10−8 2.85 ·10−6 11/19 14/160
PALLD 3.96 ·10−8 2.85 ·10−6 11/19 14/160
CD38 4.71 ·10−8 3.21 ·10−6 6/19 2/160
DUSP5 4.71 ·10−8 3.21 ·10−6 6/19 2/160
NRK 4.71 ·10−8 3.21 ·10−6 6/19 2/160
PRELP 4.71 ·10−8 3.21 ·10−6 6/19 2/160
ITPR2 5.48 ·10−8 3.63 ·10−6 8/19 6/160
MYOF 5.48 ·10−8 3.63 ·10−6 8/19 6/160
OLFM4 5.93 ·10−8 3.88 ·10−6 18/19 46/160
DPYSL3 7.13 ·10−8 4.42 ·10−6 7/19 4/160
IRAK3 7.13 ·10−8 4.42 ·10−6 7/19 4/160
NEDD9 7.13 ·10−8 4.42 ·10−6 7/19 4/160
SH3BGRL 7.13 ·10−8 4.42 ·10−6 7/19 4/160
ANTXR2 9.8 ·10−8 5.93 ·10−6 11/19 15/160
LPHN2 9.8 ·10−8 5.93 ·10−6 11/19 15/160
FAM189A2 1.06 ·10−7 6.24 ·10−6 9/19 9/160
SOCS2 1.06 ·10−7 6.24 ·10−6 9/19 9/160
MAN1A1 1.49 ·10−7 8.68 ·10−6 13/19 23/160
FREM2 1.91 ·10−7 1.07 ·10−5 5/19 1/160
HSPA4L 1.91 ·10−7 1.07 ·10−5 5/19 1/160
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MYH11 1.91 ·10−7 1.07 ·10−5 5/19 1/160
KRT23 2.25 ·10−7 1.21 ·10−5 14/19 28/160
ACOT9 2.29 ·10−7 1.21 ·10−5 8/19 7/160
JAM3 2.29 ·10−7 1.21 ·10−5 8/19 7/160
MPP5 2.29 ·10−7 1.21 ·10−5 8/19 7/160
NFE2L2 2.29 ·10−7 1.21 ·10−5 8/19 7/160
STK19 2.29 ·10−7 1.21 ·10−5 8/19 7/160
FAM3B 2.87 ·10−7 1.5 ·10−5 12/19 20/160
ITGA1 3.27 ·10−7 1.68 ·10−5 9/19 10/160
PRICKLE2 3.96 ·10−7 1.98 ·10−5 7/19 5/160
STOM 3.96 ·10−7 1.98 ·10−5 7/19 5/160
DNAJB5 4.44 ·10−7 1.98 ·10−5 4/19 0/160
MEG8 4.44 ·10−7 1.98 ·10−5 4/19 0/160
MERTK 4.44 ·10−7 1.98 ·10−5 4/19 0/160
NEXN 4.44 ·10−7 1.98 ·10−5 4/19 0/160
PBX1 4.44 ·10−7 1.98 ·10−5 4/19 0/160
PXDN 4.44 ·10−7 1.98 ·10−5 4/19 0/160
ANXA3 4.5 ·10−7 1.98 ·10−5 6/19 3/160
ARMCX1 4.5 ·10−7 1.98 ·10−5 6/19 3/160
ATRNL1 4.5 ·10−7 1.98 ·10−5 6/19 3/160
FADS2 4.5 ·10−7 1.98 ·10−5 6/19 3/160
PTER 4.5 ·10−7 1.98 ·10−5 6/19 3/160
SOCS2.AS1 4.5 ·10−7 1.98 ·10−5 6/19 3/160
SPOCK3 4.5 ·10−7 1.98 ·10−5 6/19 3/160
TPM1 4.5 ·10−7 1.98 ·10−5 6/19 3/160
ETS2 4.94 ·10−7 2.16 ·10−5 11/19 17/160
RMST 5.61 ·10−7 2.43 ·10−5 12/19 21/160
RAB27A 7.37 ·10−7 3.17 ·10−5 10/19 14/160
LPAR1 8.04 ·10−7 3.34 ·10−5 8/19 8/160
LRCH2 8.04 ·10−7 3.34 ·10−5 8/19 8/160
PAX9 8.04 ·10−7 3.34 ·10−5 8/19 8/160
SMAD9 8.04 ·10−7 3.34 ·10−5 8/19 8/160
PDE8B 9.02 ·10−7 3.71 ·10−5 9/19 11/160
TIMP3 1.52 ·10−6 6.22 ·10−5 13/19 27/160
SPG20 1.65 ·10−6 6.47 ·10−5 10/19 15/160
ERAP1 1.69 ·10−6 6.47 ·10−5 7/19 6/160
FBXO32 1.69 ·10−6 6.47 ·10−5 7/19 6/160
FIP1L1 1.69 ·10−6 6.47 ·10−5 7/19 6/160
NEO1 1.69 ·10−6 6.47 ·10−5 7/19 6/160
PDS5B 1.69 ·10−6 6.47 ·10−5 7/19 6/160
ST8SIA6 1.69 ·10−6 6.47 ·10−5 7/19 6/160
TGFBR3 1.69 ·10−6 6.47 ·10−5 7/19 6/160
LEPREL1 2.26 ·10−6 8.52 ·10−5 9/19 12/160
SACS 2.26 ·10−6 8.52 ·10−5 9/19 12/160
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DST 2.43 ·10−6 8.91 ·10−5 8/19 9/160
MKX 2.43 ·10−6 8.91 ·10−5 8/19 9/160
CAMK4 2.56 ·10−6 8.91 ·10−5 5/19 2/160
FAM63A 2.56 ·10−6 8.91 ·10−5 5/19 2/160
FOXP1 2.56 ·10−6 8.91 ·10−5 5/19 2/160
KLHDC1 2.56 ·10−6 8.91 ·10−5 5/19 2/160
MXI1 2.56 ·10−6 8.91 ·10−5 5/19 2/160
PRRG4 2.56 ·10−6 8.91 ·10−5 5/19 2/160
PTPN13 2.56 ·10−6 8.91 ·10−5 5/19 2/160
SEMA3D 2.56 ·10−6 8.91 ·10−5 5/19 2/160
TSPAN7 2.56 ·10−6 8.91 ·10−5 5/19 2/160
CAP2 2.74 ·10−6 9.31 ·10−5 6/19 4/160
MED4 2.74 ·10−6 9.31 ·10−5 6/19 4/160
SLC15A2 2.74 ·10−6 9.31 ·10−5 6/19 4/160
ANPEP 3.45 ·10−6 1.15 ·10−4 10/19 16/160
MMP2 3.45 ·10−6 1.15 ·10−4 10/19 16/160
PDK4 3.45 ·10−6 1.15 ·10−4 10/19 16/160
ZNF655 3.78 ·10−6 1.25 ·10−4 11/19 20/160
CTGF 5.86 ·10−6 1.88 ·10−4 7/19 7/160
EMP2 5.86 ·10−6 1.88 ·10−4 7/19 7/160
LMO7 5.86 ·10−6 1.88 ·10−4 7/19 7/160
SUGT1 5.86 ·10−6 1.88 ·10−4 7/19 7/160
ZMAT1 5.86 ·10−6 1.88 ·10−4 7/19 7/160
C12orf75 6.49 ·10−6 2.06 ·10−4 8/19 10/160
ALDH1A1 6.86 ·10−6 2.17 ·10−4 10/19 17/160
EDNRB 9.4 ·10−6 2.95 ·10−4 12/19 26/160
ANXA1 1.12 ·10−5 3.46 ·10−4 9/19 14/160
CAV2 1.12 ·10−5 3.46 ·10−4 9/19 14/160
FLNC 1.2 ·10−5 3.5 ·10−4 6/19 5/160
GXYLT2 1.2 ·10−5 3.5 ·10−4 6/19 5/160
PIKFYVE 1.2 ·10−5 3.5 ·10−4 6/19 5/160
PTBP2 1.2 ·10−5 3.5 ·10−4 6/19 5/160
SC5D 1.2 ·10−5 3.5 ·10−4 6/19 5/160
EYA4 1.23 ·10−5 3.5 ·10−4 4/19 1/160
MAP3K4 1.23 ·10−5 3.5 ·10−4 4/19 1/160
MIR17HG 1.23 ·10−5 3.5 ·10−4 4/19 1/160
N4BP2L1 1.23 ·10−5 3.5 ·10−4 4/19 1/160
PAM 1.23 ·10−5 3.5 ·10−4 4/19 1/160
PARM1 1.23 ·10−5 3.5 ·10−4 4/19 1/160
PCDHGC5 1.23 ·10−5 3.5 ·10−4 4/19 1/160
PHACTR2 1.23 ·10−5 3.5 ·10−4 4/19 1/160
STK33 1.23 ·10−5 3.5 ·10−4 4/19 1/160
TSC22D3 1.3 ·10−5 3.67 ·10−4 10/19 18/160
MYBPC1 1.56 ·10−5 4.35 ·10−4 13/19 32/160
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CRLS1 1.56 ·10−5 4.35 ·10−4 8/19 11/160
PTEN 1.56 ·10−5 4.35 ·10−4 8/19 11/160
ATL2 1.72 ·10−5 4.69 ·10−4 7/19 8/160
DMD 1.72 ·10−5 4.69 ·10−4 7/19 8/160
DNALI1 1.72 ·10−5 4.69 ·10−4 7/19 8/160
ZDBF2 1.72 ·10−5 4.69 ·10−4 7/19 8/160
APOL6 1.81 ·10−5 4.71 ·10−4 5/19 3/160
KCND3 1.81 ·10−5 4.71 ·10−4 5/19 3/160
KLHL5 1.81 ·10−5 4.71 ·10−4 5/19 3/160
RSRP1 1.81 ·10−5 4.71 ·10−4 5/19 3/160
TNC 1.81 ·10−5 4.71 ·10−4 5/19 3/160
YBX3 1.81 ·10−5 4.71 ·10−4 5/19 3/160
ZNF827 1.81 ·10−5 4.71 ·10−4 5/19 3/160
ZSWIM5 1.81 ·10−5 4.71 ·10−4 5/19 3/160
MME 2.02 ·10−5 5.23 ·10−4 11/19 23/160
ANK3 3.73 ·10−5 8.91 ·10−4 3/19 0/160
ARHGEF7 3.73 ·10−5 8.91 ·10−4 3/19 0/160
CRYAB 3.73 ·10−5 8.91 ·10−4 3/19 0/160
FOXN3 3.73 ·10−5 8.91 ·10−4 3/19 0/160
LATS2 3.73 ·10−5 8.91 ·10−4 3/19 0/160
LIMCH1 3.73 ·10−5 8.91 ·10−4 3/19 0/160
P2RX5.TAX1BP3 3.73 ·10−5 8.91 ·10−4 3/19 0/160
PCDHGA6 3.73 ·10−5 8.91 ·10−4 3/19 0/160
PSTPIP2 3.73 ·10−5 8.91 ·10−4 3/19 0/160
SGK3 3.73 ·10−5 8.91 ·10−4 3/19 0/160
SMOC1 3.73 ·10−5 8.91 ·10−4 3/19 0/160

Table A.15 Novel candidates exhibiting step-down jumps over-represented in the
metastatic samples.
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Figure A.15 Genomic plot depicting the mapping of the jumps to the AR gene model.
In the top panel we depict several representative step-down jumps. In the middle panel,
the vertical lines correspond to the position where the probesets align to the gene model,
while each read line links the intensities of two consecutive probesets in a sample with
step-up jumps. The red arrows represent the position of the putative breakpoints, i.e.
the position where the step-down jumps occur. The numbers underneath the red arrows
represent the number of putative breakpoints identified at that position. In the bottom
panel it is represented the gene model.

Gene Symbol χ2 p-val. Adj. p-val. Mets Primary

FKBP5 3.25 ·10−1 1 1/19 27/160
ELK4 3.73 ·10−1 1 0/19 14/160
ERG 4.05 ·10−1 1 7/19 40/160
CD9 4.11 ·10−1 1 0/19 13/160
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ZNF577 5 ·10−1 1 0/19 11/160
ETV4 5.07 ·10−1 1 1/19 1/160
PIGU 5.07 ·10−1 1 1/19 1/160
DIRC2 6.13 ·10−1 1 0/19 9/160
PDE4D 6.13 ·10−1 1 0/19 9/160
TBL1XR1 6.82 ·10−1 1 0/19 8/160
TMPRSS2 7.53 ·10−1 1 2/19 26/160
FAF1 8.54 ·10−1 1 0/19 6/160
FLI1 8.54 ·10−1 1 0/19 6/160
PLCE1 8.54 ·10−1 1 0/19 6/160
ETV1 9.11 ·10−1 1 2/19 11/160
FOXP1 9.64 ·10−1 1 0/19 5/160
ETV5 1 ·100 1 1/19 5/160
LYN 1 ·100 1 1/19 7/160
BRAF 1 1 0/19 3/160
PRKG1 1 1 0/19 3/160

Table A.16 Correlation of known 3’ fusion partners with the metastatic samples.

Gene Symbol χ2 p-val. Adj. p-val. Mets Primary

AZGP1 7.98 ·10−14 2.3 ·10−11 12/19 7/160
FOXP1 2.56 ·10−6 8.91 ·10−5 5/19 2/160
PTEN 1.56 ·10−5 4.35 ·10−4 8/19 11/160
FKBP5 4.2 ·10−4 6.87 ·10−3 8/19 16/160
ALG5 1.85 ·10−3 2.27 ·10−2 4/19 4/160
TMPRSS2 4.62 ·10−3 4.23 ·10−2 9/19 27/160
KLK2 4.72 ·10−3 4.23 ·10−2 4/19 5/160
DDX5 1.84 ·10−2 1.3 ·10−1 4/19 7/160
NDRG1 2.66 ·10−2 1.6 ·10−1 6/19 17/160
HERPUD1 5.25 ·10−2 2.72 ·10−1 3/19 5/160
KIF2A 1.29 ·10−1 5.32 ·10−1 3/19 7/160
ARHGEF3 2 ·10−1 6.96 ·10−1 1/19 0/160
ACSL3 2.45 ·10−1 7.8 ·10−1 2/19 4/160
TNPO1 2.95 ·10−1 9.15 ·10−1 3/19 10/160
ZNF649 4.27 ·10−1 1 3/19 12/160
SMG5 5.07 ·10−1 1 1/19 1/160
YIPF1 7.31 ·10−1 1 1/19 2/160
ERG 8.26 ·10−1 1 2/19 10/160
EIF4E2 1 ·100 1 0/19 1/160
ESRP1 1 ·100 1 1/19 5/160
RC3H2 1 ·100 1 1/19 11/160
BRAF 1 ·100 1 0/19 4/160
MIPOL1 1 ·100 1 0/19 2/160
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HARS2 1 ·100 1 1/19 10/160
TBC1D12 1 ·100 1 1/19 7/160
PDZRN3 1 1 0/19 0/160

Table A.17 Correlation of known 5’ fusion partners with the metastatic samples.
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Figure A.16 Genomic plot depicting the mapping of the jumps to the FKBP5 gene
model. In the top panel we depict several representative step-down jumps. In the middle
panel, the vertical lines correspond to the position where the probesets align to the gene
model, while each read line links the intensities of two consecutive probesets in a sample
with step-down jumps. The red arrows represent the position of the putative breakpoints,
i.e. the position where the step-down jumps occur. The numbers underneath the red
arrows represent the number of putative breakpoints identified at that position. The blue
arrows represent the positions of breakpoints reported in the literature. In the bottom
panel it is represented the gene model.
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Figure A.17 Boxplots depicting the distribution of the expression levels of genes located
on chromosome 3p13 (FOXP1, GPR27, GXYLT2, EIF4E3, RYBP and SHQ1) in samples
with FOXP1 jumps, and samples without.
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Figure A.18 Boxplots depicting the distribution of the expression levels of genes located
on chromosome 10q23.3 (PTEN, FAS and BMPR1A) in samples with PTEN jumps, and
samples without.
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Figure A.19 Genomic plot depicting the mapping of the jumps in CancerMap (top
panel) and MSKCC (middle panel) to the ERG gene model. In the two top panels, the
vertical lines correspond to the position where the probesets align to the gene model,
while each read line links the intensities of two consecutive probesets in a sample with
step-up jumps. The red arrows represent the position of the putative breakpoints, i.e.
the position where the step-down jumps occur. The numbers underneath the red arrows
represent the number of putative breakpoints identified at that position. The blue arrows
represent the positions of breakpoints reported in the literature. In the bottom panel it is
represented the gene model.
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Figure B.1 Intensity boxplots for a) MSKCC, b) CancerMap and c) Klein obtained after
RMA normalisation.
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Figure B.2 QA plots for the Klein dataset. The blue points correspond to the positive
vs. negative AUC values for a given microarray, while the red points correspond to the
MAD of the residuals values.
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IGJ C5orf23 TRIM36 C7 TCEAL2 MYOCD
ERG SCGB1D2 FLNA NTN4 SLC18A2 MS4A8B
GDEP CXCL2 CCND2 FAM36A HIST1H2BE TNS1
TMEFF2 AFF3 IFIT3 CNTNAP2 RARRES1 BAMBI
CST1 ATP8A2 FN1 SC4MOL PLN IGF1
LTF PRIM2 PRY RAP1B OGN RALGAPA1
AMACR ADAMTSL1 HSPB8 SLC4A4 CLGN S100A10
SERPINA3 NELL2 CD177 LCE2D NIPAL3 PMS2CL
NEFH RPS4Y1 TP63 EGR1 ACTG2 MMP2
ACSM1 CD24 IFI44 SCUBE2 RCAN3 SLC8A1
OR51E1 GOLGA6L9 COL12A1 FAM55D KLK11 OAS2
MT1G ZFP36 EDNRA PDK4 HMGCS2 ARRDC3
ANKRD36B TRIB1 PCDHB2 CXCL13 EML5 AMY2B
LOC100510059 BNIP3 HLA-DRA CACNA1D EDIL3 SPARCL1
PLA2G2A KL TUBA3E GPR160 PIGH IQGAP2
TARP PDE5A ASPN CPM GLYATL1 ACAD8
REXO1L1 DCN FAM127A PTGS2 ATP1B1 LPAR3
ANPEP LDHB DMD TSPAN8 GJA1 HIGD2A
HLA-DRB5 PCDHB5 DHRS7 BMP5 PLA1A NUCB2
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PLA2G7 ACADL ANO7 GOLGA8A MPPED2 HLA-DPA1
NCAPD3 ZNF99 MEIS1 OR4N2 AMD1 SLITRK6
OR51F2 CPNE4 TSPAN1 FAM135A EMP1 TPM2
SPINK1 CCDC144B CNTN1 DYNLL1 PRR16 REPS2
RCN1 SLC26A2 TRIM22 DSC3 CNN1 EAF2
CP CYP1B1 GSTA2 C4orf3 GHR CAV1
SMU1 SELE SORBS1 HIST1H2BK ALDH1A1 TMEM178
ACTC1 CLDN1 GPR81 LCN2 TRIM29 MFAP4
AGR2 KRT13 CSRP1 STEAP4 IFNA17 SYNM
SLC26A4 SFRP2 C3orf14 RPS27L TAS2R4 EFEMP1
IGK SLC25A33 FGFR2 TRPM8 SEPP1 RND3
MYBPC1 HSD17B11 SNAI2 ID2 GREM1 SCNN1A
NPY HSD17B13 CALCRL LUM RASD1 B3GNT5
PI15 UGT2B4 MON1B EDNRB C1S LMOD1
SLC22A3 CTGF PVRL3 PGM5 CLSTN2 UBC
PIGR SCIN VGLL3 SFRP4 DMXL1 LMO3
MME C10orf81 SULF1 STEAP1 HIST1H2BC LOX
HLA-DRB1 CYR61 LIFR FADS2 NRG4 NFIL3
FOLH1 PRUNE2 C12orf75 CXCL11 ARL17A C11orf92
LUZP2 IFI6 GNPTAB CWH43 GRPR C11orf48
MSMB MYH11 CALM2 SNRPN PART1 BCAP29
GSTT1 PPP1R3C KLF6 GPR110 CYP3A5 EPCAM
MMP7 KCNH8 C7orf58 THBS1 KCNC2 PTGDS
ODZ1 ZNF615 RDH11 APOD SERPINE1 ASB5
ACTB ERV3 NR4A1 HPGD SLC6A14 TUBA1B
SPON2 F3 RWDD4 LEPREL1 EIF4A1 SERHL
SLC38A11 TTN ABCC4 LCE1D MYOF ITGA5
FOS LYRM5 GABRE GSTM5 PHOSPHO2 SPARC
OR51T1 FMOD SLC16A1 SLC30A4 GCNT2 LOC286161
HLA-DMB NEXN DEGS1 SEMA3D AOX1 NAALADL2
KRT15 IL28A CLDN8 CACNA2D1 CCDC80 TMPRSS2
ITGA8 FHL1 HAS2 GPR116 ATP2B4 SERPINF1
CXADR CXCL10 ODC1 C7orf63 UGDH EPHA7
LYZ SPOCK1 REEP3 FAM198B GSTM2 SDAD1
CEACAM20 GSTP1 LYRM4 SCD MEIS2 SOX14
C8orf4 OAT PPFIA2 NR4A2 RGS2 RPL35
DPP4 HIST2H2BF PGM3 ARG2 PRKG2 HSPA1B
PGC ACSM3 ZDHHC8P1 ZNF385B FIBIN MSN
C15orf21 GLB1L3 C6orf72 RGS1 FDXACB1 MTRF1L
CHORDC1 SLC5A1 HIST1H2BD DNAH5 SOD2 PTN
LRRN1 OR4N4 TES NPR3 SEPT7 CAMKK2
MT1M MAOB PDE8B RAB3B PTPRC RBM7
EPHA6 BZW1 DNAJB4 CHRDL1 GABRP OR52H1
PDE11A IFI44L RGS5 MBOAT2 CBWD3 C1R
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TMSB15A KRT5 EPHA3 ATF3 TOR1AIP2 CHRNA2
LYPLA1 SCN7A COX7A2 ST6GAL1 CXCR4 MRPL41
FOSB GOLM1 MT1H GDF15 OR51L1 PROM1
F5 HIST4H4 HIST2H2BE ANXA1 SLC12A2 LPAR6
C15orf48 IL7R TGFB3 C4B AGAP11 SAMHD1
MIPEP CSGALNACT1 VEGFA ELOVL2 SLC27A2 SCNN1G
HSD17B6 A2M CRISPLD2 GSTM1 AZGP1 DNAJC10
SLPI LRRC9 TFF1 GLIPR1 VCAN MOXD1
MYO6 KRT17 ID1 C3 ERAP2 HIST1H2BG

Table B.1 The 489 genes used for LPD classification.
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Figure B.3 The average log-likelihood of 100 LPD restarts (vertical axis) versus various
choices for sigma (horizontal axis) using the MAP solution. The peak in log-likelihood
indicates the optimal value for sigma.
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Figure B.4 An illustration of the LPD classification on the CancerMap dataset. Each
horizontal panel corresponds to a LPD process. For each panel, the x-axis represent sam-
ples, while the y-axis represents the contribution of the process to the expression of the
sample. The colours correspond to the ICGC risk categories defined in Section 2.5.5.5.
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Figure B.5 An illustration of the LPD classification on the CamCap dataset. Each hori-
zontal panel corresponds to a LPD process. For each panel, the x-axis represent samples,
while the y-axis represents the contribution of the process to the expression of the
sample. The colours correspond to the ICGC risk categories defined in Section 2.5.5.5.
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Figure B.6 An illustration of the LPD classification on the Stephenson dataset. Each
horizontal panel corresponds to a LPD process. For each panel, the x-axis represent
samples, while the y-axis represents the contribution of the process to the expression
of the sample. The colours correspond to the pathological stage categories defined in
Section 2.5.5.2.
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Figure B.7 An illustration of the LPD classification on the Klein dataset. Each horizontal
panel corresponds to a LPD process. For each panel, the x-axis represent samples, while
the y-axis represents the contribution of the process to the expression of the sample.
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Figure B.8 The distribution of the PSA failure log-rank p-values of 100 LPD restarts
with random seeds, for: a) MSKCC, b) CancerMap, c) CamCap and d) Stephenson.
The vertical dashed lines correspond to the mode of the distribution.
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MSKCC

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 1.67 0.59941 4.653 3.27 ·10−1

Gleason: ≤ / > 7 5.1787 1.92652 13.921 1.12 ·10−3

PSA: ≤ / > 10 1.1616 0.48496 2.782 7.37 ·10−1

Path Stage < 35 weeks: T2/T3-T4 5.5411 1.73982 17.648 3.77 ·10−3

Path Stage ≥ 35 weeks: T2/T3-T4 0.5261 0.06108 4.531 5.59 ·10−1

CancerMap

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 4.2938 1.6071 11.472 3.66 ·10−3

Gleason: ≤ / > 7 3.4283 1.1492 10.227 2.72 ·10−2

Path Stage: T1-T2/T3-T4 1.7402 0.8111 3.734 1.55 ·10−1

PSA: ≤ / > 10 1.2363 0.5409 2.826 6.15 ·10−1

Stephenson

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 3.8041 1.889 7.661 1.83 ·10−4

Path Stage: T1-T2/T3-T4 1.6947 0.8409 3.415 1.4 ·10−1

Gleason: ≤ / > 7 2.0393 0.9881 4.209 5.39 ·10−2

PSA: ≤ / > 10 1.9233 0.9753 3.793 5.9 ·10−2

CamCap

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 2.2504 1.086 4.662 2.9 ·10−2

Path Stage: T1-T2/T3-T4 2.2786 1.29 4.024 4.53 ·10−3

Gleason: ≤ / > 7 4.2327 2.265 7.909 6.08 ·10−6

PSA: ≤ / > 10 1.9441 1.151 3.283 1.29 ·10−2

Combined

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 p-value

Non-DESNT/DESNT 3.5158 2.1967 5.627 1.61 ·10−7

Gleason: ≤ / > 7 3.0926 1.8739 5.104 1 ·10−5

PSA: ≤ / > 10 1.4261 0.9363 2.172 9.83 ·10−2

Path Stage: T1-T2/T3-T4 1.9184 1.2609 2.919 2.34 ·10−3

Dataset: MSKCC/CancerMap 1.3087 0.7709 2.222 3.19 ·10−1

Dataset: MSKCC/Stephenson 1.5318 0.9287 2.527 9.49 ·10−2

Table B.2 Summary of the extended Cox PH model using the DESNT membership,
Gleason score (≤ / > 7), PSA (≤ / > 10) and stage (T1-T2/T3-T4) as predictors of
recurrence.
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Figure B.9 Correlations of expression profiles between cancers assigned to the DESNT
process in MSKCC and a) the LPD7 process in MSKCC, where all samples are benign,
b) the LPD4 process in CancerMap, containing mainly normal samples, c) LPD1 process
in Stephenson, where most of the benign samples are assigned, d) the LPD2 process
in MSKCC, containing a mixture of risk categories, e) the CamCap LPD1 process, f)
the CancerMap LPD1 process. Data from the 500 probes used in LPD are represented
and ten possible comparisons are shown. The expression levels of each gene have been
normalised across all samples to mean 0 and standard deviation 1

Genes MSKCC CancerMap Glinsky Klein CamCap Reference

ACTA2 100 92 100 98 90
ACTG2 100 98 100 98 92
ACTN1 100 92 100 100 67
ATP2B4 100 92 100 100 69
C7 100 89 100 100 74
CALD1 100 92 92 100 40
CDC42EP3 100 92 100 95 0
CLU** 100 92 100 100 0 [341]
CNN1 100 92 100 98 97
CRISPLD2 100 92 100 98 9
CSRP1*‡ 100 93 100 100 98 [342]
DPYSL3** 100 92 100 86 100 [343]
EPAS1*|| 100 92 100 100 0 [344, 345]
ETS2 100 92 100 100 18
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FBLN1*† 100 92 100 100 97 [303, 304]
FERMT2 100 92 100 100 100
FLNA 100 92 100 98 90
GPX3*† 100 92 100 100 28 [346, 347]
GSTP1**† 100 92 100 81 91 [348]
ILK 100 92 100 100 99
ITGA5 100 92 100 100 74
JAM3* 92 85 100 100 96 [349]
KCNMA1**† 100 92 100 99 100 [350]
LMOD1 100 92 100 91 94
MYL9 100 92 100 98 96
MYLK*‡ 100 92 100 98 97 [342, 351]
PALLD 100 92 100 100 98
PCP4 100 92 100 100 80
PDK4 100 83 100 96 0
PDLIM1 100 91 100 81 12
PLP2 100 92 100 100 15
PPAP2B 100 92 100 100 5
RBPMS 100 92 100 100 62
SNAI2** 100 93 100 91 6 [352]
SORBS1* 100 92 100 98 96 [353]
SPG20* 100 92 100 100 NA [354]
STAT5B 100 92 100 100 0
STOM 100 92 100 100 80
SVIL** 100 83 100 100 10 [355]
TGFBR3 100 92 93 87 99
TIMP3*† 100 92 100 97 17 [356, 357]
TNS1 100 92 100 100 35
TPM1* 100 92 100 100 1 [358, 359]
TPM2 100 92 100 80 100
VCL 100 92 100 100 98

Table B.3 The LPD DESNT signature. Each number corresponds to the number of LPD
runs in which each gene has been found as differentially expressed. Symbols: * - down
regulation by CpG methylation in cancer, ** - down regulation by CpG methylation in
prostate cancer, † - CpG methylation associated with poor outcome, ‡ - prostate cancer
functional connectivity hub, || - gene-gene interaction focus for prostate cancer,
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ID Description GeneRatio p-value p-adjust

GO:0009611 response to wounding 19/44 3.2 ·10−13 6.33 ·10−10

GO:0003012 muscle system process 13/44 9.3 ·10−13 9.2 ·10−10

GO:0006936 muscle contraction 12/44 2.2 ·10−12 1.45 ·10−9

GO:0042060 wound healing 15/44 4.16 ·10−11 2.06 ·10−8

GO:0030029 actin filament-based process 13/44 5.31 ·10−10 1.92 ·10−7

GO:0009653 anatomical structure morphogenesis 24/44 5.81 ·10−10 1.92 ·10−7

GO:0048856 anatomical structure development 31/44 2.04 ·10−9 5.43 ·10−7

GO:0034329 cell junction assembly 9/44 2.33 ·10−9 5.43 ·10−7

GO:0030036 actin cytoskeleton organization 12/44 2.47 ·10−9 5.43 ·10−7

GO:0044707 single-multicellular organism process 35/44 3.36 ·10−9 6.53 ·10−7

GO:0007596 blood coagulation 12/44 3.88 ·10−9 6.53 ·10−7

GO:0007599 hemostasis 12/44 4.29 ·10−9 6.53 ·10−7

GO:0050817 coagulation 12/44 4.29 ·10−9 6.53 ·10−7

GO:0050878 regulation of body fluid levels 13/44 5.24 ·10−9 7.41 ·10−7

GO:0034330 cell junction organization 9/44 6.24 ·10−9 8.24 ·10−7

GO:0032501 multicellular organismal process 35/44 1.01 ·10−8 1.23 ·10−6

GO:0048468 cell development 20/44 1.05 ·10−8 1.23 ·10−6

GO:0032989 cellular component morphogenesis 17/44 1.87 ·10−8 2.06 ·10−6

GO:0003008 system process 19/44 2.29 ·10−8 2.39 ·10−6

GO:0031589 cell-substrate adhesion 9/44 2.65 ·10−8 2.63 ·10−6

Table B.4 Top 20 GO pathways over-represented in the LPD DESNT signature.

ID Description Gene Ratio p-value p-adjust

hsa04270 Vascular smooth muscle contraction 6/26 3.86 ·10−6 1.99 ·10−4

hsa04510 Focal adhesion 7/26 6.13 ·10−6 1.99 ·10−4

hsa04520 Adherens junction 4/26 1.43 ·10−4 3.11 ·10−3

hsa04670 Leukocyte transendothelial migration 4/26 8.56 ·10−4 1.28 ·10−2

hsa04810 Regulation of actin cytoskeleton 5/26 9.85 ·10−4 1.28 ·10−2

hsa05100 Bacterial invasion of epithelial cells 3/26 2.86 ·10−3 2.78 ·10−2

hsa04022 cGMP-PKG signaling pathway 4/26 3.08 ·10−3 2.78 ·10−2

hsa05410 Hypertrophic cardiomyopathy (HCM) 3/26 3.42 ·10−3 2.78 ·10−2

hsa05414 Dilated cardiomyopathy 3/26 4.3 ·10−3 3.1 ·10−2

Table B.5 KEGG pathways over-represented in the LPD DESNT signature.
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ID Description Gene Ratio p-value p-adjust

445355 Smooth Muscle Contraction 10/28 4.67 ·10−18 4.2 ·10−16

397014 Muscle contraction 10/28 3.24 ·10−14 1.46 ·10−12

446353 Cell-extracellular matrix interactions 4/28 8.8 ·10−7 2.64 ·10−5

5627123 RHO GTPases activate PAKs 3/28 1.07 ·10−4 2.41 ·10−3

446728 Cell junction organization 4/28 2.6 ·10−4 4.46 ·10−3

114608 Platelet degranulation 4/28 3.16 ·10−4 4.46 ·10−3

109582 Hemostasis 8/28 3.47 ·10−4 4.46 ·10−3

76005 Response to elevated platelet cytosolic Ca2+ 4/28 3.98 ·10−4 4.48 ·10−3

1500931 Cell-Cell communication 4/28 1.63 ·10−3 1.63 ·10−2

Table B.6 Reactome pathways over-represented in the LPD DESNT signature.

Cytoskeleton

ACTA2 FLNA PDLIM1
ACTG2 LMOD1 SPG20
ACTN1 MYL9 SVIL
CALD1 MYLK TNS1
CDC42EP3 PALLD TPM1
CNN1 PCP4 TPM2

Adhesion, integrins and extracellular matrix

DPYSL3 ILK TIMP3
FBLN1 ITGA5 VCL
FERMT2 TGFBR3

Transcription factors and translation regulators

EPAS1 RBPMS STAT5B
ETS2 SNAI2

Ion channel related

ATP2B4 KCNMA1 STOM

Mixed

C7 GPX3 PLP2
CLU GSTP1 SORBS1
CRISPLD2 JAM3 PPAP2B
CSRP1 PDK4

Table B.7 The pathway involvement of the genes in the LPD DESNT signature as
determined by Prof. Dylan Edwards.
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Figure B.10 Hierarchical clustering on the MSKCC (a) and CancerMap (b) datasets and
the associated KM plots (c,d). In the top two panels, the colours represent the groups
resulted from cutting the dendrogram into 8 groups. The KM plots correspond to the
groups depicted in a) and b).
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MSKCC

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 1.2915 0.49035 3.401 6.05 ·10−1

Gleason: ≤/> 7 5.7754 2.26426 14.731 2.42 ·10−4

PSA: ≤/> 10 1.2323 0.52448 2.896 6.32 ·10−1

Stage < 35 weeks: T2/T3-T4 5.6326 1.77791 17.845 3.3 ·10−3

Stage ≥ 35 weeks: T2/T3-T4 0.5174 0.06022 4.445 5.48 ·10−1

CancerMap

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 2.5107 1.1998 5.254 1.45 ·10−2

Gleason: ≤/> 7 5.3242 2.0583 13.773 5.63 ·10−4

Stage: T1-T2/T3-T4 1.8066 0.8611 3.79 1.18 ·10−1

PSA: ≤/> 10 1.1959 0.5389 2.654 6.6 ·10−1

Stephenson

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 3.3779 1.7102 6.672 4.56 ·10−4

Stage: T1-T2/T3-T4 1.5375 0.7791 3.034 2.15 ·10−1

Gleason: ≤/> 7 2.2833 1.1183 4.662 2.34 ·10−2

PSA: ≤/> 10 1.842 0.931 3.645 7.94 ·10−2

CamCap

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 2.8712 1.672 4.93 1.31 ·10−4

Stage: T1-T2/T3-T4 2.0584 1.162 3.648 1.34 ·10−2

Gleason: ≤/> 7 4.7835 2.587 8.845 6.03 ·10−7

PSA: ≤/> 10 1.9649 1.162 3.323 1.17 ·10−2

TCGA

Covariate Hazard Ratio CI lower 0.95 CI upper 0.95 P-value

Non-DESNT/DESNT 2.1145 1.0944 4.086 2.59 ·10−2

Gleason: ≤/> 3+4 1.3959 0.6379 3.055 4.04 ·10−1

Stage: T1-T2/T3-T4 3.8147 1.3074 11.131 1.43 ·10−2

Table B.8 Summary of the extended Cox PH model using the RF DESNT membership,
Gleason score (≤ / > 7), PSA (≤ / > 10) and stage (T1-T2/T3-T4) as predictors of
recurrence.

Probe ID Gene Symbol Dist TSS Promoter P-value P-adjust

cg00813162 ACTN1 920 FALSE 5.45 ·10−35 6.12 ·10−33
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cg27173151 ATP2B4 2415 FALSE 2.28 ·10−16 1.6 ·10−15

cg04148762 ATP2B4 2658 FALSE 5.46 ·10−14 3 ·10−13

cg17721249 ATP2B4 2679 FALSE 4.06 ·10−12 1.88 ·10−11

cg26253438 ATP2B4 2708 FALSE 4.06 ·10−12 1.88 ·10−11

cg15732851 ATP2B4 2846 FALSE 1.13 ·10−13 6.1 ·10−13

cg21397588 ATP2B4 3039 FALSE 2.53 ·10−18 2.1 ·10−17

cg02457623 ATP2B4 3174 FALSE 7.48 ·10−25 1.23 ·10−23

cg13808058 ATP2B4 9675 FALSE 1.34 ·10−26 2.7 ·10−25

cg13115222 ATP2B4 19093 FALSE 1.44 ·10−39 4.05 ·10−37

cg00319312 ATP2B4 19270 FALSE 1.44 ·10−39 4.05 ·10−37

cg22439651 C7 23845 FALSE 3.7 ·10−10 1.51 ·10−9

cg16453474 C7 72493 FALSE 3.66 ·10−9 1.39 ·10−8

cg06390484 CALD1 111107 FALSE 1.83 ·10−20 1.95 ·10−19

cg08698854 CALD1 111142 FALSE 7.43 ·10−22 8.5 ·10−21

cg07625383 CALD1 8344 FALSE 1.31 ·10−15 8.7 ·10−15

cg22313574 CLU 286 FALSE 7.22 ·10−28 1.84 ·10−26

cg14917244 CLU 266 FALSE 7.22 ·10−28 1.84 ·10−26

cg03296797 CRISPLD2 16479 FALSE 1.14 ·10−25 2 ·10−24

cg03476673 CRISPLD2 16616 FALSE 1.14 ·10−25 2 ·10−24

cg09967633 CRISPLD2 65207 FALSE 7.28 ·10−18 5.79 ·10−17

cg02455706 CRISPLD2 65264 FALSE 7.28 ·10−18 5.79 ·10−17

cg20623601 EPAS1 2302 FALSE 7.5 ·10−10 3.02 ·10−9

cg25124739 EPAS1 2557 FALSE 1.04 ·10−8 3.75 ·10−8

cg07072704 FBLN1 1017 FALSE 6.75 ·10−35 6.89 ·10−33

cg23497752 FLNA 4928 FALSE 1.28 ·10−10 5.39 ·10−10

cg02659086 GSTP1 -89 TRUE 1.65 ·10−14 9.79 ·10−14

cg06928838 GSTP1 424 FALSE 6.9 ·10−25 1.15 ·10−23

cg09038676 GSTP1 542 FALSE 1.59 ·10−28 4.68 ·10−27

cg11566244 GSTP1 720 FALSE 6.3 ·10−28 1.68 ·10−26

cg22224704 GSTP1 975 FALSE 1.03 ·10−36 1.92 ·10−34

cg23795217 ITGA5 1049 FALSE 4.27 ·10−27 0.99 ·10−25

cg03826594 ITGA5 964 FALSE 2.61 ·10−26 5.05 ·10−25

cg03640071 JAM3 81930 FALSE 4.58 ·10−28 1.29 ·10−26

cg16055185 KCNMA1 247059 FALSE 3.38 ·10−22 4.17 ·10−21

cg01858517 KCNMA1 992 FALSE 1.08 ·10−12 5.32 ·10−12

cg05479582 KCNMA1 952 FALSE 1.08 ·10−12 5.32 ·10−12

cg03354113 KCNMA1 783 FALSE 1.08 ·10−12 5.32 ·10−12

cg18660345 MYL9 -347 TRUE 6.9 ·10−31 3.09 ·10−29

cg05820491 MYL9 -292 TRUE 6.9 ·10−31 3.09 ·10−29

cg20669834 MYLK 112 FALSE 9.65 ·10−23 1.27 ·10−21

cg18731398 MYLK 5622 FALSE 1.68 ·10−32 1.18 ·10−30

cg07621385 MYLK 14613 FALSE 1.31 ·10−33 1.23 ·10−31

cg04376312 MYLK 663 FALSE 3.14 ·10−32 2.07 ·10−30

cg24242290 PALLD 112017 FALSE 2.54 ·10−26 4.99 ·10−25
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cg12768523 PALLD 184456 FALSE 1.02 ·10−26 2.12 ·10−25

cg25054754 PALLD 1172 FALSE 0.99 ·10−10 4.27 ·10−10

cg13573928 PALLD 1378 FALSE 0.99 ·10−10 4.27 ·10−10

cg15948536 PALLD 16936 FALSE 2.81 ·10−24 4.37 ·10−23

cg18389639 PDLIM1 1294 FALSE 2.64 ·10−29 8.99 ·10−28

cg11682697 PPAP2B 52884 FALSE 1.71 ·10−28 4.92 ·10−27

cg17221758 RBPMS 1297 FALSE 2.72 ·10−15 1.74 ·10−14

cg00447833 RBPMS 1316 FALSE 2.72 ·10−15 1.74 ·10−14

cg13456241 RBPMS 12979 FALSE 8.21 ·10−29 2.56 ·10−27

cg12167489 RBPMS 48545 FALSE 2.39 ·10−11 1.06 ·10−10

cg24128292 RBPMS 84620 FALSE 6.82 ·10−32 4.25 ·10−30

cg18318006 SORBS1 12682 FALSE 3.1 ·10−23 4.46 ·10−22

cg10741308 SORBS1 6557 FALSE 1.75 ·10−33 1.31 ·10−31

cg02370232 SORBS1 6464 FALSE 1.75 ·10−33 1.31 ·10−31

cg06282596 SORBS1 6350 FALSE 1.75 ·10−33 1.31 ·10−31

cg09072216 SPG20 1301 FALSE 8.29 ·10−18 6.41 ·10−17

cg10558887 SPG20 1236 FALSE 8.29 ·10−18 6.41 ·10−17

cg20691205 SPG20 971 FALSE 1.35 ·10−14 8.16 ·10−14

cg01404317 SPG20 826 FALSE 2.38 ·10−14 1.36 ·10−13

cg18755783 SPG20 740 FALSE 2.38 ·10−14 1.36 ·10−13

cg00947032 SPG20 685 FALSE 1.7 ·10−14 1.01 ·10−13

cg00049475 SVIL 164 FALSE 7.52 ·10−18 5.9 ·10−17

cg04678141 SVIL 100809 FALSE 7.52 ·10−18 5.9 ·10−17

cg03241461 SVIL 100471 FALSE 1.11 ·10−29 4.22 ·10−28

cg24212268 SVIL 88580 FALSE 1.45 ·10−20 1.56 ·10−19

cg06197966 SVIL 76405 FALSE 2.48 ·10−35 3.09 ·10−33

cg13324103 SVIL 76301 FALSE 2.48 ·10−35 3.09 ·10−33

cg09287650 SVIL 43513 FALSE 4.12 ·10−21 4.57 ·10−20

cg23721586 TGFBR3 130071 FALSE 1.56 ·10−12 7.59 ·10−12

cg25769732 TGFBR3 31656 FALSE 3.72 ·10−16 2.56 ·10−15

cg03323067 TNS1 880 FALSE 9.13 ·10−16 6.24 ·10−15

cg11936410 TPM1 4488 FALSE 1.25 ·10−12 6.11 ·10−12

Table B.9 Differentially methylated probes between RF DESNT and RF non-DESNT.
The third column contains the distance (in base pairs) of the probe from the transcription
start site. The fourth column indicates if the probes is within the region of the gene
promoter.
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Gene χ2 p-val FDR adj. χ2 p-value

PTEN 3.14 ·10−1 1
SPOP 8.75 ·10−1 1
TP53 5.43 ·10−2 1
ATM 8.44 ·10−1 1
CHD1 1 1
FOXA1 1.31 ·10−1 1
KMT2C 3.94 ·10−1 1
PIK3CA 9.83 ·10−1 1
BRAF 2.22 ·10−1 1
KMT2D 3.9 ·10−1 1
BRCA2 4.44 ·10−1 1
CTNNB1 6.6 ·10−1 1
MED12 1 1
ZMYM3 9.83 ·10−1 1
AKT1 1 1
CDK12 1 1
CDKN1B 5.48 ·10−1 1
HRAS 1 1
IDH1 7.48 ·10−1 1
RB1 1 1

Table B.10 Correlations between mutations and RF DESNT membership.

Gene χ2 p-val FDR adj. χ2 p-value

PTEN 2.56 ·10−1 4.58 ·10−1

TP53 9.72 ·10−2 2.19 ·10−1

CHD1 8.15 ·10−2 2.19 ·10−1

BRCA2 9.72 ·10−2 2.19 ·10−1

CDKN1B 1 1
RB1 5.55 ·10−1 7.14 ·10−1

CDK12 9.72 ·10−2 2.19 ·10−1

FANCD2 1 1
SPOPL 3.05 ·10−1 4.58 ·10−1

Table B.11 Correlations between homozygous deletions and RF DESNT membership.
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Gene χ2 p-val FDR adj. χ2 p-value

SPOP 8.75 ·10−1 1
ATM 8.44 ·10−1 1
FOXA1 1.31 ·10−1 4.9 ·10−1

KMT2C 3.94 ·10−1 7.87 ·10−1

PIK3CA 9.83 ·10−1 1
BRAF 2.22 ·10−1 6.11 ·10−1

KMT2D 3.9 ·10−1 7.87 ·10−1

CTNNB1 6.6 ·10−1 1
MED12 1 1
ZMYM3 9.83 ·10−1 1
AKT1 1 1
HRAS 1 1
IDH1 7.48 ·10−1 1
PTEN 1.42 ·10−1 4.9 ·10−1

TP53 3.84 ·10−3 8.45 ·10−2

CHD1 9.14 ·10−2 4.9 ·10−1

BRCA2 2.07 ·10−2 2.28 ·10−1

CDK12 4.19 ·10−2 3.07 ·10−1

CDKN1B 4.95 ·10−1 9.08 ·10−1

RB1 1.56 ·10−1 4.9 ·10−1

FANCD2 1 1
SPOPL 3.05 ·10−1 7.47 ·10−1

Table B.12 Correlations between the combined mutation/homozygous status and RF
DESNT membership.
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Chr. Start End Nr. Pb. Gene Dist TSS Promoter

chr1 56992372 56992372 1 PPAP2B 52885 FALSE
chr1 92197531 92197531 1 TGFBR3 130072 FALSE
chr1 92295946 92295946 1 TGFBR3 31657 FALSE
chr1 203598330 203599089 7 ATP2B4 2415 FALSE
chr1 203605590 203605590 1 ATP2B4 9675 FALSE
chr1 203670963 203671140 2 ATP2B4 19093 FALSE
chr10 29923736 29924258 3 SVIL 0 TRUE
chr10 29936149 29948428 3 SVIL 76302 FALSE
chr10 29981216 29981216 1 SVIL 43514 FALSE
chr10 79150517 79150517 1 KCNMA1 247060 FALSE
chr10 79396584 79396793 3 KCNMA1 784 FALSE
chr10 97049610 97049610 1 PDLIM1 1295 FALSE
chr10 97169147 97175479 4 SORBS1 6351 FALSE
chr11 67350976 67350976 1 GSTP1 -90 TRUE
chr11 67351271 67352041 6 GSTP1 205 FALSE
chr11 134020750 134020750 1 JAM3 81930 FALSE
chr12 54811762 54812085 3 ITGA5 965 FALSE
chr13 36919344 36919960 6 SPG20 686 FALSE
chr14 69443362 69443362 1 ACTN1 921 FALSE
chr15 63345124 63345124 1 TPM1 4488 FALSE
chr16 84870066 84870203 2 CRISPLD2 16479 FALSE
chr16 84918794 84918851 2 CRISPLD2 65207 FALSE
chr2 46526843 46527098 2 EPAS1 2302 FALSE
chr2 218767655 218767655 1 TNS1 881 FALSE
chr20 35169380 35169594 3 MYL9 -293 TRUE
chr22 45899736 45899736 1 FBLN1 1017 FALSE
chr3 123339417 123339568 2 MYLK 0 TRUE
chr3 123414733 123414733 1 MYLK 5623 FALSE
chr3 123535716 123535716 1 MYLK 14614 FALSE
chr3 123602485 123602485 1 MYLK 664 FALSE
chr4 169664785 169664785 1 PALLD 112017 FALSE
chr4 169737224 169737224 1 PALLD 184456 FALSE
chr4 169754328 169754534 2 PALLD 1172 FALSE
chr4 169770092 169770092 1 PALLD 16936 FALSE
chr5 40933444 40982092 2 C7 23845 FALSE
chr7 134575145 134575524 5 CALD1 110981 FALSE
chr7 134626083 134626083 1 CALD1 8344 FALSE
chr8 27468981 27469186 3 CLU 82 FALSE
chr8 30243241 30243260 2 RBPMS 1297 FALSE
chr8 30254923 30254923 1 RBPMS 12979 FALSE
chr8 30290489 30290489 1 RBPMS 48545 FALSE
chr8 30419935 30419935 1 RBPMS 84620 FALSE
chrX 153598077 153598077 1 FLNA 4929 FALSE

Table B.13 Differentially methylated regions between RF DESNT and RF non-DESNT.
The numbers in the third column represent the number of probes in the DMR. The fifth
column contains the distance (in base pairs) of the probe from the transcription start
site. The sixth column indicates if the probes is within the region of the promoter.
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Gene Probe Methylation Correlation

ACTN1 cg00813162 hyper -0.65
ATP2B4 cg00319312 hypo 0.75
ATP2B4 cg02457623 hyper -0.61
ATP2B4 cg04148762 hyper -0.38
ATP2B4 cg13115222 hypo 0.70
ATP2B4 cg13808058 hyper -0.58
ATP2B4 cg15732851 hyper -0.38
ATP2B4 cg17721249 hyper -0.40
ATP2B4 cg21397588 hyper -0.56
ATP2B4 cg26253438 hyper -0.49
ATP2B4 cg27173151 hyper -0.57
C7 cg16453474 hypo 0.21
C7 cg22439651 hypo 0.28
CALD1 cg06390484 hyper -0.47
CALD1 cg07625383 hyper -0.52
CALD1 cg08698854 hyper -0.49
CLU cg14917244 hyper -0.57
CLU cg22313574 hyper -0.58
CRISPLD2 cg02455706 hyper -0.43
CRISPLD2 cg03296797 hyper -0.52
CRISPLD2 cg03476673 hyper -0.51
CRISPLD2 cg09967633 hyper -0.47
EPAS1 cg20623601 hyper -0.40
EPAS1 cg25124739 hyper -0.36
FBLN1 cg07072704 hyper -0.47
FLNA cg23497752 hyper -0.46
GSTP1 cg02659086 hyper -0.72
GSTP1 cg06928838 hyper -0.84
GSTP1 cg09038676 hyper -0.84
GSTP1 cg11566244 hyper -0.82
GSTP1 cg22224704 hyper -0.87
ITGA5 cg03826594 hyper -0.44
ITGA5 cg23795217 hyper -0.50
JAM3 cg03640071 hyper -0.67
KCNMA1 cg01858517 hyper -0.54
KCNMA1 cg03354113 hyper -0.42
KCNMA1 cg05479582 hyper -0.53
KCNMA1 cg16055185 hyper -0.53
MYL9 cg05820491 hyper -0.50
MYL9 cg18660345 hyper -0.58
MYLK cg00465319 hyper -0.63
MYLK cg04376312 hyper -0.65
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MYLK cg07621385 hyper -0.68
MYLK cg18731398 hyper -0.67
MYLK cg20669834 hyper -0.50
PALLD cg12768523 hyper -0.61
PALLD cg13573928 hyper -0.55
PALLD cg15948536 hyper -0.61
PALLD cg24242290 hypo 0.53
PALLD cg25054754 hyper -0.47
PDLIM1 cg18389639 hyper -0.75
PPAP2B cg11682697 hyper -0.52
RBPMS cg00447833 hyper -0.55
RBPMS cg12167489 hyper -0.52
RBPMS cg13456241 hyper -0.61
RBPMS cg17221758 hyper -0.55
RBPMS cg24128292 hyper -0.67
SORBS1 cg02370232 hyper -0.58
SORBS1 cg06282596 hyper -0.55
SORBS1 cg10741308 hyper -0.50
SORBS1 cg18318006 hyper -0.49
SPG20 cg00947032 hyper -0.70
SPG20 cg01404317 hyper -0.72
SPG20 cg09072216 hyper -0.76
SPG20 cg10558887 hyper -0.74
SPG20 cg18755783 hyper -0.74
SPG20 cg20691205 hyper -0.74
SVIL cg00049475 hyper -0.54
SVIL cg03241461 hyper -0.57
SVIL cg04678141 hyper -0.51
SVIL cg06197966 hyper -0.62
SVIL cg09287650 hyper -0.52
SVIL cg13324103 hyper -0.61
SVIL cg24212268 hyper -0.59
TGFBR3 cg23721586 hyper -0.37
TGFBR3 cg25769732 hyper -0.48
TNS1 cg03323067 hyper -0.50
TPM1 cg11936410 hypo 0.26

Table B.14 Pearson’s correlation between the beta values of each differentially methy-
lated probe mapping to the 45 genes in the LPD DESNT signature and the expression
levels of the corresponding gene, across samples.
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